JPH01265134A - Measuring instrument for energy absorption factor of condensing lens - Google Patents

Measuring instrument for energy absorption factor of condensing lens

Info

Publication number
JPH01265134A
JPH01265134A JP9335788A JP9335788A JPH01265134A JP H01265134 A JPH01265134 A JP H01265134A JP 9335788 A JP9335788 A JP 9335788A JP 9335788 A JP9335788 A JP 9335788A JP H01265134 A JPH01265134 A JP H01265134A
Authority
JP
Japan
Prior art keywords
condensing lens
laser beam
shielding plate
integrating sphere
energy absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9335788A
Other languages
Japanese (ja)
Inventor
Keiji Ehata
惠司 江畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9335788A priority Critical patent/JPH01265134A/en
Publication of JPH01265134A publication Critical patent/JPH01265134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure a temperature of a condensing lens in a stable thermal equilibrium state by placing a shielding plate in a focus of a laser beam between the condensing lens and an integrating sphere. CONSTITUTION:A condensing lens 1, a scattering reflected light shielding plate 2 having a pin hole, and an integrating sphere 3 are placed in a laser optical path. By moving one of said three along the optical axis, the shielding plate 2 is placed in a focal position of a laser beam, only the laser beam is allowed to pass through, and also, shielding is executed so that the condensing lens is not irradiated by the scattering reflected light. Also, the integrating sphere is placed so as to receive through an aperture 11 of the laser beam which has passed through the pin hole of the shielding plate 2. Under this arrangement, the laser beam is led into the condensing lens 1 being an object to be measured, its passing light is received by the integrating sphere 3 through the shielding plate 2, and a temperature variation of the condensing lens 1 is detected by a thermocouple. Subsequently, this detected value and a detector signal of the integrating sphere are sent to a data logger, and the energy absorption factor of the condensing lens is derived.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ用光学部品の1つである集光レンズ、
特に、K Cl + K B rl N aCl + 
Z nse、 CdTe、 G e。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a condenser lens, which is one of optical components for a laser;
In particular, K Cl + K B rl NaCl +
Znse, CdTe, Ge.

Si、 GaAs、 InSbなどで作られるCo、 
CO,、YAG等の大出力レーザ用業光レンズのエネル
ギー吸収率測定装置に関する。
Co made from Si, GaAs, InSb, etc.
This invention relates to an energy absorption rate measuring device for industrial optical lenses for high-output lasers such as CO, YAG, etc.

(従来の技術) レーザカロリメトリー法を用いてレーザ用集光レンズの
エネルギー吸収率を測定するときには、測定対象物であ
る集光レンズの焦点距離がいろいろ異なるため、レンズ
通過後のレーザ光を常に完全にパワーメータでとらえる
ことが難しく、正確な測定が不可能であった。また、パ
ワーメータ等からの散乱反射光が、集光レンズ周囲の熱
平衡を乱したり、集光レンズに直接照射されるために集
光レンズの温度変化の測定値に誤差を与えるという問題
があった。
(Prior art) When measuring the energy absorption rate of a laser condensing lens using the laser calorimetry method, the focal length of the condensing lens, which is the object to be measured, varies. It was difficult to capture this with a power meter, making accurate measurement impossible. In addition, there are problems in that the scattered reflected light from a power meter, etc. disturbs the thermal equilibrium around the condenser lens, and the condenser lens is directly irradiated, giving an error in the measured value of the temperature change of the condenser lens. Ta.

(発明が解決しようとする課題) 本発明は、上記の問題を解消し、種々の焦点距離を有す
る集光レンズについて、散乱反射光の影響を除いて、集
光レンズのエネルギー吸収率を精確に測定することがで
きる装置を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the above problems and accurately determines the energy absorption rate of a condenser lens with various focal lengths by eliminating the influence of scattered reflected light. The aim is to provide a device that can perform measurements.

(課題を解決するための手段) 本発明は、レーザカロリメトリー法を用いて集光レンズ
のエネルギー吸収率を測定する装置において、レーザ光
路に測定対象物である集光レンズ、ピンホールを有する
散乱反射光遮蔽板、及び、アパーチャをレーザ光路に向
けた積分球を置き、該遮蔽板をレーザ光の焦点位置にす
る移動手段を設け、かつ、集光レンズ側面に熱電対を付
設し、該熱電対及び積分球のディテクタからの信号をデ
ータロガに収集するようにしたことを特徴とする集光レ
ンズのエネルギー吸収率測定装置である。なお、遮蔽板
は、例えば銅、アルミニウム等の赤外光を反射する性質
を有する材料で作られる。
(Means for Solving the Problems) The present invention provides an apparatus for measuring the energy absorption rate of a condensing lens using a laser calorimetry method. A light shielding plate and an integrating sphere with the aperture facing the laser beam path are placed, a moving means is provided to place the shielding plate at the focal position of the laser beam, and a thermocouple is attached to the side surface of the condensing lens. and a data logger that collects signals from a detector of an integrating sphere. Note that the shielding plate is made of a material having a property of reflecting infrared light, such as copper or aluminum.

(作用) 第1図は、本発明の1具体例である集光レンズのエネル
ギー吸収率測定装置の概念図である。
(Function) FIG. 1 is a conceptual diagram of an apparatus for measuring energy absorption rate of a condenser lens, which is a specific example of the present invention.

レーザ光路に集光レンズ11ピンホールを有する散乱反
射光遮蔽板2、及び積分球3を配置し、上記3者のうち
いずれかを光軸に沿って移動することによって、レーザ
光の焦点距離に遮蔽板2を置き、レーザ光のみを通過さ
せ、かつ、散乱反射光を集光レンズに照射しないように
遮蔽する役割をする。また、遮蔽板2のピンホールを通
過したレーザ光を、アパーチャを経て総てを受けるよう
に積分球3を配置する。
By arranging a condensing lens 11, a scattered reflection light shielding plate 2 having a pinhole, and an integrating sphere 3 in the laser beam path, and moving any one of the above three along the optical axis, the focal length of the laser beam can be adjusted. A shielding plate 2 is placed to allow only the laser beam to pass through and to shield the scattered reflected light from irradiating the condenser lens. Furthermore, the integrating sphere 3 is arranged so as to receive all of the laser light that has passed through the pinhole of the shielding plate 2 through the aperture.

上記の配置の下でレーザ光を測定対象物である集光レン
ズに導入し、遮蔽板のピンホール及びアパーチャを経て
、積分球で受け、集光レンズの温度変化を熱雷対で検出
し、積分球のディテクタの信号と合わせてデータロガに
送り、集光レンズのエネルギー吸収率を求めるものであ
る。
Under the above arrangement, the laser beam is introduced into the condensing lens that is the object to be measured, passes through the pinhole and aperture of the shielding plate, is received by the integrating sphere, and the temperature change of the condensing lens is detected by a thermal lightning pair. This is sent together with the signal from the integrating sphere detector to the data logger to determine the energy absorption rate of the condenser lens.

このように、遮蔽板を集光レンズと積分球の間のレーザ
光の焦点に配置することにより、集光レンズを通過させ
たレーザ光をピンホールを介して総て積分球に導入する
とともに、積分球からの散乱反射光が集光レンズを照射
することを防止することができ、その結果、安定した熱
平衡状態における集光レンズの温度測定を可能にした。
In this way, by placing the shielding plate at the focal point of the laser beam between the condenser lens and the integrating sphere, all of the laser beam that has passed through the condenser lens is introduced into the integrating sphere via the pinhole, and It was possible to prevent the scattered reflected light from the integrating sphere from irradiating the condenser lens, and as a result, it became possible to measure the temperature of the condenser lens in a stable thermal equilibrium state.

(実施例) 第1図の装置を用いて、レーザ光の照射による集光レン
ズの温度上昇と遮断後の温度降下を測定した。
(Example) Using the apparatus shown in FIG. 1, the temperature rise of the condenser lens due to laser light irradiation and the temperature drop after laser light cutoff were measured.

集光レンズはZn5e製で焦点距離が63.51のもの
を用いた。遮蔽板はCu製で厚さは2■、ピンホールの
直径が0.5閣のものを用いた。また、積分球はCur
Mで直径152閣で、ターゲットは直径25.4mで高
さ5■の円錐形であり、アパーチャの直径は25.4−
のものを用いた。
The condenser lens was made of Zn5e and had a focal length of 63.51. The shielding plate was made of Cu, had a thickness of 2 cm, and had a pinhole diameter of 0.5 mm. Also, the integrating sphere is Cur
M has a diameter of 152 cm, the target is a cone with a diameter of 25.4 m and a height of 5 cm, and the aperture diameter is 25.4 -
I used the one from

第2図は、上記の実験結果を示したグラフであり、レー
ザ光の照射による集光レンズの温度上昇と、レーザ光の
遮蔽後の温度降下時における、同一温度における微分係
数の絶対和が各点において士(1,01%以内のバラツ
キであり、安定した熱平衡状態の下にあったことが分か
った。
Figure 2 is a graph showing the above experimental results, and shows the absolute sum of the differential coefficients at the same temperature when the temperature of the condensing lens increases due to laser beam irradiation and when the temperature decreases after shielding the laser beam. It was found that the variation in points was within 1.01%, indicating that the temperature was in a stable thermal equilibrium state.

なお、遮蔽板を用いずに、上記と同様の実験を行ったと
ころ、バラツキは上記の10倍を示した。
Note that when an experiment similar to the above was conducted without using a shielding plate, the variation was 10 times greater than the above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1具体例である集光レンズのエネルギ
ー吸収率測定装置の概念図であり、第2図は実施例にお
ける集光レンズの吸収率測定結果を示したグラフである
FIG. 1 is a conceptual diagram of an apparatus for measuring the energy absorption rate of a condensing lens as a specific example of the present invention, and FIG. 2 is a graph showing the results of measuring the absorption rate of the condensing lens in the example.

Claims (1)

【特許請求の範囲】[Claims] レーザカロリメトリー法を用いて集光レンズのエネルギ
ー吸収率を測定する装置において、レーザ光路に測定対
象物である集光レンズ、ピンホールを有する散乱反射光
遮蔽板、及び、アパーチャをレーザ光路に向けた積分球
を置き、該遮蔽板をレーザ光の焦点位置にする移動手段
を設け、かつ、集光レンズ側面に熱電対を付設し、該熱
電対及び積分球のディテクタからの信号をデータロガに
入力するようにしたことを特徴とする集光レンズのエネ
ルギー吸収率測定装置。
In an apparatus for measuring the energy absorption rate of a condensing lens using the laser calorimetry method, a condensing lens, which is an object to be measured, a scattered reflection light shielding plate having a pinhole, and an aperture are directed toward the laser beam path. Place an integrating sphere, provide a means for moving the shielding plate to the focal position of the laser beam, attach a thermocouple to the side surface of the condensing lens, and input signals from the thermocouple and the detector of the integrating sphere to a data logger. An apparatus for measuring energy absorption rate of a condenser lens, characterized in that:
JP9335788A 1988-04-18 1988-04-18 Measuring instrument for energy absorption factor of condensing lens Pending JPH01265134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9335788A JPH01265134A (en) 1988-04-18 1988-04-18 Measuring instrument for energy absorption factor of condensing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9335788A JPH01265134A (en) 1988-04-18 1988-04-18 Measuring instrument for energy absorption factor of condensing lens

Publications (1)

Publication Number Publication Date
JPH01265134A true JPH01265134A (en) 1989-10-23

Family

ID=14080026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335788A Pending JPH01265134A (en) 1988-04-18 1988-04-18 Measuring instrument for energy absorption factor of condensing lens

Country Status (1)

Country Link
JP (1) JPH01265134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591910A (en) * 2013-10-28 2014-02-19 中国科学院长春光学精密机械与物理研究所 High-precision measurement device for radiometer diaphragm area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591910A (en) * 2013-10-28 2014-02-19 中国科学院长春光学精密机械与物理研究所 High-precision measurement device for radiometer diaphragm area

Similar Documents

Publication Publication Date Title
US4243327A (en) Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect
KR101857950B1 (en) High accuracy real-time particle counter
CN102175427B (en) Method for comprehensively testing stability of deep ultraviolet optical element
CN107132029B (en) Method for simultaneously measuring reflectivity, transmittance, scattering loss and absorption loss of high-reflection/high-transmission optical element
CN111504612A (en) Testing arrangement of many light sources laser damage threshold value
US20150308892A1 (en) Impulsive synchronization spectrometer based on adjustable time window
CN101261224B (en) Optical non-linear method for measuring material based on 4f phase coherent imaging system
CN107782697B (en) Method and device for measuring refractive index of broadband confocal infrared lens element
JP2863874B2 (en) Particle size distribution analyzer
JPH03189547A (en) Method and device for measuring heat diffusivity
JPH0321072B2 (en)
CN102252828B (en) Method for monitoring real-time changes in reflectivity of highly reflective optical element under laser irradiation
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JPH09189653A (en) Optical axis adjusting method for use in scattering type particle size distribution measuring device
GB1298658A (en) Photometer for measuring total radiant energy at selected angles
CN201184867Y (en) Optical non-linear apparatus base on 4f phase coherent imaging system measuring material
JPH01265134A (en) Measuring instrument for energy absorption factor of condensing lens
RU2375677C1 (en) Roughness metre
Ottaviani et al. Light reflection from water waves: Suitable setup for a polarimetric investigation under controlled laboratory conditions
CN106353262B (en) Atomic absorption measurement method and measuring device
SU807166A1 (en) Method of determining reflective index
CN103940844B (en) The method that linear frequency modulation multi-beam laser heterodyne measures expansion coefficients of metal wire
JP3385670B2 (en) Infrared spectrophotometer
RU2504754C1 (en) Device for measuring optical light scattering characteristics in two-phase gasdynamic flows
JP2627600B2 (en) Laser beam propagation characteristics measurement device