JPH01246927A - Satellite communication synchronizing network system - Google Patents

Satellite communication synchronizing network system

Info

Publication number
JPH01246927A
JPH01246927A JP7311688A JP7311688A JPH01246927A JP H01246927 A JPH01246927 A JP H01246927A JP 7311688 A JP7311688 A JP 7311688A JP 7311688 A JP7311688 A JP 7311688A JP H01246927 A JPH01246927 A JP H01246927A
Authority
JP
Japan
Prior art keywords
clock
station
satellite
satellite communication
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7311688A
Other languages
Japanese (ja)
Other versions
JPH0618339B2 (en
Inventor
Noriyoshi Ikeda
池田 紀芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7311688A priority Critical patent/JPH0618339B2/en
Publication of JPH01246927A publication Critical patent/JPH01246927A/en
Publication of JPH0618339B2 publication Critical patent/JPH0618339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To prevent appearance of the Doppler variation of a satellite in the terminal equipment of a slave station by completely suppressing the variation of delay time caused by the Doppler variation at a main station and absorbing the varying quantity of the Doppler variation of demodulated main signals after clocks are reproduced at the slave station. CONSTITUTION:At a main station M ground system synchronizing network reference clocks 21 are received by means of a satellite communication network reference clock circuit 22 and satellite communication network reference clocks 22a controlled to have a fixed frequency relation are produced. Since control is performed at the main station M so that the phase after satellite turning route can become constant at the main station receiving point, the delay time variation caused by the Doppler variation of a satellite 6 is completely suppressed. At a slave station A, on the other hand, received signals are demodulated at a demodulator circuit 11 for main signal and slave station clock distributing channel demodulator circuit 12 and main signals and clocks are inputted to a Doppler buffer 13 and sent to a terminal 14 for digital synchronization as phase-shaped main signals. The clocks reproduced from the circuit 12 of the slave station are suppressed to small values in residual variation value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は衛星通信システムに関し、特に≠衛星通信シス
テムのディジタル同期網に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a satellite communication system, and more particularly to a digital synchronization network for a satellite communication system.

〔従来の技術〕[Conventional technology]

従来衛星通信を利用してディジタル同期網を構成する時
は、第2図に示す通り、−衛星通信リンクごとに基準局
と副局を定義し、基準局23は地上系同期網基準クロッ
ク21を衛星通信網基準クロック回路22で受け、これ
を一定の周波数比の衛星通信網基準クロック信号22a
に直した後、副局24へ送信する信号、他局から受信し
たデータ信号のドツプラーバッファ25の読み出しクロ
ック、端末26.26’へ渡すクロックとして使用して
いた。
Conventionally, when constructing a digital synchronous network using satellite communication, as shown in Fig. 2, - A reference station and a sub-station are defined for each satellite communication link, and the reference station 23 uses the terrestrial synchronous network reference clock 21 for satellite communication. The network reference clock circuit 22 receives this signal as a satellite communication network reference clock signal 22a with a fixed frequency ratio.
After converting the signal to the substation 24, it was used as a signal to be transmitted to the substation 24, a read clock for the Doppler buffer 25 for data signals received from other stations, and a clock to be passed to the terminals 26 and 26'.

一クロックで動作する。この折問題となるのは。Operates in one clock. What is the problem at this time?

衛星の日周期変動に伴う遅延時間変動により。Due to delay time fluctuations due to the diurnal fluctuations of the satellite.

副局全体のクロック位相がそれにつれて、ゆらぐ事であ
る。これは衛星通信網のみの閉域網の場合は特巡二問題
とならないが、地上系同期網と混在し且つ方路編集を行
なう様な端末を接続した時には、衛星通信路ルートは日
周期でスリップを起しエラーを発生する。
The clock phase of the entire substation fluctuates accordingly. This is not a special issue in the case of a closed network consisting only of a satellite communication network, but when a terminal that edits the route is connected to a terrestrial synchronous network, the satellite communication route will slip on a daily basis. causes an error.

本発明はこの欠点を解決し、端末から衛星通信路ルート
を見た時にドツプラー変動をほとんど無視出来る迄に抑
えようとするものである。
The present invention aims to solve this drawback and suppress Doppler fluctuations to the point where they can be almost ignored when viewing the satellite communication channel route from a terminal.

〔問題点を解決するた杓の手段〕[Measures to solve problems]

本発明によれば、主局及び各地方に点在する複数の従局
から成り、地上系同期網基準クロックに対し一定の周波
数関係に制御された衛星通信網基準クロックを用いて衛
星を介した通信を行う衛星通信システムにおいて、前記
主局が。
According to the present invention, communication via a satellite is made up of a main station and a plurality of slave stations scattered in each region, using a satellite communication network reference clock controlled to have a fixed frequency relationship with respect to a terrestrial synchronous network reference clock. In a satellite communication system that performs

前記衛星通信網基準クロックの位相を制御信号により変
えることのできる位相可変制御回路。
A phase variable control circuit capable of changing the phase of the satellite communication network reference clock using a control signal.

この位相可変制御回路後のクロックでトリガして変調信
号を発するクロック分配チャンネル用変調回路、この変
調信号を前記衛星を経て受信する受信機、該受信した信
号を復調する主局クロック分配チャンネル復調回路、こ
の再生した受信クロックと前記衛星通信網基準クロック
を一定周期ごとに位相比較して前記制御信号を発する手
段を具備し、而して前記クロック位相可変制御回路は前
記再生受信クロックが前記衛星通信網基準クロックに対
し常に一定位相になる様に制御されており、前記従局が
前記主局の発射したクロック分配チャンネル信号を受信
しクロック再生を行う手段を具備し、而してこの再生ク
ロックを、従属同期する端末へ渡す信号、主局及び従局
向けに送信する信号、ならびC:他局から受信したデー
タ信号のドツプラーバッファの読み出しクロックの源と
する事を特徴とする衛星通信同期網システムが得られる
A clock distribution channel modulation circuit that emits a modulated signal triggered by the clock after this phase variable control circuit, a receiver that receives this modulated signal via the satellite, and a main station clock distribution channel demodulation circuit that demodulates the received signal. , comprising a means for comparing the phases of the regenerated reception clock and the satellite communication network reference clock at regular intervals and issuing the control signal, and the clock phase variable control circuit is configured such that the regenerated reception clock is connected to the satellite communication network reference clock. The slave station is controlled to always have a constant phase with respect to the network reference clock, and the slave station is provided with means for receiving the clock distribution channel signal emitted by the master station and regenerating the clock, and the regenerated clock is A satellite communication synchronization network system is characterized in that a signal to be passed to a slave synchronized terminal, a signal to be transmitted to a master station and a slave station, and C: a source of a clock for reading a Doppler buffer of a data signal received from another station is provided. can get.

〔実施例〕〔Example〕

第1図に本発明の一実施例の構成を示す。主局は地上系
同期網基準クロック1を衛星通信網基準クロック回路2
で受け、一定の周波数関係::制御された衛星通信網基
準クロック2aを作る。このクロック2aはクロック位
相可変制御回路3を通った後クロック分配チャンネル用
変調回路4の変調信号源クロックとして使用される。こ
の変調されたクロック分配チャンネル及びネットワーク
監視制御装置4aが意味のあるデータを送ってきている
ときはそのデータは。
FIG. 1 shows the configuration of an embodiment of the present invention. The main station uses the terrestrial synchronous network reference clock 1 as the satellite communication network reference clock circuit 2.
A satellite communication network reference clock 2a with a constant frequency relationship is generated. After passing through the variable clock phase control circuit 3, this clock 2a is used as a modulation signal source clock of the modulation circuit 4 for the clock distribution channel. When this modulated clock distribution channel and network supervisory control device 4a is sending meaningful data, the data is.

主局衛星通信送受信機5.衛星6を経て主局M及び従局
A、Bなどで受信される。主局Mではこの信号を主局ク
ロック分配チャンネル復調回路7にで再生し、その油虫
クロックと衛星通信網基準クロック2aは位相比較回路
8C二で位相比較され2位相差出力がクロック位相可変
制御回路3C二送られる。そしてこのクロック位相可変
制御回路3では入力する位相差出力が常に一定の位相差
内に入る様送出クロック位相が制御される。この意味で
前記位相差出力は制御信号と名付ける。
Main station satellite communication transceiver5. The signal is received by the main station M, slave stations A, B, etc. via the satellite 6. In the main station M, this signal is regenerated by the main station clock distribution channel demodulation circuit 7, and the oil beetle clock and the satellite communication network reference clock 2a are phase-compared by the phase comparator circuit 8C2, and the two phase difference output is the clock phase variable control circuit. 3C2 sent. In this clock phase variable control circuit 3, the output clock phase is controlled so that the input phase difference output is always within a fixed phase difference. In this sense, the phase difference output is named a control signal.

一万従局A、BCおいては、その概要を説明しておくと
、受信した信号は主信号用復調回路11と従局クロック
分配チャンネル復調回路12で復調され、前者の出力で
ある主信号と後者の出力であるクロックはドツプラーバ
ッファ13に人り2位相を整えた主信号としてディジタ
ル同期用端末14に送られる。又後者の出力であるデー
タは従属監視制御装置15に送られる。
In the 10,000 slave stations A and BC, the received signal is demodulated by the main signal demodulation circuit 11 and the slave station clock distribution channel demodulation circuit 12, and the main signal which is the output of the former and the latter The output clock is sent to the Doppler buffer 13 and sent to the digital synchronization terminal 14 as a main signal with two phases adjusted. Further, the data output from the latter is sent to the subordinate supervisory control device 15.

ここで衛星のドツプラー変動に起因する遅延時間につい
て説明する。
Here, the delay time caused by Doppler fluctuations of the satellite will be explained.

主局Mについて考えると、主局受信点で衛星折返しルー
ト後の位相乞一定となる様制御するので、衛星のドツプ
ラー変動に起因する遅延時間変動は、クロック分配チャ
ンネルの受信再生クロックを使う限りは少なくとも主局
Mにおいて完全に抑圧されていると言える。
Considering the main station M, since the main station reception point controls the phase after the satellite return route to be constant, the delay time fluctuation due to satellite Doppler fluctuation can be avoided as long as the received recovered clock of the clock distribution channel is used. It can be said that at least the main station M is completely suppressed.

地域が離れた従局の場合2例えば第1図中の従局Aと従
局Bの場合を考えてみると、主局との距離が2000に
、程度とすると、赤道上36000h上の衛星迄の遅延
時間日周期変動は、主局で0”に補正がなされていれば
、従局の従局クロック分配チャンイ、ル復調回路12か
ら再生されたクロックは、端末が動作上問題を起こすン
ベルから見るとはるか(=小さい値の残留変動値に抑え
られる。例えば衛星JC8AT2号につき東京で遅延時
間日周期変動が”0″に補正されている場合の東京から
北方に約1l100Kはなれた稚内における遅延時間を
求めると、東京から衛星までの距離は37345.82
3−±1956h、稚内から衛星までの距離は約380
72.322h±7.940 Kmとなり、従って東京
でドツプラー遅延を受信タイミングを見ながら補正を加
えたときの残留遅延距離は−0,015−となる。この
約15mの距離はパス長でいえば30fiとなり。
Case of slave stations located far apart 2 For example, consider the case of slave stations A and B in Figure 1. If the distance from the main station is approximately 2000, then the delay time to the satellite 36000 h above the equator is If the diurnal fluctuation is corrected to 0 at the master station, the clock regenerated from the slave station clock distribution channel and demodulation circuit 12 of the slave station will be far beyond the point where the terminal will cause operational problems (= The residual fluctuation value can be suppressed to a small value.For example, if the delay time diurnal fluctuation in Tokyo is corrected to "0" for satellite JC8AT2, and the delay time at Wakkanai, which is about 1l100K north of Tokyo, is calculated, the delay time in Tokyo The distance from to the satellite is 37345.82
3-±1956h, distance from Wakkanai to the satellite is approximately 380
72.322h±7.940 Km. Therefore, when the Doppler delay in Tokyo is corrected while checking the reception timing, the residual delay distance is -0,015-. This distance of approximately 15m is equivalent to 30fi in terms of path length.

残留時間としては約102nsとなる。この値は64 
kHzのクロック間隔約16μSに比較すれば完全に無
視できる小さい値である。したがって東京で補正行為を
行えば稚内においてはドツプラー変動のないクロックを
提供できる。実際には更に北方に1000Kl11程度
離れた地点(日本国外)においてもドツプラー変動が実
用上無視できる程度のクロックを提供出来る。なお鹿児
島における残留遅延距離は、はぼ−1mと極めて小さい
The residual time is approximately 102 ns. This value is 64
This is a completely negligible small value compared to the kHz clock interval of about 16 μS. Therefore, if corrections are made in Tokyo, a clock without Doppler fluctuations can be provided in Wakkanai. In fact, it is possible to provide a clock whose Doppler fluctuations are practically negligible even at a point further north (outside Japan) of about 1000 Kl11. Note that the residual delay distance in Kagoshima is extremely small at approximately -1 m.

この様にして従局においては、少なくとも日本程度の大
きさの地域では、地上系同期網からのクロック供給を受
けなくともドツプラー変動のほとんど無いクロック源を
作る事が出来る。
In this way, in the slave station, at least in an area the size of Japan, it is possible to create a clock source with almost no Doppler fluctuations without receiving a clock supply from a terrestrial synchronous network.

従って従局A、Bl二おいては、主信号は再生された位
相安定同期クロックを源として変調され、もしこれが従
局A、B間通信であったと仮定すると、双方向に主信号
用変調回路10と主信号用復調回路11にて送受する。
Therefore, in slave stations A and Bl2, the main signal is modulated using the regenerated phase-stable synchronization clock as a source, and if it is assumed that this is communication between slave stations A and B, the main signal modulation circuit 10 and The main signal demodulation circuit 11 transmits and receives the signal.

この受信信号は衛星のドツプラー変動分を含んでいるの
で。
This received signal includes Doppler fluctuations of the satellite.

それぞれドツプラーバッファ13にて吸収し。Each was absorbed using a Doppler buffer 13.

ゆらぎの無い信号を端末14へ送出する。端末は一般の
同期端末と同じ様に受信信号に従属同期した送信信号を
変調回路10へ信号伝送してくる。この信号は対向局へ
送られ、前述と同じ受信側処理の後端末へ渡される。
A signal without fluctuation is sent to the terminal 14. The terminal transmits a transmission signal slave-synchronized to the received signal to the modulation circuit 10 in the same way as a general synchronous terminal. This signal is sent to the opposite station, processed in the same manner as described above on the receiving side, and then passed to the terminal.

〔発明の効果〕〔Effect of the invention〕

本発明においては、衛星のドツプラー変動に起因する遅
延時間変動を少なくとも主局において完全に抑圧し、従
局はこの変動が完全(−抑圧されたクロックを再生して
復調された主信号のドツプラー変動分を吸収するように
したことにより、従局(−おいては地上系クロックの供
給にたよらすに衛星のドツプラー変動を端末に見せない
衛星通信ディジタル同期網の構築が可能となった。
In the present invention, delay time fluctuations caused by Doppler fluctuations of the satellite are completely suppressed at least in the main station, and the slave stations completely suppress the delay time fluctuations caused by the Doppler fluctuations in the main signal demodulated by regenerating the suppressed clock. By absorbing this, it became possible to construct a satellite communication digital synchronization network in which the slave station (-) relies on the terrestrial clock supply and does not show the Doppler fluctuations of the satellite to the terminal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路構成を示すブロック図
、第2図は従来のディジタル同期衛星通信網のクロック
の主従関係を示す系統図である。 記号の説明二1・・・地上系同期網基準クロック。 2・・・衛星通信網基準クロック半生回路、3・・・ク
ロック位相可変制御回路、4・・・クロック分配チャン
ネル用変調回路、5・・・主局衛星通信送受信機、6・
・・衛星、7・・・主局クロック分配チャンイ、ル復調
回路、8・・・位相比較回路、9・・・従局衛星通信送
受信機1,10・・・主信号用変調回路、11・・・主
信号用復調回路、12・・・従局クロック分配チャンネ
ル復調回路、16・・・トンブラーバッファ、14・・
・ディジタル同期網用端末、15・・・従属監視制御装
置。 旙瓢
FIG. 1 is a block diagram showing the circuit configuration of an embodiment of the present invention, and FIG. 2 is a system diagram showing the master-slave relationship of clocks in a conventional digital synchronous satellite communication network. Explanation of symbols 21: Terrestrial synchronous network reference clock. 2... Satellite communication network reference clock semi-circuit, 3... Clock phase variable control circuit, 4... Clock distribution channel modulation circuit, 5... Main station satellite communication transceiver, 6...
... Satellite, 7... Main station clock distribution channel, demodulation circuit, 8... Phase comparison circuit, 9... Slave station satellite communication transceiver 1, 10... Main signal modulation circuit, 11...・Main signal demodulation circuit, 12...Slave station clock distribution channel demodulation circuit, 16...Tombler buffer, 14...
・Digital synchronous network terminal, 15...Subordinate monitoring and control device. early morning gourd

Claims (1)

【特許請求の範囲】 1、主局及び各地方に点在する複数の従局から成り、地
上系同期網基準クロックに対し一定の周波数関係に制御
された衛星通信網基準クロックを用いて衛星を介した通
信を行う衛星通信システムにおいて、 前記主局が、前記衛星通信網基準クロックの位相を制御
信号により変えることのできる位相可変制御回路、この
位相可変制御回路後のクロックでトリガして変調信号を
発するクロック分配チャンネル用変調回路、この変調信
号を前記衛星を経て受信する受信機、該受信した信号を
復調する主局クロック分配チャンネル復調回路、この再
生した受信クロックと前記衛星通信網基準クロックを一
定周期ごとに位相比較して前記制御信号を発する手段を
具備し、而して前記クロック位相可変制御回路は前記再
生受信クロックが前記衛星通信網基準クロックに対し常
に一定位相になる様に制御されており、前記従局が前記
主局の発射したクロック分配チャンネル信号を受信しク
ロック再生を行う手段を具備し、而してこの再生クロッ
クを従属同期する端末へ渡す信号、主局及び従局向けに
送信する信号、ならびに他局から受信したデータ信号の
ドップラーバッファの読み出しクロックの源とする事を
特徴とする衛星通信同期網システム。
[Scope of Claims] 1. Comprised of a main station and a plurality of slave stations scattered in various regions, the system uses a satellite communication network reference clock that is controlled to have a fixed frequency relationship with respect to the terrestrial synchronous network reference clock. In a satellite communication system that performs communication using A modulation circuit for a clock distribution channel that generates a clock, a receiver that receives this modulated signal via the satellite, a main station clock distribution channel demodulation circuit that demodulates the received signal, and a clock distribution channel demodulation circuit that demodulates the received signal. The clock phase variable control circuit is provided with means for comparing the phases at each cycle and issuing the control signal, and the clock phase variable control circuit is controlled so that the regenerated reception clock always has a constant phase with respect to the satellite communication network reference clock. The slave station is provided with means for receiving the clock distribution channel signal emitted by the master station and regenerating the clock, and transmitting a signal to pass the reproduced clock to the slave-synchronized terminal and to the master station and the slave station. A satellite communication synchronous network system characterized in that the signal is used as a source of a readout clock for a Doppler buffer of data signals received from other stations.
JP7311688A 1988-03-29 1988-03-29 Satellite communication synchronization network system Expired - Lifetime JPH0618339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311688A JPH0618339B2 (en) 1988-03-29 1988-03-29 Satellite communication synchronization network system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311688A JPH0618339B2 (en) 1988-03-29 1988-03-29 Satellite communication synchronization network system

Publications (2)

Publication Number Publication Date
JPH01246927A true JPH01246927A (en) 1989-10-02
JPH0618339B2 JPH0618339B2 (en) 1994-03-09

Family

ID=13508966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311688A Expired - Lifetime JPH0618339B2 (en) 1988-03-29 1988-03-29 Satellite communication synchronization network system

Country Status (1)

Country Link
JP (1) JPH0618339B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923838A (en) * 2018-06-14 2018-11-30 上海卫星工程研究所 The master-salve distributed GEO communication satellite system framework of common rail

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923838A (en) * 2018-06-14 2018-11-30 上海卫星工程研究所 The master-salve distributed GEO communication satellite system framework of common rail
CN108923838B (en) * 2018-06-14 2021-08-03 上海卫星工程研究所 Common rail master-slave distributed GEO communication satellite system

Also Published As

Publication number Publication date
JPH0618339B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US4019138A (en) Frequency synchronizing system for satellite communication
ATE152559T1 (en) ALTERNATING SEQUENTIAL HALF DUPLEX TRANSMISSION SYSTEM
US4651330A (en) Multipoint data communications
JPS6232853B2 (en)
US4225939A (en) Bidirectional data communication system
KR20000045213A (en) Method of operating base station for compensating path delay between cdma mobile communication base station and mobile phone
JPS5563166A (en) Continuous transmission system for picture information
JPH0379894B2 (en)
GB1121353A (en) Communication system
JPH01246927A (en) Satellite communication synchronizing network system
SE8002826L (en) FACSIMILE RECEIVER
JPS6148250A (en) Space light transmission system
JP2002094490A (en) Time-supplying system and time-supplying device
JP3864099B2 (en) Highway radio transmitter
JPS596642A (en) Synchronizing method of mobile communication satellite
JPS62117428A (en) Synchronizing system
RU2173026C2 (en) Circuit delaying reference signal of synchronization from receiver of global satellite system of radio positioning, method of simultaneous transmission of search call
JPS5923502B2 (en) loop transmission system
JPS6072336A (en) Clock synchronizing system
JPH04330831A (en) Traveling object satellite communication system
JPS58131842A (en) Synchronism system by satellite
JPS6232663B2 (en)
JPH0698195A (en) Digital satellite communication system
JPH0567997A (en) Data synchronization system for mobile body satellite communication system
JPS62299122A (en) Satalite communication station