JPH01246115A - Method for forming coating film of carbon or material composed mainly of carbon - Google Patents

Method for forming coating film of carbon or material composed mainly of carbon

Info

Publication number
JPH01246115A
JPH01246115A JP63072890A JP7289088A JPH01246115A JP H01246115 A JPH01246115 A JP H01246115A JP 63072890 A JP63072890 A JP 63072890A JP 7289088 A JP7289088 A JP 7289088A JP H01246115 A JPH01246115 A JP H01246115A
Authority
JP
Japan
Prior art keywords
carbon
film
hydrogen
oxygen
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63072890A
Other languages
Japanese (ja)
Other versions
JP2852380B2 (en
Inventor
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63072890A priority Critical patent/JP2852380B2/en
Publication of JPH01246115A publication Critical patent/JPH01246115A/en
Application granted granted Critical
Publication of JP2852380B2 publication Critical patent/JP2852380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a coating film of carbon or a material composed mainly of carbon and having high hardness by decomposing a hydrocarbon gas with a plasma generated between electrodes and adding hydrogen or oxygen to the decomposition product to form a carbon film. CONSTITUTION:A DC or high-frequency electric energy is applied between the 1st electrode and the 2nd electrode placed close to a substrate having a surface to be treated. A hydrocarbon gas or a mixture of the hydrocarbon and an additive gas is decomposed by the plasma generated by the above electric energy to form a carbon film on the surface of the substrate. In the above process, hydrogen or oxygen is added to the system in the formation of the carbon film. The hydrocarbon gas may be hydrocarbons such as methane, ethylene or alkane hydrocarbon, a silicon carbide such as tetramethylsilane in the case containing silicon as a part of the component, or a chlorinated carbon such as carbon tetrachloride. The bias is increased by the addition of hydrogen or oxygen to form a coating film having high Vickers hardness.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は光学的エネルギバンド巾が1.OeV以上特に
1.5〜5.5eVを有する炭素または炭素を生成とす
る被膜を被形成面上にコーティングすることにより、こ
れら固体の表面の補強材、または機械ストレスにたいす
る保護材を得ようとする複合体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Application of the Invention" The present invention is applicable to optical energy band widths of 1. By coating a surface to be formed with carbon or a film made of carbon having a voltage of OeV or higher, particularly 1.5 to 5.5 eV, it is attempted to obtain a reinforcement material for the surface of these solids or a protective material against mechanical stress. It concerns complexes.

〔従来の技術] 炭素膜のコーティングに関しては、本発明人の出願にな
る特許側「炭素被膜を有する複合体及びその作製方法」
 (特願昭56−146936号昭和56年5月17日
出願)が知られている。
[Prior Art] Regarding carbon film coating, the patent application filed by the present inventor is entitled "Composite with Carbon Film and Method for Preparing the Same"
(Japanese Patent Application No. 146936/1982 filed on May 17, 1982) is known.

また炭素膜は耐摩耗材であると同時に高平滑性、高熱伝
導性等多くの特性を有しており、電気部品その他に応用
が期待されている。
In addition, carbon films are wear-resistant materials and have many properties such as high smoothness and high thermal conductivity, and are expected to be used in electrical parts and other applications.

被形成面上にダイヤモンド類似の硬さを有するアモルフ
ァス(非晶質)または5〜200人の大きさの微結晶性
を有するセミアモルファス(半非晶質)構造を存する炭
素または炭素を主成分とする被膜を形成する場合、被形
成面を有する基板を設けた高周波印加電極の近傍におい
て、プラズマ中の電子が高周波印加電極に蓄積されるこ
とによって生じるセルフバイアスにより加速された正イ
オン(例えば)1Mを、形成中の炭素または炭素を主成
分とする被膜に衝突させることにより、その炭素または
炭素を主成分とする被膜をより硬度の大きな、ダイヤモ
ンドに近い構造を持った炭素膜を作ることを行なってき
た。これは正イオンを衝突させることでC−Cのような
二重結合を有する炭素の割合を減らしてC−Cの結合を
ゆうする炭素を増やしたり、あるいは炭素原子に結合し
ている水素原子をなくすことによりs p 2混成軌道
をもついわゆる三方炭素やsp混成軌道をもついわゆる
三方炭素を無くシsp3混成軌道をもったいわゆる四方
炭素の割合を増やすことによりダイヤモンド結合を生じ
やすくするためである。
The main component is carbon, which has an amorphous (non-crystalline) structure with a hardness similar to that of diamond or a semi-amorphous (semi-amorphous) structure with a microcrystalline size of 5 to 200 people on the surface to be formed. When forming a film that has a surface to be formed, positive ions (for example, 1 M By colliding with carbon or a film whose main component is carbon that is being formed, the carbon film is made to have a harder structure similar to that of diamond. It's here. This is done by bombarding positive ions to reduce the proportion of carbons with double bonds such as C-C and increase the number of carbons that form C-C bonds, or to reduce the hydrogen atoms bonded to carbon atoms. This is to make it easier to form diamond bonds by eliminating the so-called trigonal carbons having sp2 hybrid orbitals and the so-called tetragonal carbons having sp3 hybrid orbitals and increasing the proportion of so-called tetragonal carbons having sp3 hybrid orbitals.

従ってより硬度の大きい炭素または炭素を主成分とする
被膜を作成しようとするときは、高周波印加電極近傍に
発生するセルフバイアスを大きくして正イオンの加速を
大きくしなければならない。
Therefore, when trying to create carbon with greater hardness or a film mainly composed of carbon, it is necessary to increase the self-bias generated near the high-frequency application electrode to increase the acceleration of positive ions.

このセルフバイアスを増加させるために行われている方
法としては、先ず第1に反応圧力を減少させる方法があ
る。これは炭素または炭素を主成分とする被膜形成に使
用する炭化水素化物気体の圧力を減少させることにより
単位体積中に含まれる炭化水素化物気体分子の個数が減
少するため、相対的に気体を分解するために加えられて
いる高周波エネルギの出力が大きくなりプラズマ中の電
子が増大して高周波印加電極に蓄積されるためセルフバ
イアスが増大するということに基づくものである。
The first method used to increase this self-bias is to reduce the reaction pressure. This is because by reducing the pressure of the hydrocarbon gas used to form carbon or carbon-based coatings, the number of hydrocarbon gas molecules contained in a unit volume decreases, so the gas is relatively decomposed. This is based on the fact that the output of high-frequency energy applied for this purpose increases, and the number of electrons in the plasma increases and is accumulated in the high-frequency application electrode, resulting in an increase in self-bias.

また、高周波エネルギの出力を増大させる方法があるが
、これは上述した如く、気体を分解するエネルギが増大
するとプラズマ中の電子が増大するために、高周波印加
電極への電子の蓄積が増大してセルフバイアスが大きく
なることによるものである。
There is also a method of increasing the output of high frequency energy, but as mentioned above, as the energy for decomposing gas increases, the number of electrons in the plasma increases, so the accumulation of electrons in the high frequency application electrode increases. This is due to an increase in self-bias.

〔従来技術の問題点〕[Problems with conventional technology]

しかしながら炭素または炭素を主成分とする被膜を形成
する際に水素または酸素等の添加物を加えることにより
セルフバイアスを大きくして成膜することは全く知られ
ていない。
However, it is completely unknown to increase the self-bias by adding an additive such as hydrogen or oxygen when forming a film containing carbon or carbon as a main component.

本発明は炭素または炭素を主成分とする被膜を形成する
際に水素または酸素等の添加物を加えるとセルフバイア
スが大きくなるという知見に基づいて成されたものであ
り硬度のおおきな炭素または炭素を主成分とする被膜を
作成することを目的としている。
The present invention was made based on the knowledge that self-bias increases when an additive such as hydrogen or oxygen is added when forming carbon or a film mainly composed of carbon. The purpose is to create a film containing the main component.

〔問題を解決すべき手段〕[Means to solve the problem]

本発明は上記の知見に基づいて第1の電極と被形成面を
有する基板に接して設けられた第2の電極との間に直流
または高周波エネルギを加えて、発生させたプラズマに
より炭化水素化物気体とまたはこれに加えて添加物気体
とを分解反応せしめて上記被形成面上に炭素膜を形成す
る方法において、炭素膜形成の際、水素または酸素を添
加すること、及び第1の電極と被形成面を有する基板に
接して設けられた第2の電極との間に直流または高周波
エネルギを加えて、発生させたプラズマにより炭化水素
化物気体とまたはこれに加えて添加物気体とを分解反応
せしめて上記被形成面上に炭素膜を形成する方法におい
て、炭素膜形成の際、水素または酸素の添加量を変化さ
せることにより形成される炭素または炭素を主成分とす
る被膜の硬度を被形成面側より炭素膜表面に向かって増
加させることとしたものである。
Based on the above findings, the present invention applies direct current or high frequency energy between a first electrode and a second electrode provided in contact with a substrate having a surface to be formed, and generates plasma to generate hydrocarbons. In the method of forming a carbon film on the surface to be formed by decomposing and reacting gas or an additive gas in addition to the gas, the method includes adding hydrogen or oxygen when forming the carbon film, and adding hydrogen or oxygen to the first electrode. Direct current or high frequency energy is applied between the substrate and the second electrode provided in contact with the substrate having the surface to be formed, and the generated plasma causes a decomposition reaction of the hydrocarbon gas or the additive gas. At least in the method of forming a carbon film on the surface to be formed, the hardness of carbon or a film mainly composed of carbon is adjusted by changing the amount of hydrogen or oxygen added when forming the carbon film. It was decided to increase it from the surface side toward the surface of the carbon film.

以下に実施例と共に本発明を具体的に説明する。The present invention will be specifically explained below along with Examples.

第1図は本発明の炭素または炭素を主成分とする被膜を
形成するためのプラズマCVD装置の概要を示す。
FIG. 1 shows an outline of a plasma CVD apparatus for forming carbon or a film containing carbon as a main component according to the present invention.

図面において、ドーピング系(1)において、添加物で
ある水素または酸素を(2)より、反応性気体である炭
化水素気体例えばメタン、エチレンを(3)よリ、■価
不純物のジポラン(水素希釈)(4)、7価不純物のア
ンモニアまたはフォスヒンを(5)よりバルブ(6)、
流量計(7)をへて反応系(8)中にノズル(9)より
導入される。このノズルに至る前に、反応性気体の励起
用にマイクロ波エネルギを00)で加えて予め活性化さ
せることは有効である。
In the drawing, in the doping system (1), the additive hydrogen or oxygen is added to (2), the reactive gas such as hydrocarbon gas such as methane or ethylene is added to (3), and the valent impurity diporane (hydrogen diluted) is added to the doping system (1). ) (4), the heptavalent impurity ammonia or phosphin is added to the valve (6) from (5),
It passes through a flow meter (7) and is introduced into the reaction system (8) through a nozzle (9). It is effective to preactivate the reactive gas by applying microwave energy at 00) for excitation of the reactive gas before reaching this nozzle.

反応系(8)には第1の電極00、第2の電極面を設け
た。一対の電極(11)、02)間には高周波電源(1
3)、マツチングトランス04)、直流バイヤス電源面
より電気エネルギが加えられ、プラズマが発生する。排
気系06)は圧力調整バルブ07)、ターボ分子ポンプ
08)、ロータリーポンプ(19)をへて不用気体を排
気する。
The reaction system (8) was provided with a first electrode 00 and a second electrode surface. A high frequency power source (1
3), Matching transformer 04), electric energy is applied from the DC bias power supply side, and plasma is generated. The exhaust system 06) exhausts unnecessary gas through a pressure regulating valve 07), a turbo molecular pump 08), and a rotary pump (19).

反応性気体には、反応空間12[Dにおける圧力が0゜
001〜10torr代表的には0.01〜0.5to
rrO下で高周波もしくは直流によるエネルギにより0
.1〜5に弱のエネルギが加えられる。
The reactive gas has a pressure in the reaction space 12 [D] of 0°001 to 10 torr, typically 0.01 to 0.5 torr.
0 due to energy from high frequency or direct current under rrO
.. A weak amount of energy is added to 1 to 5.

特に励起源がIGH2以上、例えば2.45Gll□の
周波数にあっては、C−H結合より水素を分離し、さら
に周波数源が0.1〜50MHz例えば13.56MH
zの周波数にあってはC−C結合、C=C結合を分解し
、−C−C−結合を作り、炭素の不対結合手同志を互い
に衝突させて共有結合させ、安定なダイヤモンド構造を
局部的に有した構造とさせ得る。
In particular, when the excitation source has a frequency of IGH2 or higher, for example 2.45 Gll□, hydrogen is separated from the C-H bond, and the frequency source is 0.1 to 50 MHz, for example 13.56 MHz.
At the frequency of z, C-C bonds and C=C bonds are decomposed to create -C-C- bonds, and the unpaired bonds of carbon collide with each other to covalently bond, creating a stable diamond structure. It may have a locally formed structure.

直流バイアスは一200〜600V (実質的には一4
00〜+400V)を加える。なぜなら、直流バイアス
が零のときは自己バイアスが一200V(第2の電極を
接地レベルとして)を有しているためである。
DC bias is -200 to 600V (substantially -4
00~+400V). This is because when the DC bias is zero, the self-bias has a voltage of 1200V (with the second electrode at the ground level).

炭化水素化物気体としては、メタン(CH4)、エタン
(C2H6) 、エヂレン(C2H4) 、メタン系炭
化水素(CnH2,、。2)等の気体または珪素を一部
に含んだ場合はテトラメチルシラン((CH3) 4s
i)、テトラエラルシラン((CzHs) n5i)の
ような炭化珪素であっても、また四塩化炭素(CC1,
)のような塩化炭素であってもよい。
Examples of hydrocarbon gases include gases such as methane (CH4), ethane (C2H6), ethylene (C2H4), and methane-based hydrocarbons (CnH2, 2), or tetramethylsilane (if silicon is partially included). (CH3) 4s
i), silicon carbide such as tetraeralsilane ((CzHs) n5i), or carbon tetrachloride (CC1,
) may also be carbon chloride.

第1の電極は冷却手段を有しており、被形成面上の温度
を250〜−100°Cに保持させた。
The first electrode had a cooling means, and the temperature on the surface to be formed was maintained at 250 to -100°C.

本発明に用いられる被形成面としては、PET(ポリエ
チレンテレツクレート)、PES、PMMA、テフロン
、エポキシ、ポリイミド等の有機樹脂基体または金属メ
ツシュ状キャリア、紙箋テープ状キャリア、ガラス、金
属、セラミック、半導体、磁気ヘッド用部材、磁気ディ
スク等がある。
Examples of the surface to be formed used in the present invention include organic resin substrates such as PET (polyethylene terephthalate), PES, PMMA, Teflon, epoxy, polyimide, metal mesh carriers, paper note tape carriers, glass, metals, ceramics, etc. Examples include semiconductors, magnetic head members, and magnetic disks.

第2図に第1図に示す装置においてメタンを10Q S
CCMの流量で導入し、高周波エネルギー6ONを加え
、反応圧力10Paの条件で水素または酸素の添加量を
変化させた時のセルフバイアスの変化を示したものであ
る。
Figure 2 shows that methane is 10Q S in the apparatus shown in Figure 1.
This figure shows the change in self-bias when the amount of hydrogen or oxygen added was changed under the conditions of introducing at a flow rate of CCM, applying high frequency energy of 6 ON, and reaction pressure of 10 Pa.

水素または酸素を添加した時は明らかにセルフバイアス
が増加していることが示されている。比較としてNF3
の添加を行ってみたがセルフバイアスが逆に小さくなっ
ていることが示されている。
It is shown that the self-bias clearly increases when hydrogen or oxygen is added. NF3 for comparison
However, it has been shown that the self-bias becomes smaller.

また第3図には第2図同様第1図に示す装置においてメ
タンを1003CCHの流量で導入し、高周波エネルギ
600Wを加え、反応圧力10Paの条件で15分間成
膜した場合の水素または酸素の添加量とビッカース硬度
との関係を示す。水素または酸素の添加によりビッカー
ス硬度の大きな炭素または炭素を主成分とする被膜が得
られることがしめされている。ここでもNF、の添加に
よるビッカース硬度の変化を比較してみたが逆に添加量
に伴ってビッカース硬度が小さくなっている。
Also, Figure 3 shows the addition of hydrogen or oxygen when methane was introduced at a flow rate of 1003 CCH in the apparatus shown in Figure 1 as in Figure 2, high frequency energy of 600 W was applied, and film was formed for 15 minutes at a reaction pressure of 10 Pa. The relationship between quantity and Vickers hardness is shown. It has been shown that by adding hydrogen or oxygen, it is possible to obtain a carbon or carbon-based coating having a high Vickers hardness. Here, we also compared the change in Vickers hardness due to the addition of NF, but conversely, the Vickers hardness decreased with the addition amount.

第4図に第3図に示した条件と同じ条件下で作成した炭
素または炭素を主成分とする被膜の水素または酸素の添
加量と膜厚との関係を示したものである。水素または酸
素の添加により膜厚は薄く成っていることがしめされて
いるが第5図に示したNF3を用いた同じ条件による実
験の結果では添加量と共に膜厚は厚くなっている。
FIG. 4 shows the relationship between the amount of hydrogen or oxygen added and the film thickness of carbon or a film mainly composed of carbon, which was prepared under the same conditions as shown in FIG. 3. Although it has been shown that the film thickness becomes thinner due to the addition of hydrogen or oxygen, the results of an experiment using NF3 shown in FIG. 5 under the same conditions show that the film thickness becomes thicker as the amount of addition increases.

また本発明は被形成面上に炭素または炭素を主成分とす
る被膜をコーティングし、その表面での耐摩耗性等の機
械的強度を補強しようというものであり、そのためのダ
イヤモンド類似の硬さを有した炭素または炭素を主成分
とする被膜を被形成面上に直接形成させるのではなく、
被形成面に密接する部分から徐々に硬度を上げてゆき、
所望の膜厚のときに所望の硬度の炭素または炭素を主成
分とする被膜が得られるように添加物気体の添加量を変
化させることに特徴を有する。
In addition, the present invention aims to strengthen mechanical strength such as wear resistance on the surface by coating carbon or a film mainly composed of carbon on the surface to be formed. Rather than directly forming carbon or a film mainly composed of carbon on the surface to be formed,
The hardness gradually increases from the part that is in close contact with the surface to be formed,
The method is characterized in that the amount of the additive gas added is varied so that a film having a desired hardness and carbon or a film mainly composed of carbon is obtained at a desired film thickness.

被形成面上に直接ダイヤモンド類似の硬さを有した膜を
形成させようとするとセルフバイアスを大きくして炭素
または炭素を主成分とする被膜を形成させることを行わ
なければならず、被形成面へのスパッタは避けることは
できないが、被形成面上に密接した炭素または炭素を主
成分とする被膜は、被形成面に損傷を与えない程度のセ
ルフバイアスで作り得る硬さの炭素または炭素を主成分
とする被膜にしておき、徐々に硬度を上げた膜を積層さ
せて、表面には所望の硬度を有した炭素または炭素を主
成分とする被膜を形成すれば、被形底面との密接性も良
くしかも大きな硬度を存した炭素または炭素を主成分と
する被膜を形成することができる。
In order to directly form a film with hardness similar to diamond on the surface to be formed, it is necessary to increase the self-bias to form carbon or a film mainly composed of carbon. Although sputtering cannot be avoided, carbon or a carbon-based film that is in close contact with the surface to be formed must be made of carbon or carbon with a hardness that can be created with a self-bias that does not damage the surface to be formed. If you start with a film containing carbon as the main component, then layer films with gradually increasing hardness to form carbon or a film mainly composed of carbon with the desired hardness on the surface. It is possible to form carbon or a film mainly composed of carbon, which has good properties and high hardness.

この場合、硬度の小さい膜から硬度の大きい膜を何層か
に別けて積層する方法と硬度を連続的に変えて、単層の
中で硬度が連続的に変化した炭素または炭素を主成分と
する被膜を形成させる方法とがある。
In this case, the method of laminating films in several layers, starting from the film with the lowest hardness and the film with the highest hardness, and by continuously changing the hardness, the main component is carbon or carbon whose hardness changes continuously within a single layer. There is a method of forming a film that

本発明では被形成面をカソード電極に置いた。In the present invention, the surface to be formed is placed on the cathode electrode.

これは被形成面をアノード側に置いたときとカソード側
に置いたときとの形成された炭素膜の膜質を比較した場
合、カソード側に被形成面を置いたときの方が硬度の大
きな炭素膜が速い成膜速度で得られるからである。
This is because when comparing the film quality of the carbon film formed when the surface to be formed is placed on the anode side and when it is placed on the cathode side, the hardness of the carbon film is greater when the surface to be formed is placed on the cathode side. This is because the film can be obtained at a high deposition rate.

以上のようにしてプラズマにより被形成面上にビッカー
ス硬度2000Kg/mm”以上を有するとともに、熱
伝導度2.5W/cm deg以上のC−C結合を多数
形成したアモルファス構造または微結晶構造を有するア
モルファス構造の炭素を生成させた。さらにこの電磁エ
ネルギは50W〜IKI/Iを供給し、単位面積あたり
0.03〜3W/cm2のプラズマエネルギを加えた。
As described above, an amorphous structure or a microcrystalline structure having a Vickers hardness of 2000 Kg/mm or more and a large number of C-C bonds with a thermal conductivity of 2.5 W/cm deg or more is formed on the surface to be formed by plasma. Carbon with an amorphous structure was produced. Furthermore, this electromagnetic energy was supplied at 50 W to IKI/I, and plasma energy of 0.03 to 3 W/cm2 per unit area was applied.

〔実施例1〕 第1図に示した装置において、被形成面を有した基板上
に本発明方法により炭素膜を形成した。
[Example 1] In the apparatus shown in FIG. 1, a carbon film was formed by the method of the present invention on a substrate having a surface to be formed.

先ず反応系にノズルより水素をIOSCCM、メタンを
1005CCHの流量で水素の添加されたメタンを導入
し、圧力を0.03torrに保持し、メタンに対し5
0Wの高周波エネルギを加え、セルフバイアス−150
Vの条件で室温に保持されたSi基板上に150分間膜
形成を行い、第1の層を形成した。次にノズルより水素
を505CCM、メタンを100 SCCMの流量で水
素の添加されたメタンを導入し、圧力を0.015 t
orrに保持してメタンに対しtoowの高周波エネル
ギを加え、セルフバイアス−200■の条件で被形成面
を150°Cに保持して150分間膜形成を行い第2の
層とした。そして第2の層上にノズルより水素を803
CC1’!、メタンを1005CCMの流量で水素の添
加されたメタンを導入し、反応系を0.015 tor
rに保持してメタンに対し200Wの高周波エネルギを
加え、セルフバイアス−280■の条件で被形成面を室
温に保持して60分間膜形成を行い第3の層とした。こ
れら3つの層のビッカース硬度を測定したところ第1の
層は2200 h/mm”、第2の層は3500 Kg
/mm2、第3の層は4200 Kg/mm2、であり
ダイヤモンド類似の硬さを表面に有した炭素膜を被形成
面との密着性を良く形成させることができた。
First, methane to which hydrogen was added was introduced into the reaction system through a nozzle at a flow rate of IOSCCM of hydrogen and 1005 CCH of methane, and the pressure was maintained at 0.03 torr.
Apply 0W high frequency energy and self-bias -150
Film formation was performed for 150 minutes on a Si substrate maintained at room temperature under the condition of V to form a first layer. Next, hydrogen-added methane was introduced through the nozzle at a flow rate of 505 CCM of hydrogen and 100 SCCM of methane, and the pressure was increased to 0.015 t.
A second layer was formed by applying too much high frequency energy to methane while maintaining the temperature at a temperature of 100°C, and holding the surface to be formed at 150°C at a self-bias of -200°C for 150 minutes to form a second layer. Then, 803 ml of hydrogen is applied to the second layer from a nozzle.
CC1'! , hydrogen-added methane was introduced at a flow rate of 1005 CCM, and the reaction system was heated to 0.015 torr.
A high frequency energy of 200 W was applied to the methane while the temperature was maintained at -280 mm, and a film was formed for 60 minutes while the surface to be formed was kept at room temperature under the condition of a self-bias of -280 mm to form a third layer. The Vickers hardness of these three layers was measured to be 2200 h/mm” for the first layer and 3500 Kg for the second layer.
/mm2, and the third layer had a hardness of 4200 Kg/mm2, making it possible to form a carbon film with hardness similar to that of diamond on the surface with good adhesion to the surface on which it was formed.

〔実施例2〕 反応系にノズルより酸素をIOSCCM、メタンを10
05CCHの流量で酸素の添加されたメタンを導入し、
圧力を0.03torrに保持し、メタンに対し50W
の高周波エネルギを加え、セルフバイアス−150Vの
条件で室温に保持されたSi基板上に150分間膜形成
を行い、第1の層を形成した。次にノズ  −ルより酸
素を50SCCM、メタンを1005CCHの流量で酸
素の添加されたメタンを導入し、圧力を0.015to
rrに保持してメタンに対し100Wの高周波エネルギ
を加え、セルフバイアス−200Vの条件で被形成面を
150°Cに保持して150分間膜形成を行い第2の層
とした。そして第2の層上にノズルより酸素を80SC
CM、メタンを1005CCHの流量で酸素の添加され
たメタンを導入し、反応系を0゜015 torrに保
持してメタンに対し200Wの高周波エネルギを加え、
セルフバイアス−280■の条件で被形成面を室温に保
持して60分間膜形成を行い第3の層とした。これら3
つの層のビッカース硬度を測定したところ第1の層は2
000Kg/mm2、第2の層は3300Kg/mm2
、第3の層は4000 Kg/mm2、でありダイヤモ
ンド類似の硬さを表面に有した炭素膜を被形成面との密
着性を良く形成させることができた。
[Example 2] Oxygen was added to the reaction system through a nozzle at IOSCCM, and methane was added at 10
introducing oxygenated methane at a flow rate of 05 CCH;
Maintain pressure at 0.03 torr and apply 50W to methane
A first layer was formed by applying high-frequency energy of 200 volts and forming a film on a Si substrate maintained at room temperature under a self-bias condition of -150 V for 150 minutes. Next, methane with oxygen added was introduced from the nozzle at a flow rate of 50 SCCM of oxygen and 1005 CCH of methane, and the pressure was reduced to 0.015 to
rr, high-frequency energy of 100 W was applied to methane, and the surface to be formed was maintained at 150° C. under a self-bias condition of −200 V to form a film for 150 minutes to form a second layer. Then, 80SC of oxygen was applied to the second layer from a nozzle.
CM, methane to which oxygen was added was introduced at a flow rate of 1005 CCH, the reaction system was maintained at 0°015 torr, and 200 W of high frequency energy was applied to the methane.
A third layer was obtained by forming a film for 60 minutes while keeping the surface to be formed at room temperature under the condition of a self-bias of -280 cm. These 3
When the Vickers hardness of the two layers was measured, the first layer had a hardness of 2.
000Kg/mm2, second layer 3300Kg/mm2
The thickness of the third layer was 4000 Kg/mm2, and a carbon film having a surface hardness similar to that of diamond could be formed with good adhesion to the surface on which it was formed.

〔実施例3〕 被形成面を有する基板の置かれた反応系に水素を305
CCM、メタンを1005CCHの流量で水素の添加さ
れたメタンを導入し、圧力を0.03torrに保持し
、メタンに対し100Wの高周波エネルギを加え、15
0分間膜形成を行い、第1の層を形成した。次に第1の
層の上に、水素の流量が503CCMである以外は第1
の層と同じ条件で実施し第2の層を形成した。そして第
2の層上に、水素の流量が803CCMである以外は第
1の層と同一条件で実施した。その結果、2400 K
g/mm2.3400 Kg/mm”、4200 Kg
/mm2、のビ・ンカース硬度を有する第1の層、第2
の層、第3の層からなる炭素膜を形成させることができ
た。この炭素膜は表面の硬度が420Q Kg/mm”
とダイヤモンド類似の硬さを存し、耐摩耗性、高熱伝導
性、高平滑性に優れたもの・であった。
[Example 3] Hydrogen was added to the reaction system in which the substrate having the surface to be formed was placed.
CCM, hydrogen-added methane was introduced at a flow rate of 1005 CCH, the pressure was maintained at 0.03 torr, and 100 W of high frequency energy was applied to the methane.
Film formation was performed for 0 minutes to form the first layer. Next, on top of the first layer, the first
A second layer was formed under the same conditions as the second layer. Then, it was performed on the second layer under the same conditions as the first layer except that the flow rate of hydrogen was 803 CCM. As a result, 2400K
g/mm2.3400 Kg/mm", 4200 Kg
/mm2, the first layer has a vinyl hardness of
A carbon film consisting of a third layer and a third layer could be formed. The surface hardness of this carbon film is 420Q Kg/mm”
It has a hardness similar to that of diamond, and has excellent wear resistance, high thermal conductivity, and high smoothness.

本実施例においては水素の流量のみを増加させることに
より炭素膜の硬度を大きくしたが、メタンの流量を減少
させても同様の効果が得られる。
In this example, the hardness of the carbon film was increased by increasing only the flow rate of hydrogen, but the same effect can be obtained by decreasing the flow rate of methane.

また本実施例では各炭素膜の層を一つの反応室を用いて
作成したが、反応室を複数接続させることにより各層を
それぞれ異なる反応室で形成させても良い。
Further, in this example, each carbon film layer was formed using one reaction chamber, but each layer may be formed in a different reaction chamber by connecting a plurality of reaction chambers.

〔実施例4] 被形成面を有する基板の置かれた反応系に酸素を305
CCM、メタンを1003CCHの流量で酸素の添加さ
れたメタンを導入し、圧力を0.03torrに保持し
、メタンに対し100Wの高周波エネルギを加え、15
0分間膜形成を行い、第1の層を形成した。次に第1の
層の上に、酸素の流量が505CCMである以外は第1
の層と同じ条件で実施し第2の層を形成した。そして第
2の層上に、酸素の流量が805CCMである以外は第
1の層と同一条件で実施した。その結果、2200 K
g/mm2.3100 Kg/mm2.4000Kg/
mm”、のビッカース硬度を有する第1の層、第2の層
、第3の層からなる炭素膜を形成させることができた。
[Example 4] Oxygen was added to the reaction system in which the substrate having the surface to be formed was placed.
CCM, methane to which oxygen was added was introduced at a flow rate of 1003 CCH, the pressure was maintained at 0.03 torr, and 100 W of high frequency energy was applied to the methane.
Film formation was performed for 0 minutes to form the first layer. Next, on top of the first layer, the first
A second layer was formed under the same conditions as the second layer. The test was then performed on the second layer under the same conditions as the first layer except that the oxygen flow rate was 805 CCM. As a result, 2200K
g/mm2.3100 Kg/mm2.4000Kg/
A carbon film consisting of a first layer, a second layer, and a third layer having a Vickers hardness of mm'' could be formed.

この炭素膜は表面の硬度が4000 Kg/mm2とダ
イヤモンド類似の硬さを有し、耐摩耗性、高熱伝導性、
高平滑性に優れたものであった。
This carbon film has a surface hardness of 4000 Kg/mm2, which is similar to diamond, and has wear resistance, high thermal conductivity,
It had excellent high smoothness.

本実施例においては酸素の流量のみを増加させることに
より炭素膜の硬度を大きくしたが、メタンの流量を減少
させても同様の効果が得られる。
In this example, the hardness of the carbon film was increased by increasing only the flow rate of oxygen, but the same effect can be obtained by decreasing the flow rate of methane.

また本実施例では各炭素膜の層を一つの反応室を用いて
作成したが、反応室を複数接続させることにより各層を
それぞれ異なる反応室で形成させても良い。
Further, in this example, each carbon film layer was formed using one reaction chamber, but each layer may be formed in a different reaction chamber by connecting a plurality of reaction chambers.

〔実施例5〕 本実施例においては、被形成面上に硬度の異なる層を積
層させるのではなく、水素の添加量を連続的に増加させ
ることにより硬度が連続的に変化している炭素膜を形成
させた。
[Example 5] In this example, instead of stacking layers with different hardness on the surface to be formed, a carbon film whose hardness is continuously changed by continuously increasing the amount of hydrogen added is used. was formed.

先ず、実施例1の第1の層を形成させるのと同一の条件
で膜形成を開始し、その後水素の添加量を0.5〜11
05CC/minの上昇率で1005CCHになるまで
増加させることにより被形成面上に炭素膜を形成させた
。形成させた炭素膜は、表面において4200 Kg/
mm2のビッカース硬度を有する、耐摩耗性、高熱伝導
性、高平滑性に優れたものであった。
First, film formation was started under the same conditions as for forming the first layer in Example 1, and then the amount of hydrogen added was changed from 0.5 to 11.
A carbon film was formed on the surface to be formed by increasing the rate of increase to 1005 CCH at a rate of increase of 0.05 CC/min. The formed carbon film has a weight of 4200 Kg/
It had a Vickers hardness of mm2 and was excellent in wear resistance, high thermal conductivity, and high smoothness.

本実施例では水素の流量のみを連続的に大きくさせたが
、メタンの流量のみを連続的に減少させても良く、また
水素を酸素に変えて実施しても良い。
In this embodiment, only the flow rate of hydrogen was continuously increased, but only the flow rate of methane may be continuously decreased, or hydrogen may be replaced with oxygen.

〔実施例6〕 本実施例は、被形成面上に炭素膜を形成する前に、紫外
光により活性化された酸素原子及び紫外光により生成し
たオゾンの雰囲気に被形成面を配設することにより被形
成面の有機物の汚染物または異物を除去した後に炭素膜
を形成させた。
[Example 6] In this example, before forming a carbon film on the surface to be formed, the surface to be formed is placed in an atmosphere of oxygen atoms activated by ultraviolet light and ozone generated by ultraviolet light. After removing organic contaminants or foreign substances from the surface to be formed, a carbon film was formed.

被形成面上の有機物の汚染物は、その上に形成された膜
との間の密着性を低下させる最大の原因である。本実施
例に使用した装置を第6図に示す。
Organic contaminants on the surface to be formed are the biggest cause of reducing the adhesion between the surface and the film formed thereon. The apparatus used in this example is shown in FIG.

第6図は第1図に示す反応室(24)と紫外光により活
性化された酸素原子及び紫外光により生成したオゾンの
雰囲気を作る予備室(25)とを結合させたものである
。反応室(24)と予備室(25)との間にはゲート弁
(23)が設けられている。予備室には低圧水i艮うン
フ゛(185nm、 254nm) (21) 、シャ
ッタ(22)が設けられている。この予備室(25)に
おいては以下の如くの反応により活性の酸素及びオゾン
が生じ、それらが被形成面上の有機物の汚染物の除去を
行うのである。
FIG. 6 shows a combination of the reaction chamber (24) shown in FIG. 1 and a preliminary chamber (25) that creates an atmosphere of oxygen atoms activated by ultraviolet light and ozone generated by ultraviolet light. A gate valve (23) is provided between the reaction chamber (24) and the preliminary chamber (25). The preliminary chamber is equipped with a low-pressure water filter (185 nm, 254 nm) (21) and a shutter (22). In this preliminary chamber (25), active oxygen and ozone are generated by the following reaction, and these remove organic contaminants on the surface to be formed.

02 +h V (185nm) →0+00□+0→
03 03+ h v (254nm) −+ 0 ”+O□
03 +C,HI、1Ok−+CO,COz、 HzO
じ+Cl1H1llOk−+C0IC0□、HzO即ち
紫外光エネルギーと紫外光により生成されたオゾン及び
活性化された酸素原子の複合作用により被形成面上の有
機物(C−H−Oi=)を分解除去するものである。
02 +h V (185nm) →0+00□+0→
03 03+ h v (254nm) −+ 0”+O□
03 +C, HI, 1Ok-+CO, COz, HzO
Di+Cl1H1llOk-+C0IC0□, HzO, that is, it decomposes and removes organic substances (C-H-Oi=) on the surface to be formed by the combined action of ultraviolet light energy, ozone generated by ultraviolet light, and activated oxygen atoms. be.

実施に際しては、先ず被形成面を有する基板を予備室に
設置した後、低圧水銀灯ランプを点灯し、被形成面上の
有機物の分解除去を行った。この低圧水銀灯ランプを予
め点灯しておきシャッタ(22)をひらいても良い。そ
の後ランプを消灯(シャッタを閉じても良い)して予備
室内を減圧にし、反応室内と同圧になったところで反応
室との間に設けであるゲート弁(23)を開けて、基板
を反応室に移した。
In carrying out the experiment, first, a substrate having a surface to be formed was placed in a preliminary chamber, and then a low-pressure mercury lamp was turned on to decompose and remove organic matter on the surface to be formed. This low-pressure mercury lamp may be lit in advance and the shutter (22) may be opened. After that, turn off the lamp (you may close the shutter) to reduce the pressure in the preliminary chamber, and when the pressure becomes the same as that in the reaction chamber, open the gate valve (23) installed between the reaction chamber and the substrate. Moved to room.

このような処理をした後被形成面上に実施例工、実施例
2、実施例3、実施例4若しくは実施例5に従って炭素
膜を形成した。
After such treatment, a carbon film was formed on the surface to be formed according to the method of Example, Example 2, Example 3, Example 4, or Example 5.

得られた炭素膜は被形成面との密着性に極めて優れたも
のであった。
The obtained carbon film had extremely excellent adhesion to the surface on which it was formed.

上記の方法は有機物等の汚染物を除去した後、大気に触
れることなく短時間に反応室において膜形成を行なえる
点で優れた効果を持つものである。
The above method has an excellent effect in that, after removing contaminants such as organic substances, film formation can be carried out in a reaction chamber in a short time without exposure to the atmosphere.

上記実施例は添加物を1種類に限定して示したものだが
、2種類以上を混合して添加しても本発明の効果を得ら
れる。
Although the above examples limit the number of additives to one type, the effects of the present invention can be obtained even if a mixture of two or more types is added.

〔効果〕〔effect〕

以上の如く本発明の方法により作製した炭素または炭素
を主成分とする被膜は、水素または酸素の添加量を変化
させて被形成面に損傷を与えない程度のセルフバイアス
で作り得る硬さの炭素または炭素を主成分とする被膜に
しておき、徐々に硬度を上げた膜を積層させて、表面に
は所望の硬度を有した炭素または炭素を主成分とする被
膜を形成しているため、被形成面との密着性に優れたダ
イヤモンドに類似の硬さを有するものであり、磁気ヘッ
ドや磁気ディスク等一部に異種材料がその表面ををこす
って走行する電気用部材にきわめて有効であった。特に
得られる炭素または炭素を主成分とする被膜は熱伝導率
が2.5W/cm deg以上、代表的には4.0〜6
.OW/cm degとダイヤモンドの60W/cm 
deg  に近いため摩擦によって生じる熱を全体に均
一に逃すことが可能であり、更に耐摩耗性、高熱伝導性
、炭素膜特有の高平滑性等の特性を有するものであった
。 また本発明の方法は、有機樹脂、ガラス、磁性体、
金属、セラミックまたは半導体等を被形成面として実施
することができるため、その応用は計り知れないもので
ある。
As described above, the carbon or carbon-based coating produced by the method of the present invention has a hardness that can be produced by changing the amount of hydrogen or oxygen added and by self-biasing to an extent that does not damage the surface on which it is formed. Alternatively, a film containing carbon as the main component is formed, and films with gradually increasing hardness are laminated to form carbon or a film containing carbon as the main component with the desired hardness on the surface. It has a hardness similar to that of diamond and has excellent adhesion to the forming surface, making it extremely effective for electrical parts such as magnetic heads and magnetic disks where dissimilar materials rub against the surface. . In particular, the resulting carbon or carbon-based coating has a thermal conductivity of 2.5 W/cm deg or higher, typically 4.0 to 6
.. OW/cm deg and diamond 60W/cm
degree, it is possible to uniformly dissipate the heat generated by friction throughout the film, and it also has characteristics such as wear resistance, high thermal conductivity, and high smoothness unique to carbon films. Further, the method of the present invention can be applied to organic resins, glass, magnetic materials,
Since it can be implemented using metal, ceramic, semiconductor, etc. as the surface to be formed, its applications are immeasurable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置の概要を示す。 第2図は水素、酸素の添加流量に対するセルフバイアス
を示す図。 第3図は添加流量とビッカース硬度との関係を示す図。 第4図及び第5図は添加流量と膜厚との関係を示す図。 第6図は実施例4で用いた装置を示す図。 ■・・・ドーピング系 6・・・バルブ 7・・・流量計 8・・・反応系 9・・・ノズル 10・・・マイクロ波エネルギ 11・・・第1の電極 12・・・第2の電極 13・・・高周波電源 14・・・マツチングトランス 15・・・直流バイアス電源 16・・・排気系 17・・・王力調整バルブ 18・・・ターボ分子ポンプ 19・・・ロータリーポンプ 20・・・反応空間 ?会カロカース流量(SCC〜1) 第2因 第3図 ?悉力日カース流量(S CCM) 第4図 ?会カロカース流量(SCC〜1) 第5図 NF3カー゛ス流量<5ccN1>
FIG. 1 shows an overview of the apparatus used in the present invention. FIG. 2 is a diagram showing self-bias with respect to the addition flow rate of hydrogen and oxygen. FIG. 3 is a diagram showing the relationship between addition flow rate and Vickers hardness. FIG. 4 and FIG. 5 are diagrams showing the relationship between the addition flow rate and the film thickness. FIG. 6 is a diagram showing the apparatus used in Example 4. ■...Doping system 6...Valve 7...Flowmeter 8...Reaction system 9...Nozzle 10...Microwave energy 11...First electrode 12...Second Electrode 13... High frequency power supply 14... Matching transformer 15... DC bias power supply 16... Exhaust system 17... Royal power adjustment valve 18... Turbo molecular pump 19... Rotary pump 20. ...Reaction space? Kaikarokasu flow rate (SCC~1) 2nd cause 3rd figure? Total daily curse flow rate (SCCM) Figure 4? Figure 5 NF3 Curse Flow Rate <5ccN1>

Claims (1)

【特許請求の範囲】 1、第1の電極と被形成面を有する基板に接して設けら
れた第2の電極との間に直流または高周波エネルギを加
えて、発生させたプラズマにより炭化水素化物気体とま
たはこれに加えて添加物気体とを分解反応せしめて上記
被形成面上に炭素膜を形成する方法において、炭素膜形
成の際、水素または酸素を添加することを特徴とする炭
素または炭素を主成分とする被膜を形成する方法。 2、第1の電極と被形成面を有する基板に接して設けら
れた第2の電極との間に直流または高周波エネルギを加
えて、発生させたプラズマにより炭化水素化物気体とま
たはこれに加えて添加物気体とを分解反応せしめて上記
被形成面上に炭素膜を形成する方法において、炭素膜形
成の際、水素または酸素の添加量を変化させることによ
り形成される炭素または炭素を主成分とする被膜の硬度
を被形成面側より炭素膜表面に向かって増加させること
を特徴とする炭素または炭素を主成分とする被膜を形成
する方法。
[Claims] 1. Direct current or high frequency energy is applied between the first electrode and the second electrode provided in contact with the substrate having the surface to be formed, and the generated plasma generates hydrocarbon gas. In the method of forming a carbon film on the surface to be formed by causing a decomposition reaction with or in addition to this and an additive gas, hydrogen or oxygen is added when forming the carbon film. A method of forming a film containing the main component. 2. Direct current or high frequency energy is applied between the first electrode and the second electrode provided in contact with the substrate having the surface to be formed, and the generated plasma generates hydrocarbon gas or in addition to this. In the method of forming a carbon film on the above-mentioned surface to be formed by causing a decomposition reaction with an additive gas, carbon or carbon is formed as a main component by changing the amount of hydrogen or oxygen added when forming the carbon film. A method for forming carbon or a film containing carbon as a main component, characterized by increasing the hardness of the film from the surface on which it is formed toward the surface of the carbon film.
JP63072890A 1988-03-26 1988-03-26 Method for forming carbon or carbon-based coating Expired - Fee Related JP2852380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072890A JP2852380B2 (en) 1988-03-26 1988-03-26 Method for forming carbon or carbon-based coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072890A JP2852380B2 (en) 1988-03-26 1988-03-26 Method for forming carbon or carbon-based coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9114269A Division JP3000210B2 (en) 1997-04-16 1997-04-16 Method for forming carbon or carbon-based coating

Publications (2)

Publication Number Publication Date
JPH01246115A true JPH01246115A (en) 1989-10-02
JP2852380B2 JP2852380B2 (en) 1999-02-03

Family

ID=13502393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072890A Expired - Fee Related JP2852380B2 (en) 1988-03-26 1988-03-26 Method for forming carbon or carbon-based coating

Country Status (1)

Country Link
JP (1) JP2852380B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242493A (en) * 1993-01-07 1995-09-19 Internatl Business Mach Corp <Ibm> Method of depositing diamondlike carbon film on substrate
JPH1030679A (en) * 1996-07-13 1998-02-03 Nissin Electric Co Ltd Part for automobile and manufacture thereof
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method
JP2007224383A (en) * 2006-02-24 2007-09-06 Tokyo Electron Ltd Method for forming amorphous carbon film, method for producing semiconductor device using the same and computer readable storage medium
JP2012233259A (en) * 2012-06-25 2012-11-29 Tokyo Electron Ltd Method for depositing amorphous carbon film, method for producing semiconductor device using the same, and computer-readable storage medium

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137396A (en) * 1983-01-25 1984-08-07 Natl Inst For Res In Inorg Mater Synthetic method of p type semiconductor diamond
JPS6055480A (en) * 1983-09-07 1985-03-30 Oki Electric Ind Co Ltd Pattern position recognizing method
JPS6065796A (en) * 1983-09-20 1985-04-15 Nippon Telegr & Teleph Corp <Ntt> Hard carbon film and its production
JPS60145995A (en) * 1984-01-10 1985-08-01 Nec Corp Preparation of diamond-shaped carbon
JPS60200896A (en) * 1984-03-21 1985-10-11 Natl Inst For Res In Inorg Mater Process for synthesizing fibrous diamond
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS62132800A (en) * 1985-12-05 1987-06-16 Namiki Precision Jewel Co Ltd Production of diamond-like carbon and apparatus therefor
JPS62174378A (en) * 1986-01-27 1987-07-31 Meijiyou Univ Formation of thin hard carbon film
JPS62174379A (en) * 1986-01-27 1987-07-31 Res Dev Corp Of Japan Formation of thin hard carbon film
JPS62256795A (en) * 1986-04-30 1987-11-09 Kyocera Corp Production of diamond film
JPS63236708A (en) * 1987-03-25 1988-10-03 Kanagawa Pref Gov Vapor synthesis of carbon thin film or carbon particle
JPS63259079A (en) * 1987-04-16 1988-10-26 Idemitsu Petrochem Co Ltd Production of diamondlike carbon
JPH0433864A (en) * 1990-05-30 1992-02-05 Canon Inc Ink jet device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137396A (en) * 1983-01-25 1984-08-07 Natl Inst For Res In Inorg Mater Synthetic method of p type semiconductor diamond
JPS6055480A (en) * 1983-09-07 1985-03-30 Oki Electric Ind Co Ltd Pattern position recognizing method
JPS6065796A (en) * 1983-09-20 1985-04-15 Nippon Telegr & Teleph Corp <Ntt> Hard carbon film and its production
JPS60145995A (en) * 1984-01-10 1985-08-01 Nec Corp Preparation of diamond-shaped carbon
JPS60200896A (en) * 1984-03-21 1985-10-11 Natl Inst For Res In Inorg Mater Process for synthesizing fibrous diamond
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS62132800A (en) * 1985-12-05 1987-06-16 Namiki Precision Jewel Co Ltd Production of diamond-like carbon and apparatus therefor
JPS62174378A (en) * 1986-01-27 1987-07-31 Meijiyou Univ Formation of thin hard carbon film
JPS62174379A (en) * 1986-01-27 1987-07-31 Res Dev Corp Of Japan Formation of thin hard carbon film
JPS62256795A (en) * 1986-04-30 1987-11-09 Kyocera Corp Production of diamond film
JPS63236708A (en) * 1987-03-25 1988-10-03 Kanagawa Pref Gov Vapor synthesis of carbon thin film or carbon particle
JPS63259079A (en) * 1987-04-16 1988-10-26 Idemitsu Petrochem Co Ltd Production of diamondlike carbon
JPH0433864A (en) * 1990-05-30 1992-02-05 Canon Inc Ink jet device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242493A (en) * 1993-01-07 1995-09-19 Internatl Business Mach Corp <Ibm> Method of depositing diamondlike carbon film on substrate
JP2553310B2 (en) * 1993-01-07 1996-11-13 インターナショナル・ビジネス・マシーンズ・コーポレイション Method of depositing diamond-like carbon film on substrate
JPH1030679A (en) * 1996-07-13 1998-02-03 Nissin Electric Co Ltd Part for automobile and manufacture thereof
US6579833B1 (en) 1999-09-01 2003-06-17 The Board Of Trustees Of The University Of Illinois Process for converting a metal carbide to carbon by etching in halogens
JP2006161075A (en) * 2004-12-03 2006-06-22 Shinko Seiki Co Ltd Hard carbon film, and its depositing method
JP2007224383A (en) * 2006-02-24 2007-09-06 Tokyo Electron Ltd Method for forming amorphous carbon film, method for producing semiconductor device using the same and computer readable storage medium
JP2012233259A (en) * 2012-06-25 2012-11-29 Tokyo Electron Ltd Method for depositing amorphous carbon film, method for producing semiconductor device using the same, and computer-readable storage medium

Also Published As

Publication number Publication date
JP2852380B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP2610469B2 (en) Method for forming carbon or carbon-based coating
US20090087586A1 (en) Method of forming silicon nitride films
JPH01246115A (en) Method for forming coating film of carbon or material composed mainly of carbon
JP3431914B2 (en) Method for manufacturing carbon or carbon-based film
JP3000210B2 (en) Method for forming carbon or carbon-based coating
JP3366593B2 (en) Method for manufacturing carbon or carbon-based film
JP2775278B2 (en) Preparation method of carbon-based coating
JP2990220B2 (en) Carbon or carbon-based coating
JP3192109B2 (en) Electrical components
JP3236595B2 (en) Coating method
JP3236569B2 (en) Coating method
JP3236848B2 (en) Electrical component
JP3236602B2 (en) Method of forming carbon or carbon-based coating
JP3281354B2 (en) Method for producing diamond-like carbon film
JP3256212B2 (en) Method for producing diamond-like carbon film
JP3236599B2 (en) Complex
JP2000290776A (en) Member in which carbon film has been formed
JP3254202B2 (en) A member provided with a carbon film or a film containing carbon as a main component
JP3267959B2 (en) Method for producing diamond-like carbon film
JPH11286778A (en) Formation of diamondlike carbon film
JP3256189B2 (en) Protective film
JPH05247651A (en) Synthesizing method for diamond
JP2001073141A (en) Protective film
Klemberg-Sapieha et al. Materials Processing in Dual-Mode Microwave/Radiofrequency Plasmas
JPH01246118A (en) Composite carbon coating film having high heat-resistance and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees