JPH01242105A - Material for removing endotoxin - Google Patents

Material for removing endotoxin

Info

Publication number
JPH01242105A
JPH01242105A JP63066997A JP6699788A JPH01242105A JP H01242105 A JPH01242105 A JP H01242105A JP 63066997 A JP63066997 A JP 63066997A JP 6699788 A JP6699788 A JP 6699788A JP H01242105 A JPH01242105 A JP H01242105A
Authority
JP
Japan
Prior art keywords
endotoxin
methyl methacrylate
hollow
hollow fiber
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066997A
Other languages
Japanese (ja)
Inventor
Yoshitada Sakai
良忠 酒井
Yoshiko Yokota
横田 佳子
Yoko Fukui
福井 容子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63066997A priority Critical patent/JPH01242105A/en
Publication of JPH01242105A publication Critical patent/JPH01242105A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain inexpensive material generally usable for removing endotoxin by using a porous body in a specified porous state, consisting of methyl methacrylate polymer contg. methyl methacrylate above a specified proportion, based on monomer fraction to selectively remove endotoxin. CONSTITUTION:A hollow fiber is obtd. for example, by extruding a spinning soln. dissolved methyl methacrylate polymer and methyl methacrylate in a solvent from the outer discharge aperture of an annular spinneret by introducing dry nitrogen gas to the inside thereof to make hollow-fibrous material, and by coagulating and removing the solvent in water. A module is made of the material for removing endotoxin, consisting of the porous body contg. >=50% methyl methacrylate, based on the monomer fraction and having 30-90% equilibrium moisture content in a hydrated state at 20 deg.C. The liq. to be treated is circulated outside of the hollow fiber module. The endotoxin in the liq. to be treated in removed by adsorbing with the hollow-fibrous material for removing endotoxin.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生物体にとって有害なエンドトキシンを含む
液体から、該エンドトキシンを除去し無害化するための
エンドトキシン除去材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endotoxin removing material for removing endotoxin from a liquid containing endotoxin harmful to living organisms and rendering it harmless.

[従来の技術] 生物体や生体成分を対象とした技術、例えばバイオリア
クター、細胞培養、血液体外循環療法、連続的腹膜透析
、各種の輸液・輸血療法などの進展に伴ない、これらの
技術で用いられる液体中に含まれる可能性のあるエンド
トキシンの除去が望まれている。また、エンドトキシン
が流血中に混入してしまうエンドトキシン血症も知られ
ており、この場合もエンドトキシンの除去が望まれてい
る。
[Conventional technology] With the advancement of technologies targeting living organisms and biological components, such as bioreactors, cell culture, extracorporeal blood circulation therapy, continuous peritoneal dialysis, and various types of infusion and blood transfusion therapy, these technologies have improved. It is desirable to remove endotoxins that may be contained in the liquids used. Furthermore, endotoxemia, in which endotoxin is mixed into bloodstream, is known, and removal of endotoxin is desired in this case as well.

エンドトキシンとは化学的にはダラム陰性菌の細胞表層
の構成成分であるリボ多糖体であり、様々の結合状態が
あるためにその分子量は5×103ないし108とされ
ている(内毒素−その構造と活性−P、124 、医歯
薬出版株式会社、昭和58年)。また、エンドトキシン
は生物体にとって有害な成分であり、細胞機能や生体組
織全体の機能を障害・修飾したりして、生体全体の平衡
状態を乱し、例えば発熱や致死性のショック、補体活性
化などをもたらす、この中で発熱反応がエンドトキシン
の典型的反応であるので、エンドトキシンをパイロ−ジ
エン(発熱原物質)ということもある。
Endotoxin is chemically a ribopolysaccharide that is a component of the cell surface of Durham-negative bacteria, and its molecular weight is said to be 5 x 103 to 108 because it has various binding states (endotoxin - its structure). and Activity-P, 124, Ishiyaku Publishing Co., Ltd., 1981). In addition, endotoxin is a component harmful to living organisms, and it can impair or modify cell functions and the functions of the entire living tissue, disrupting the equilibrium state of the entire living body, and causing, for example, fever, fatal shock, and complement activation. Endotoxins are sometimes called pyrogens (pyrogens) because exothermic reactions are a typical reaction of endotoxins.

先に挙げた生物体や生体成分を対象とした各種の技術に
おいては、ダラム陰性菌の増殖に適した化学組成や温度
環境下にあるために無菌的な取り扱いが強く要求され、
現実にはダラム陰性菌の混人、その結果としてエンドト
キシンの混入をしばしば招く。またエンドトキシンは、
菌由来ではあるものの生物体ではないので通常の滅菌処
理では無害化できず、その化学構造を熱的に破壊しよう
とすれば250℃の加温が必要とされ、先に挙げた技術
領域では、このような高温処理は該技術の目的そのもの
を損なう条件であり適用できない。
In the various techniques mentioned above that target living organisms and biological components, aseptic handling is strongly required due to the chemical composition and temperature environment suitable for the growth of Durham-negative bacteria.
In reality, this often leads to contamination with Durham-negative bacteria and, as a result, endotoxin contamination. Also, endotoxin is
Although it is derived from bacteria, it is not a living organism, so it cannot be rendered harmless through normal sterilization, and heating to 250°C is required to thermally destroy its chemical structure. Such high-temperature treatment is a condition that defeats the purpose of the technique itself and cannot be applied.

このように発生頻度も高く生物体にとって有害であるエ
ンドトキシンを除去する技術として、従来は逆浸透膜や
濾過膜、あるいはエンドトキシンと親和性のあるリガン
ド−例えばヒスチジン(醗酵工学65巻、5号、445
.1987年)−を固定化したゲル状体などが使われて
きた。しかし、前者のみでは血液や蛋白質溶液を処理し
ようとする場合では、利用しようとしている血球や、蛋
白質とエンドトキシンの分離が適切に行い得す、また、
後者では被処理液を流動させて処理したい時に、ゲル状
体であるので均一で滑らかな流動情況が得られない。さ
らに後者は比較的高価であるが故に般用できるエンドト
キシン除去手段には成り得ない。
Conventionally, techniques for removing endotoxins that occur frequently and are harmful to living organisms include reverse osmosis membranes, filtration membranes, or ligands that have an affinity for endotoxins, such as histidine (Fermentation Engineering Vol. 65, No. 5, 445).
.. (1987) - have been used to immobilize gel-like substances. However, when using only the former to process blood or protein solutions, it is not possible to properly separate endotoxins from the blood cells or proteins to be used.
In the latter case, when it is desired to process the liquid to be processed by flowing it, a uniform and smooth flow condition cannot be obtained because it is a gel-like material. Furthermore, since the latter is relatively expensive, it cannot be used as a commonly used means for removing endotoxin.

[発明が解決しようとする問題点] 上記の如きエンドトキシンの有害性と従来技術の基づく
エンドトキシンの除去手段の状況に鑑みて、本発明者ら
はより選択的に除去できて、かつより安価で般用できる
エンドトキシンの除去材について鋭意検討を重ねたとこ
ろ、先に示した公知例とは異なる特性の材料がエンドト
キシンを吸着およびまたは濾過により除去できることを
見出した。
[Problems to be Solved by the Invention] In view of the above-mentioned harmfulness of endotoxin and the status of endotoxin removal methods based on the prior art, the present inventors have developed a method that can be removed more selectively, is less expensive, and is generally available. After extensive research into endotoxin removal materials that can be used, it was discovered that a material with characteristics different from those of the known examples shown above can remove endotoxin by adsorption and/or filtration.

[問題点を解決するための手段] すなわち、メチルメタクリレートを単量体分率で50%
以上含むメチルメタクリレート系重合体から成る多孔体
で、その重量含水率が30ないし90%である材料が、
本手段を利用しようとする技術領域の本来の目的を損な
うことなく、被処理液体中のエンドトキシンを好適に除
去できることを見出し、本発明を完成するに至った。 
 。
[Means for solving the problem] In other words, the monomer fraction of methyl methacrylate is 50%.
A porous body made of a methyl methacrylate polymer containing the above and having a weight water content of 30 to 90%,
The present inventors have discovered that endotoxins in a liquid to be treated can be suitably removed without impairing the original purpose of the technical field in which this means is to be utilized, and have completed the present invention.
.

重量含水率は、含水状態の該材料り重量に対する該材料
に含まれている水の重量の比をパーセント単位で表現し
た尺度であり、被処理液に接触する前の20℃で純水と
平衡化させた状態での材料の多孔状態を規定する尺度で
ある。
Weight moisture content is a measure expressed in percent of the ratio of the weight of water contained in the material to the weight of the material in a water-containing state, and is equivalent to the ratio of the weight of water contained in the material to the weight of the material in a water-containing state. This is a measure that defines the porosity of a material in a state where it has become porosity.

該材料で用いる重合体素材はメチルメタクリレートを主
体とした重合体であれば良く、メチルメタクリレートの
単量体分率が50%以上の重合体、より好ましくは80
%以上の重合体であり、メチルメタクリレートの単独重
合体や、メチルメタクリレート系の各種の共重合体が好
適に用いられる。
The polymer material used in the material may be a polymer mainly composed of methyl methacrylate, and a polymer having a monomer fraction of methyl methacrylate of 50% or more, more preferably 80% or more.
% or more, and methyl methacrylate homopolymers and various methyl methacrylate copolymers are preferably used.

メチルメタクリレートへの共重合成分としては、該材料
の多孔構造を維持できて、かつメチルメタクリレートへ
共重合できる成分であればどのような成分でも用いうる
が、メチルメタクリレート以外のメタクリル酸エステル
、アクリル酸エステル、メタクリル酸、アクリル酸、ア
クリルアミド、メタアリルスルホン酸ナトリウム、アリ
ルスルホン酸ナトリウム、パラスチレンスルホン酸ナト
リウム、2−メタクリロイルオキシエチルトリメチルア
ンモニウムクロライド、酢酸ビニル、アクリロニトリル
などのビニル化合物が好適に用いられる。
As the copolymerization component for methyl methacrylate, any component can be used as long as it can maintain the porous structure of the material and can be copolymerized to methyl methacrylate, but methacrylic acid esters other than methyl methacrylate, acrylic acid Vinyl compounds such as ester, methacrylic acid, acrylic acid, acrylamide, sodium methalylsulfonate, sodium allylsulfonate, sodium p-styrenesulfonate, 2-methacryloyloxyethyltrimethylammonium chloride, vinyl acetate, and acrylonitrile are preferably used.

エンドトキシン除去材として用いる状態では、以上に挙
げた各素材を単独でも、複数の素材相互をブレンド状態
や単に共存させるなど組み合わせて用いても良く、また
該素材を支持するなど、より有効かつ安定に使うために
他の素材と組み合わせて用いることもできる。
When used as an endotoxin removal material, each of the above-mentioned materials may be used alone, or in combination such as blending or simply coexisting with each other, or supporting the material to make it more effective and stable. It can also be combined with other materials for use.

上記の重合体素材をエンドトキシン除去材として用いる
には、特定の多孔構造が必要となり、該材料の重量含水
率は30ないし90%、より好ましくは40ないし80
%である必要がある。メチルメタクリレート系重合体を
用いて多孔構造を形成させるには乾湿式または湿式成型
を行ない、材料内に該重合体に対する溶媒、非溶媒、水
などの液体が包含されている状態を維持する必要がある
In order to use the above polymer material as an endotoxin removal material, a specific porous structure is required, and the weight water content of the material is 30 to 90%, more preferably 40 to 80%.
Must be %. In order to form a porous structure using a methyl methacrylate polymer, it is necessary to perform wet/dry molding or wet molding to maintain a state in which a solvent, nonsolvent, water, or other liquid for the polymer is contained within the material. be.

重量含水率が30%以下ではエンドトキシンが該材料内
に浸透し難くなりエンドトキシンの吸着による除去効果
が損なわれ、また90%以上では該材料の形態を保持す
ることが困難となり好ましくない。 該材料の多孔性が
ほぼ均一である場合には、その表面での重量含水率は材
料全体の重量含水率と同一視して良い。多孔体を形成さ
せようとする時には不均一構造となることもあるが、そ
の場合には該被処理液に接触する表面層における重量含
水率が30ないし90%である必要がある。
If the water content by weight is less than 30%, it becomes difficult for endotoxin to penetrate into the material, and the removal effect of endotoxin by adsorption is impaired, and if it is more than 90%, it becomes difficult to maintain the shape of the material, which is not preferable. If the porosity of the material is substantially uniform, the weight water content at the surface may be equated with the weight water content of the entire material. When attempting to form a porous body, a non-uniform structure may be obtained; in that case, the water content by weight of the surface layer in contact with the liquid to be treated needs to be 30 to 90%.

表面層の重量含水率は、表面層のみを取り出しその部分
の重量含水率を直接測定したり、該材料内の水を水溶性
エポキシ樹脂に置換包埋して、その部分を四酸化オスミ
ウムで染色して得られる透過型電子顕微鏡像あるいは該
材料を凍結乾燥後に得られる走査形電子顕微鏡像と、別
に均一な多孔体となるように緩徐な条件下で調整した種
々の重量含水率のサンプルに対して同様に観察した電子
顕微鏡像とを比較することなどで、求めることができる
The weight water content of the surface layer can be determined by removing only the surface layer and directly measuring the weight water content of that part, or by replacing the water in the material with water-soluble epoxy resin and embedding it, and staining that part with osmium tetroxide. Transmission electron microscopy images obtained by freeze-drying the material or scanning electron microscopy images obtained after freeze-drying the material, and samples with various weight water contents adjusted under slow conditions to make uniform porous bodies. This can be determined by comparing it with an electron microscope image similarly observed.

該エンドトキシン除去材の形態としては、ビーズ状、中
空繊維状、繊維状、平膜状のものなど、いずれの形態で
も良いが、中空繊維状や平膜状のものにあっては材料内
へのエンドトキシンの取り込みや吸着だけでなく、同じ
材料をそのまま枦通用または透析用フィルターとしても
用いることが可能となり、より広範な利用方法を提供で
きることになり、特に好ましい形態である。
The endotoxin removing material may be in any form, such as beads, hollow fibers, fibers, or flat membranes, but hollow fibers or flat membranes may not be able to penetrate into the material. This is a particularly preferred form, as it not only allows for the uptake and adsorption of endotoxins, but also allows the same material to be used as a general purpose or dialysis filter, providing a wider range of usage methods.

以下に実施例をもって本特許の有効性を具体的に示すが
、被処理液中のエンドトキシンの分析においては、市販
の分析キット、パイロデイ・2り■(帝国臓器製薬味製
造)を用いた。
The effectiveness of this patent will be specifically demonstrated with examples below. In the analysis of endotoxin in the liquid to be treated, a commercially available analysis kit, Pyroday 2li (manufactured by Teikoku Kinki Seiyaku Aji Co., Ltd.) was used.

実施例1 グリニア試薬で重合したメチルメタクリレート単独重合
体12部とラジカル重合法で得たメチルメタクリレート
単独重合体60部を285部のジメチルスルホキシドに
溶解した紡糸原液を環状紡糸口金の外側吐出孔より吐出
し、内側に乾燥窒素ガスを導入し、中空糸条を形成した
。この糸条を24℃の水中で凝固、脱溶媒させることに
よって、内径200μ、外径260μの中空繊維を得た
Example 1 A spinning stock solution in which 12 parts of methyl methacrylate homopolymer polymerized with a Grignard reagent and 60 parts of methyl methacrylate homopolymer obtained by radical polymerization were dissolved in 285 parts of dimethyl sulfoxide was discharged from the outer discharge hole of a circular spinneret. Then, dry nitrogen gas was introduced inside to form hollow fibers. This yarn was coagulated in water at 24° C. and the solvent was removed to obtain hollow fibers with an inner diameter of 200 μm and an outer diameter of 260 μm.

この中空繊維8000本を束ねて有効膜面積1゜0ボの
モジュールを作成し、中空繊維の内外へ純水を充填し、
25にGVのガンマ−線を照射し滅菌した。このように
作成したメチルメタクリレート系中空繊維は、はぼ均一
な多孔構造を示しており、その重量含水率は62%であ
った。
A module with an effective membrane area of 1°0 was created by bundling 8,000 of these hollow fibers, and pure water was filled inside and outside the hollow fibers.
25 was sterilized by irradiating it with GV gamma rays. The methyl methacrylate hollow fiber thus prepared had a nearly uniform porous structure, and its weight moisture content was 62%.

この中空繊維モジュールの外側へ、無処理の水道水を用
いて調整した隣酸緩衝液(0,05M。
A phosphate buffer (0.05M) prepared using untreated tap water was applied to the outside of the hollow fiber module.

pH7,4,食塩0.7%)12αを500m1/mi
nの流量で3時間循環させ、次に中空繊維の外側から内
側へ100m1/m!nで濾過させつつ2時間循環させ
た。この時の中空繊維の外側および内側のエンドトキシ
ン分析値を表1に示す。
pH7.4, salt 0.7%) 12α at 500ml/mi
Circulate for 3 hours at a flow rate of n, then 100 m1/m from the outside to the inside of the hollow fiber! The mixture was circulated for 2 hours while being filtered with n. The endotoxin analysis values for the outside and inside of the hollow fibers at this time are shown in Table 1.

循環のみでエンドトキシンが低下しており、この状態の
間はエンドトキシンが中空繊維材料へ吸着除去されるこ
とが示されている。また、濾過を加えた場合では濾過流
出液中にはエンドトキシンがほとんど認められていす、
さらにこの場合のシ濾過開始時点と90?過時点間の物
質収支を考えても、10.5μgのエンドトキシンが除
去されており(2,8n(]/mlX12000ml 
 7.7n(]/mlX3000ml)、この状態の間
は吸着およびまたはシ濾過によってエンドトキシンが除
去されることが示されている。
It has been shown that endotoxin is reduced by circulation alone, and that during this state endotoxin is adsorbed and removed by the hollow fiber material. In addition, when filtration is added, almost no endotoxin is found in the filtrate effluent.
Furthermore, in this case, the starting point of filtering and 90? Considering the mass balance over time, 10.5 μg of endotoxin was removed (2.8 n(]/ml x 12,000 ml).
7.7n(]/ml×3000ml), indicating that during this state endotoxin is removed by adsorption and/or sifiltration.

実施例2 パラスチレンスルホン酸ナトリウムを単量体分率3.5
%含む溶液重合で得たメチルメタクリレート系重合体1
5部と、2−メタクリロイルオキシエチルトリメチルア
ンモニウムクロライドを単量体分率3.0%含む溶液重
合で得たメチルメタクリレート系重合体15部を170
部のジメチルスルホキシドに溶解した紡糸原液を環状紡
糸口金の外側吐出孔より吐出し、内側にエチレングリコ
ール60部とジメチルスルホキシド40部とから成る混
合液を注入し、中空糸条を形成した。この糸条を90℃
の水中で凝固、脱溶媒させることによって、内径310
μ、外径480μの中空繊維を得な。この中空繊維66
00本を束ねて有効膜面積1.2Tr12のモジュール
を作成し、中空繊維の内外へ純水を充填し、25 KG
yのガンマ−線を照射し滅菌した。このように作成した
メチルメタクリレート系中空繊維は不均一な多孔構造を
示しており、全体の重量含水率は74%であったが中空
糸内側表層の重量含水率は電子顕微鏡像から約60%と
推定された。
Example 2 Sodium p-styrene sulfonate with a monomer fraction of 3.5
Methyl methacrylate polymer obtained by solution polymerization containing 1%
5 parts and 15 parts of a methyl methacrylate polymer obtained by solution polymerization containing 2-methacryloyloxyethyltrimethylammonium chloride at a monomer fraction of 3.0%.
A spinning dope dissolved in 50 parts of dimethyl sulfoxide was discharged from the outer discharge hole of the annular spinneret, and a mixed solution consisting of 60 parts of ethylene glycol and 40 parts of dimethyl sulfoxide was injected into the inner side to form hollow fibers. 90℃
By coagulating and removing solvent in water of
µ, obtain a hollow fiber with an outer diameter of 480 µm. This hollow fiber 66
00 fibers were bundled to create a module with an effective membrane area of 1.2Tr12, and pure water was filled inside and outside of the hollow fibers to produce a 25 kg
It was sterilized by irradiating it with gamma rays. The methyl methacrylate hollow fibers prepared in this way had a non-uniform porous structure, and the overall weight water content was 74%, but the weight water content of the inner surface layer of the hollow fibers was approximately 60% based on an electron microscope image. Estimated.

この中空繊維モジュールの内側へ、実施例1と同様の循
環実験を行なったが、本例では初めから中空繊維の内側
から外側へ100m1/m!nでi濾過させつつ2時間
循環させた。この時の中空繊維の内側および外側のエン
ドトキシン分析値を表2に示す。
A circulation experiment similar to that in Example 1 was carried out inside this hollow fiber module, but in this example, the flow from the inside of the hollow fiber to the outside was 100 m1/m! The mixture was circulated for 2 hours while being filtered with n. Table 2 shows the endotoxin analysis values for the inside and outside of the hollow fiber at this time.

一過流出液中にはエンドトキシンはわずかじか認められ
ず、さらに)濾過開始時点と9 Q 濾過時点間の物質
収支をとると42.9μgのエンドトキシンが除去され
ており(6,Ong/mlX12000ml−9,7n
(1/mlX3000ml) 、吸着および濾過によっ
てエンドトキシンが除去されることが示されている。
Only a small amount of endotoxin was observed in the effluent, and when the mass balance between the start of filtration and the 9Q filtration time was calculated, 42.9 μg of endotoxin was removed (6, Ong/ml x 12,000 ml- 9,7n
(1/ml x 3000 ml), adsorption and filtration have been shown to remove endotoxin.

比較例1 実施例1に比べて2種の重合体量を1.5倍量とし、1
1°Cの水中で凝固させる以外は実施例1と同条件で中
空繊維および膜モジュールを得た。
Comparative Example 1 The amount of the two types of polymers was 1.5 times that of Example 1, and 1
Hollow fibers and membrane modules were obtained under the same conditions as in Example 1 except that they were coagulated in water at 1°C.

このように作成したメチルメタクリレート系中空繊維は
、はぼ均一な多孔構造を示しており、その重量含水率は
27%であった。
The methyl methacrylate hollow fibers thus produced had a nearly uniform porous structure and had a weight water content of 27%.

この中空糸モジュールに対して実施例2と同様の実験を
行なったが、−過量始時点と9Qi濾過時点間の物質収
支をとると3゜3μgのエンドトキシンしか除去されて
いす(6,9nO/mlX12000ml  26.5
ng/mlX3000ml> 、本特許での請求範囲外
の多孔構造ではエンドトキシンの除去能が低下する。
The same experiment as in Example 2 was carried out on this hollow fiber module, but when we calculated the mass balance between the beginning of overfeeding and the time of 9Qi filtration, only 3.3 μg of endotoxin was removed (6.9 nO/ml x 12,000 ml). 26.5
ng/ml×3000ml>, the endotoxin removal ability decreases with a porous structure outside the scope of the claims in this patent.

[発明の効果] (1)  単一材料でありながら、エンドトキシンを吸
着及びまたはシ濾過により除去できる。
[Effects of the Invention] (1) Although it is a single material, endotoxin can be removed by adsorption and/or filtration.

(2)他の目的の)濾過や透析機能も兼ね備えている。(2) It also has filtration and dialysis functions (for other purposes).

(3)用途に応じた広範な形態をとり得る。(3) It can take a wide range of forms depending on the application.

(4)材料が安価である。(4) Materials are inexpensive.

Claims (1)

【特許請求の範囲】[Claims] メチルメタクリレートを単量体分率で50%以上含むメ
チルメタクリレート系重合体から成り、20℃において
含水状態としたときの平衡重量含水率が30ないし90
%である多孔体によって構成されてなるエンドトキシン
除去材。
Consists of a methyl methacrylate polymer containing 50% or more of methyl methacrylate as a monomer fraction, and has an equilibrium weight water content of 30 to 90 when kept in a water-containing state at 20°C.
% endotoxin removal material composed of a porous material.
JP63066997A 1988-03-18 1988-03-18 Material for removing endotoxin Pending JPH01242105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066997A JPH01242105A (en) 1988-03-18 1988-03-18 Material for removing endotoxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066997A JPH01242105A (en) 1988-03-18 1988-03-18 Material for removing endotoxin

Publications (1)

Publication Number Publication Date
JPH01242105A true JPH01242105A (en) 1989-09-27

Family

ID=13332155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066997A Pending JPH01242105A (en) 1988-03-18 1988-03-18 Material for removing endotoxin

Country Status (1)

Country Link
JP (1) JPH01242105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917022A (en) * 1994-02-16 1999-06-29 Csl Limited Process for removing endotoxins
WO2006016217A1 (en) * 2004-08-02 2006-02-16 Angiosyn, Inc. tRNA SYNTHETASE FRAGMENTS
US8282921B2 (en) 2004-08-02 2012-10-09 Paul Glidden tRNA synthetase fragments

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917022A (en) * 1994-02-16 1999-06-29 Csl Limited Process for removing endotoxins
WO2006016217A1 (en) * 2004-08-02 2006-02-16 Angiosyn, Inc. tRNA SYNTHETASE FRAGMENTS
JP2008508349A (en) * 2004-08-02 2008-03-21 アンジオシン,インコーポレイティド tRNA synthetase fragment
US8282921B2 (en) 2004-08-02 2012-10-09 Paul Glidden tRNA synthetase fragments

Similar Documents

Publication Publication Date Title
Zhao et al. Blood compatible aspects of DNA-modified polysulfone membrane—protein adsorption and platelet adhesion
JP4059543B2 (en) Medical device for extracorporeal treatment of blood or plasma and method for manufacturing the device
EP0352199B2 (en) Hydrophilic material and method of manufacturing the same
US8303819B2 (en) Separation material
EP0488095B1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
US5418061A (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JPWO2002009857A1 (en) Modified hollow fiber membrane
CA2095423A1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
CN1177620C (en) Leukocyte-removing filter material
WO1992003215A1 (en) Hydrophilic semipermeable membranes based on copolymers of acrylonitrile and hydroxyalkyl esters of (meth) acrylic acid
US5240615A (en) Composite membrane composed of microporous polyvinylidene difluoride membrane laminated to porous support and process for its preparation
CA2031599A1 (en) Separation method and separating agent
US5589072A (en) Trace capture in biological fluids
JP5391520B2 (en) Method for producing modified substrate
EP1518870B1 (en) Separating material
JP6291970B2 (en) Protein adsorbing material, method for producing the same, blood purifier
JPH01242105A (en) Material for removing endotoxin
JPH0311787B2 (en)
CA2045186A1 (en) Blood compatible composite material
EP0222146B1 (en) Selective adsorbent for binding immunocouplers
JPH0260660A (en) Adsorbent for treating body fluid
JP3933300B2 (en) Polysulfone selective separation membrane
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JPH0135681B2 (en)
JP2006124714A (en) Contamination resistant material and contamination resistant semipermeable membrane