JPH01238081A - Wavelength stabilized laser oscillator - Google Patents

Wavelength stabilized laser oscillator

Info

Publication number
JPH01238081A
JPH01238081A JP6337788A JP6337788A JPH01238081A JP H01238081 A JPH01238081 A JP H01238081A JP 6337788 A JP6337788 A JP 6337788A JP 6337788 A JP6337788 A JP 6337788A JP H01238081 A JPH01238081 A JP H01238081A
Authority
JP
Japan
Prior art keywords
laser
wavelength
mirror
interferometer
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6337788A
Other languages
Japanese (ja)
Inventor
Chuichi Miyazaki
忠一 宮崎
Toshio Akatsu
赤津 利雄
Sadao Mori
貞雄 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6337788A priority Critical patent/JPH01238081A/en
Publication of JPH01238081A publication Critical patent/JPH01238081A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation

Abstract

PURPOSE:To achieve the stabilization of wavelengths and the correction of a refractive index simultaneously, by arranging a laser interferometer system so that the length of the dead path does not vary, controlling the oscillation wavelength of a laser oscillator in such a way that the wavelength of the laser is always constant. CONSTITUTION:A quarter wavelength plate 14 and a mirror 15 are bonded to one side of a polarizing beam splitter 4 and further, another quarter wavelength plate 16 is bonded to the other side as well. A mirror 6 is disposed so that the mirror faces the bonded face of the foregoing wavelength 16. For example, the mirror is connected to an interferometer 4 by a supporting member 5 consisting of materials such as a super unvar and the like having a smaller linear expansion coefficient, and the distance between the mirror 6 and the interferometer 4 is almost invariable. When oscillation wavelengths of a laser oscillator 1 are controlled by controlling voltages impressed to a heater 3 with a laser wavelength control device 12 so that an output of a displacement measurement device 11 does not vary, the optical path between the interferometer 4 and the mirror 6 is kept at a constant wave number. Thus, the laser wavelength is corrected and stabilized in the environment on the optical path.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ測長器に係り、特に簡易にかつ高精度に
レーザ波長の安定化及び補正が行える発振器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser length measuring device, and particularly to an oscillator that can easily and accurately stabilize and correct a laser wavelength.

〔従来の技術〕[Conventional technology]

従来、レーザ発振器自体の発振波長の安定化と、レーザ
干渉系のデッドパス上における波長の屈折率補正はそれ
ぞれ独立のものとして別々に行われていた。
Conventionally, stabilization of the oscillation wavelength of the laser oscillator itself and correction of the refractive index of the wavelength on the dead path of the laser interference system have been performed independently and separately.

例えば、レーザ発振器の波長安定化については、その技
術の概要を「ガスレーザ、固体レーザ(検問;0pln
s E、 p148〜156. ’ 84.6) Jに
示すが、その−例を第2図を用いて説明する。
For example, regarding wavelength stabilization of laser oscillators, an overview of the technology can be found in "Gas lasers, solid-state lasers (inquiry; 0pln
sE, p148-156. '84.6) An example of this will be explained using FIG. 2.

第2図は一般的な波長安定化レーザの一例であり、レー
ザ発振器1の内部を示したものである。
FIG. 2 is an example of a general wavelength stabilized laser, and shows the inside of the laser oscillator 1.

レーザ共振器2より発振すルレーザ光の波長は、その共
振器長を変化させると制御できるので、この例の場合に
はレーザ共振器2のまわりに巻いたヒータによって温度
制御し、熱膨張で共振器長を変えて発振波長を制御する
構成である。この場合にはレーザ光出力からビームスプ
リッタ24によつてその一部を取り出し、誤差信号検出
器において何らかの形の誤差信号を検出し、レーザ波長
制御装置12においてヒータ3の印加電圧にフィードバ
ックすることにより波長を安定化するものである。
The wavelength of the laser light emitted from the laser resonator 2 can be controlled by changing the length of the resonator, so in this example, the temperature is controlled by a heater wrapped around the laser resonator 2, causing resonance due to thermal expansion. This configuration controls the oscillation wavelength by changing the length of the device. In this case, a part of the laser light output is taken out by the beam splitter 24, an error signal detector detects some kind of error signal, and the laser wavelength control device 12 feeds back the error signal to the voltage applied to the heater 3. This stabilizes the wavelength.

また、レーザ干渉系のバッドパス上における波長が、空
気の屈折率変化によって変化するのを補正する技術とし
ては、例えば測定用レーザービームの近傍に全く独立し
た補正用ビームを発生するようにし、補正用ビームは不
変の長さを測定する構成とすることでデッドパス上の空
気の屈折率変化をモニタし、その結果を用いて測定用ビ
ームによる変化の測定結果を補正することが考えられる
In addition, as a technique for correcting the change in the wavelength on the bad path of a laser interference system due to changes in the refractive index of air, for example, a completely independent correction beam is generated near the measurement laser beam, and the correction beam is It is conceivable to monitor the refractive index change of the air on the dead path by configuring the beam to measure an unchanging length, and use the result to correct the measurement result of the change due to the measurement beam.

このようにすると、空気の屈折率変化に対してその変化
が補正された正確な変位の測定結果を得ることが可能と
なる。
In this way, it is possible to obtain accurate displacement measurement results in which changes in the refractive index of air are corrected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、いったん波長を安定化したレーザ発振
器を使用して干渉計を構成したものの、結局は干渉系の
デッドパスの部分において、空気の屈折率の変化によっ
てレーザの波長が乱れてしまい、再度その結果を何らか
の方法でモニタして補正するという二段階の安定化及び
補正をしなければ結果的に高い測定精度が得られなかっ
た。
In the above conventional technology, an interferometer is constructed using a laser oscillator whose wavelength has been stabilized, but in the end, the laser wavelength is disturbed due to changes in the refractive index of air in the dead path part of the interference system, and the wavelength of the laser is disturbed again. As a result, high measurement accuracy could not be obtained unless two steps of stabilization and correction were performed, in which the results were monitored and corrected in some way.

本発明の目的は、干渉系のデッドパス上の波長の乱れを
直接検出し、その結果により波長の安定化と屈折率補正
を同時に達成することにある。
An object of the present invention is to directly detect wavelength disturbances on the dead path of an interference system, and to simultaneously achieve wavelength stabilization and refractive index correction based on the results.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、レーザ干渉系のデッドパスの長さが変化し
ないように構成し、この部分におけるレーザの波長が常
に一定となるようにレーザ発振器の発振波長を制御する
ことにより、達成される。
The above object is achieved by configuring the laser interference system so that the length of the dead path does not change and controlling the oscillation wavelength of the laser oscillator so that the wavelength of the laser in this portion is always constant.

〔作用〕[Effect]

レーザ干渉系のデッドパスが、物理的には長さが変化し
ないようにした時に、その干渉系からの干渉光は本来そ
の強度が変化しないはずであるが、レーザ発振器の発振
波長が変化とたり、デッドパス上の空気の屈折率が変化
してデッドパス上のレーザ波長が変化するとデッドパス
の反射光の位相が変化して結果的に干渉光8の強度が変
化するのでこの変化を調泥することによりデッドパス上
の波長の変動が検出できる。
When the length of the dead path of a laser interference system does not change physically, the intensity of the interference light from the interference system should not change, but if the oscillation wavelength of the laser oscillator changes, When the refractive index of the air on the dead path changes and the laser wavelength on the dead path changes, the phase of the reflected light from the dead path changes, and as a result, the intensity of the interference light 8 changes. By adjusting this change, the dead path can be adjusted. Fluctuations in the wavelength above can be detected.

変位測定装置11は干渉光8の強度を取り込み。The displacement measuring device 11 takes in the intensity of the interference light 8.

干渉縞の間を正確に補間して、デッドパス上のレーザ波
長の変化を高い感度で検出するための手段であり、ここ
で検出した波長の変化分に応じた信号をレーザ波長制御
装置12からレーザ共振器2のヒータ3にフィードバッ
クしてレーザの発振波長を制御するので、デッドパス上
の環境に対してこの部分のレーザ波長が安定化・規格化
できる。
This is a means to accurately interpolate between interference fringes and detect changes in laser wavelength on a dead path with high sensitivity, and a signal corresponding to the detected wavelength change is sent from the laser wavelength control device 12 to the laser. Since the oscillation wavelength of the laser is controlled by feeding back to the heater 3 of the resonator 2, the laser wavelength in this part can be stabilized and standardized with respect to the environment on the dead path.

【実施例〕【Example〕

以下、本発明の一実施例を第1図ににより説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、1は例えばHe−Nθレーザなどのガ
スレーザで、紙面に対して45″方向に振動面を持つ直
線偏光を発振する。その内部構造はレーザ共振器2のま
わりにヒータ3を巻きつけてあり、ヒータ3への印加電
圧をrA整することによりレーザ共振器2の温度制御が
可能である。−般にレーザの発振波長はレーザ共振器の
長さによって変化するので、このように共振器の熱膨張
を利用して発振波長を制御することが一般に知られてお
り1本実施例も発振波長制御型レーザである。
In Fig. 1, 1 is a gas laser such as a He-Nθ laser, which oscillates linearly polarized light with a vibration plane in the 45'' direction relative to the plane of the drawing. The temperature of the laser resonator 2 can be controlled by adjusting the voltage applied to the heater 3 to rA.In general, the oscillation wavelength of a laser changes depending on the length of the laser resonator, so it is possible to control the temperature of the laser resonator 2 by adjusting the voltage applied to the heater 3. It is generally known that the oscillation wavelength is controlled by utilizing the thermal expansion of a resonator, and this embodiment is also an oscillation wavelength control type laser.

また4は偏光ビームスプリッタであり、その−面には−
波長板14とミラー15が接着してあり。
In addition, 4 is a polarizing beam splitter, and its - plane has -
Wave plate 14 and mirror 15 are glued together.

さらに別の面にも一波長板16が接着しである。A single wavelength plate 16 is also bonded to another surface.

一波長板16の接着面に対向して、ある距離だけ離れた
位置にミラー6が配置され、例えば、スーパーアンバー
などの線膨張係数の小さい材質からなる支持部材5によ
って干渉計4と連結されており、ミラー6と干渉計4と
の距離はほとんど不変である。17は偏光板であり、9
は干渉光8の強度を電気信号(干渉信号10)に光電変
換する光検出器、11は干渉信号10変化から変化量を
測定する変位測定装置、12は変位測定装置11からの
出力と目標値との偏差に応じてヒータ3へ印加電圧を調
整してレーザ発振器1完振波長を制御するレーザ波長制
御装置である。
A mirror 6 is disposed at a certain distance away from the adhesive surface of the single-wavelength plate 16, and is connected to the interferometer 4 by a support member 5 made of a material with a small coefficient of linear expansion, such as super amber. Therefore, the distance between the mirror 6 and the interferometer 4 remains almost unchanged. 17 is a polarizing plate; 9
is a photodetector that photoelectrically converts the intensity of the interference light 8 into an electric signal (interference signal 10); 11 is a displacement measuring device that measures the amount of change from the change in the interference signal 10; 12 is the output from the displacement measuring device 11 and the target value This is a laser wavelength control device that controls the complete wavelength of the laser oscillator 1 by adjusting the voltage applied to the heater 3 according to the deviation from the laser oscillator 1.

次に第1図における動作を順に追って説明する。Next, the operations in FIG. 1 will be explained in order.

まず、レーザ発振器1で発振する紙面に45゜方向に振
動面を持つ直線偏光は偏光ビームスプリッタ4に入射し
、紙面に平行な偏光成分と直重な偏光成分に2分割され
る。偏光ビームスプリッタ4で反射された紙に垂直な振
動面をもつ直線偏光は−波長板14を経てミラー15で
反射され、再び−波長板14を経て偏光ビームスプリッ
タ4に戻るが、−波長板14を1往復してきたこの光は
振動面が90’回転しているので今度は偏光ビームスプ
リンタ4を透過して偏光板17に至る。−方、はじめに
偏光ビームスプリッタ4を透過した紙面に平行な振動面
をもつ直線偏光は、−波長板16を経てミラー6に至り
、ここで反射されて再び二波長板16経て偏光ビームス
プリッタ4に戻るが、やはり光と同様に振動面が90’
回転しているので今度は偏光ビームスプリッタ4で反射
されて偏光板17に至る。偏品板入射時には重なり合っ
ているこれら両光は偏光面が互いに直交しているので干
渉しないが1紙面に対して45″方向に透過軸をもつ偏
光板17′において両光の共通成分同志が干渉し、両光
の光路長差に応じて干渉縞が発生する。この干渉光8は
光検出器9において光電変換され、その出力である干渉
信号10を変位測定装置11に取り込んで、先に2分割
された両ビームの光路長差の変化分を測定する。
First, the linearly polarized light emitted by the laser oscillator 1 and having a vibration plane in the direction of 45 degrees to the plane of the paper enters the polarization beam splitter 4, where it is split into two polarization components: a polarization component parallel to the plane of the paper and a polarization component perpendicular to the plane of the paper. The linearly polarized light having a plane of vibration perpendicular to the paper reflected by the polarizing beam splitter 4 passes through the wave plate 14, is reflected by the mirror 15, and returns to the polarizing beam splitter 4 through the wave plate 14 again, but the wave plate 14 Since the vibration plane of this light that has made one round trip has rotated by 90', it now passes through the polarizing beam splinter 4 and reaches the polarizing plate 17. - On the other hand, linearly polarized light with a vibration plane parallel to the paper plane that first passes through the polarizing beam splitter 4 passes through the - wavelength plate 16 and reaches the mirror 6, where it is reflected and returns to the polarizing beam splitter 4 via the two-wavelength plate 16. Returning, the plane of vibration is still 90' as with light.
Since it is rotating, it is now reflected by the polarizing beam splitter 4 and reaches the polarizing plate 17. These two lights, which overlap when they enter the polarized plate, do not interfere because their polarization planes are perpendicular to each other, but the common components of both lights interfere with each other in the polarizing plate 17', which has a transmission axis in the 45'' direction with respect to one paper plane. Then, interference fringes are generated according to the difference in optical path length between the two lights.This interference light 8 is photoelectrically converted in a photodetector 9, and the output interference signal 10 is taken into a displacement measuring device 11 and first The change in the optical path length difference between the two split beams is measured.

ここで、はじめに説明したようにミラー15は偏光ビー
ムスプリッタ4に接着しであるし、もう一方のミラー6
もやはり支持部材5によって偏光ビームスプリッタ4に
連結されているので物理的にはこれらの相対的位置関係
は変化しないはずであり、従って物理的な光路長差の変
化はないので変位測定装置11の出力は全く変化はない
はずである。
Here, as explained at the beginning, the mirror 15 is glued to the polarizing beam splitter 4, and the other mirror 6 is glued to the polarizing beam splitter 4.
Since it is also connected to the polarizing beam splitter 4 by the support member 5, the relative positional relationship between them should not change physically, and therefore there is no physical change in the optical path length difference, so the displacement measuring device 11 There should be no change in output.

但し、次にあげる2つの要因により干渉計4とミラー6
との間のレーザ光路上にβけるレーザの波長が変化し、
位相差が変化するので変位測定装置11の出力も変化す
る。
However, due to the following two factors, the interferometer 4 and mirror 6
The wavelength of the laser changes by β on the laser optical path between
Since the phase difference changes, the output of the displacement measuring device 11 also changes.

まず第1の要因はレーザ共振器2の熱変化などの影響に
より共振器長が変化することによって発振波長が変動す
る。
The first factor is that the oscillation wavelength changes as the resonator length changes due to thermal changes in the laser resonator 2.

そして第2にレーザ発振器1を出たレーザ光の波長はさ
らにその伝播する光路上の空気の屈折率分布及びその変
化に応じて微妙に分布し、さらに変化する。
Second, the wavelength of the laser beam emitted from the laser oscillator 1 is further subtly distributed and further changed in accordance with the refractive index distribution of the air on the optical path through which it propagates and its changes.

本実施例の構成においては、干渉させる2つの光の共通
光路上では両光ともそれぞれ同様にこれらの要因の影響
を受けるので問題ないが、非共通光路上である干渉計4
とミラー6との間の光路上(このような光路をデッドパ
スとよぶ)でこれらの要因により波長が変化すると、両
光の間の位相が変化するので変位測定装置11の出力も
変化する。これは、物理には変化していない測定対象物
の変位測定結果が、次に述べた2つの誤差要因のために
本来変化マないはずであるのに変化してしまい、本実施
例のような構成のレーザ変位計においては測定誤差とな
ることを示している。
In the configuration of this embodiment, there is no problem on the common optical path of the two lights to be interfered because both lights are affected by these factors in the same way, but when the interferometer 4 on the non-common optical path
If the wavelength changes due to these factors on the optical path between the mirror 6 and the mirror 6 (such an optical path is called a dead path), the phase between the two lights will change, and the output of the displacement measuring device 11 will also change. This is because the displacement measurement result of the measurement target, which does not physically change, changes even though it should not change due to the following two error factors, and the result is as shown in this example. This shows that there is a measurement error in the laser displacement meter with this configuration.

従来からこれら2つの要因はレーザ変位計において問題
となっており、従来例のところで述べたようにそれぞれ
独立に波長の安定化や補正が行なわれていたが、本質的
には波長が変動するという同一の現象が発生するわけで
あるから、本実施例ではこれら2つの要因によって総合
的に発生する。
These two factors have traditionally been a problem in laser displacement meters, and as mentioned in the conventional example, the wavelength was stabilized and corrected independently, but essentially the wavelength fluctuates. Since the same phenomenon occurs, in this embodiment, it occurs comprehensively due to these two factors.

この現象をその最終的な結果、つまり干渉縞をモニタす
ることにより干渉系の測定用ビーム上におけるレーザの
波長を安定化・規格化しようとするものである。
The goal is to stabilize and standardize the wavelength of the laser on the measurement beam of the interference system by monitoring the final result of this phenomenon, that is, the interference fringes.

実際には、干渉光8の明るさが変化しないように、つま
り変位測定装置11の出力が変化しないようにレーザ波
長制御装置12によりヒータ3への印加電圧を制御する
ことによりレーザ発振器1の発振波長を制御すれば、干
渉計4とミラー6との間に光路おいては常に一定の波数
が保たれるのでこの光路上の環境おいてレーザ波長が校
正されかつ安定化される。
Actually, the laser oscillator 1 is oscillated by controlling the voltage applied to the heater 3 by the laser wavelength control device 12 so that the brightness of the interference light 8 does not change, that is, the output of the displacement measuring device 11 does not change. If the wavelength is controlled, a constant wave number is always maintained in the optical path between the interferometer 4 and the mirror 6, so the laser wavelength is calibrated and stabilized in the environment on this optical path.

従ってビームスプリッタ18によりレーザ光を2分割し
、ミラー19を経て干渉計20へ導き。
Therefore, the laser beam is split into two by the beam splitter 18 and guided to the interferometer 20 via the mirror 19.

測定対象物21の変位量Xを測定するような干渉系を構
成した時、両干渉計のデッドパスが近く、両光路上の空
気の屈折率分布が同様であれば、この時のレーザ波長は
空気の屈折率変化についても補正されていることになり
、干渉計20からの干渉縞を光検出器22で受け、変位
測定装置23で処理することにより、デッドパスの空気
の屈折率変化に対して安定かつ正確な変位Xを測定する
ことができる。
When an interference system is configured to measure the displacement X of the measurement object 21, if the dead paths of both interferometers are close and the refractive index distribution of the air on both optical paths is the same, the laser wavelength at this time will be the same as that of the air. By receiving the interference fringes from the interferometer 20 with the photodetector 22 and processing them with the displacement measuring device 23, it is stabilized against the refractive index change of the air in the dead path. Moreover, accurate displacement X can be measured.

本実施例ではガスレーザの波長安定化法について述べた
が、波長の制御方法を考慮すれば半導体レーザなどの安
定化も可能である。
In this embodiment, a method for stabilizing the wavelength of a gas laser has been described, but it is also possible to stabilize a semiconductor laser or the like if the wavelength control method is considered.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、レーザ波長の環境補正と安定化が同時
に行えるので、装置が簡単化し、使い勝手が向上する。
According to the present invention, environmental correction and stabilization of the laser wavelength can be performed at the same time, thereby simplifying the apparatus and improving usability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は従来
技術のレーザ波長の安定化法を示す構成図である。 1・・・レーザ発振器、4・・・偏光ビームスプリッタ
、5・・・支持部材、6・・・ミラー、11変位測定装
置、12・・・レーザ波長制御装置。 第1図 1−L−丈磨疎豚 4−−−イ隔光ヒ”4スフ°リゾタ 11−一一召2イ去58ノリ貸こ1艷話412−  し
ず房制、1#芽置 第2図 1−−−L−丈パ発キ艮器 Z−L−丈”j!−:撮像 Z5−綽:i4鍔締武器
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a prior art laser wavelength stabilization method. DESCRIPTION OF SYMBOLS 1... Laser oscillator, 4... Polarizing beam splitter, 5... Support member, 6... Mirror, 11... Displacement measurement device, 12... Laser wavelength control device. Figure 1 1-L-Joma Sobuta 4--I Separate Light Hi" 4 Sufu° Rizota 11-11-Sho 2-I 58 Nori Rent 1 Boat Story 412- Shizufusei, 1#Meki Fig. 2 1---L-length pa starting key device Z-L-length"j! -: Imaging Z5-A: i4 Tsubajime weapon

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ共振器の温度や注入電流などを変化させるこ
とによりその発振波長を制御する手段を有するレーザ発
振器において、これより発生するレーザビーム上にビー
ム分割手段を設けてビームを参照光と信号光とに2分割
して信号光路を空気又は真空中に設け、かつ信号光の光
路長が変化しないようにビーム分割手段と信号光を反射
するミラーとを支持部材で保持した干渉系を構成し、こ
の干渉系において発生する干渉光の強度の変化を検出す
る手段を設け、この干渉光の強度が変化しないように前
記発振波長制御手段に信号をフィードバックしてレーザ
波長を安定化することを特徴とする波長安定化レーザ発
振器。
1. In a laser oscillator that has means for controlling the oscillation wavelength by changing the temperature of the laser resonator, the injection current, etc., a beam splitting means is provided on the laser beam generated by the laser oscillator to separate the beam into a reference light and a signal light. constitute an interference system in which the beam splitting means and the mirror that reflects the signal light are held by a supporting member so that the optical path length of the signal light does not change; A means for detecting a change in the intensity of the interference light generated in the interference system is provided, and a signal is fed back to the oscillation wavelength control means to stabilize the laser wavelength so that the intensity of the interference light does not change. wavelength stabilized laser oscillator.
JP6337788A 1988-03-18 1988-03-18 Wavelength stabilized laser oscillator Pending JPH01238081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6337788A JPH01238081A (en) 1988-03-18 1988-03-18 Wavelength stabilized laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6337788A JPH01238081A (en) 1988-03-18 1988-03-18 Wavelength stabilized laser oscillator

Publications (1)

Publication Number Publication Date
JPH01238081A true JPH01238081A (en) 1989-09-22

Family

ID=13227545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6337788A Pending JPH01238081A (en) 1988-03-18 1988-03-18 Wavelength stabilized laser oscillator

Country Status (1)

Country Link
JP (1) JPH01238081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943889B2 (en) * 2002-07-29 2005-09-13 Jds Uniphase Corporation Athermal interferometric device
EP2180301A3 (en) * 2008-10-24 2012-08-22 Canon Kabushiki Kaisha Wavelength shift measuring apparatus, optical source apparatus, interference measuring apparatus, exposure apparatus, and device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943889B2 (en) * 2002-07-29 2005-09-13 Jds Uniphase Corporation Athermal interferometric device
EP2180301A3 (en) * 2008-10-24 2012-08-22 Canon Kabushiki Kaisha Wavelength shift measuring apparatus, optical source apparatus, interference measuring apparatus, exposure apparatus, and device manufacturing method
US8416387B2 (en) 2008-10-24 2013-04-09 Canon Kabushiki Kaisha Wavelength shift measuring apparatus, optical source apparatus, interference measuring apparatus, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
US5185643A (en) Arrangement for operating a laser diode
EP0646767B1 (en) Interferometric distance measuring apparatus
JP5226078B2 (en) Interferometer device and method of operating the same
JP2810956B2 (en) Absolute interference measurement method
US5493395A (en) Wavelength variation measuring apparatus
Topcu et al. Heterodyne interferometric technique for displacement control at the nanometric scale
US5668826A (en) Electro-optical device comprising a controlled laser diode
US5177566A (en) Interferometer with environment sensitive static etalon
US6181428B1 (en) Closed loop fiber optic gyro with shupe effect compensation
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
JPH01238081A (en) Wavelength stabilized laser oscillator
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
JPH09166414A (en) Light measuring device
JPH0843015A (en) Interference length measuring system
US5396327A (en) Fiber-optic gyroscope having angular velocity correction
JP3342055B2 (en) Heterodyne interferometer
JP3516875B2 (en) Interferometer
JP3344637B2 (en) Optical interference type position measuring device
JPH01219583A (en) Distance measuring instrument
US8290007B2 (en) Apparatus and method for stabilizing frequency of laser
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JPH01298782A (en) Simultaneous stabilization of oscillation wavelengths of two semiconductor lasers, and device therefor
KR200211355Y1 (en) Stage interferometer
JPH1096601A (en) Light wave interference measuring device
JPH0694411A (en) Two-wavelength displacement interferometer