JPH01232252A - Oxygen sensor element - Google Patents

Oxygen sensor element

Info

Publication number
JPH01232252A
JPH01232252A JP63056338A JP5633888A JPH01232252A JP H01232252 A JPH01232252 A JP H01232252A JP 63056338 A JP63056338 A JP 63056338A JP 5633888 A JP5633888 A JP 5633888A JP H01232252 A JPH01232252 A JP H01232252A
Authority
JP
Japan
Prior art keywords
protective layer
electrode
metal oxide
oxygen sensor
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63056338A
Other languages
Japanese (ja)
Inventor
Haruhisa Shiomi
塩見 治久
Toshihiko Aoyama
青山 俊彦
Yasuhiro Ujita
氏田 泰洋
Akio Ebisawa
海老沢 秋生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63056338A priority Critical patent/JPH01232252A/en
Publication of JPH01232252A publication Critical patent/JPH01232252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To improve durability and to stably maintain exact air-fuel ratio control over a long period of time by constituting the sensor in such a manner that the metal oxide powder forming the 1st protective layer of a measuring electrode has 5-100mum average grain size and the average grain size of the metal oxide powder forming the 2nd protective layer is smaller than the average grain size of the 1st protective layer. CONSTITUTION:The oxygen sensor element is provided with a reference electrode 2 on one face side of a solid electrolyte 3 and the measuring electrode 4 on the other face side and brings the electrode 4 into contact with a gas to be measured. The electrode 4 is coated with the 1st protective layer 9 and the 2nd protective layer 10 formed by calcining the metal oxide powder which is chemically stable to the gas to be measured. This 1st protective layer 9 is formed by calcining the metal oxide powder having 5-100mum average powder grain size. The 2nd protective layer 10 provided on the outside of the 1st protective layer 9 is formed by calcining the metal oxide which is smaller in the average powder grain size than the material of the 1st protective layer. The stresses generated in the electrodes are dispersed first by the 1st protective layer 9 and further by the 2nd protective layer 10, by which the exfoliation of the electrodes is prevented as far as possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種燃焼機器の酸素濃度を検知するための酸素
センサ素子、特に内燃機関からの排ガスを浄化するため
に利用される空燃比制御用の酸素センサ素子及びその製
法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxygen sensor element for detecting oxygen concentration in various combustion equipment, particularly for air-fuel ratio control used to purify exhaust gas from an internal combustion engine. The present invention relates to an oxygen sensor element and a manufacturing method thereof.

[従来技術及び課題] 空燃比制御用酸素センサ素子は、酸素イオン伝導性の固
体電解質体とその内外面に備えられる一対の電極(基準
電極、測定電極)とからなり、瀾定電極を被測定ガス(
排ガス)と接触させるようにしたものが一般的である。
[Prior art and problems] An oxygen sensor element for air-fuel ratio control consists of an oxygen ion-conducting solid electrolyte body and a pair of electrodes (reference electrode, measurement electrode) provided on the inner and outer surfaces of the solid electrolyte body. gas(
The most common type is one that is brought into contact with (exhaust gas).

しかし、この種のセンサ素子にあっては、使用時におい
て測定電極が高温の排ガスに晒されてIII離してしま
うので、その剥離を防止して耐久性を向上させるために
種々の研究、提案がなされている。
However, when using this type of sensor element, the measurement electrode is exposed to high temperature exhaust gas and separates, so various studies and proposals have been made to prevent this separation and improve durability. being done.

例えば、測定電極自体の厚みを部分的に大としてなる酸
素センサ素子が提案されている(特開昭54− 970
89)。しかし、この種の酸素センサ素子にあっては、
測定電極がメツキ、蒸着によって形成される2〜3μm
以下の厚みにおいては有効であるが、ペースト印刷のよ
うに5μm以上の厚膜となった場合には、もはやその電
極剥離を防止し得ない。
For example, an oxygen sensor element in which the thickness of the measuring electrode itself is partially increased has been proposed (Japanese Patent Laid-Open No. 54-970).
89). However, in this type of oxygen sensor element,
The measurement electrode is formed by plating or vapor deposition, with a thickness of 2 to 3 μm.
Although it is effective when the thickness is below, it is no longer possible to prevent the electrode from peeling off when the film becomes thicker than 5 μm as in the case of paste printing.

又、固体電解質体と測定電極との間に多孔質膜ないしは
多孔質層を介在させてなる酸素センサ素子も提案されて
いる(特開昭53− 12392.同53−29187
)。しかし、この種の酸素センサ素子にあっては、固体
電解質体の機械的強度を劣化させるおそれがある。又、
多孔質膜(層)の気孔内に測定電極が一部存在すること
となるが、使用時において電極劣化即ち未燃成分の吸着
又は反応に基づく電極の体積膨張によって多孔質膜にク
ラック等が発生し易い。
In addition, an oxygen sensor element in which a porous membrane or a porous layer is interposed between a solid electrolyte body and a measuring electrode has been proposed (Japanese Patent Application Laid-open No. 53-12392 and No. 53-29187).
). However, in this type of oxygen sensor element, the mechanical strength of the solid electrolyte body may be deteriorated. or,
A portion of the measurement electrode exists within the pores of the porous membrane (layer), but during use, cracks may occur in the porous membrane due to electrode deterioration, i.e., volumetric expansion of the electrode due to adsorption or reaction of unburned components. Easy to do.

本発明はかかる課題を解決すること、即ち高温かつ未燃
成分(CO等)の還元雰囲気においても/111[定電
極の剥離発生を防止して十分に保護でき。
The present invention aims to solve this problem, that is, even in a high temperature and reducing atmosphere of unburned components (CO, etc.), the /111 constant electrode can be sufficiently protected from peeling.

耐久性に優れ、正確な空燃比制御を長期間安定に維持で
きる酸素センサ素子を開発することを目的とする。
The purpose of this project is to develop an oxygen sensor element that has excellent durability and can maintain accurate air-fuel ratio control stably for a long period of time.

[課題解決の手段] 本発明者はこうした見地に鑑み鋭意研究を重ねた結果、
単一層の保護層で被覆した場合には、被測定ガス(排ガ
ス)に晒されて測定電極が劣化消耗していく過程におい
て電極自体の体積膨張及び微細化によって保:!に層が
押し上げられてクラック等を発生し、これを放置してお
くと電極劣化が加速度的に進行することを見い出した。
[Means for solving the problem] As a result of intensive research in view of these points of view, the present inventor has found that
When covered with a single protective layer, the electrode itself is protected by volumetric expansion and miniaturization during the process of deterioration and wear and tear due to exposure to the gas to be measured (exhaust gas). It was discovered that the layer is pushed up and cracks occur, and if this is left untreated, electrode deterioration progresses at an accelerated rate.

従って。Therefore.

史に検討した結果1粒径の異なる複数の層をもって電極
を保護したところ極めて優れた結果を見出し1本発明を
完成するに至ったものであり1本発明は上述の課題を下
記手段によって解決する。
As a result of historical research, we found extremely excellent results when we protected the electrode with multiple layers of different particle sizes, which led us to complete the present invention.The present invention solves the above-mentioned problems by the following means. .

(1)固体電解質体の一面側に基?$電極、他面側に測
定電極を備え、測定電極が被測定ガスに接触される酸素
センサ素子において。
(1) Based on one side of the solid electrolyte body? In an oxygen sensor element comprising a $ electrode and a measuring electrode on the other side, the measuring electrode is brought into contact with a gas to be measured.

測定電極が、被測定ガスに対して化学的に安定な金属酸
化物粉末を焼成してなる複数の保護層で被覆され、段数
の保護層が71111定電極側から第1゜第2保護層か
らなり。
The measurement electrode is coated with a plurality of protective layers formed by baking metal oxide powder that is chemically stable against the gas to be measured, and the number of protective layers is 71111 from the constant electrode side to the first protective layer, and from the second protective layer to the constant electrode side. Become.

第1保護層の金属酸化物粉末が平均粒径5〜100μm
であり、かつ、第2保護層の金属酸化物粉末の平均粒径
が第1保護層のものよりも小である。
The metal oxide powder of the first protective layer has an average particle size of 5 to 100 μm.
and the average particle size of the metal oxide powder in the second protective layer is smaller than that in the first protective layer.

酸素センサ素子。Oxygen sensor element.

(2)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、測定電極が被測定ガスに接触される酸素セ
ンサ索子において。
(2) An oxygen sensor probe that includes a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side, and the measurement electrode is brought into contact with a gas to be measured.

測定電極が、被測定ガスに対して化学的に安定な金属酸
化物粉末を焼成してなる複数の保護層で被覆され、複数
の保護層が測定電極側から基保護層及び第1,2保護層
からなり。
The measurement electrode is coated with a plurality of protective layers formed by baking metal oxide powder that is chemically stable against the gas to be measured, and the plurality of protective layers are arranged from the measurement electrode side to the base protective layer and the first and second protective layers. Consists of layers.

基保護層と第2保護層との中間に位置する第1保護層の
金属酸化物粉末が平均粒径5〜100μlであり、かつ
、基保護層及び第2保護層の金属酸化物粉末の平均粒径
が第1保護層のものよりも小である。
The metal oxide powder of the first protective layer located between the base protective layer and the second protective layer has an average particle size of 5 to 100 μl, and the average of the metal oxide powders of the base protective layer and the second protective layer The particle size is smaller than that of the first protective layer.

酸素センサ素子。Oxygen sensor element.

[好適な実施態様及び作用] 素子形状ないしは固体電解質体形状は先端が閉塞され後
端が開口したものである限り2袋状、板状又は管状等種
々の形状でよく、あるいは絶縁体基材に固体電解質体な
どの素子の各要素を結合させて前記と同様の形状になる
ものでもよい。固体電解質材料としては例えばZrO3
に安定化剤としてYO,CaO等を添加したものを用い
るとよい。基準電極及び測定電極(層状)はともに多孔
質とされ、Pt又は2%程度以下のRhを含aするPt
等の貴金属を用いるとよい。
[Preferred embodiments and operations] The shape of the element or the solid electrolyte body may be various shapes such as a two-bag shape, a plate shape, or a tube shape, as long as the front end is closed and the rear end is open. Each element of the element, such as a solid electrolyte body, may be combined to form the same shape as described above. Examples of solid electrolyte materials include ZrO3
It is preferable to use a material to which YO, CaO, etc. are added as a stabilizer. The reference electrode and the measurement electrode (layered) are both porous and made of Pt or Pt containing about 2% or less Rh.
It is recommended to use precious metals such as

測定電極は被測定ガスに対して化学的に安定な金属酸化
物粉末を焼成してなる複数の保護層で彼覆されなければ
ならない。測定電極が被測定ガスに直接晒されるのを防
止し、電極の剥離を確実に防止して耐久性を向上させる
ためである。尚2本発明にあっては、二層構造(前記(
1)の構成)又は三層構造(前記(2)の構成)の保護
層を対象とするが、適宜それ以上の層を付加してもよく
、又各層間に他の要素例えばヒータが介在することを排
除するものではない。
The measuring electrode must be covered with a plurality of protective layers made of fired metal oxide powder that is chemically stable with respect to the gas to be measured. This is to prevent the measurement electrode from being directly exposed to the gas to be measured, reliably prevent peeling of the electrode, and improve durability. 2 In the present invention, a two-layer structure (the above ((
The target is a protective layer with a structure (1)) or a three-layer structure (structure (2) above), but more layers may be added as appropriate, and other elements such as a heater may be interposed between each layer. This does not exclude that.

複数の保護層について測定電極側から少なくとも第1.
第2保護層が積層配置されなければならない。
Regarding the plurality of protective layers, at least the first one from the measuring electrode side.
A second protective layer must be deposited.

第1保護層は平均粉末粒径5〜100μmの材料を焼成
して形成しなければならない。焼成後において凹凸状態
を呈しこの凹凸部が楔機能を発揮して電極と保護層(第
1.第2保護層を含む)との付着力増大に寄与するから
である。好ましくは20〜70μmにするとよい。
The first protective layer must be formed by firing a material with an average powder particle size of 5 to 100 μm. This is because the uneven portion exhibits an uneven state after firing, and this uneven portion exhibits a wedge function and contributes to increasing the adhesion between the electrode and the protective layer (including the first and second protective layers). The thickness is preferably 20 to 70 μm.

第1保護層の外側には、第1保護層材料の平均粉末粒径
よりも小の材料をもって焼成してなる第2保護層が存在
しなければならない。使用時における電極劣化、即ち未
燃成分の付着等に基づく体積膨張による発生応力よりも
大なるトj着力をもって保護層を電極に結合させるため
である。即ち。
Outside the first protective layer there must be a second protective layer fired from a material having a smaller average powder particle size than the first protective layer material. This is to bond the protective layer to the electrode with a greater adhesive force than the stress generated by volumetric expansion due to electrode deterioration during use, ie, the adhesion of unburned components. That is.

電極の発生応力をまず第1保護層、そして更にこの第2
保護層によって分散し、電極の剥離を極力防止できる。
The stress generated in the electrode is first applied to the first protective layer, and then this second protective layer.
It is dispersed by the protective layer, and peeling of the electrode can be prevented as much as possible.

その平均粉末粒径は5〜[1Qu3.好ましくは5〜3
0μ■にするとよい。
The average powder particle size is 5 to [1 Qu3. Preferably 5-3
It is best to set it to 0 μ■.

前記(2)の構成においては、第1保護層の内側に基保
護層を存在させる。基保護層についても第1保護層材料
の平均粉末粒径より小としなければならない。第2保護
層に比して緻密質とすることにより、電極と保護層(第
1.2保護層)との結合力を高めるためである。0.5
〜5.好ましくは1.5〜2.5μmにするとよい。
In the configuration (2) above, the base protective layer is present inside the first protective layer. The base protective layer must also have a smaller average powder particle size than the first protective layer material. This is to increase the bonding force between the electrode and the protective layer (1.2 protective layer) by making it denser than the second protective layer. 0.5
~5. The thickness is preferably 1.5 to 2.5 μm.

各保護層は被測定ガスに対して熱的に安定な金属酸化物
を焼成してなるものであればよく、アルミナ、スピネル
、ジルコニア等又はこれらの混合物を焼成してなるセラ
ミックスにするとよい。各層材料の紐或は基本的には相
違させるとよい。記述の通り各粉末粒径を夫々特定の範
囲のものにする場合において、その制御が容易だからで
ある。
Each protective layer may be made of a fired metal oxide that is thermally stable with respect to the gas to be measured, and preferably a ceramic made of fired alumina, spinel, zirconia, or a mixture thereof. It is preferable that the material of each layer is basically different. This is because it is easy to control the particle size of each powder within a specific range as described above.

但し、その粒径制御が可能である限り、同質の材料を用
いてもよい。例えば、第1保護層としては仮焼アルミナ
、第2保護層としてはスピネル、又基保護層としてはア
ルミナが挙げられる。
However, materials of the same quality may be used as long as the particle size can be controlled. For example, the first protective layer may be calcined alumina, the second protective layer may be spinel, and the basic protective layer may be alumina.

上記各保護層の作用を有効に発揮しつつ、被測定ガスの
通過性及び応答性の劣化を防止するためには、各保護層
の厚みについては夫々第1保護層20〜150μm、第
2保護層40〜150μm、基保護層10〜30Mにす
るとよい。又、同様な見地で、気孔率については第1保
護層20〜60%、第2保護層5〜40%、基保護層は
第1保護層の20〜90%にするとよい。尚、各保護層
の少なくとも一種以上に、被測定ガス中の未燃成分(C
o等)の酸化又は還元反応を促進する触媒を適宜担持さ
せてもよい。
In order to effectively exert the function of each of the above-mentioned protective layers and to prevent deterioration of the permeability and response of the gas to be measured, the thickness of each protective layer should be 20 to 150 μm for the first protective layer and 20 to 150 μm for the second protective layer. It is preferable that the thickness of the layer is 40 to 150 μm and the base protective layer is 10 to 30 μm. Further, from the same viewpoint, the porosity of the first protective layer is preferably 20 to 60%, the second protective layer is 5 to 40%, and the base protective layer is 20 to 90% of the first protective layer. In addition, at least one type of each protective layer contains unburned components (C) in the gas to be measured.
A catalyst that promotes the oxidation or reduction reaction of (o, etc.) may be supported as appropriate.

酸素センサ素子の製造について云えば次の通りである。The manufacturing of the oxygen sensor element is as follows.

板状又は円管状素子の場合には積層印刷技術によって行
なうとよい。積層印刷技術とは。
In the case of plate-shaped or cylindrical elements, laminated printing techniques may be used. What is laminated printing technology?

酸素センサ索子の各構成要素を所定のグリーンシートに
積層して印刷し、この印刷グリーンシートを基材に被着
して焼成一体化する技術をいう。
This is a technique in which each component of an oxygen sensor cord is laminated and printed on a predetermined green sheet, the printed green sheet is attached to a base material, and the printed green sheet is baked and integrated.

但し、被測定ガスに直接晒される最外層については別途
溶射、特にプラズマ溶射によって形成してもよい。溶射
粉末同志の固着強度が強く、耐久性に優れるからである
。又1袋状素子の場合、各要素で段階的に被着形成する
方法によって行なうとよい。この場合、′7IS極の形
成は、電気メツキ、化学メツキ等の通常メツキ処理の他
1通常の気相析着法例えばスパッタリング、蒸着或いは
スクリーン印刷によって行なうとよい。保護層の形成と
しては、その材料の溶液又は粉末を刷毛塗布、浸漬、噴
霧等の後焼成する方法、又溶射が挙げられる。焼成は温
度1400〜1550℃にて行なうとよい。
However, the outermost layer directly exposed to the gas to be measured may be formed separately by thermal spraying, especially plasma spraying. This is because the adhesion strength between the thermal spray powders is strong and the durability is excellent. In the case of a single bag-shaped element, it is preferable to perform the stepwise deposition of each element. In this case, the '7IS electrode may be formed by a conventional plating process such as electroplating or chemical plating, or by a conventional vapor deposition method such as sputtering, vapor deposition, or screen printing. Formation of the protective layer includes methods of applying a solution or powder of the material by brushing, dipping, spraying, etc., followed by baking, and thermal spraying. Firing is preferably carried out at a temperature of 1400 to 1550°C.

常圧、加圧焼結、雰囲気加圧のいずれであってもよい。Any of normal pressure, pressure sintering, and atmospheric pressure may be used.

尚、保護層へ触媒を担持する場合、その担持は、貴金属
塩溶液中にて浸漬処理し、その後乾燥、焼成して行なう
とよく、又保護層材料及び貴金属成分を配合してなるペ
ースト状物を用いてもよい。
In addition, when supporting a catalyst on the protective layer, it is preferable to carry out a immersion treatment in a noble metal salt solution, followed by drying and baking. may also be used.

又、酸素センサ素子の製造は、各構成要素を段階的に被
着形成する方法の他、いわゆる積層印刷法によって行な
ってもよい。積層印刷技術とは。
Further, the oxygen sensor element may be manufactured by a so-called laminated printing method, in addition to a method in which each component is deposited and formed in stages. What is laminated printing technology?

酸素センサ素子の各構成要素を所定のグリーンシートに
積層して印刷し、この印刷グリーンシートを基材に’f
JjiHして焼成一体化する技術をいう(例えば特開昭
82−222159参照)。
Each component of the oxygen sensor element is laminated and printed on a predetermined green sheet, and this printed green sheet is used as a base material.
This refers to a technique of integrating firing and firing (see, for example, Japanese Patent Application Laid-Open No. 82-222159).

〔実施例〕〔Example〕

以下1本発明の実施例を図面に基づいて説明する。 An embodiment of the present invention will be described below based on the drawings.

第1〜3図は前記手段(2)の構成に係る一実施例であ
り、積層印刷技術によって得られる円筒形状の酸素セン
サ索子Aを示したものである。尚。
FIGS. 1 to 3 show an embodiment of the structure of the means (2), and show a cylindrical oxygen sensor cord A obtained by laminated printing technology. still.

本例は素子本体を加熱するためのヒータを備えた例であ
る。
This example is an example equipped with a heater for heating the element body.

第1図において、下方より、基材1.基準電極層2.固
体電解質体層(グリーンシート)3゜測定電極層4.基
保護層5.絶縁層61発熱体層7、絶縁層8.第1保護
層9及び第2保護層10が位置し、基材1に積層印刷さ
れた各層2〜lOが巻回して焼成一体化されることにな
る。基材1はセラミックからなり、外径3.2mm、内
径1 、5 mmの一端閉塞中空円筒体である。基準電
極層2及び測定電極層4は夫々ptからなり、厚さ10
μmである。固体電解質体層3はYO含有Z r O2
からなり、厚さ 0.2〜0 、5 mmのグリーンシ
ートである。基保護層5はPt/A(203からなり、
厚さ20μIである。絶縁層6.8はともに緻密質のA
 i 203からなり、厚さ20〜30μmである。発
熱体層7はptからなり、厚さ10μmである。尚、1
1は基準電極を外部と接続するための端子、la・・・
は基準電極層2へ基準ガスを接触させるための連道口、
3aは基準電極層2と固体電解質体3の外側に位置する
基準電極端子11とを導通するための導通口、6a、6
a及び8a、8aは基保護層5の位置に対応して絶縁層
6,8に形成された開口を示す。
In FIG. 1, from below, base material 1. Reference electrode layer 2. Solid electrolyte layer (green sheet) 3° measurement electrode layer 4. Base protective layer 5. Insulating layer 61 heating element layer 7, insulating layer 8. The first protective layer 9 and the second protective layer 10 are located, and the layers 2 to 10 laminated and printed on the base material 1 are wound and baked to be integrated. The base material 1 is made of ceramic and is a hollow cylindrical body with an outer diameter of 3.2 mm and an inner diameter of 1.5 mm with one end closed. The reference electrode layer 2 and the measurement electrode layer 4 are each made of PT and have a thickness of 10
It is μm. The solid electrolyte layer 3 is YO-containing ZrO2
It is a green sheet with a thickness of 0.2 to 0.5 mm. The base protective layer 5 is made of Pt/A (203,
The thickness is 20μI. The insulating layers 6 and 8 are both dense A
i 203 and has a thickness of 20 to 30 μm. The heating element layer 7 is made of PT and has a thickness of 10 μm. Furthermore, 1
1 is a terminal for connecting the reference electrode to the outside, la...
is a connection port for bringing the reference gas into contact with the reference electrode layer 2;
3a is a conduction port for connecting the reference electrode layer 2 and the reference electrode terminal 11 located outside the solid electrolyte body 3; 6a, 6;
a, 8a, and 8a indicate openings formed in the insulating layers 6, 8 corresponding to the positions of the base protective layer 5.

第1保護層9は粉末粒径50μmのA(203からなり
、厚さ80μm、気孔率40%である。第2保護層lO
は粉末粒径60μmのスピネルからなり、厚さ 100
μI、気孔率15%である。基保護層5は粉末粒径3 
umのA、e203 (Pt担持)からなり、厚さ20
μI、気孔率15%である。
The first protective layer 9 is made of A(203) with a powder particle size of 50 μm, has a thickness of 80 μm, and has a porosity of 40%.
is made of spinel with a powder particle size of 60 μm and has a thickness of 100 μm.
μI, porosity 15%. The base protective layer 5 has a powder particle size of 3
um A, made of e203 (Pt supported), thickness 20
μI, porosity 15%.

積層一体化後においては、開口5a、6a。After the lamination and integration, the openings 5a and 6a.

ga、8aに相当する部分について測定電極層4の外側
(第3図上側、被測定ガスが侵入する側)に基保護層5
.第1保護層9.第2保護層10が積層されている(第
2図)。そのため、測定電極層4は各保護層5,9.1
0と強固に付着し、かつ。
A base protective layer 5 is provided on the outside of the measurement electrode layer 4 (the upper side in FIG. 3, the side where the gas to be measured enters) for the portion corresponding to ga, 8a.
.. First protective layer9. A second protective layer 10 is laminated (FIG. 2). Therefore, the measurement electrode layer 4 is connected to each protective layer 5, 9.1.
0 and firmly adheres.

使用時における被測定ガス中の未燃ガスとの反応に基づ
< ill定電極層4の発生応力が基、第1.第2保護
層を通じて分散される。従って、測定電極層4は長期間
安定に当初の状態を維持できることになる。
Based on the reaction with unburned gas in the gas to be measured during use, the stress generated in the constant electrode layer 4 is determined based on the stress generated in the constant electrode layer 4. distributed through the second protective layer. Therefore, the measurement electrode layer 4 can stably maintain its original state for a long period of time.

第4図は他の実施例として本発明の前記手段(1)に係
る酸素センサ素子の一例(基保護層がないもの)を示し
たものである。従って、測定電極層4は第1.第2保護
層に強固に付着し、かつその発生応力が分散されること
によって確実に保護される。又、第5図は単一保護層(
基保護層に対応するもので、第1.第2保護層がないも
の)で測定電極層4を被覆してなる従来例を示したもの
である。他の構成は前記実施例と同様であるので、同一
要素に同一符号を付してその説明は省略する。
FIG. 4 shows an example of an oxygen sensor element (without a base protective layer) according to the means (1) of the present invention as another embodiment. Therefore, the measurement electrode layer 4 is the first. It firmly adheres to the second protective layer and the generated stress is dispersed, thereby providing reliable protection. Also, Figure 5 shows a single protective layer (
This corresponds to the base protective layer, and is the first one. This figure shows a conventional example in which the measurement electrode layer 4 is coated with a layer (without a second protective layer). Since the other configurations are the same as those of the previous embodiment, the same elements are given the same reference numerals and their explanations will be omitted.

[試験例] 前記実施例の酸素センサ素子に基づいて以下の試験を行
ない各評価項目について調べた。又、比較例についても
同様に調べた。
[Test Example] Based on the oxygen sensor element of the above example, the following tests were conducted to examine each evaluation item. Comparative examples were also examined in the same manner.

酸素センサ素子をブンゼンバーナで耐久試験に供した。The oxygen sensor element was subjected to a durability test using a Bunsen burner.

即ち、空気を殆んど導入しない不完全燃焼状態で各酸素
センサ素子の119部(先端部)を700〜850℃に
加熱し、  50011rs耐久させる。
That is, 119 parts (tips) of each oxygen sensor element were heated to 700 to 850°C under incomplete combustion with almost no air introduced, and were made to last for 50,011 rs.

評価項目A: 上記加熱後の酸素センサ素子を備えてなる酸素センサを
燃焼管(内径幅43)に取付け、1mmれた部位からバ
ーナ炎を吹付け、センサ応答性を評価する。
Evaluation item A: An oxygen sensor equipped with the above-mentioned heated oxygen sensor element is attached to a combustion tube (inner diameter width 43), and a burner flame is blown from a position separated by 1 mm to evaluate sensor responsiveness.

評価項目B: 同様に加熱後に係る酸素センサをエンジン実車にて所定
の位置に取付け、センサ制御し、より下流に位置するλ
スキャン値(制御A/F平均値)を調べ、λ特性を評価
する。
Evaluation item B: Similarly, after heating, the oxygen sensor is installed at a predetermined position on the actual engine vehicle, and the sensor is controlled to determine the temperature of λ located further downstream.
Check the scan value (control A/F average value) and evaluate the λ characteristic.

評価項目C: 目視によって素子表面部の状態を評価する。Evaluation item C: Evaluate the condition of the element surface by visual inspection.

これらの結果を下記表に示す。These results are shown in the table below.

表 未比較例 表から明らかな通り、実施例に係る酸素センサ素子は比
較例のものに比して、各評価項目A。
As is clear from the table of non-comparative examples, the oxygen sensor element according to the example has a higher score of A in each evaluation item than that of the comparative example.

B、Cについて優れた結果を示している。特に。Excellent results are shown for B and C. especially.

実施例に係るものは、測定電極層4をペーストによる厚
膜印刷によって5μm以上の厚みで形成した場合であっ
ても、何ら変化は認められず当初の応答性(λ特性)及
び導通性を維持し、耐久性に優れたものである。
In the example, even when the measurement electrode layer 4 was formed with a thickness of 5 μm or more by thick film printing using paste, no change was observed and the original response (λ characteristic) and conductivity were maintained. It has excellent durability.

[効果] 以上の如く本発明によれば、特に高温下に晒される条件
下においても第1.第2保護層(及び第3保護層)の存
在によって、測定電極を長時間安定に保護でき、従って
耐久寿命の著しく向上した酸素センサ素子を提供するこ
とに成功したものであり、酸素センサ分野において極め
て有用なものである。
[Effects] As described above, according to the present invention, the first effect can be achieved even under conditions of exposure to high temperatures. Due to the presence of the second protective layer (and the third protective layer), the measuring electrode can be stably protected for a long time, and therefore, we have succeeded in providing an oxygen sensor element with a significantly improved durability life. It is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の酸素センサ索子(及びヒー
タ)を各要素ごとに示した斜視図。 第2図は上記例の酸素センサ素子の径方向断面図(電極
存在部位に係るもの)。 第3図は上記例の酸素センサ素子の軸方向断面図(電極
存在部位に係るもの)。 第4図は他の実施例の酸素センサ素子の軸方向断面図(
第3図対応部分)、及び 第5図は従来例の酸素センサ素子の軸方向断面図(第3
図対応部分)。 を夫々示す。 第1図 第2図 第3図
FIG. 1 is a perspective view showing each element of an oxygen sensor cord (and heater) according to an embodiment of the present invention. FIG. 2 is a radial cross-sectional view of the oxygen sensor element of the above example (regarding the area where the electrode is present). FIG. 3 is an axial cross-sectional view of the oxygen sensor element of the above example (regarding the area where the electrode is present). FIG. 4 is an axial cross-sectional view of an oxygen sensor element of another example (
3) and FIG. 5 are axial cross-sectional views of the conventional oxygen sensor element (parts corresponding to
(corresponding part in the figure). are shown respectively. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、測定電極が被測定ガスに接触される酸素セ
ンサ素子において、 測定電極が、被測定ガスに対して化学的に安定な金属酸
化物粉末を焼成してなる複数の保護層で被覆され、複数
の保護層が測定電極側から第1、第2保護層からなり、 第1保護層の金属酸化物粉末が平均粒径5〜100μm
であり、かつ、第2保護層の金属酸化物粉末の平均粒径
が第1保護層のものよりも小である、 酸素センサ素子。
(1) In an oxygen sensor element that has a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side, and the measurement electrode is brought into contact with a gas to be measured, the measurement electrode is chemically connected to the gas to be measured. It is coated with a plurality of protective layers made by firing stable metal oxide powder, and the plurality of protective layers consist of a first and a second protective layer from the measuring electrode side, and the metal oxide powder of the first protective layer has an average particle size. Diameter 5-100μm
and the average particle size of the metal oxide powder in the second protective layer is smaller than that in the first protective layer.
(2)固体電解質体の一面側に基準電極、他面側に測定
電極を備え、測定電極が被測定ガスに接触される酸素セ
ンサ素子において、 測定電極が、被測定ガスに対して化学的に安定な金属酸
化物粉末を焼成してなる複数の保護層で被覆され、複数
の保護層が測定電極側から基保護層及び第1、2保護層
からなり、基保護層と第2保護層との中間に位置する第
1保護層の金属酸化物粉末が平均粒径5〜100μmで
あり、かつ、基保護層及び第2保護層の金属酸化物粉末
の平均粒径が第1保護層のものよりも小である、 酸素センサ素子。
(2) In an oxygen sensor element that has a reference electrode on one side of a solid electrolyte body and a measurement electrode on the other side, and the measurement electrode is brought into contact with a gas to be measured, the measurement electrode is chemically connected to the gas to be measured. It is coated with a plurality of protective layers formed by firing stable metal oxide powder, and the plurality of protective layers are composed of a base protective layer and first and second protective layers from the measuring electrode side, and a base protective layer and a second protective layer. The metal oxide powder of the first protective layer located between the two has an average particle size of 5 to 100 μm, and the average particle size of the metal oxide powder of the base protective layer and the second protective layer is that of the first protective layer. The oxygen sensor element is smaller than the oxygen sensor element.
JP63056338A 1988-03-11 1988-03-11 Oxygen sensor element Pending JPH01232252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63056338A JPH01232252A (en) 1988-03-11 1988-03-11 Oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63056338A JPH01232252A (en) 1988-03-11 1988-03-11 Oxygen sensor element

Publications (1)

Publication Number Publication Date
JPH01232252A true JPH01232252A (en) 1989-09-18

Family

ID=13024427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63056338A Pending JPH01232252A (en) 1988-03-11 1988-03-11 Oxygen sensor element

Country Status (1)

Country Link
JP (1) JPH01232252A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174619A (en) * 2000-12-07 2002-06-21 Kyocera Corp Gas sensor
JP2002296225A (en) * 2001-03-30 2002-10-09 Kyocera Corp Heater-integrated type oxygen sensor element
US6555159B2 (en) * 2000-12-18 2003-04-29 Delphi Technologies, Inc. Coating for gas sensors
JP2007040838A (en) * 2005-08-03 2007-02-15 Denso Corp Gas sensor element and method for manufacturing the same
JP2010237044A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Gas sensor manufacturing method, gas sensor, and laminated structure of gas sensor
JP2013178228A (en) * 2012-02-01 2013-09-09 Ngk Spark Plug Co Ltd Gas sensor
JP2015072259A (en) * 2013-09-05 2015-04-16 日本特殊陶業株式会社 Gas sensor element and gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145390A (en) * 1975-06-10 1976-12-14 Nissan Motor Co Ltd Manufacturing method of a coated layer of oxygen senser
JPS621663A (en) * 1985-06-28 1987-01-07 Nissan Motor Co Ltd Raindrop sensitive type intermittent windshield wiper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145390A (en) * 1975-06-10 1976-12-14 Nissan Motor Co Ltd Manufacturing method of a coated layer of oxygen senser
JPS621663A (en) * 1985-06-28 1987-01-07 Nissan Motor Co Ltd Raindrop sensitive type intermittent windshield wiper

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174619A (en) * 2000-12-07 2002-06-21 Kyocera Corp Gas sensor
JP4646391B2 (en) * 2000-12-07 2011-03-09 京セラ株式会社 Gas sensor
US6555159B2 (en) * 2000-12-18 2003-04-29 Delphi Technologies, Inc. Coating for gas sensors
JP2002296225A (en) * 2001-03-30 2002-10-09 Kyocera Corp Heater-integrated type oxygen sensor element
JP4689860B2 (en) * 2001-03-30 2011-05-25 京セラ株式会社 Heater integrated oxygen sensor element
JP2007040838A (en) * 2005-08-03 2007-02-15 Denso Corp Gas sensor element and method for manufacturing the same
JP4715375B2 (en) * 2005-08-03 2011-07-06 株式会社デンソー Method for manufacturing gas sensor element and gas sensor element
JP2010237044A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Gas sensor manufacturing method, gas sensor, and laminated structure of gas sensor
JP2013178228A (en) * 2012-02-01 2013-09-09 Ngk Spark Plug Co Ltd Gas sensor
JP2015072259A (en) * 2013-09-05 2015-04-16 日本特殊陶業株式会社 Gas sensor element and gas sensor
US10161900B2 (en) 2013-09-05 2018-12-25 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor

Similar Documents

Publication Publication Date Title
US4407057A (en) Method of producing a flat thin film type oxygen sensor
US7951277B2 (en) Gas sensor and method for manufacturing the same
JPS60228955A (en) Electrochemical apparatus and its preparation
JPH0251147B2 (en)
US4395319A (en) Lean sensor
JP2012093377A (en) Gas sensor and manufacturing method of the same
JP2007114216A (en) Oxygen sensor element
US4265930A (en) Process for producing oxygen sensing element
JPH01232252A (en) Oxygen sensor element
JPS6126022B2 (en)
JPH0122899B2 (en)
JP3668050B2 (en) Heater integrated oxygen sensor and manufacturing method thereof
JPH01203963A (en) Oxygen sensor element
JP3950809B2 (en) Ammonia gas sensor
US20210389268A1 (en) Sensor element of gas sensor
JP3981307B2 (en) Oxygen sensor element
JP2851632B2 (en) Electrochemical element
JPH01232253A (en) Oxygen sensor element
JP4610127B2 (en) Air-fuel ratio sensor element
JP4689860B2 (en) Heater integrated oxygen sensor element
JP4113479B2 (en) Oxygen sensor element
JPH05256816A (en) Oxygen sensor and its manufacture
JP4700214B2 (en) Oxygen sensor element and manufacturing method thereof
JP3793563B2 (en) Manufacturing method of oxygen sensor
JPS58156849A (en) Electrode of oxygen concentration sensor and its formation