JPH01225117A - Method and device for manufacturing semiconductor device - Google Patents

Method and device for manufacturing semiconductor device

Info

Publication number
JPH01225117A
JPH01225117A JP63050961A JP5096188A JPH01225117A JP H01225117 A JPH01225117 A JP H01225117A JP 63050961 A JP63050961 A JP 63050961A JP 5096188 A JP5096188 A JP 5096188A JP H01225117 A JPH01225117 A JP H01225117A
Authority
JP
Japan
Prior art keywords
boron
raw material
ion
sample
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63050961A
Other languages
Japanese (ja)
Inventor
Mitsutoshi Takahashi
光俊 高橋
Yutaka Sakakibara
裕 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63050961A priority Critical patent/JPH01225117A/en
Publication of JPH01225117A publication Critical patent/JPH01225117A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To form the shallow impurity distribution of boron to a sample by using a specific raw material for ion implantation and ion-implanting the molecules or cluster ions of boron or of boron and hydrogen to the sample. CONSTITUTION:A borane of its derivatives are employed as an ion implantation raw material. The molecules or cluster ions of boron, such as B4H, B5H, B5H, B10H, B10H, etc., or of boron and hydrogen are formed while being made to differ from a raw material gas such as a conventional boron fluoride (BF3) gas or other solid raw materials, and ion-implanted to a sample. Accordingly, a high-concentration P-type layer can be shaped in a shallow region of several hundred Angstrom or less in the sample, and an extremely thin base layer is acquired when the title method is applied for forming a base in an N-P-N transistor, thus attaining the increase of working speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法およびその製造装置に係
わり、特に半導体装置の製造において試料の表面から浅
い領域に不純物を導入する方法およびそれを実現する装
置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device and an apparatus for manufacturing the same, and particularly to a method for introducing impurities into a shallow region from the surface of a sample in manufacturing a semiconductor device, and a method for introducing impurities into a shallow region from the surface of a sample in the manufacture of semiconductor devices. It is related to the device that realizes this.

〔従来の技術〕[Conventional technology]

一般にバイポーラトランジスタ、 MOS FET等の
半導体装置において、動作を高速化するため、半導体基
板の表面に浅い不純物分布の形成が必要である。例えば
、31−NPN )ランジスタにおいては、通常薄い酸
化膜を介したホウ素イオンの注入によってベース領域が
形成されてきた。
Generally, in semiconductor devices such as bipolar transistors and MOS FETs, in order to speed up the operation, it is necessary to form a shallow impurity distribution on the surface of the semiconductor substrate. For example, in 31-NPN) transistors, the base region has typically been formed by implanting boron ions through a thin oxide film.

〔発明が解決しようとする課眺〕[The problem that the invention attempts to solve]

しかしながら、との稚の半導体装置では、ベース領域を
薄くするため、注入エネルギーを低くしても、イオン注
入時のチャネリング現象のためホウ素は深い位titま
で侵入する。これは、通常ガウス分布に指数関数型のテ
イルが付加された形の分布を形成する。このように低エ
ネルギーのホウ素イオン注入ではチャネリング現象のた
め、浅くて薄いベース領域を形成できないという問題が
あった。
However, in modern semiconductor devices, even if the implantation energy is lowered to make the base region thinner, boron penetrates deeper into the hole due to the channeling phenomenon during ion implantation. This typically forms a Gaussian distribution with an exponential tail added. In this way, low-energy boron ion implantation has the problem of not being able to form a shallow and thin base region due to the channeling phenomenon.

したがって本発明は前述した従来の問題に鑑みてなされ
たものであり、その目的は、半導体装置の製造において
、ホウ素の分子もしくはクラスターイオンの生成法を簡
易化することにより、試料に浅いホウ素の不純物分布を
形成することができる半導体装置の製造方法およびその
製造装置を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to simplify the method for generating boron molecules or cluster ions in the production of semiconductor devices, thereby eliminating shallow boron impurities in samples. An object of the present invention is to provide a method for manufacturing a semiconductor device and an apparatus for manufacturing the same, which can form a distribution.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による半導体装置の製造方法は、イオン注入原料
としてボランもしくはこれらの誘導体を用い、ホウ素、
ホウ素と水素との分子もしくはクラスターイオンを試料
にイオン注入するものである。
The method for manufacturing a semiconductor device according to the present invention uses borane or a derivative thereof as a raw material for ion implantation.
This method involves implanting molecules or cluster ions of boron and hydrogen into a sample.

本発明による半導体装置の製造装置は、ボランもしくは
これらの誘導体を充填する原料ボンベと、この原料ボン
ベを加熱するヒータと、この原料ボンベの温度を検知す
る温度センサと、この原料ボンベを一定の温度に制御す
る温度コントローラとを有するイオン発生手段をイオン
注入装置に設けたものである。
The semiconductor device manufacturing apparatus according to the present invention includes a raw material cylinder filled with borane or a derivative thereof, a heater that heats this raw material cylinder, a temperature sensor that detects the temperature of this raw material cylinder, and a temperature sensor that maintains this raw material cylinder at a constant temperature. The ion implantation apparatus is provided with an ion generating means having a temperature controller for controlling the temperature.

〔作 用〕[For production]

本発明における半導体装置の製造方法において杜、イオ
ン注入用原料としてボランもしくはこれらの誘導体を用
いることによシ、従来の弗化ホウ素(BFs)ガス等の
原料ガスもしくは他の固体系+ 料とは異なり、B部 Hlo + BS Hll e 
Bs H,+BIOH141B、。I(ts等のホウ素
、ホウ素と水素との分子もしくはクラスターイオンを形
成しく BxH7,x≧2゜y≧0〕、イオン注入され
る。
In the method for manufacturing a semiconductor device according to the present invention, by using borane or a derivative thereof as a raw material for ion implantation, conventional raw material gas such as boron fluoride (BFs) gas or other solid material can be used. Differently, part B Hlo + BS Hll e
Bs H, +BIOH141B,. I (boron such as ts, BxH7, x≧2°y≧0) is implanted to form molecules or cluster ions of boron and hydrogen.

本発明における半導体装置の製造装置においては、イオ
ン注入用原料のうち、ペンタボラン以上の高次ボラン類
は久温で液体もしくは固体であシ、空気中の酸素に触れ
ると、爆発的に酸化される材料であるため、可熱可能な
密封ボンベに充填して使用することとし、イオン源外部
(イオン源をイオン注入装置K取シ付けたとき、大気9
!1となる部分)に原料ボンベを搭載し、イオン化部を
十分に排気した後、原料ボンベのパルプを開放し、原料
ボンベを加熱することにより、原料を気化させ、イオン
注入装置のイオン化部に送シ込む構成とすることによシ
、原料が直接空気との接触が防止され、従来の固体イオ
ン源と異なシ、原料は常に空気と触れることなく、液体
原料から低融点固体原料まで使用できる。
In the semiconductor device manufacturing apparatus of the present invention, among the raw materials for ion implantation, higher-order boranes such as pentaborane and higher are liquid or solid at low temperatures, and are explosively oxidized when exposed to oxygen in the air. Because it is a material, it is used by filling it in a heatable sealed cylinder, and the outside of the ion source (when the ion source is attached to the ion implanter K, the atmosphere
! After the raw material cylinder is loaded into the ionization unit (part 1) and the ionization unit is fully evacuated, the pulp of the raw material cylinder is opened and the raw material cylinder is heated to vaporize the raw material and sent to the ionization unit of the ion implanter. The injection structure prevents the raw material from coming into direct contact with air, and unlike conventional solid ion sources, the raw material does not constantly come into contact with air, and can be used from liquid raw materials to low-melting point solid raw materials.

〔実施例〕〔Example〕

以下、図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による半導体装置の製造方法の一実施例
を説明するための製造装置の構成を示す図である。同図
において、イオン化部1.イオン化部1の支持を兼ねた
電流導入端子2および窒素もしくはアルゴンガスを導入
するガス導入管3を有するイオン源に、ボランもしくは
これらの誘導体等の原料ガスを導入するガス導入管4.
ストップバルブ5およびジヨイント6を取付けたA部と
、ストップバルブT、ボランもしくはこれらの誘導体等
の原料を充填した気密性の可熱可能な原料ボンベ、との
原料ボンベ8を加熱するヒータ9.原料ボンベ8の温度
を検知する温度センサ10および原料ボンベ8を所定の
温度に保持する温度コントローラ11を有するB部とか
ら構成されておシ、前記ストップバルブT、原料ボンベ
8.ヒータ9および温度センサ10はシールドケース1
2内に収納され、前記イオン化部1.電流導入端子2お
よびガス導入管4は、矢印C方向で示す図示しないイオ
ン光学系へイオンを引き出すイオン引き出し電極14を
有するイオン注入装置チャンバ14内に収納されている
。そして、前記A部は常時イオン注入装置本体Kl)付
けられ、ガス導入管3により窒素もしくはアルゴンガス
が導入され、イオンが注入できる状態となっている。
FIG. 1 is a diagram showing the configuration of a manufacturing apparatus for explaining an embodiment of the method for manufacturing a semiconductor device according to the present invention. In the figure, ionization section 1. A gas introduction tube 4 for introducing a raw material gas such as borane or a derivative thereof into an ion source having a current introduction terminal 2 which also serves as a support for the ionization section 1 and a gas introduction tube 3 for introducing nitrogen or argon gas.
A heater 9 that heats the raw material cylinder 8 consisting of the section A to which the stop valve 5 and the joint 6 are attached, the stop valve T, and an airtight heatable raw material cylinder filled with a raw material such as borane or a derivative thereof. A section B includes a temperature sensor 10 that detects the temperature of the raw material cylinder 8 and a temperature controller 11 that maintains the raw material cylinder 8 at a predetermined temperature. Heater 9 and temperature sensor 10 are in shield case 1
2, and the ionization section 1. The current introduction terminal 2 and the gas introduction tube 4 are housed in an ion implanter chamber 14 having an ion extraction electrode 14 for extracting ions to an ion optical system (not shown) shown in the direction of arrow C. The section A is always attached to the ion implantation apparatus main body Kl), and nitrogen or argon gas is introduced through the gas introduction pipe 3, so that ions can be implanted.

このよう表構成において、ホウ素の分子イオン注入を行
なうためには、まず、B部をジヨイント6を介してA部
に接続し、ストップパルプ7を開放する。そしてA部の
チャンバ14の真空度が約lXl0 ”〒orr程度以
下となったら、ガス導入管3から窒素もしくはアルゴン
等の放電を維持するガスを導入し、プラズマを発生させ
、維持させる。次にヒータ9と温度コントローラ11と
によシ、原料ボンベ8を加熱し、充填されている原料の
液体もしくは固体を気化させて蒸気圧を最適化する。こ
の場合、原料としてはテトラボランB4 Hlo +ペ
ンタボランB5 H,l B5 Hllもしくはデカボ
ランB1゜B14等のボランもしくはその誘導体が適用
される。以後は、通常のイオン注入装置の操作法にした
がって質量分析マグネットによシ必要か分子イオンの選
択を行なって試料に照射する。
In such a table configuration, in order to implant boron molecular ions, first, part B is connected to part A via joint 6, and stop pulp 7 is opened. When the degree of vacuum in the chamber 14 in the A section becomes approximately 1X10'' or less, a gas that maintains the discharge, such as nitrogen or argon, is introduced from the gas introduction tube 3 to generate and maintain plasma.Next. The heater 9 and the temperature controller 11 heat the raw material cylinder 8 and vaporize the liquid or solid filled raw material to optimize the vapor pressure.In this case, the raw materials are tetraborane B4 Hlo + pentaborane B5. H,l B5 Hll or borane or its derivatives such as decaborane B1°B14 are applied.After that, the necessary molecular ions are selected using a mass spectrometer magnet according to the operation method of a normal ion implanter, and the sample is injected into the sample. irradiate.

本発明の一実施例としてボランもしくはその誘導体等の
原料として例えばペンタボランBS U。
In one embodiment of the present invention, as a raw material for borane or its derivatives, for example, pentaborane BSU is used.

を用い、その85H,イオンを約10KVで加速し、単
結晶シリコン(Si )中に注入した結果を第2図に示
す。注入量はホウ素の原子密度でlX1051である。
Figure 2 shows the results of accelerating the 85H ions at about 10 KV and implanting them into single crystal silicon (Si). The implantation amount is 1×1051 in boron atomic density.

このように大きな分子イオンの注入を行なうと、高密度
の注入損傷が形成され、チャネリング現象を防止し、浅
い位置に不純物を導入することができる。さらに約60
0℃付近でまず注入損傷を回復させるための熱処理を行
ない、次に700〜900℃程度の電気的活性化の熱処
理を行なう。これにより、注入時に導入される点欠陥に
よるホウ素原子の増速拡散を防止し、浅いP型層を形成
することができる。また、単結晶シリコン(St )の
表面を酸化した後、前述したイオン注入を行なうことに
より、さらに浅い層を形成することができる。
When such large molecular ions are implanted, a high-density implantation damage is formed, which prevents the channeling phenomenon and allows impurities to be introduced into a shallow position. Approximately 60 more
First, heat treatment is performed at around 0°C to recover from implantation damage, and then heat treatment for electrical activation is performed at about 700 to 900°C. Thereby, accelerated diffusion of boron atoms due to point defects introduced during implantation can be prevented, and a shallow P-type layer can be formed. Further, by oxidizing the surface of single crystal silicon (St 2 ) and then performing the ion implantation described above, an even shallower layer can be formed.

本発明の他の実施例として前述した実施例と同等条件で
シリコン酸化膜中にイオン注入した結果を第3図に示す
。このとき、水素原子も同時に注入され、その水素の効
果によシ酸化膜中におけるホウ素の拡散係数が大きくな
り、拡散しやすくなる。そこで、この酸化膜中のホウ素
を拡散源として下地の単結晶Si中にホウ素の拡散を行
なうことにより、浅くて欠陥のないP型層を形成するこ
とができる。
FIG. 3 shows the results of ion implantation into a silicon oxide film under conditions similar to those of the above-described embodiment as another embodiment of the present invention. At this time, hydrogen atoms are also implanted at the same time, and the effect of the hydrogen increases the diffusion coefficient of boron in the silicon oxide film, making it easier to diffuse. Therefore, by diffusing boron into the underlying single crystal Si using the boron in this oxide film as a diffusion source, a shallow P-type layer without defects can be formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、試料中の数100
^以下の浅い領域に高濃度P型層を形成することができ
るので、NPN  )ランジスタのペース形成に適用す
れば、極めて薄いペース層が得られ、高速化が達成でき
る。また、PチャネルのMOS  FET  の浅いソ
ース、ドレイン接合部を形成できるなどの極めて優れた
効果が得られる。
As explained above, according to the present invention, several hundred
Since it is possible to form a highly concentrated P-type layer in a shallow region of less than 2 cm, if applied to the formation of a paste for an NPN transistor, an extremely thin paste layer can be obtained and high speeds can be achieved. Furthermore, extremely excellent effects such as the ability to form shallow source and drain junctions of a P-channel MOS FET can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体装置の製造方法の一実施例
を説明するための製造装置としてのイオン源の構成を示
す図、第2図は単結晶シリコン(St)中に B5H,
イオンを注入したときのホウ素の深さ方向の濃度分布を
示す図、第3図はシリコン酸化膜(S i Ch)中に
B、H,イオンを注入したときのホウ素の深さ方向の濃
度分布を示す図である。 1・・・・イオン化部、2・Φ・・電流導入端子、3.
4・Φ・・ガス導入管、5・・・・ストップパルプ、6
・・・・ジヨイント、T・・・・ストップパルプ、8・
・−・原料ボンベ、9・・・・ヒータ、10・・・・温
度センサ、11・・・・温度コントローラ、12・・拳
・シールドケース、13・・・・イオン引き出し電極、
14・・@拳イオン注入装置チャンバ。 特許出願人  日本電信電話株式会社
FIG. 1 is a diagram showing the configuration of an ion source as a manufacturing apparatus for explaining an embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIG. 2 shows a structure in which B5H, B5H,
A diagram showing the concentration distribution of boron in the depth direction when ions are implanted. Figure 3 shows the concentration distribution of boron in the depth direction when B, H, and ions are implanted into a silicon oxide film (S i Ch). FIG. 1...Ionization part, 2.Φ...Current introduction terminal, 3.
4. Φ... Gas introduction pipe, 5... Stop pulp, 6
... joint, T ... stop pulp, 8.
- Raw material cylinder, 9... Heater, 10... Temperature sensor, 11... Temperature controller, 12... Fist/shield case, 13... Ion extraction electrode,
14...@Fist ion implanter chamber. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)イオン注入用原料としてボランもしくはこれらの
誘導体を用い、ホウ素、ホウ素と水素との分子もしくは
クラスターイオンを試料にイオン注入することを特徴と
した半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device, which comprises using borane or a derivative thereof as a raw material for ion implantation, and implanting boron, molecules or cluster ions of boron and hydrogen into a sample.
(2)ボランもしくはこれらの誘導体を充填する原料ボ
ンベと、前記原料ボンベを加熱するヒータと、前記原料
ボンベの温度を検知する温度センサと、前記原料ボンベ
を一定の温度に制御する温度コントローラとからなるイ
オン発生手段をイオン注入装置に設けたことを特徴とす
る半導体装置の製造装置。
(2) A raw material cylinder filled with borane or a derivative thereof, a heater that heats the raw material cylinder, a temperature sensor that detects the temperature of the raw material cylinder, and a temperature controller that controls the raw material cylinder to a constant temperature. 1. A semiconductor device manufacturing apparatus, characterized in that an ion implantation device is provided with an ion generating means.
JP63050961A 1988-03-04 1988-03-04 Method and device for manufacturing semiconductor device Pending JPH01225117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050961A JPH01225117A (en) 1988-03-04 1988-03-04 Method and device for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050961A JPH01225117A (en) 1988-03-04 1988-03-04 Method and device for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH01225117A true JPH01225117A (en) 1989-09-08

Family

ID=12873412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050961A Pending JPH01225117A (en) 1988-03-04 1988-03-04 Method and device for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH01225117A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857354A1 (en) * 1995-08-14 1998-08-12 Advanced Material Engineering Research A process for fabricating semiconductor devices with shallowly doped regions using dopant compounds containing elements of high solid solubility
US6452338B1 (en) 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
EP1579481A2 (en) * 2002-06-26 2005-09-28 Semequip, Inc. An ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
JP2005531158A (en) * 2002-06-26 2005-10-13 セムエキップ インコーポレイテッド Semiconductor device and semiconductor device manufacturing method
JP2005531156A (en) * 2002-06-26 2005-10-13 セムエキップ インコーポレイテッド Manufacturing method of CMOS device by implantation of N and P type cluster ions and anions
WO2007027798A3 (en) * 2005-08-30 2007-05-03 Advanced Tech Materials Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
JP2007521398A (en) * 2003-12-12 2007-08-02 セメクイップ, インコーポレイテッド Control of vapor flow sublimated from solids
US8062965B2 (en) 2009-10-27 2011-11-22 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8138071B2 (en) 2009-10-27 2012-03-20 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8410459B2 (en) 2002-06-26 2013-04-02 Semequip, Inc. Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
JP2013235992A (en) * 2012-05-10 2013-11-21 Ulvac Japan Ltd Ion implantation method
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8779383B2 (en) 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US9012874B2 (en) 2010-02-26 2015-04-21 Entegris, Inc. Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US9205392B2 (en) 2010-08-30 2015-12-08 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9938156B2 (en) 2011-10-10 2018-04-10 Entegris, Inc. B2F4 manufacturing process
US9960042B2 (en) 2012-02-14 2018-05-01 Entegris Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement
US10497569B2 (en) 2009-07-23 2019-12-03 Entegris, Inc. Carbon materials for carbon implantation
US11062906B2 (en) 2013-08-16 2021-07-13 Entegris, Inc. Silicon implantation in substrates and provision of silicon precursor compositions therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307724A (en) * 1987-06-09 1988-12-15 Nec Corp Manufacture of semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307724A (en) * 1987-06-09 1988-12-15 Nec Corp Manufacture of semiconductor integrated circuit

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0857354A1 (en) * 1995-08-14 1998-08-12 Advanced Material Engineering Research A process for fabricating semiconductor devices with shallowly doped regions using dopant compounds containing elements of high solid solubility
EP0857354A4 (en) * 1995-08-14 1999-12-22 Advanced Materials Eng A process for fabricating semiconductor devices with shallowly doped regions using dopant compounds containing elements of high solid solubility
US6452338B1 (en) 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
US8410459B2 (en) 2002-06-26 2013-04-02 Semequip, Inc. Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
EP1579481A2 (en) * 2002-06-26 2005-09-28 Semequip, Inc. An ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
JP2005531156A (en) * 2002-06-26 2005-10-13 セムエキップ インコーポレイテッド Manufacturing method of CMOS device by implantation of N and P type cluster ions and anions
JP2005531158A (en) * 2002-06-26 2005-10-13 セムエキップ インコーポレイテッド Semiconductor device and semiconductor device manufacturing method
US8618514B2 (en) 2002-06-26 2013-12-31 Semequip, Inc. Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
US7723233B2 (en) 2002-06-26 2010-05-25 Semequip, Inc. Semiconductor device and method of fabricating a semiconductor device
EP1579481B1 (en) * 2002-06-26 2013-12-04 Semequip, Inc. A method of semiconductor manufacturing by the implantation of boron hydride cluster ions
JP2010161397A (en) * 2002-06-26 2010-07-22 Semequip Inc Semiconductor device and method of fabricating semiconductor device
US8236675B2 (en) 2002-06-26 2012-08-07 Semequip, Inc. Semiconductor device and method of fabricating a semiconductor device
JP2010161072A (en) * 2003-12-12 2010-07-22 Semequip Inc Control of flow of vapor sublimated from solid
JP2007521398A (en) * 2003-12-12 2007-08-02 セメクイップ, インコーポレイテッド Control of vapor flow sublimated from solids
WO2007027798A3 (en) * 2005-08-30 2007-05-03 Advanced Tech Materials Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US7943204B2 (en) 2005-08-30 2011-05-17 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US8389068B2 (en) 2005-08-30 2013-03-05 Advanced Technology Materials, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US9455147B2 (en) 2005-08-30 2016-09-27 Entegris, Inc. Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation
US10497569B2 (en) 2009-07-23 2019-12-03 Entegris, Inc. Carbon materials for carbon implantation
US8138071B2 (en) 2009-10-27 2012-03-20 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8062965B2 (en) 2009-10-27 2011-11-22 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9685304B2 (en) 2009-10-27 2017-06-20 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9142387B2 (en) 2009-10-27 2015-09-22 Entegris, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US9754786B2 (en) 2010-02-26 2017-09-05 Entegris, Inc. Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US9171725B2 (en) 2010-02-26 2015-10-27 Entegris, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US9012874B2 (en) 2010-02-26 2015-04-21 Entegris, Inc. Method and apparatus for enhanced lifetime and performance of ion source in an ion implantation system
US8779383B2 (en) 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US9205392B2 (en) 2010-08-30 2015-12-08 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9764298B2 (en) 2010-08-30 2017-09-19 Entegris, Inc. Apparatus and method for preparation of compounds or intermediates thereof from a solid material, and using such compounds and intermediates
US9938156B2 (en) 2011-10-10 2018-04-10 Entegris, Inc. B2F4 manufacturing process
US9960042B2 (en) 2012-02-14 2018-05-01 Entegris Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement
US10354877B2 (en) 2012-02-14 2019-07-16 Entegris, Inc. Carbon dopant gas and co-flow for implant beam and source life performance improvement
JP2013235992A (en) * 2012-05-10 2013-11-21 Ulvac Japan Ltd Ion implantation method
US11062906B2 (en) 2013-08-16 2021-07-13 Entegris, Inc. Silicon implantation in substrates and provision of silicon precursor compositions therefor

Similar Documents

Publication Publication Date Title
JPH01225117A (en) Method and device for manufacturing semiconductor device
US6138606A (en) Ion implanters for implanting shallow regions with ion dopant compounds containing elements of high solid solubility
KR100204856B1 (en) Method for producing shallow junction in surface region of semiconductor substrate and apparatus therfor
US20060292762A1 (en) Replacement gate field effect transistor with germanium or SiGe channel and manufacturing method for same using gas-cluster ion irradiation
JP2014160856A (en) System and method for manufacturing semiconductor device by implantation of carbon cluster
TW200423185A (en) Method of introducing impurity
KR960005768A (en) Method for manufacturing circuit in semiconductor substrate, embedding insulator layer forming method and insulator layer forming apparatus in silicon substrate
JP4416357B2 (en) Method for forming ultra-shallow junction
JPH1187257A (en) Heat treatment of silicon carbide substrate
JPS62130522A (en) Manufacture of semiconductor device
US7105427B1 (en) Method for shallow dopant distribution
US5256162A (en) Apparatus for forming shallow electrical junctions
US20020187614A1 (en) Methods for forming ultrashallow junctions with low sheet resistance
US7622372B1 (en) Method for shallow dopant distribution
US5851906A (en) Impurity doping method
US5874352A (en) Method of producing MIS transistors having a gate electrode of matched conductivity type
JP2006221941A (en) Ion implantation device and ion implantation method
JPH05251378A (en) Manufacture of semiconductor device
JP2679011B2 (en) Method of introducing impurity atoms
JP2855903B2 (en) Method for manufacturing semiconductor device
KR100190311B1 (en) Apparatus and method of manufacturing semiconductor element
JP4086334B2 (en) Impurity introduction method
JPH01502065A (en) Low-temperature method for forming gate insulator layers for semiconductor devices
US5965932A (en) Contamination free source for shallow low energy junction implants using implanted molecules containing titanium and boron
JP2522217B2 (en) Method for suppressing silicon crystal defects caused by ion implantation