JPH01223943A - Receiving device of nuclear magnetic resonance tomographic imaging apparatus - Google Patents

Receiving device of nuclear magnetic resonance tomographic imaging apparatus

Info

Publication number
JPH01223943A
JPH01223943A JP63047972A JP4797288A JPH01223943A JP H01223943 A JPH01223943 A JP H01223943A JP 63047972 A JP63047972 A JP 63047972A JP 4797288 A JP4797288 A JP 4797288A JP H01223943 A JPH01223943 A JP H01223943A
Authority
JP
Japan
Prior art keywords
preamplifier
signal
light
optical
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047972A
Other languages
Japanese (ja)
Inventor
Hiromi Kawaguchi
博己 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63047972A priority Critical patent/JPH01223943A/en
Publication of JPH01223943A publication Critical patent/JPH01223943A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To prevent the generation of mixed modulation strain even when the mu- factor of a preamplifier is sufficiently increased to a required value, by converting the electric signal as the output signal of an amplifier to a light signal by an electro- optical converter before setting the same to the output signal of the preamplifier. CONSTITUTION:The high frequency electric signal received by a receiving coil 400 is set to the input signal of a preamplifier 2 through a matching circuit 1. A light emitting diode 4 as an electro-optical converter means is allowed to emit light by the output signal of the preamplifier 2 to generate a light signal 41 which is, in turn, allowed to irradiate a photodiode 5 as a photoelectric converter means through an optical fiber 42 as a light transmission means to be converted to an electric signal. By this mechanism, the cable connecting a main amplifier 6 from the preamplifier 2 can be omitted and it is prevented that said cable picks up external noise. This cable becomes a transmission antenna to transmit a high frequency electromagnetic wave and feedback such that said high frequency electromagnetic wave is received by the wiring of the input circuit of the preamplifier 2 is generated and the mixed modulation strain generated owing to said feedback is not also generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、核磁気共鳴現象を利用して人体などの被検
体の断面を撮像するいわゆるM RI 袋’1の高周波
電磁波の受信装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-frequency electromagnetic wave receiving device for so-called MRI bag '1, which images a cross section of a subject such as a human body by utilizing nuclear magnetic resonance phenomena.

〔従来の技術〕[Conventional technology]

MHI装置の受信コイルには、主に内臓などの身体部の
断面像を得るための受信コイルを兼ねる送受信兼用コイ
ル、被検体の一部の詳細な断面像を得るために被検体の
一部に密着して使用されるボディコイルと称される受信
専用のコイル、および頭部専用の受信コイルとがある。
The receiving coil of an MHI device is mainly a transmitting/receiving coil that also serves as a receiving coil to obtain cross-sectional images of body parts such as internal organs, and a transmitting/receiving coil that also serves as a receiving coil to obtain cross-sectional images of body parts such as internal organs. There are a reception-only coil called a body coil that is used in close contact with the body, and a head-only reception coil.

頭部は脳の腫瘍などの特に重要な疾患を伴うことがある
のでこれを的確に撮像する必要があることから受信コイ
ルとしては頭部になるべく接近できることが必要であり
、送受信兼用コイルは数キロボルトの高電圧が印加され
ることから、なるべく被検体から離れている方がよいと
いう2つの点が考慮されて、頭部断面の撮像には専ら頭
部専用の受信コイルが使用される。
Since the head is often associated with particularly important diseases such as brain tumors, it is necessary to accurately image this, so the receiving coil must be able to get as close to the head as possible, and the transmitting/receiving coil has a voltage of several kilovolts. Since a high voltage is applied, it is better to be as far away from the subject as possible, and a receiving coil exclusively for the head is used for imaging a cross section of the head.

第2図にMRI装置の各種のコイルを主に示すが、この
図で、主コイル100はこの主コイル100の内部中央
部に常電導コイルの場合は0.1T、超電導コイルの場
合はIT前後の均一な静磁場を発生させるコイルであわ
、この均−磁場内で送受信兼用コイル200によって高
周波IWI波を照射して核磁気共鳴を起こさせ、共鳴し
た原子核が放射する高周波電磁波を受信コイルで受信す
る。この原子核が共鳴する周波数は核種で異なりまた前
記の均一磁場強度に比例するが、例えば水素の原子核が
ITの均一磁場空間にあるときの共鳴周波数は約43M
1しである。
Fig. 2 mainly shows the various coils of the MRI apparatus. In this figure, the main coil 100 has a 0.1 T in the case of a normal conducting coil, and a 0.1 T in the case of a superconducting coil, and 0.1 T in the case of a superconducting coil, and around IT in the case of a superconducting coil. A coil that generates a uniform static magnetic field is used, and within this uniform magnetic field, a high-frequency IWI wave is irradiated by the transmitting/receiving coil 200 to cause nuclear magnetic resonance, and a receiving coil receives the high-frequency electromagnetic waves emitted by the resonated atomic nuclei. do. The frequency at which this atomic nucleus resonates varies depending on the type of nuclide and is proportional to the uniform magnetic field strength mentioned above. For example, when a hydrogen nucleus is in the IT uniform magnetic field space, the resonance frequency is approximately 43 M
It is 1.

被検体の身体部の断面を撮像する際には送受信兼用コイ
ル200が受信コイルを兼ねこの送受信兼用コイル20
0で前記高周波電磁波を受信する0頭部の断面を描像す
る際には頭部が均一磁場空間に1かれて送受信兼用コイ
ル200により高周波電磁波が照射されて頭部専用の受
信コイル400で受信する。
When imaging a cross section of the body part of a subject, the transmitting/receiving coil 200 also serves as a receiving coil.
When imaging a cross section of the head, the head is placed in a uniform magnetic field space, and the high-frequency electromagnetic waves are irradiated by the transmitting/receiving coil 200 and received by the receiving coil 400 dedicated to the head. .

この図で各コイルは人体の軸方向に異なる位置に措い°
ζあるが、頭部の断面像を得る際は、主コイル100.
送受信兼用コイル200.受信コイル400並びに患者
の頭部が全て均−磁場内に重なって配置されるのが実際
である。
In this figure, each coil is placed at a different position in the axial direction of the human body.
ζ, but when obtaining a cross-sectional image of the head, the main coil 100.
Transmitting/receiving coil 200. In practice, the receiver coil 400 as well as the patient's head are all placed overlappingly within a uniform magnetic field.

受信コイルで受信されるのは、送信コイルで送信された
高周波電磁波によって人体を構成する水素原子の原子核
が核磁気共鳴し、高周波電磁波f波の送信完了後に共鳴
した原子核が共鳴エネルギ庖電磁波の形で放出する際の
放出電磁波であり、方式によってスピンエコーもしくは
FID(i号と称されており非常に強度の小さいTS磁
波であるので、これらの高周波電磁波の送受信系を極力
yi音の少ない環境におくとともに、受信コイルで受信
した微小な電気信号を低雑音で増幅する必要があり、こ
の受信装置部での信号対雑音比がMRI装置の画像品質
を決定する重要な要素である。このようなことから受信
コイルで受信した電気信号を最初に増幅する前置増幅器
は特に低雑音増幅器であることが1求されるとともに外
部からの雑音の侵入を楢力抑制する構成が採られる。
What is received by the receiving coil is that the nuclei of hydrogen atoms that make up the human body undergo nuclear magnetic resonance due to the high-frequency electromagnetic waves transmitted by the transmitting coil, and after the transmission of the high-frequency electromagnetic waves is completed, the resonant atomic nuclei generate resonance energy in the form of electromagnetic waves. The emitted electromagnetic waves are called spin echo or FID (I) depending on the method, and are very low-intensity TS magnetic waves, so the transmission and reception system for these high-frequency electromagnetic waves should be placed in an environment with as little noise as possible. At the same time, it is necessary to amplify the minute electrical signals received by the receiving coil with low noise, and the signal-to-noise ratio in this receiving device is an important factor that determines the image quality of the MRI device. Therefore, the preamplifier that first amplifies the electrical signal received by the receiving coil is particularly required to be a low-noise amplifier, and is configured to suppress the intrusion of external noise.

外部から雑音が侵入する経路は主に2つあり、その一つ
は空間を伝播して来る電磁波であり、これの対策として
は、被検体、受信コイルおよび前置増幅器を覆う電磁波
シールドが設けられる。もう一つの雑音の伝播経路は前
置増幅器の直流電源からケーブルを通って侵入する高周
波電流である。
There are two main routes for noise to enter from the outside, one of which is electromagnetic waves propagating through space. To counter this, an electromagnetic shield is installed to cover the test object, receiving coil, and preamplifier. . Another noise propagation path is the high frequency current that enters through the cable from the preamplifier's DC power supply.

また、この直流電源のケーブルは同時に高周波の雑音を
拾うアンテナの役目も果たし更に(3号対雑音比を低下
させる要因となる。
In addition, this DC power cable also serves as an antenna that picks up high-frequency noise, which further causes a reduction in the No. 3 noise ratio.

第3図は従来の受信装置の■路図で、受イδコイル40
0が受信した高周波電気信号は回路に直列と並列に接続
された2つのコンデンサでなる整合回路lを通って前置
増幅器2Aの人力信号になるが、この電気信号はμ■オ
ーダ程度の微弱信号であるので前置増幅器2人はこの微
弱(X野を(1号対雑音比を低下させることなく所要の
強度に増幅しなければならない、整合回路1を構成する
コンデンサは小さいのでこれらのコンデンサは受信コイ
ル400の中に設け、前置増幅器2人も受信コイルの掻
く近傍に配置し構造的には前置増幅器2Aは受信コイル
400に固着した状態に一体化された構成としている。
Figure 3 is a circuit diagram of a conventional receiving device, where the receiving δ coil 40
The high frequency electric signal received by 0 passes through a matching circuit 1 consisting of two capacitors connected in series and parallel to the circuit and becomes a human input signal for the preamplifier 2A, but this electric signal is a weak signal on the order of μ■. Therefore, the two preamplifiers must amplify this weak (X field) to the required strength without reducing the noise ratio.Since the capacitors that make up matching circuit 1 are small, these capacitors The preamplifier 2A is installed in the receiving coil 400, and the two preamplifiers are also placed in the vicinity of the receiving coil, and the preamplifier 2A is structurally integrated with the receiving coil 400 in a fixed state.

このように整合回路1や前置増幅器2Aを受信コイルの
近傍に置くことにより受信コイル400、整合回路l及
び前置増幅IB2Aの入力回路の配線の長さを可能な限
り短縮することによりこれらの回路の配線が外部雑音を
拾うのを抑制した構成としている。前置増幅器2Aの直
流電源は直流電[21からコード22により供給される
、このコード22は外部雑音を拾わないために同軸ケー
ブルを使用するのが普通である。
In this way, by placing the matching circuit 1 and preamplifier 2A near the receiving coil, the wiring lengths of the input circuits of the receiving coil 400, matching circuit 1, and preamplifier IB2A can be shortened as much as possible. The circuit wiring is configured to suppress external noise from being picked up. The DC power supply for the preamplifier 2A is supplied from a DC power supply 21 through a cord 22, and this cord 22 is usually a coaxial cable in order to avoid picking up external noise.

主増幅器6Aは第2図には図示しない被検体を乗せるベ
ツドの下に設けられるので、受信コイルが配置される位
1である主コイル100の中央部からは1m程度離れた
位置にあり前置増幅器2Aと主増幅器6Aとのこの間を
同軸ケーブルで接続している。
Since the main amplifier 6A is provided under the bed on which the subject is placed (not shown in FIG. 2), it is located approximately 1 m away from the center of the main coil 100, where the receiving coil is placed. A coaxial cable connects the amplifier 2A and the main amplifier 6A.

前置増幅器2AによってmVオーダの強度の電気信号に
増幅された上でこの電気信号が主増幅器6Aに入力され
るが、この主増幅器6Aは入力された電気信号を中間周
波数に周波数変換して周波数を下げた上で更に増幅し、
コンビエータに入力するためにディジタル信号に変換す
るためのA/D変換器7が必要とする数■オーダの電気
信号の強度にまで増幅する。
This electrical signal is amplified by the preamplifier 2A to an electrical signal with a strength on the order of mV and then input to the main amplifier 6A, which converts the input electrical signal to an intermediate frequency and converts the frequency to an intermediate frequency. is further amplified after lowering the
The A/D converter 7 for converting the electric signal into a digital signal for input to the combiator amplifies the electric signal to a strength on the order of several square meters.

〔発明が解決しようと、する課題〕[Problem that the invention attempts to solve]

受信コイルが受信する高周波信号は微弱であるので、こ
の微弱な電気信号をまず前置増幅器によって必要な強度
に増幅する。この前置、増幅器の出力信号を所要の強度
にするためには前置増幅器の増幅率を大きくとる必要が
あるが、この前置増幅器の出力側から主増幅器までの接
続ケーブルがアンテナとなって周辺の空間に高周波電磁
波を放出し、この高周波電磁波が前置増幅器の入力回路
の配線に受信されて前置増幅器の出力側から入力側に帰
還される帰還回路が形成されかつ前置増幅器の増幅率が
高いことからこの帰還作用の効果が大きく前置増幅器の
出力13号に混変調歪みを生じさせる原因になるという
問題が生ずる。更に前置増幅器の直流を源供給ケーブル
から外部雑音が侵入して尚更装置増幅器の信号対雑音比
を低下させる結果にてっている。
Since the high frequency signal received by the receiving coil is weak, this weak electric signal is first amplified to the required strength by a preamplifier. In order to make the output signal of this preamplifier the required strength, it is necessary to increase the amplification factor of the preamplifier, but the connection cable from the output side of this preamplifier to the main amplifier serves as an antenna. A feedback circuit is formed in which high-frequency electromagnetic waves are emitted into the surrounding space, and these high-frequency electromagnetic waves are received by the wiring of the input circuit of the preamplifier and fed back from the output side of the preamplifier to the input side, and the amplification of the preamplifier is completed. Since the ratio is high, a problem arises in that the effect of this feedback effect is large and causes intermodulation distortion in the output No. 13 of the preamplifier. Additionally, external noise intrudes from the preamplifier's DC source supply cable, further reducing the signal-to-noise ratio of the system amplifier.

この発明は、外部からの雑音の侵入を防ぎ、前置増幅器
の増幅率を所要の出力信号の強度になるよう充分大きく
とり、しかも前置増幅器の出力信号が帰還することによ
るfFA変調歪みが生ずることのない対雑t’r特性の
優れた受信VIWを提供することを目的とする。
This invention prevents the intrusion of external noise, sets the amplification factor of the preamplifier sufficiently large to achieve the required output signal strength, and also prevents fFA modulation distortion due to feedback of the output signal of the preamplifier. It is an object of the present invention to provide a reception VIW with excellent noise-to-noise t'r characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、受信コ
イルが受信した高周波電気43号を増幅する前置増幅器
と、この前置増幅器の出力13号を中間周波数に周波数
変換するとともに更に増幅する主増幅器とでなる核磁気
共鳴断層撮像装置の高周波電磁波の受信装置において、
前記前置増幅器の出力信号を光信号に変換する電気光変
換手段と、この電気光変換手段で変換した光13号を光
伝送する光伝送手段と、この光伝送手段で光伝送した光
1λ号を電気信号に変換する光電気変換手段とを備え、
前記光電気変換手段の出力信号を前記主増幅器の入力信
号とし、前記前置増幅器のvL流電源として直流電力を
発電し供給する太陽電池と、この太陽電池に照射する光
を発生する発光源とでなり、前記太陽電池を前記前置増
幅器と前記電気光変換手段とともに共通のケースに収納
し、このケースの表面の少なくとも一部を前記太陽電池
の受光面とし、この受光面に前記発光源が生起する光を
照射してなるものとする。
In order to solve the above problems, the present invention includes a preamplifier that amplifies the high frequency electricity No. 43 received by the receiving coil, and converts the output No. 13 of this preamplifier into an intermediate frequency and further amplifies it. In a high-frequency electromagnetic wave receiving device for a nuclear magnetic resonance tomography device, which includes a main amplifier,
an electro-optical conversion means for converting the output signal of the preamplifier into an optical signal; an optical transmission means for optically transmitting the light No. 13 converted by the electro-optic conversion means; and an optical No. 13 optical signal transmitted by the optical transmission means. and a photoelectric conversion means for converting the signal into an electrical signal,
A solar cell that uses the output signal of the photoelectric conversion means as an input signal of the main amplifier to generate and supply DC power as a VL power source for the preamplifier, and a light emitting source that generates light to irradiate the solar cell. The solar cell is housed together with the preamplifier and the electro-optical conversion means in a common case, at least a part of the surface of the case is used as a light-receiving surface of the solar cell, and the light-emitting source is placed on the light-receiving surface. It is assumed that the generated light is irradiated.

〔作用〕[Effect]

この発明の構成において、前置増幅器の消費電力は小さ
いのでこの前置増幅器の直流電源として太陽電池を使用
し、しかも専用の発光源で光を照射することにより所要
の電力を供給するのに大きな面積の太g4T!l池とす
る必要がないとともに定常的な電力供給が可能でなり、
外部からの電源コートを省略することができるので電源
コードから侵入する外部雑音はなくなり、更に、前置増
幅器の出力信号としての電気信号を電気光変換器にょう
て光信号に変換した上で前置増幅器の出力信号とするこ
とにより、出力信号が高周波電磁波を周辺に生起しない
ので入力側に帰還す現象が生じないことから前置増幅器
の増幅率を所要の値に充分大きくしても混合変調歪みが
生ずることはない。
In the configuration of this invention, since the power consumption of the preamplifier is small, a solar cell is used as the DC power source for this preamplifier, and by irradiating light with a dedicated light source, it takes a large amount of power to supply the required power. Thick area g4T! There is no need for a single pond, and a steady supply of power is possible.
Since the external power supply cord can be omitted, there is no external noise intruding from the power cord.Furthermore, the electrical signal as the output signal of the preamplifier is converted into an optical signal by an electro-optic converter, and then the preamplifier is converted into an optical signal. By using the output signal of a preamplifier, the output signal does not generate high-frequency electromagnetic waves in the surrounding area, so there is no phenomenon of feedback to the input side, so even if the amplification factor of the preamplifier is sufficiently increased to the required value, mixed modulation will not occur. No distortion occurs.

〔実施例〕〔Example〕

以下この発明を′X施例に基づいて説明する。第1図は
この発明の実施例を示す回路図であり、従来技術と共通
の部品に対しては同一の参照番号を付すことにより詳細
な説明を省略する。受信コイル400で受信した高周波
電気信号を整合回路1を経て前置増幅器2の入力信号と
し、この前置増幅器2の出力信号により電気光変換手段
としての発光ダイオード4を発光させて光信号41を生
起させ、この光信号41を光伝送手段としての光ファイ
バ42に通して光電気変換手段としてのホトダイオード
5に照射して電気信号に変換し、この電気信号を主増幅
器の人力信号として主増幅X6で増幅してA/D変攪器
7の入力信号とする。前置増幅器2の直i電源として太
陽電池3を使用しこの太陽電池3に専用の白熱電球32
による白色光31を照射して所要の電力を定常的に供給
する。
The present invention will be explained below based on Example 'X. FIG. 1 is a circuit diagram showing an embodiment of the present invention, and parts common to those in the prior art are given the same reference numerals and detailed explanations will be omitted. The high-frequency electric signal received by the receiving coil 400 is passed through the matching circuit 1 as an input signal to the preamplifier 2, and the output signal of the preamplifier 2 causes the light emitting diode 4 as an electro-optical conversion means to emit light to generate an optical signal 41. This optical signal 41 is passed through an optical fiber 42 as an optical transmission means and irradiated onto a photodiode 5 as a photoelectric conversion means to convert it into an electric signal, and this electric signal is used as a human power signal of the main amplifier and is transmitted to the main amplifier X6. The signal is amplified and used as an input signal to the A/D converter 7. A solar cell 3 is used as a direct power source for the preamplifier 2, and an incandescent light bulb 32 dedicated to this solar cell 3 is used.
The required power is constantly supplied by irradiating the white light 31 with a white light 31.

発光ダイオード4や太陽電池3は前置増幅器2とともに
共通のケースに一体に収納する構成とし、太陽電池3の
受光面をケースの表面の一部として配置してこの受光面
に白熱電球32の白色光31を集中させて効率良(照射
することにより所要の電力を発電するに必要な太陽電池
3の表面積を縮小できるとともに定常的な電力を供給で
きる構成とする。
The light emitting diode 4 and the solar cell 3 are housed together with the preamplifier 2 in a common case, and the light-receiving surface of the solar cell 3 is arranged as part of the surface of the case, and the white light of the incandescent light bulb 32 is placed on this light-receiving surface. The structure is such that the surface area of the solar cell 3 required to generate the required power can be reduced by concentrating the light 31 and irradiating it efficiently (by irradiating it), and at the same time can supply steady power.

前置増幅器2の出力信号を発光ダイオード4によって発
光した光1言号41にすることにより前置′ 増幅器か
ら主増幅器を結ぶケーブルを省略することができるので
、このケーブルが外部雑音を拾うことはなくなり、また
このケーブルが発信アンテナとなって高周波′@電磁波
周辺の空間に発信しこの高周波電磁波を前置増幅器20
入力回路の配線が受信するという帰還が生じこれが起因
して発生する混変調歪みが生ずることもない。
By converting the output signal of the preamplifier 2 into the light 41 emitted by the light emitting diode 4, the cable connecting the preamplifier to the main amplifier can be omitted, so this cable will not pick up external noise. This cable also becomes a transmitting antenna and transmits high frequency '@ electromagnetic waves into the surrounding space, and this high frequency electromagnetic wave is transmitted to the preamplifier 20.
No cross-modulation distortion occurs due to feedback received by the wiring of the input circuit.

前置増幅器2の直流電源として太陽電池3を使用しこの
太陽電池に電灯などにより白色光31を照射することに
より太陽電池3に所要の電力を定常的に供給する方式と
したことにより、前置増幅器2の直流電源のケーブルを
必要としないので、このケーブルから侵入する雑音がな
くなり前置増幅器2の雑音特性が改善される。
The solar cell 3 is used as a DC power source for the preamplifier 2, and the solar cell 3 is irradiated with white light 31 from a lamp or the like to constantly supply the required power to the solar cell 3. Since a cable for the DC power supply of the amplifier 2 is not required, noise intruding from this cable is eliminated, and the noise characteristics of the preamplifier 2 are improved.

更に光信号41を光ファイバ42で約1m離れた主増幅
器6まで光信号を伝送するが、この主増幅器6を設置し
である場所は高周波電磁波空間から離れた位置にあると
ともに充分なt磁シールドが可能な場所であるので、光
信号41を電気信号に変換するホトダイオード5以降の
回路である主増幅器では外部雑音や高周波電磁波の影響
を受けることのない低雑音増幅器にすることができる。
Furthermore, the optical signal 41 is transmitted through an optical fiber 42 to the main amplifier 6, which is approximately 1 m away, but the main amplifier 6 is installed at a location far from high-frequency electromagnetic waves and has sufficient magnetic shielding. Therefore, the main amplifier, which is the circuit after the photodiode 5 that converts the optical signal 41 into an electrical signal, can be a low-noise amplifier that is not affected by external noise or high-frequency electromagnetic waves.

この実施例では光伝送手段42を光ファイバとしたがこ
の光ファイバによる光信号の伝送は光通信で盛んに使用
されている公知の技術である。この発明を適用する受信
コイルには前述のように送受信兼用コイルや頭部専用の
受信コイルなどがあるが、これらの使用時の位置は必ず
主コイル100が生起する均一磁場との双方の中心が一
部する位置の定位置に配置されるので前置増幅器2の出
力信号としての光信号の発光位置も各受信コイルごとに
一義的に定まるので、光ファイバを光伝送手段とするの
ではなく、受光部を主コイル100の外部において空間
を光伝送手段とすることも可能であり、発光部と受光部
との光軸を合わせるとともにレンズを使用して発光部か
発した光信号が受光部で焦点を結ぶらうに構成すること
により効率的な光伝送手段を構成すくこともできる。
In this embodiment, the optical transmission means 42 is an optical fiber, but the transmission of optical signals by this optical fiber is a well-known technique widely used in optical communications. As mentioned above, the receiving coil to which this invention is applied includes a dual-purpose coil for transmitting and receiving, a receiving coil exclusively for the head, etc., but when using these coils, the position must be such that the center of both the uniform magnetic field and the uniform magnetic field generated by the main coil 100 is located. Since the light emitting position of the optical signal as the output signal of the preamplifier 2 is uniquely determined for each receiving coil, instead of using an optical fiber as the optical transmission means, It is also possible to use the light receiving section outside the main coil 100 and using space as a light transmission means, and by aligning the optical axes of the light emitting section and the light receiving section and using a lens, the optical signal emitted from the light emitting section can be transmitted to the light receiving section. An efficient optical transmission means can also be constructed by configuring the light beam to be focused.

また、太陽電池の発光源として実施例では白熱電球とし
たが、太陽電池の光波長特性を考慮すれば白熱電球に限
定するものではなく他の発光源を使用してもよい。
Further, in the embodiment, an incandescent lamp was used as the light emitting source of the solar cell, but if the light wavelength characteristics of the solar cell are considered, the light emitting source is not limited to an incandescent lamp, and other light emitting sources may be used.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように前置増幅器の出力信号としての
電気信号を光信号に変換した上で主増幅器に光伝送する
ことにより前置増幅器の出力信号を主増幅器に伝送する
ためのケーブルに起因する帰還作用が生じて混変調歪み
が生ずるということがなくなり、前置増幅器の直流を源
として太陽電池を使用しこの太陽電池を前置増幅器や前
述の発光ダイオードとともに一体形成して共通のケース
に収納する構成としこのケースの表面に設けた太陽電池
の受光部に発光源からの光を照射することにより所要の
電力の直流を定常的に供給することとしたことにより、
直流電源からのケーブルが雑音を拾って前置増幅器の信
号対雑音比を低下させることがなくなった。このように
MHI装置の心臓部ともいうべき高周波受信装置におい
て信号対雑音比を大幅に向上することが出来た結果、良
好な画像を得ることのできる高性能のMHI装置とする
ことができた。
As mentioned above, this invention originates in a cable for transmitting the output signal of a preamplifier to the main amplifier by converting the electrical signal as the output signal of the preamplifier into an optical signal and then optically transmitting the signal to the main amplifier. This eliminates the possibility of cross-modulation distortion caused by the feedback effect caused by the feedback, and it is possible to use a solar cell as the source of the direct current of the preamplifier, and to integrate this solar cell with the preamplifier and the above-mentioned light emitting diode into a common case. By irradiating the light-receiving part of the solar cell provided on the surface of the case with light from the light-emitting source, the required DC power is constantly supplied.
The cable from the DC power supply no longer picks up noise and reduces the signal-to-noise ratio of the preamplifier. As a result of being able to significantly improve the signal-to-noise ratio in the high-frequency receiving device, which can be called the heart of the MHI device, we were able to create a high-performance MHI device that can obtain good images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2図はMH
I装置の各コイルを示す斜視図、第3図は従来の受信装
置を示す回路図である。 1・・・整合回路、2.2A・・・前置増幅器、3・・
・太陽電池、31・・・白色光(光)、32・・・白熱
電球(発光源)、 4・・・発光ダイオード(i!気先変換手段)、41・
・・光信号、42・・・光ファイバ(光伝送手段)、5
・・・ホトダイオード(光電気変換手段)、6.6A・
・・主増幅器、400・・・受信コイル。 第2図 祐3図
Figure 1 is a circuit diagram showing an embodiment of this invention, Figure 2 is a MH
FIG. 3 is a perspective view showing each coil of the I device, and a circuit diagram showing a conventional receiving device. 1... Matching circuit, 2.2A... Preamplifier, 3...
・Solar cell, 31...White light (light), 32...Incandescent light bulb (light source), 4...Light emitting diode (i! air conversion means), 41.
・・Optical signal, 42 ・・Optical fiber (optical transmission means), 5
・・・Photodiode (photoelectric conversion means), 6.6A・
...Main amplifier, 400...Reception coil. Figure 2 Yu Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)受信コイルが受信した高周波電気信号を増幅する前
置増幅器と、この前置増幅器の出力信号を中間周波数に
周波数変換するとともに更に増幅する主増幅器とでなる
核磁気共鳴断層撮像装置の高周波電磁波の受信装置にお
いて、前記前置増幅器の出力信号を光信号に変換する電
気光変換手段と、この電気光変換手段で変換した光信号
を光伝送する光伝送手段と、この光伝送手段で光伝送し
た光信号を電気信号に変換する光電気変換手段とを備え
、前記光電気変換手段の出力信号を前記主増幅器の入力
信号とし、前記前置増幅器の直流電源として直流電力を
発電し供給する太陽電池と、この太陽電池に照射する光
を発生する発光源とでなり、前記太陽電池を前記前置増
幅器と前記電気光変換手段とともに共通のケースに収納
し、このケースの表面の少なくとも一部を前記太陽電池
の受光面とし、この受光面に前記発光源が生起する光を
照射してなることを特徴とする核磁気共鳴断層撮像装置
の受信装置。
1) High-frequency electromagnetic waves of a nuclear magnetic resonance tomography imaging system consisting of a preamplifier that amplifies the high-frequency electrical signal received by the receiving coil, and a main amplifier that frequency-converts the output signal of this preamplifier to an intermediate frequency and further amplifies it. In the receiving device, there is provided an electro-optical conversion means for converting the output signal of the preamplifier into an optical signal, an optical transmission means for optically transmitting the optical signal converted by the electro-optic conversion means, and an optical transmission means using the optical transmission means. and a photoelectric conversion means for converting the optical signal into an electrical signal, the output signal of the photoelectric conversion means is used as an input signal of the main amplifier, and a solar power generator generates and supplies DC power as a DC power source for the preamplifier. The solar cell is housed in a common case together with the preamplifier and the electro-optical conversion means, and at least a part of the surface of the case is A receiving device for a nuclear magnetic resonance tomography imaging apparatus, characterized in that the light-receiving surface of the solar cell is used as a light-receiving surface, and the light-receiving surface is irradiated with light generated by the light emitting source.
JP63047972A 1988-03-01 1988-03-01 Receiving device of nuclear magnetic resonance tomographic imaging apparatus Pending JPH01223943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047972A JPH01223943A (en) 1988-03-01 1988-03-01 Receiving device of nuclear magnetic resonance tomographic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047972A JPH01223943A (en) 1988-03-01 1988-03-01 Receiving device of nuclear magnetic resonance tomographic imaging apparatus

Publications (1)

Publication Number Publication Date
JPH01223943A true JPH01223943A (en) 1989-09-07

Family

ID=12790231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047972A Pending JPH01223943A (en) 1988-03-01 1988-03-01 Receiving device of nuclear magnetic resonance tomographic imaging apparatus

Country Status (1)

Country Link
JP (1) JPH01223943A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483207U (en) * 1990-11-29 1992-07-20
JPH0499904U (en) * 1991-02-12 1992-08-28
EP0527530A1 (en) * 1991-08-10 1993-02-17 Philips Patentverwaltung GmbH Nuclear resonance examining apparatus with a coil arrangement
USRE37602E1 (en) 1993-11-26 2002-03-26 Medrad, Inc. Patient infusion system for use with MRI
US6704592B1 (en) 2000-06-02 2004-03-09 Medrad, Inc. Communication systems for use with magnetic resonance imaging systems
WO2005103747A1 (en) * 2004-04-26 2005-11-03 Koninklijke Philips Electronics, N.V. Electro-optical magnetic resonance transducer
WO2007066250A1 (en) * 2005-12-08 2007-06-14 Koninklijke Philips Electronics N.V. Arrangement for receiving and/or transmitting rf signals especially in a mri system
WO2007039842A3 (en) * 2005-10-06 2007-09-07 Koninkl Philips Electronics Nv Mr coil with fiber optical connection
JP2009511157A (en) * 2005-10-11 2009-03-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ RF antenna with integrated electronic circuit
JP2012120837A (en) * 2010-12-09 2012-06-28 General Electric Co <Ge> Nanophotonic system for optical data and power transmission in medical imaging system
US11137459B2 (en) 2018-03-29 2021-10-05 Koninklijke Philips N.V. Radio frequency (RF) antenna element with a detuning system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0483207U (en) * 1990-11-29 1992-07-20
JPH0499904U (en) * 1991-02-12 1992-08-28
EP0527530A1 (en) * 1991-08-10 1993-02-17 Philips Patentverwaltung GmbH Nuclear resonance examining apparatus with a coil arrangement
US5245288A (en) * 1991-08-10 1993-09-14 U.S. Philips Corporation Magnetic resonance examination apparatus with wireless transmission of spin resonance signals from high frequency coil system processing unit
USRE37602E1 (en) 1993-11-26 2002-03-26 Medrad, Inc. Patient infusion system for use with MRI
US6704592B1 (en) 2000-06-02 2004-03-09 Medrad, Inc. Communication systems for use with magnetic resonance imaging systems
US7221159B2 (en) 2000-06-02 2007-05-22 Medrad, Inc. Communication systems for use with magnetic resonance imaging systems
US7283860B2 (en) 2000-06-02 2007-10-16 Medrad, Inc. Communication systems for use with magnetic resonance imaging systems
WO2005103747A1 (en) * 2004-04-26 2005-11-03 Koninklijke Philips Electronics, N.V. Electro-optical magnetic resonance transducer
US8324899B2 (en) 2005-10-06 2012-12-04 Koninklijke Philips Electronics N.V. MR coil with fiber optical connection
WO2007039842A3 (en) * 2005-10-06 2007-09-07 Koninkl Philips Electronics Nv Mr coil with fiber optical connection
JP2009511157A (en) * 2005-10-11 2009-03-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ RF antenna with integrated electronic circuit
WO2007066250A1 (en) * 2005-12-08 2007-06-14 Koninklijke Philips Electronics N.V. Arrangement for receiving and/or transmitting rf signals especially in a mri system
US7777494B2 (en) 2005-12-08 2010-08-17 Koniklijke Philips Electronics N.V. Arrangement for receiving and/or transmitting RF signals especially in a MRI system
JP2012120837A (en) * 2010-12-09 2012-06-28 General Electric Co <Ge> Nanophotonic system for optical data and power transmission in medical imaging system
US11137459B2 (en) 2018-03-29 2021-10-05 Koninklijke Philips N.V. Radio frequency (RF) antenna element with a detuning system

Similar Documents

Publication Publication Date Title
US7345485B2 (en) Optical interface for local MRI coils
KR102276790B1 (en) System for radio frequency coils for MR imaging
EP1105966B1 (en) Mri apparatus provided with anti-interference supply conductors for electrical connection equipment
JPH01223943A (en) Receiving device of nuclear magnetic resonance tomographic imaging apparatus
JP2945480B2 (en) Electrocardiogram sensor device
US7592813B2 (en) Wireless RF coil power supply
CN101151547B (en) Interventional device for use in a magnetic resonance system
WO2004089211A2 (en) Wireless digital transmission of mr signals
JP2008534104A (en) MRI system having a scan room interface for A / D conversion of MR signals between a receiving coil unit and a remote signal processing unit
EP3227700B1 (en) Light data communication link device for use in magnetic resonance examination systems
US10398505B2 (en) MR imaging guided therapy system
Nohava et al. Perspectives in wireless radio frequency coil development for magnetic resonance imaging
JP2711252B2 (en) Passive decoupling receiving antenna especially for nuclear magnetic resonance imaging equipment
CN218156216U (en) Quantum sensing teaching equipment based on diamond NV color center
JPH0654824A (en) Wireless receiver for camera by nuclear magnetic resonance
Yuan et al. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI
JP2005270304A (en) Magnetic resonance imaging apparatus and magnetic resonance signal receiver
CN111819455B (en) Apparatus for non-electrically connecting an MRI receive coil to an MRI system using RF transmission over fiber
US9625542B2 (en) Local antenna device for transmitting magnetic resonance signals
JPH0511849Y2 (en)
CN213750295U (en) Receiving unit and magnetic resonance apparatus
JP4508746B2 (en) X-ray CT system
CN209472620U (en) A kind of NMR signal transmitting device based on radio frequency fiber optic transmission technology
JP3288806B2 (en) Magnetic resonance imaging equipment
JP2000510955A (en) Measurement system including antenna