JPH01223064A - Slip preventing device for driving wheel - Google Patents

Slip preventing device for driving wheel

Info

Publication number
JPH01223064A
JPH01223064A JP63047467A JP4746788A JPH01223064A JP H01223064 A JPH01223064 A JP H01223064A JP 63047467 A JP63047467 A JP 63047467A JP 4746788 A JP4746788 A JP 4746788A JP H01223064 A JPH01223064 A JP H01223064A
Authority
JP
Japan
Prior art keywords
road surface
surface condition
torque
prevention device
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047467A
Other languages
Japanese (ja)
Inventor
Kosaku Shimada
耕作 嶋田
Shigeru Horikoshi
堀越 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63047467A priority Critical patent/JPH01223064A/en
Publication of JPH01223064A publication Critical patent/JPH01223064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To improve the start accelerating property by detecting the friction coefficient between a tire and the road surface and the slip ratio during deceleration, estimating and storing the road surface condition based on the detection values, and controlling the driving torque in response to the road surface condition stored at the time of restart. CONSTITUTION:The slip ratio is detected by a slip ratio detecting means 14 based on the rotating speed of a driving wheel 11 detected by a wheel speed sensor 12 and the vehicle acceleration detected by an acceleration sensor 13, the road surface condition is calculated by a road surface condition calculating means 15 based on this slip ratio and the vehicle acceleration. This road surface condition is stored in a memory means 16 as a numerical value. At the time of restart after the vehicle is stopped, the driving force is calculated by a driving force control means 17 based on the road surface condition immediately before the stop. An actuator 18 is driven according to this calculation result, one of a throttle valve, a transmission, an ignition coil and an injector is controlled, the torque of the driving wheel is reduced, and the occurrence of a slip is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は駆動輪空転防止制御に係り、特に発進時の駆動
車輪空転防止に好適な駆動車輪空転防止装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to drive wheel slip prevention control, and more particularly to a drive wheel slip prevention device suitable for preventing drive wheels from spinning when starting.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭58−38342号や特開昭60
−215434号や特開昭62−29461号に記載の
ように、車両が発進し、駆動車輪に空転が起こってから
それを検出して、エンジンから駆動輪への伝達トルクを
低下させる制御やブレーキをかける制御を行なっていた
Conventional devices are disclosed in Japanese Patent Application Laid-Open Nos. 58-38342 and 1983.
As described in No. 215434 and Japanese Unexamined Patent Publication No. 62-29461, controls and brakes that detect when the vehicle starts and the drive wheels start spinning and reduce the torque transmitted from the engine to the drive wheels. It was controlled by applying

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は低μ路での発進時において、駆動輪に過
大なトルク発生→駆動輸空転開始→空転検知→演算→駆
動トルクを低下させるための動作→駆動トルク低下→駆
動輪空転減少・・・という手順を踏んで動作していた。
In the above conventional technology, when starting on a low μ road, excessive torque is generated in the drive wheels → start of drive idle rotation → idle rotation detection → calculation → operation to reduce drive torque → reduction of drive torque → reduction of drive wheel idle rotation... It worked by following these steps.

そのため、空転が起こるまで路面状態を知ることが出来
ず、あらかじめ路面状態に応じた制御を行うことは出来
ない構成となっていた。
Therefore, it is not possible to know the road surface condition until a wheel slip occurs, and the configuration is such that it is not possible to perform control in advance in accordance with the road surface condition.

本発明の目的は、車両が停止する直前の路面状態を検知
することにより、車両発進時において、駆動輪にわずか
な空転をも起こさせないようにし。
An object of the present invention is to prevent even the slightest slip of the drive wheels when the vehicle starts by detecting the road surface condition immediately before the vehicle stops.

車両の加速性、安定性を向上させることにある。The purpose is to improve vehicle acceleration and stability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、駆動輪に空転が起こる前に駆動トルクを低
下させておくことにより達成できる。そこで、本発明で
は第1図のような構成をとった。
The above object can be achieved by reducing the drive torque before the drive wheels start spinning. Therefore, in the present invention, a configuration as shown in FIG. 1 is adopted.

車輪速センサ12から検出される駆動@11の回転速度
と、加速度センサ13から検出される車両加速度とから
、スリップ率検出手段14でスリップ率を検出する。路
面状態算出手段15では。
The slip rate is detected by the slip rate detection means 14 from the rotational speed of the drive @ 11 detected by the wheel speed sensor 12 and the vehicle acceleration detected by the acceleration sensor 13. In the road surface condition calculation means 15.

スリップ率と車両加速度から路面状態を算出し、記憶手
段16にて路面状態を数値として記憶しておく。車両が
停止して再発進をするときは、記憶しておいた。停止直
前の路面状態をもとに駆動力制御手段17で演算し、信
号を駆動力制御アクチュエータ18へ送る。駆動力制御
アクチュエータは具体的には、スロットル弁、トランス
ミッション、点火コイル、インジェクタ、ブレーキ等の
いずれか、又は複数の組合せである。駆動力制御アクチ
ュエータは、駆動輪のトルクを減少させ、空転を抑制す
る。
The road surface condition is calculated from the slip rate and the vehicle acceleration, and the road surface condition is stored as a numerical value in the storage means 16. I memorized it when the vehicle stopped and restarted. The driving force control means 17 performs calculations based on the road surface condition immediately before stopping, and sends a signal to the driving force control actuator 18. Specifically, the driving force control actuator is any one of a throttle valve, a transmission, an ignition coil, an injector, a brake, etc., or a combination of these. The driving force control actuator reduces the torque of the driving wheels and suppresses wheel slipping.

〔作用〕[Effect]

以上のような方法によって制御された車両の減速→停止
→発進時の動作を見ると、まずブレーキが踏まれて減速
している間はマイコンの演算周期毎に常にタイヤ−路面
間の摩擦係数μとスリップ率Sを計算する。ここで、タ
イヤ−路面間の摩擦係数μは、加速度センサから計測し
た車両加速度αをもとに計算する。一方スリップ率Sは
、加速度センサの信号より計算した車速Vと車輪速セン
サからの信号V、とから計算する。計算したμとSから
路面状態を数値化する。ここでいう路面状態とは滑りや
すい路面かどうかである。数値化した路面状態は記憶さ
れ、新しいデータが入ってくるたびにシフトされる。車
両が停止すると、以上の計測→計算→記憶という動作は
終了し、停止する直前の路面状態を判定する。滑りやす
い路面と判定したら、発進時に駆動トルクを速やかに減
少できるようアクチュエータを作動させる。実際には、
スロットル弁、点火コイル、トランスミッション、イン
ジェクタ、ブレーキ等である。このようにして制御され
た車両は、発進時にわずかなスリップも起こさず加速性
、安定性を向上させることができる。
Looking at the operation of a vehicle controlled by the method described above when decelerating → stopping → starting, first, while the brake is pressed and the vehicle is decelerating, the friction coefficient μ between the tires and the road surface is constantly calculated at every calculation cycle of the microcomputer. and calculate the slip rate S. Here, the friction coefficient μ between the tires and the road surface is calculated based on the vehicle acceleration α measured from the acceleration sensor. On the other hand, the slip rate S is calculated from the vehicle speed V calculated from the signal from the acceleration sensor and the signal V from the wheel speed sensor. The road surface condition is quantified from the calculated μ and S. The road surface condition here refers to whether the road surface is slippery or not. The numerical value of the road surface condition is stored and shifted each time new data is received. When the vehicle stops, the above-mentioned measurement, calculation, and storage operations are completed, and the road surface condition immediately before the vehicle stops is determined. If the road surface is determined to be slippery, the actuator is activated to quickly reduce the drive torque when starting the vehicle. in fact,
These include throttle valves, ignition coils, transmissions, injectors, brakes, etc. A vehicle controlled in this manner can improve acceleration and stability without causing even the slightest slip when starting.

〔実施例〕〔Example〕

以下、本発明の一実施例を図によって説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図に実施例のハードh1成図を示す。制御部141
ROM、RAM、CPU、Ilo、 レジスタ等からな
り、センサ類2からの信号をもとに演算を行ない、トラ
ンスミッション5.スロットル弁6、点火コイル7、イ
ンジェクタ8.ブレーキ9等を動作させて駆動トルクを
低下させる制御を行ない、駆動輪の空転を防止する。こ
こで、センサ類としては主に、加速度センサ3.車輪速
センサ4がある。アクチュエータとしては、トランスミ
ッション5.スロットル弁62点火コイル7、インジェ
クタ8.ブレーキ9の5つを揚げたが、この他にも駆動
トルクを減少させることが可能なものであれば良い6又
、これらのアクチュエータは単独使用でも複数使用でも
効果を出すことができろ。駆動トルクを低下させる方法
は、トランスミッション5では高速側ギヤに変更する。
FIG. 3 shows a hardware h1 diagram of the embodiment. Control unit 141
It consists of ROM, RAM, CPU, Ilo, registers, etc., and performs calculations based on the signals from sensors 2, and transmits 5. Throttle valve 6, ignition coil 7, injector 8. Control is performed to reduce the drive torque by operating the brake 9, etc., to prevent the drive wheels from spinning. Here, the sensors mainly include acceleration sensor 3. There is a wheel speed sensor 4. As an actuator, transmission 5. Throttle valve 62, ignition coil 7, injector 8. Although the five brakes 9 have been mentioned above, any other actuators may be used as long as they can reduce the driving torque6.Also, these actuators can be effective when used singly or in combination. The method of reducing the driving torque is to change the transmission 5 to a high speed gear.

スロットル弁6では弁開度を小さくする。点火コイル7
では点火時期を遅られる。インジェクタ8では燃料供給
量を減らす、又は、燃料供給を一時的にカットする。ブ
レーキ9ではブレーキ油圧を増圧する。
The opening degree of the throttle valve 6 is reduced. Ignition coil 7
This will retard the ignition timing. In the injector 8, the amount of fuel supplied is reduced or the fuel supply is temporarily cut. In the brake 9, the brake hydraulic pressure is increased.

等である。etc.

第4図に制動時の車輪のスリップ率Sとタイヤ−路面間
の摩擦係数μとの関係を示す。図に示したように、摩擦
係数の絶対値は乾燥アスファルト路面では大きく、雪路
・凍結路では小さい。減速中にスリップ率Sとタイヤ−
路面間の摩擦係数μを計算して図中にプロットするとa
t、a2.aaのようになり、滑りやすい路面が滑りに
くい路面かを判定することができる。
FIG. 4 shows the relationship between the slip rate S of the wheels during braking and the coefficient of friction μ between the tires and the road surface. As shown in the figure, the absolute value of the friction coefficient is large on dry asphalt roads, and small on snowy and frozen roads. Slip rate S and tires during deceleration
Calculating the friction coefficient μ between the road surfaces and plotting it in the figure gives a
t, a2. aa, it is possible to determine whether a slippery road surface is a non-slip road surface.

次に、第2図のフローチャートを用いて制御部の動作を
説明する。ステップ201において車速Vがvlより大
きいかどうが判定する6V1は0(雇/時)付近とする
。V > V 1であれば、ステップ202に移る。ス
テップ202では、路面−タイヤ間の摩擦係数μを算出
する。実際には以下の通りである。
Next, the operation of the control section will be explained using the flowchart shown in FIG. 6V1, which is used to determine whether the vehicle speed V is greater than vl in step 201, is approximately 0 (hire/hour). If V > V 1, the process moves to step 202. In step 202, the coefficient of friction μ between the road surface and the tires is calculated. The actual situation is as follows.

ここでは車両の運動方程式を(1)式のようにたて、タ
イヤ−路面間の摩擦係数μは(5)式のように求める。
Here, the equation of motion of the vehicle is set up as shown in equation (1), and the friction coefficient μ between the tires and the road surface is determined as shown in equation (5).

μmg=mα          ・・・・・・ (1
)α μ =−・・・・・・ (2) m:車両重量 g:重力加速度 α:計測した車両加速度 次にステップ203ではブレーキランプスイッチがON
かどうかを判定する。ON(ブレーキが踏まれている状
態)であれば、減速中なので、ステップ204,205
を繰り返し、停止するまで路面状態を計測・記憶・シフ
トする。
μmg=mα (1
) α μ =−・・・・・・ (2) m: Vehicle weight g: Gravitational acceleration α: Measured vehicle acceleration Next, in step 203, the brake lamp switch is turned on.
Determine whether or not. If it is ON (the brake is being pressed), it means that the brake is decelerating, so steps 204 and 205
It repeats this process, measuring, memorizing, and shifting the road surface condition until it comes to a stop.

ステップ204では路面状態Rを算出する。実際には以
下の通りである。
In step 204, the road surface condition R is calculated. The actual situation is as follows.

まず、車速■を計算する。車速Vは定常走行時は車輪速
Vwを計測することにより得られるが、ブレーキがかけ
られ、減速を開始するとスリップが発生して正確な車速
は計測できない。そこで。
First, calculate the vehicle speed ■. The vehicle speed V can be obtained by measuring the wheel speed Vw during steady running, but when the brakes are applied and deceleration begins, slipping occurs and the vehicle speed cannot be measured accurately. Therefore.

ブレーキSWがONに変化した時の車輪速を初期値とし
て加速度センサの出力をもとに(1)式のように計算周
期毎に積分を行なう。
Using the wheel speed when the brake SW is turned ON as an initial value, integration is performed every calculation cycle as shown in equation (1) based on the output of the acceleration sensor.

Vn =Vn−t+ a ・A t      −(3
)V、:Xgl、在の車速 Vn−t  :Δを時間前の車速 α :加速度センサより計測した車両加速度 Δt:マイコンの計算周期 次に(3)式で求めた車速Vをもとにスリップ率Sを計
算する。スリップ率Sは(4)式のように表わせる。
Vn =Vn-t+a・At-(3
) V, : Calculate the rate S. The slip rate S can be expressed as in equation (4).

■ V : (1)式で求めた車速 7w :車輪速センサより計測した車軸速成に、路面状
態(高μ路か低μ路か)を判定するための基準摩擦係数
Aを計算する。基準摩擦係数Aはスリップ率Sの関数と
して第4図中の一点鎖線のように定める。実際にはRO
Mの中にテーブルとして持たせておく。
■V: Vehicle speed 7w determined by equation (1): Calculate the reference friction coefficient A for determining the road surface condition (high μ road or low μ road) based on the axle speed measured by the wheel speed sensor. The reference friction coefficient A is determined as a function of the slip ratio S as shown by the dashed line in FIG. Actually R.O.
I keep it inside M as a table.

A=f (S)          ・旧・・・・・ 
(5)ここまでで求めたμ、Aを用いて路面状態Rを(
6)式のように計算する。路面状態Rが1より大きけれ
ば滑りにくい路面であり、1以下であれば滑りやすい路
面であると判定する。
A=f (S) ・Old...
(5) Using μ and A obtained so far, calculate the road surface condition R (
6) Calculate as shown in formula. If the road surface condition R is greater than 1, it is determined that the road surface is not slippery, and if it is less than 1, it is determined that the road surface is slippery.

R冨−・・・・旧・・ (6) ステップ204にて現時刻の路面状態Rを計算したら、
ステップ205で、Rをメモリに記憶し。
R: Old... (6) After calculating the road surface condition R at the current time in step 204,
At step 205, R is stored in memory.

n個のデータ1個ずつをシフトする。このようにして、
ステップ201からステップ205では、車速V > 
v hかっブレーキペダルが踏まれている間、Rを計算
し、記憶・データシフトを繰り返す。
Shift n pieces of data one by one. In this way,
In steps 201 to 205, vehicle speed V>
While the brake pedal is depressed, R is calculated and the memory/data shift is repeated.

以上は減速中の動作であるが、車両が停止したとステッ
プ201で判定されると、ステップ208へ移る。
The above is an operation during deceleration, but if it is determined in step 201 that the vehicle has stopped, the process moves to step 208.

ステップ208では、路面状態R1(i個目のデータ)
が1より小さければ低μ路とみなし、駆動力トルクを減
少させる制御を行なう。本実施例ではステップ209〜
212のように駆動輪にブレーキをかける制御を行なっ
た。ステップ208で\RI≧1、つまり高μ路と判定
されると1発進時のブレーキ制御は行なわない。
In step 208, road surface condition R1 (i-th data)
If it is smaller than 1, it is regarded as a low μ road, and control is performed to reduce the driving force torque. In this embodiment, steps 209~
Control was performed to apply brakes to the driving wheels as in 212. If it is determined in step 208 that \RI≧1, that is, the road is high μ, brake control is not performed during the first start.

停止直前の路面状態を低μ路と判定すると、さらにステ
ップ209で数段階(本実施例では2段階とした)に分
ける。ステップ210ではブレーキトルクTaの目標値
をaとし、ステップ211ではブレーキトルクの目標値
をbとした。ステップ212ではブレーキ油圧回路を駆
動するための信号を出す。このように路面状態に応じて
、車輪にブレーキトルクをかけておき1発進時に駆動力
を小さくし車軸空転を防止する。上記のような制御を行
なって、車両が駆動輪の空転ないし発進を終えると、ス
テップ201,202,203からステップ206へと
移る。ステップ206に入った時点で、車体は走行状態
にあるので、リアルタイムでブレーキトルクを制御する
。はじめにエンジントルクTEを推定する。なぜならば
、ブレーキトルクを算出するのに、エンジントルクは必
要不可欠だからである。エンジントルクは、エンジン回
転数Nとエンジンに流入する空気IQ、とから推定でき
る。第5図は、フルスロットル時のエンジントルクTe
であり、第6図はエンジンに流入する空気量による効率
ηで、エンジントルクは(7)式のように表せる。
If the road surface condition immediately before the stop is determined to be a low μ road, it is further divided into several stages (two stages in this embodiment) in step 209. In step 210, the target value of the brake torque Ta is set to a, and in step 211, the target value of the brake torque is set to b. In step 212, a signal for driving the brake hydraulic circuit is issued. In this way, braking torque is applied to the wheels depending on the road surface condition, and the driving force is reduced during the first start to prevent the axle from spinning. After the above-mentioned control is performed and the vehicle finishes spinning the drive wheels or starting, the process moves from steps 201, 202, and 203 to step 206. When entering step 206, the vehicle body is in a running state, so the brake torque is controlled in real time. First, engine torque TE is estimated. This is because engine torque is essential for calculating brake torque. The engine torque can be estimated from the engine speed N and the air IQ flowing into the engine. Figure 5 shows the engine torque Te at full throttle.
FIG. 6 shows the efficiency η depending on the amount of air flowing into the engine, and the engine torque can be expressed as in equation (7).

TE =Te Xη        ・・・・・・ (
7)次に駆動輪での駆動トルクを(8)式のように表す
TE = Te Xη ・・・・・・ (
7) Next, the driving torque at the driving wheels is expressed as in equation (8).

T”wheem = TE X G X −・・・−(
8)(8)式で、Gは1−ランスミッションとデフアレ
ンシャルギア、の総減速比であり、−を乗じたのはデフ
ァレンシャルギアによるトルク分配である。
T"wheem = TE X G X -...-(
8) In equation (8), G is the total reduction ratio of 1-transmission and differential gear, and the value multiplied by - is the torque distribution by the differential gear.

次にステップ207ではブレーキトルクの目標値Taを
算出する。走行中の車両の駆動輪に注目して運動方程式
をたてると、(9)式のように表せる。
Next, in step 207, a target value Ta of brake torque is calculated. If we draw up an equation of motion focusing on the drive wheels of a running vehicle, it can be expressed as equation (9).

w ■・:= Twheem −TO−μmW−R−(9)
t I:車輪の慣性モーメント W:車輪の回転角速度 W:車軸にかかる荷重 R:車輪の半径 Wに目標値を持たせれば、ブレーキトルクT。
w ■・:= Twheem −TO−μmW−R−(9)
t I: Moment of inertia of the wheel W: Rotation angular velocity of the wheel W: Load applied to the axle R: If the radius W of the wheel has a target value, the brake torque T.

の目標値は(10)式のように与えられる。The target value of is given as in equation (10).

t ・・・・・・(10) このようにして、走行中のブレーキトルク目標値TBを
設定したら、ステップ212に移り、ブレーキ油圧回路
の駆動信号を出力する。
t (10) After setting the brake torque target value TB during running in this way, the process moves to step 212, and a drive signal for the brake hydraulic circuit is output.

以上のような一連の動作をしたときの制御効果を第7図
に示す、第7図は低μ路で減速→停止→発進を行なった
ときの、ブレーキランプSW、スロットル角、駆動輪の
スリップ率、ブレーキ油圧を表したものである。順を追
って説明すると、エンジンブレーキのみで減速している
車両があり、a時点でブレーキが踏まれる。すると路面
状態Rや車速Vの計算を繰り返し行ない、車速がO付近
になるb時点で終了する。路面状態RL から低μ路と
判定したので1発進前にブレーキトルクを所定値だけか
けておく。次に、C時点からスロットルを開けて発進す
るとき、本発明ではあらかじめ、ブレーキトルクをかけ
ておくので、駆動輪の余分なスリップは起こらない。従
来例では、ブレーキトルクをかけないで発進するので、
すぐに駆動輪の余分な空転が起こり、d時点でこれを検
知する。
Figure 7 shows the control effect when performing the above series of operations. Figure 7 shows the brake lamp SW, throttle angle, and drive wheel slip when decelerating → stopping → starting on a low μ road. This shows the rate and brake oil pressure. To explain step by step, there is a vehicle that is decelerating only by engine braking, and the brake is stepped on at time a. Then, the calculation of the road surface condition R and the vehicle speed V is repeatedly performed, and the process ends at point b when the vehicle speed becomes around O. Since it is determined that the road is a low μ road based on the road surface condition RL, a predetermined amount of brake torque is applied before starting the vehicle. Next, when the throttle is opened from time C to start the vehicle, the present invention applies brake torque in advance, so that no extra slip of the drive wheels occurs. In the conventional example, the vehicle starts without applying brake torque, so
Immediately, the drive wheels begin to spin excessively, and this is detected at time d.

さらに、ブレーキ油圧を増圧するよう信号を出し、アク
チュエータがこれを受けて増圧を完了し、駆動輪の空転
をおさえられるのはe時点になってしまう。
Furthermore, a signal is issued to increase the brake hydraulic pressure, and the actuator receives this signal and completes the pressure increase, and the drive wheels are prevented from spinning at time e.

以上のように本発明の効果を従来例に比較して記してき
たが、本発明の効果は、駆動トルクの低下をブレーキ制
御で行なった場合に限らず、スロットル弁制御、トラン
スミッション制御1煮火時期制御、燃料噴射制御などで
行なった場合にも期待でき、いずれの場合にも、低μ路
での発進時における加速性、安定性の向上が図れる。
As mentioned above, the effects of the present invention have been described in comparison with the conventional example, but the effects of the present invention are not limited to the case where the drive torque is reduced by brake control, but also when reducing the drive torque by controlling the throttle valve, transmission control, etc. This can also be expected when timing control, fuel injection control, etc. are used, and in either case, it is possible to improve acceleration and stability when starting on a low μ road.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、車両が停止する直前の路面状態に応じ
て、発進時の駆動輪の過剰トルクを減少させる制御を行
なうため、低μ路での発進時にわずかなスリップも起す
ことなく加速性、安定性を向上させるのに効果がある。
According to the present invention, control is performed to reduce the excessive torque of the drive wheels at the time of starting according to the road surface condition immediately before the vehicle stops, so that acceleration is achieved without causing even the slightest slip when starting on a low μ road. , which is effective in improving stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を表わすブロック図、第2図は制
御部の動作を表わすフローチャート、第3図は本発明の
一実施例のハードウェア構成図、第4図はスリップ率S
とタイヤ−路面間の摩擦係数μとの特性図、第5図はエ
ンジントルクのテーブルを表わす線図、第6図はエンジ
ントルクの効率を表わす線図、第7図は本発明の効果を
表わす図である。 1・・・制御部、2・・・センサ類、3・・・加速度セ
ンサ、4・・・車輪速センサ、5・・・トランスミッシ
ョン、6・・・スロットル弁、7・・・点火コイル、8
・・・インジェクタ、9・・・ブレーキ。 第1 図 第2図 第3図 第4図 ス 1ノ 、−ノー二F、) 第5図 N 第6図 一一÷Qユ 第7図
FIG. 1 is a block diagram showing the configuration of the present invention, FIG. 2 is a flowchart showing the operation of the control section, FIG. 3 is a hardware configuration diagram of an embodiment of the present invention, and FIG. 4 is a slip ratio S.
Fig. 5 is a diagram showing a table of engine torque, Fig. 6 is a diagram showing engine torque efficiency, and Fig. 7 shows the effects of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Control part, 2... Sensors, 3... Acceleration sensor, 4... Wheel speed sensor, 5... Transmission, 6... Throttle valve, 7... Ignition coil, 8
...Injector, 9...Brake. Fig. 1 Fig. 2 Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 1、車両の状態を検出する各種センサと、その信号によ
つてエンジンから駆動輪への伝達トルクを低下させる手
段より成る駆動輪空転防止装置において、減速中にタイ
ヤ−路面間の摩擦係数μを検出する手段と、同じく減速
中にスリップ率Sを検出する手段と、得られたμ、Sと
基準摩擦係数パターンを比較して路面状態を推定する手
段と、路面状態を記憶する手段と、再発進時に、記憶し
ておいた路面状態に応じて駆動トルクを低下させる手段
を設けたことを特徴とする駆動輪空転防止。 2、第1項記載のタイヤ−路面間の摩擦係数μを検出す
る手段において、加速度センサの出力信号をもとにμを
計算することを特徴とする駆動輪空転防止装置。 3、第1項記載のスリップ率Sを検出する手段において
、加速度センサの出力信号より求めた車速Vと、車輪速
センサで計測した車輪速Vwをもとにスリップ率Sを計
算することを特徴とする駆動輪空転防止装置。 4、第1項記載の駆動トルクを低下させる手段において
、駆動輪ブレーキをかけることを特徴とする駆動輪空転
防止装置。 5、第1項記載の駆動トルクを低下させる手段において
、スロットル弁を閉じることを特徴とする駆動輪空転防
止装置。 6、第1項記載の駆動トルクを低下させる手段において
、トランスミッションでギヤを高速側にシフトすること
を特徴とする駆動輪空転防止装置。 7、第1項記載の駆動トルクを低下させる手段において
、点火時期を遅らせることを特徴とする駆動輪空転防止
装置。 8、第1項記載の駆動トルクを低下させる手段において
、燃料供給量を減少させることを特徴とする駆動輪空転
防止装置。
[Claims] 1. A driving wheel slip prevention device comprising various sensors for detecting vehicle conditions and means for reducing the torque transmitted from the engine to the driving wheels based on the signals thereof. means for detecting the friction coefficient μ between the two, means for detecting the slip rate S during deceleration, means for estimating the road surface condition by comparing the obtained μ, S with a reference friction coefficient pattern, and a means for estimating the road surface condition. A drive wheel slip prevention device characterized in that it is provided with a memorizing means and a means for reducing the drive torque in accordance with the memorized road surface condition when restarting. 2. In the means for detecting the friction coefficient μ between the tire and the road surface as described in item 1, the driving wheel slip prevention device is characterized in that μ is calculated based on an output signal of an acceleration sensor. 3. The means for detecting the slip rate S described in item 1 is characterized in that the slip rate S is calculated based on the vehicle speed V obtained from the output signal of the acceleration sensor and the wheel speed Vw measured by the wheel speed sensor. Drive wheel slip prevention device. 4. A driving wheel slip prevention device characterized in that the means for reducing the driving torque described in item 1 applies a driving wheel brake. 5. A driving wheel slip prevention device characterized in that the means for reducing the driving torque described in item 1 closes a throttle valve. 6. In the means for reducing the drive torque as described in item 1, the driving wheel slip prevention device is characterized in that the gear is shifted to a high speed side by a transmission. 7. A drive wheel slip prevention device characterized by retarding ignition timing in the means for reducing drive torque as described in item 1. 8. A driving wheel slip prevention device characterized in that the means for reducing the driving torque described in item 1 reduces the amount of fuel supplied.
JP63047467A 1988-03-02 1988-03-02 Slip preventing device for driving wheel Pending JPH01223064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047467A JPH01223064A (en) 1988-03-02 1988-03-02 Slip preventing device for driving wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047467A JPH01223064A (en) 1988-03-02 1988-03-02 Slip preventing device for driving wheel

Publications (1)

Publication Number Publication Date
JPH01223064A true JPH01223064A (en) 1989-09-06

Family

ID=12775954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047467A Pending JPH01223064A (en) 1988-03-02 1988-03-02 Slip preventing device for driving wheel

Country Status (1)

Country Link
JP (1) JPH01223064A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321436A (en) * 1991-01-26 1992-11-11 Mercedes Benz Ag Method and device for matching drive slide or limit value for brake slide adjusting device to automobile tire
JPH07112659A (en) * 1993-10-18 1995-05-02 Nippondenso Co Ltd Road surface friction coefficient estimating device
WO2010042957A3 (en) * 2008-10-07 2010-07-22 Mc10, Inc. Systems, devices, and methods utilizing stretchable electronics to measure tire or road surface conditions
WO2014157513A1 (en) * 2013-03-27 2014-10-02 株式会社アドヴィックス Vehicular brake control device
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
KR102081513B1 (en) * 2018-10-12 2020-02-25 한양대학교 산학협력단 Method and apparatus for measuring road condition using vehicle
JPWO2022085168A1 (en) * 2020-10-22 2022-04-28

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321436A (en) * 1991-01-26 1992-11-11 Mercedes Benz Ag Method and device for matching drive slide or limit value for brake slide adjusting device to automobile tire
JPH07112659A (en) * 1993-10-18 1995-05-02 Nippondenso Co Ltd Road surface friction coefficient estimating device
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
WO2010042957A3 (en) * 2008-10-07 2010-07-22 Mc10, Inc. Systems, devices, and methods utilizing stretchable electronics to measure tire or road surface conditions
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
JP2014189132A (en) * 2013-03-27 2014-10-06 Advics Co Ltd Vehicular brake control system
WO2014157513A1 (en) * 2013-03-27 2014-10-02 株式会社アドヴィックス Vehicular brake control device
US9725079B2 (en) 2013-03-27 2017-08-08 Advics Co., Ltd. Vehicular brake control device
KR102081513B1 (en) * 2018-10-12 2020-02-25 한양대학교 산학협력단 Method and apparatus for measuring road condition using vehicle
JPWO2022085168A1 (en) * 2020-10-22 2022-04-28
CN114667232A (en) * 2020-10-22 2022-06-24 日产自动车株式会社 Method for controlling electric four-wheel drive vehicle and device for controlling electric four-wheel drive vehicle
US11713033B2 (en) 2020-10-22 2023-08-01 Nissan Motor Co., Ltd. Method for controlling electrically driven four-wheel-drive vehicle, and device for controlling electrically driven four-wheel-drive vehicle
CN114667232B (en) * 2020-10-22 2024-02-06 日产自动车株式会社 Control method and control device for electric four-wheel drive vehicle

Similar Documents

Publication Publication Date Title
JP2973341B2 (en) Method and apparatus for matching a slip limit value for a driving slip or braking slip adjusting device to a vehicle tire
JPS6229461A (en) Acceleration slip controller for vehicle
EP0186122A1 (en) Wheel slip control system
JP3009675B2 (en) Control method for traction slip control system and circuit device for implementing the method
JPS63301158A (en) Slip controller for vehicle
JPH01208530A (en) Acceleration slip controller for vehicle
JPH0650071B2 (en) Vehicle driving force control device
JPH01223064A (en) Slip preventing device for driving wheel
JPS6099757A (en) Slip preventing device for vehicle
JPS62251268A (en) Accelerating slip control method for vehicle
JP2006348854A (en) Traction control device
JPH0723070B2 (en) Vehicle anti-slip device
JPH10287262A (en) Behavior control device for vehicle
JP3189355B2 (en) Acceleration slip control device for vehicles with automatic transmission
JPS60121129A (en) Slip preventing device for vehicle
JPH0615826B2 (en) Vehicle acceleration slip control device
JPS61129432A (en) Control device of acceleration slip in vehicle
JP3985450B2 (en) Driving force control device
JPH0364336B2 (en)
JP2549714B2 (en) Anti-skid controller
JPH072993Y2 (en) Vehicle running control device
JPS61247523A (en) Skid controller for vehicle
JPH01125529A (en) Drive force controller for vehicle
JPS63113131A (en) Car slip control device
JP2005016675A (en) Start assist device on sloped road