JPH01219669A - Detecting method of liquid sample vessel according to assortment - Google Patents

Detecting method of liquid sample vessel according to assortment

Info

Publication number
JPH01219669A
JPH01219669A JP4696288A JP4696288A JPH01219669A JP H01219669 A JPH01219669 A JP H01219669A JP 4696288 A JP4696288 A JP 4696288A JP 4696288 A JP4696288 A JP 4696288A JP H01219669 A JPH01219669 A JP H01219669A
Authority
JP
Japan
Prior art keywords
sample
specimen
light
rack
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4696288A
Other languages
Japanese (ja)
Inventor
Hiroharu Tanimizu
弘治 谷水
Toshimi Kadota
門田 俊美
Masao Kobayashi
木林 昌男
Shigeki Matsui
松井 重樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4696288A priority Critical patent/JPH01219669A/en
Publication of JPH01219669A publication Critical patent/JPH01219669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To avoid erroneous transfer of a sample by a method wherein an optical beam for measurement is applied at different heights from a direction intersecting the direction of arrangement of liquid sample vessels, the intensity of transmission thereof is measured and a downward process of a liquid sample partial injection nozzle is controlled. CONSTITUTION:As to a specimen rack 8, detection of transmitted light from light sources 50-53 is conducted in light-sensing elements 55-58 sequentially for partition walls 25-28 and specimen vessel receptacles 20-24, with a code reading element 12 moved. By detecting the transmitted light of the light sources 50-53 in the light- sensing elements 55-58 in this way, the presence or absence of a specimen vessel and the size thereof can be detected easily. Detection signals are delayed by a time required for said rack 8 to be transferred from the code reader 12 to a position 13 of suction and collection of specimen and are sent to specimen partial injection CPU 65 through CPU 64 for controlling an analyzing apparatus. Then the CPU 65 sets a bottom dead center of a sample partial injection nozzle element 15 for the specimen vessel 7 and controls a downward process of the sample partial injection nozzle 15. By this method, a test tube for collection of blood and a specimen cup are subjected to partial injection of specimen in the same specimen rack.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、液体試料容器の類別検出方法に関する。また
、本発明は、液体試料容器の類別検出方法に関連する液
体試料分注方法、即ち液体試料サンプリング方法に関し
、特に、自動分析装置の液体試料容器の類別検出方法に
関連する液体試料分注方法に関する。さらに、本発明は
、間欠的回転駆動及び連続的回転駆動が可能のターンテ
ーブル、試料分注装置、第一試薬トレイを備える第一試
料分注装置、第二試薬トレイを備える第二試料−分注装
置、洗浄−脱水装置及び測定装置を備える自動化学分析
装置における液体試料容器の類別検出方法及びそれに関
連する液体試料分注方法に関し、特に、血液、血漿、血
清、リンパ液等の体液、尿等の排泄物、胃液、膵液、胆
汁、唾液、汗等の分泌液、腹水、膨水、関節腔液等の穿
刺液などの検体等の液体試料についての自動化学分析装
置における検体容器の類別方法及びそれに関連する検体
分注方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for detecting the classification of liquid sample containers. The present invention also relates to a liquid sample dispensing method related to a method for detecting the classification of liquid sample containers, that is, a liquid sample sampling method, and particularly to a liquid sample dispensing method related to a method for detecting the classification of liquid sample containers of an automatic analyzer. Regarding. Further, the present invention provides a turntable capable of intermittent rotational drive and continuous rotational drive, a sample dispensing device, a first sample dispensing device including a first reagent tray, and a second sample dispensing device including a second reagent tray. Regarding the classification detection method of liquid sample containers and related liquid sample dispensing method in an automatic chemical analyzer equipped with an injection device, a washing-dehydration device, and a measuring device, in particular, body fluids such as blood, plasma, serum, lymph fluid, urine, etc. A method for classifying sample containers in an automatic chemical analyzer for liquid samples such as human excreta, gastric juice, pancreatic juice, bile, saliva, secretions such as sweat, ascites, swelling, and puncture fluid such as joint cavity fluid. The present invention relates to a sample dispensing method related thereto.

さらに、本発明は、フローインジェクション分析、ガス
クロマトグラフィ分析及び高速液体クロマトグラフィ分
析等の自動分析装置オートサンプラーにおける液体試料
類別方法に関する。
Furthermore, the present invention relates to a liquid sample classification method in an automatic analyzer autosampler for flow injection analysis, gas chromatography analysis, high performance liquid chromatography analysis, etc.

(ロ)従来の技術 例えば、ターンテーブル方式の自動化学分析装置は、間
欠的回転駆動及び連続的回転駆動が可能のターンテーブ
ル、試料ラックを備える試料分注装置、試薬トレイを備
える試薬分注装置、洗浄−脱水装置及び測定装置を備え
ており、ターンテープルに、反応キュベツト等の反応容
器を配列して、該ターンテーブルを、予め設定された時
間プログラムにしたがって間欠的回転駆動又は連続的回
転駆動させて、試料容器を、例えば、試料分注領域、第
一試料分注領域、撹拌領域、第二試料分注領域、撹拌領
域、反応領域並びに洗浄−脱水領域の順に送って、試料
分注、第一試薬の分注、第二試薬の分注、反応液の撹拌
混合、反応、測定済みの試料容器からの反応液の排出、
それに続く洗浄−脱水等の各分析作業を行うと共に、測
定領域に位置する試料について分析項目成分の吸光度測
定を行っている。
(b) Conventional technology For example, a turntable-type automatic chemical analyzer includes a turntable capable of intermittent rotational drive and continuous rotational drive, a sample dispensing device equipped with a sample rack, and a reagent dispensing device equipped with a reagent tray. , a washing-dehydration device, and a measuring device, reaction containers such as reaction cuvettes are arranged on a turntable, and the turntable is driven to rotate intermittently or continuously according to a preset time program. For example, the sample container is sent to the sample dispensing area, the first sample dispensing area, the stirring area, the second sample dispensing area, the stirring area, the reaction area, and the washing-dehydration area, and the sample dispensing, Dispensing the first reagent, dispensing the second reagent, stirring and mixing the reaction solution, reacting, discharging the reaction solution from the measured sample container,
Subsequent analysis operations such as washing and dehydration are performed, and the absorbance of the components to be analyzed is measured for the sample located in the measurement area.

このような自動分析装置においては、試料の入った試料
容器を数個宛、試料容器収容用の容器、例えば、試料ラ
ックに収容して試料採取位置に移動させて、試料分注装
置による試料採取を行い、分析容器への液体試料の分極
を行っている。
In such an automatic analyzer, several sample containers containing samples are stored in a container for storing sample containers, such as a sample rack, and moved to a sample collection position, and the sample is collected using a sample dispensing device. The liquid sample is polarized into the analysis container.

しかし、自動分析装置において分析される試料には、通
常分析用試料、精度管理用試料、キャリブレーション用
試料及び緊急分析用試料などがあり、これらの試料は、
総て、試料容器に入れられ、試料ラックに収容されて試
料分注位置に送られ、そこで分析容器に分注される。し
たがって、試料ラックには、分析される試料の特定がで
きるように、通常分析用、精度管理用、キャリブレーシ
ョン用及び緊急分析用等の試料の種別の表示及びその通
し番号が付されている。
However, the samples analyzed by automatic analyzers include samples for normal analysis, samples for quality control, samples for calibration, and samples for emergency analysis.
All the samples are placed in a sample container, housed in a sample rack, and sent to a sample dispensing position, where they are dispensed into analysis containers. Therefore, the sample rack is labeled with the type of sample, such as for normal analysis, quality control, calibration, and emergency analysis, and its serial number so that the sample to be analyzed can be identified.

しかし、このように試料の種別及び通し番号を試料ラッ
クに付しても、受は入れられた試料の数が試料ラックの
収容容量の倍数に一致することが少い上に、試料容器の
試料ラックへの収容を、分析の都合上、依頼者毎に別け
て行うために、試料ラックの収容箇所には、常に、試料
容器が収容されるとは、限らなくなる。
However, even if the sample type and serial number are attached to the sample rack in this way, the number of received samples rarely matches the multiple of the capacity of the sample rack, and the sample rack of the sample container For convenience of analysis, sample containers are stored separately for each client, so sample containers are not always stored in the storage locations of the sample rack.

このように試料ラックに試料容器の配置の有無を生じる
と、試料分注ノズルによる液体試料の吸引採取操作に支
障をきたすので、試料ラックの符号読み取り部に、符号
読み取り器の外にマイクロスイッチ等の試料容器検出用
の検出器を設けて、液体試料容器についての試料の種別
及び通し番号を読み取ると共に、試料容器の配置の有無
についても検出している。
If sample containers are placed in the sample rack in this way, it will interfere with the suction collection operation of the liquid sample using the sample dispensing nozzle. A detector for detecting a sample container is provided to read the sample type and serial number of the liquid sample container, and also detect whether or not the sample container is arranged.

(ハ)発明が解決しようとする問題点 ところで、従来のこのような液体試料分注装置は、試料
分注ノズルの移動行程を一定にして行うために、試料ラ
ックには、大きさの揃った試料容器を収容させている。
(c) Problems to be Solved by the Invention Incidentally, in such a conventional liquid sample dispensing device, in order to keep the moving stroke of the sample dispensing nozzle constant, the sample rack is equipped with It accommodates sample containers.

したがって、例えば、採血容器から検体を移し替える作
業を必要とし、試料の移し間違えによる分析誤差を避け
ることができない。
Therefore, for example, it is necessary to transfer the sample from the blood collection container, and analysis errors due to incorrect transfer of the sample cannot be avoided.

そこで、試料の移し間違えを避けるために、例えば、採
血用の試験管をその侭試料ラックに収容することが望ま
れている。
Therefore, in order to avoid mistakes in transferring samples, it is desirable to store, for example, test tubes for blood collection in the side sample rack.

しかし、採血用の試験管をその侭試料ラックに収容させ
ると、精度管理用に使用される管理血清は高価であると
ころから、サンプルカップの使用は不可欠であるから、
背の高い採血用の試験管と背の低いサンプルカップとが
試料ラックに収容されることとなり、上下方向に移動行
程が一定の試料分注ノズルでは、下方の停止点、つまり
、下死点が定まらなくなり問題である。
However, if the test tube for blood collection is stored in the side sample rack, the control serum used for quality control is expensive, so the use of a sample cup is essential.
A tall test tube for blood collection and a short sample cup are housed in a sample rack, and the sample dispensing nozzle, which has a constant vertical movement, has a lower stopping point, that is, a bottom dead center. This is a problem because it becomes unstable.

一方、液体試料分注ノズルは、高価であり、その破損は
避けなければならない、しかも液体試料分注ノズルを破
損すると、その修復には、修理要員などの熟練技術者で
も長時間を要し、分析作業の能率を低下させることとな
って問題である。
On the other hand, liquid sample dispensing nozzles are expensive, and damage to them must be avoided.Moreover, if a liquid sample dispensing nozzle is damaged, repairing it takes a long time even for experienced technicians such as repair personnel. This is a problem because it reduces the efficiency of analysis work.

本発明は、・従来の液体試料分注方法における高さの異
なる試料容器の試料ラックへの配置に係る問題点及び試
料容器の設置間違いによる問題点を解消することを目的
としている。
An object of the present invention is to solve problems associated with arranging sample containers of different heights in a sample rack and problems caused by incorrect placement of sample containers in conventional liquid sample dispensing methods.

(ニ)問題点を解決するための手段 本発明は、高さの異なる試料容器を、試料ラック等の試
料容器収容用の容器に配置しても、試料容器の設置間違
いを判断するばかりでなく、収容用の分注ノズルを破損
に至らせることのない液体試料容器類別検出方法を提供
することを目的としている。
(d) Means for Solving the Problems The present invention provides a method for not only determining whether a sample container is incorrectly placed, even when sample containers of different heights are placed in a container for storing sample containers such as a sample rack. It is an object of the present invention to provide a method for detecting the classification of liquid sample containers without damaging a dispensing nozzle for storage.

即ち、本発明は、複数の液体試料容器が配列されている
液体試料容器収容用の容器に対して、液体試料容器の配
列方向と交差する方向から、異なる高さに、測定用の光
を照射し、夫々の測定用の光の透過強度を測定し、この
透過強度の測定結果より、液体試料容器を類別すること
を特徴とする液体試料容器の類別検出方法にある。
That is, the present invention irradiates a container for storing liquid sample containers in which a plurality of liquid sample containers are arranged with measurement light at different heights from a direction intersecting the arrangement direction of the liquid sample containers. The present invention also provides a method for detecting the classification of liquid sample containers, characterized in that the transmitted intensity of each measuring light is measured, and the liquid sample containers are classified based on the measurement results of the transmitted intensities.

本発明において、試料容器収容用の容器は、例えば、検
体ラック等の試料容器収容用の容器であり、サンプルカ
ップ、試験管等の試料容器の収容部は、互いに仕切り壁
で隔離されて、試料容器毎に形成されると共に、試料容
器収容用の容器の移動方向に並んで、例えば該移動方向
に沿って一列に形成される0本発明において、試料容器
の収容部を隔離する仕切り壁には、ラックの種別の検出
用の貫通孔及びラックの通し番号の検出用の貫通孔が形
成されている。
In the present invention, the container for storing sample containers is, for example, a container for storing sample containers such as a sample rack, and the storage portions of sample containers such as sample cups and test tubes are separated from each other by partition walls, and the sample containers are separated from each other by partition walls. In the present invention, a partition wall is formed for each container and is formed in a line along the moving direction of the container for storing the sample container, for example, in a line along the moving direction. , a through hole for detecting the type of rack, and a through hole for detecting the serial number of the rack are formed.

本発明において、試料容器の収容部の両側壁には、対応
する位置に、試料容器の大きさ検出用の孔が夫々−以上
形成される。゛試料容器の大きさの検出は、複数個の測
定用光源及び受光部を上下方向に配置して行われる。こ
の試料容器の大きさの検出は、既に設定された試料容器
大きさとの一致、不一致の判断及び該試料容器について
の試料分注ノズルの分注時の下方への移動の最大行程即
ち下死点を設定するために行われる。殊に、本発明にお
いては、試料容器収容用の容器に収容される試料容器の
大きさを、検出器の配置数に対応して類別して、例えば
該配置数に対応する数に類別して行うと共に、試料分注
ノズルの下死点を、その類別された試料容器の大きさに
応じて、類毎に、夫々設定することにより行われる。
In the present invention, holes for detecting the size of the sample container are formed at corresponding positions on both side walls of the sample container accommodating portion.゛Detection of the size of the sample container is performed by arranging a plurality of measurement light sources and light receiving sections in the vertical direction. Detection of the size of the sample container involves determining whether or not it matches the already set sample container size, and determining the maximum downward movement of the sample dispensing nozzle during dispensing for the sample container, i.e., the bottom dead center. is done to set. In particular, in the present invention, the sizes of sample containers accommodated in a container for storing sample containers are classified according to the number of arranged detectors, for example, by categorizing them into numbers corresponding to the number of arranged detectors. At the same time, the bottom dead center of the sample dispensing nozzle is set for each class according to the size of the classified sample container.

したがって、本発明においては、分注時における試料分
注ノズルの試料容器に対する下方への最大移動行程つま
り下死点は、類別された試料容器の大きさに対応して設
定される。
Therefore, in the present invention, the maximum downward movement distance of the sample dispensing nozzle relative to the sample container during dispensing, that is, the bottom dead center, is set in accordance with the size of the classified sample container.

本発明においては、試料容器の大きさは、該試料容器収
容用の容器の一方の側部の孔から測定用の光を照射して
、他方の側部の孔からその透過光の強度を測定して求め
られる。この場合、測定光は、試料容器壁で散乱される
ので、試料容器壁を透過した光と試料容器壁に当たるこ
となくその侭透過した光とでは、その強度が大きく相違
するので、試料容器の大きさ及びその存在の有無を容易
に検出することができる。
In the present invention, the size of the sample container is determined by irradiating measurement light through a hole on one side of the container for housing the sample container, and measuring the intensity of the transmitted light through the hole on the other side. is required. In this case, the measurement light is scattered by the sample container wall, so the intensity of the light that has passed through the sample container wall and the light that has passed through the sample container wall without hitting the sample container wall is significantly different. It is possible to easily detect the presence or absence of the substance.

(ホ)作用 本発明は、複数の液体試料容器配列されている試料容器
収容用の容器に対して、該液体試料容器の配列方向と交
差する方向から、異なる高さに、測定用の光ケーブルを
照射して、その透過強度を測定して、液体試料分注ノズ
ルの下方移動行程を制御するので、液体試料容器収容用
の容器に、大きさの異なる試料容器を複数種配列しても
、側部の異なる高さにおける複数の測定用の光の透過強
度から、類別された試料容器の類を割り出すことができ
る。
(e) Effect The present invention provides for a container for storing a plurality of liquid sample containers arranged in a manner to be provided with optical cables for measurement at different heights from a direction intersecting the direction in which the liquid sample containers are arranged. irradiation and measure the transmitted intensity to control the downward movement of the liquid sample dispensing nozzle, so even if multiple types of sample containers of different sizes are arranged in a liquid sample container, The class of the classified sample container can be determined from the transmitted intensities of a plurality of measurement lights at different heights of the part.

したがって、本発明によると、この検出された試料容器
の大きさの類に応じて、試料容器の確認を容易に制御す
ることができ、それに伴って、下死点が設定されるので
、試料分注ノズルの下方の移動行程が、常に試料分注ノ
ズルの試料容器に対する下方最大移動行程を越えないよ
うに、ステッピングモータの回転数を容易に制御するこ
とができる。
Therefore, according to the present invention, confirmation of the sample container can be easily controlled according to the detected size of the sample container, and the bottom dead center is set accordingly. The rotation speed of the stepping motor can be easily controlled so that the downward movement stroke of the injection nozzle always does not exceed the maximum downward movement distance of the sample dispensing nozzle with respect to the sample container.

(へ)実施例 以下、添付図面を参照して、本発明の実施の態様の例を
説明するが、本発明は、以下の説明及び例示によって何
ら制限されるものではない。
(F) EXAMPLES Hereinafter, examples of embodiments of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited in any way by the following descriptions and examples.

第1図は、自動化学分析装置を使用する本発明の分析方
法の一実施例について、その概略を示す部分的説明図で
あり、第2図は、第1図の実施例における検体ラック供
給部を中心に、その概略を示す部分的側断面図であり、
第3図は第1図の検出部の部分的正断面図である。これ
ら第1図ないし第3図において同一の箇所には同一の符
号が使用されている。いずれの図も、説明の便宜上簡略
化して示されている。
FIG. 1 is a partial explanatory diagram showing an outline of an embodiment of the analysis method of the present invention using an automatic chemical analyzer, and FIG. 2 shows a sample rack supply section in the embodiment of FIG. It is a partial side cross-sectional view showing the outline, centering on
FIG. 3 is a partial front sectional view of the detection section of FIG. 1. The same reference numerals are used for the same parts in FIGS. 1 to 3. All figures are shown in a simplified manner for convenience of explanation.

第1図において、自動分析装=1には、反応ディスク2
が中央に設けられており、その外側上方にキュベツトロ
ータ3が設けられている。このキュベツトロータ3には
、その内側円周上に多くの反応キュベツト4(一部省略
されている。)が、配置されて、反応ライン5を形成し
ている。
In FIG. 1, automatic analyzer=1 includes reaction disk 2.
is provided in the center, and a cuvette rotor 3 is provided outside and above it. A number of reaction cuvettes 4 (some of which are omitted) are arranged on the inner circumference of the cuvette rotor 3 to form a reaction line 5.

本例においては、キュベツトロータ3の検体分注部6に
一部近接して、5個まで検体容器7が配列できる検体ラ
ック8の搬送路9が設けられている。該搬送路9は検体
ラック供給部10と検体ラック8の間欠的移送部11と
から形成されており、検体ラック8は、供給部10の搬
送路9に載置されて間欠的に送られ、次いで間欠的移送
部11に移送されて、間欠的に送られる。
In this example, a transport path 9 for a sample rack 8 in which up to five sample containers 7 can be arranged is provided partially adjacent to the sample dispensing section 6 of the cuvette rotor 3. The transport path 9 is formed of a sample rack supply section 10 and an intermittent transfer section 11 for sample racks 8, and the sample rack 8 is placed on the transport path 9 of the supply section 10 and is intermittently fed. Next, it is transferred to the intermittent transfer section 11 and sent intermittently.

本例において、検体ラック供給部10には、検体容器確
認用の符号読み取り部12が設けられており、検体ラッ
ク8の間欠的移送部11の検体分注部6に近接する箇所
に検体吸引採取位置13が設定されている。検体分注部
6には、検体分注器14が設けられている。この検体分
注器14の検体分注ノズル部15の移動経路16(−点
鎖線で示されている。)には、検体吸引採取位置13と
検体分注位置17の間に検体分注ノズル部用の洗浄ウェ
ル18が設けられている。
In this example, the sample rack supply section 10 is provided with a code reading section 12 for confirming the sample container, and the sample rack 8 is provided with a code reading section 12 for sample container aspiration and collection at a location close to the sample dispensing section 6 of the intermittent transfer section 11 of the sample rack 8. Position 13 is set. The sample dispensing unit 6 is provided with a sample dispenser 14 . The movement path 16 (indicated by a - dotted chain line) of the sample dispensing nozzle section 15 of the sample dispenser 14 includes a sample dispensing nozzle section between the sample aspiration collection position 13 and the sample dispensing position 17. A washing well 18 is provided for cleaning.

検体分注器14は、検体分注段階において、検体分注ノ
ズル部15を検体吸引採取位置13に移動させる。そこ
で検体分注ノズル部15を下方に移動させて、そこに位
置する検体容器7内に該ノズル部15を挿入し、該検体
容器7から検体を吸引採取する0次いで、該ノズル部1
5を上方に移動させ、更に反応ライン5の検体分注位置
17に移動させる。そこで検体分注ノズル部15を下方
に移動させ、該ノズル部15に採取された検体を反応キ
ュベツト4に分注する。検体分注を終えたところで、検
体分注器14の検体分注ノズル部15を上方に移動させ
、次いで洗浄ウェル18の位置へ移動させて、そこで下
降させて検体分注ノズル部15を洗浄液により洗浄する
。このようにして清浄となった検体分注ノズル部15を
上方に移動させ、検体吸引採取位置13に移動させて、
次の検体分注段階に移る。
The specimen dispenser 14 moves the specimen dispensing nozzle portion 15 to the specimen suction collection position 13 in the specimen dispensing stage. Therefore, the sample dispensing nozzle section 15 is moved downward, and the nozzle section 15 is inserted into the sample container 7 located there, and the sample is aspirated and collected from the sample container 7.Next, the nozzle section 1
5 is moved upward and further moved to the sample dispensing position 17 of the reaction line 5. Then, the sample dispensing nozzle section 15 is moved downward, and the sample collected by the nozzle section 15 is dispensed into the reaction cuvette 4. When the sample dispensing is finished, the sample dispensing nozzle section 15 of the sample dispensing device 14 is moved upward, then moved to the position of the washing well 18, and then lowered to remove the sample dispensing nozzle section 15 with the washing liquid. Wash. The sample dispensing nozzle section 15 that has become clean in this way is moved upward to the sample suction collection position 13,
Move on to the next sample dispensing step.

本例においても、検体分注器14に対して、キュベツト
ロータ3の間欠的回転方向19の下手には、試薬分注部
、洗浄部、測定部等(何れも図示されていない、)が設
けられている。
In this example as well, a reagent dispensing section, a washing section, a measuring section, etc. (none of which are shown) are provided below the intermittent rotation direction 19 of the cuvette rotor 3 with respect to the sample dispenser 14. ing.

本例において、検体ラック8には、同一の太きさの5個
の検体容器受け20.21.22.23及び24が形成
されている。検体ラック8の5個の検体容器受け20〜
24は、仕切り壁25.26.27及び28により仕切
られており、これらの仕切り壁25〜28には、夫々、
4個の貫通孔29.30.31及び32が形成されてい
る。
In this example, the sample rack 8 is formed with five sample container holders 20, 21, 22, 23 and 24 having the same diameter. Five sample container receivers 20 on sample rack 8
24 is partitioned by partition walls 25, 26, 27 and 28, and these partition walls 25 to 28 have, respectively,
Four through holes 29, 30, 31 and 32 are formed.

検体ラック8は矢印33の方向に送られるので、最初に
符号読み取り部12に送られる仕切り壁25に設けられ
た貫通孔の列29は、検体ラック8のラック種を読み取
るためのものであり、続く仕切り壁22〜28に設けら
れた貫通孔の列30〜32はラックナンバーを読み収る
ためのものである。
Since the sample rack 8 is sent in the direction of the arrow 33, the row 29 of through holes provided in the partition wall 25 that is sent to the code reading section 12 first is for reading the rack type of the sample rack 8. The rows of through holes 30 to 32 provided in the subsequent partition walls 22 to 28 are for reading rack numbers.

検体ラック8の検体容器受け20〜24の両側部34及
び35には、検体容器の大きさを示す透過光検出用の孔
36及び37が形成されている。
Holes 36 and 37 for detecting transmitted light, which indicate the size of the sample containers, are formed in both sides 34 and 35 of the sample container holders 20 to 24 of the sample rack 8.

またその下方には、検体容器受け20〜24の位置を示
すことができるように、位置検出用の孔38.39.4
0.41及び112が設けられている。
Further, below it, there are holes 38, 39, 4 for position detection so that the positions of the sample container receivers 20 to 24 can be indicated.
0.41 and 112 are provided.

本例において、検体ラック8は、搬送路9を矢印33の
方向に移動される。この検体ラック8の移動は、送り部
材43の移動によって行われる。
In this example, the sample rack 8 is moved along the transport path 9 in the direction of the arrow 33. This movement of the sample rack 8 is performed by movement of the feeding member 43.

この送り部材43には、検体ラック8の後端に接触する
押し部材44が下方に延びて設けられており、その上部
には、タイミングベルト45との連結を行う連結部材4
6が設けられている。この送り部材43は、その移動が
一定方向に行われるように、案内軸47に支持されてい
る。
A pushing member 44 that contacts the rear end of the sample rack 8 is provided on the feeding member 43 and extends downward, and a connecting member 44 that connects with the timing belt 45 is provided on the upper part of the pushing member 44 .
6 is provided. This feeding member 43 is supported by a guide shaft 47 so that its movement is performed in a fixed direction.

検体ラック8の移動は、符号読み取り部12の読み取り
動作と同期されるように、サブ中央処理装置、即ち、サ
ブCPU48によって制御されている0本例において、
タイミングベルト45はステッピングモータ(図示され
ていない、)によって駆動されており、ステッピングモ
ータの停止時に、容器受は部20〜24又は符号用の貫
通孔の列29〜32が符号読み取り部12の読み取り位
置49に停止するように、サブCPU48によって制御
された間欠的な移動動作が行われる。
In this example, the movement of the sample rack 8 is controlled by a sub-central processing unit, that is, a sub-CPU 48, so as to be synchronized with the reading operation of the code reading unit 12.
The timing belt 45 is driven by a stepping motor (not shown), and when the stepping motor is stopped, the parts 20 to 24 of the container receiver or the rows of code through holes 29 to 32 are read by the code reading part 12. An intermittent movement operation controlled by the sub CPU 48 is performed so as to stop at position 49.

本例において、符号読み取り部12には、検体ラックの
供給部の搬送路9を挟んで、夫々、垂直方向に5個の光
源50.51.52.53及び54及びに受光部55.
56.57.58及び59が設けられている。光源50
〜54及び受光部55〜59の中、光源50〜53及び
受光部55〜58は、符号用の貫通光の列29〜32に
対応しており、検体ラック8の種別及び検体容器7の通
し番号の読み取り並びに検体容器の大きさの検出を行う
、これに対し、光源54及び受光部59は、位置検出用
の孔38〜42に対応しており、検体容器受けの位置の
確認を行う。
In this example, the code reading section 12 includes five light sources 50, 51, 52, 53 and 54 and a light receiving section 55.
56, 57, 58 and 59 are provided. light source 50
54 and the light receiving sections 55 to 59, the light sources 50 to 53 and the light receiving sections 55 to 58 correspond to the columns 29 to 32 of the penetrating light for codes, and the type of the sample rack 8 and the serial number of the sample container 7. On the other hand, the light source 54 and the light receiving section 59 correspond to the position detection holes 38 to 42, and confirm the position of the sample container receiver.

この検体ラック8の移動を行うタイミングベルト45の
作動は、ステッピンングモータによって行われるが、こ
のステッピンングモータを制御するサブCPU48は、
メイン中央処理装置、即ち、メインCPU60に接続し
ており、メインCPU60からの指令を受けると共に、
符号用の孔29〜32及び位置検出用の孔38〜42の
読み取りその検出結果をメインCPU60へ移送するよ
うに作動することができる。
The timing belt 45 that moves the sample rack 8 is operated by a stepping motor, and the sub CPU 48 that controls the stepping motor
It is connected to the main central processing unit, that is, the main CPU 60, and receives instructions from the main CPU 60.
It can operate to read the code holes 29 to 32 and the position detection holes 38 to 42 and transfer the detection results to the main CPU 60.

本例は以上のように構成されているので、検体ラック8
の検体容器受け20〜24に検体カップ61と採血用試
験管62の2種類の検体容器を収容して、符号用の貫通
孔の列29〜32の孔63に適宜詰め物をして、検体ラ
ックの種別及び検体容器の通し番号を符号化して表示す
る。
Since this example is configured as described above, the sample rack 8
Two types of sample containers, a sample cup 61 and a blood collection test tube 62, are accommodated in the sample container receivers 20 to 24, and the holes 63 in the code through-hole rows 29 to 32 are filled appropriately, and the sample rack is assembled. The type of specimen and the serial number of the specimen container are encoded and displayed.

符号化が行われた検体ラック8は、供給部の搬送路9に
載置されて、符号読み取り部12に送られる。検体容器
受け20が符号読み取り位置49に送られたところで、
検体カップ61の大きさの検出が行われる。この場合、
光源50〜54からの光の中、光源50及び51からの
光は、検体カップ61により散乱されるので、受光部5
5及び56で受光する透過光の強度は小さくなるが、光
源52及び53からの光は何等遮られることなく通過す
るので、受光部57及び58で受光する透過光の強度は
大きくなる6本例においては、このような現象を踏まえ
て、受光部55〜5つには、所定の閾値が予め設定され
ている。したがって、受光部55〜59が遮られない透
過光を受光したか否かは、閾値を超える強度の透過光を
受光したか否かによって検出することができる。したが
って、検体カップ61の場合には受光部55及び56が
透過光を検出しないことになる。
The encoded sample rack 8 is placed on the conveyance path 9 of the supply section and sent to the code reading section 12. When the sample container receiver 20 is sent to the code reading position 49,
The size of the sample cup 61 is detected. in this case,
Of the light from the light sources 50 to 54, the light from the light sources 50 and 51 is scattered by the sample cup 61, so the light receiving portion 5
The intensity of the transmitted light received by the light receiving parts 57 and 58 becomes small, but the light from the light sources 52 and 53 passes through without being blocked, so the intensity of the transmitted light received by the light receiving parts 57 and 58 increases. In consideration of such a phenomenon, predetermined threshold values are set in advance for the light receiving sections 55 to 5. Therefore, whether the light receiving sections 55 to 59 have received unobstructed transmitted light can be detected by determining whether or not they have received transmitted light with an intensity exceeding a threshold value. Therefore, in the case of the sample cup 61, the light receiving sections 55 and 56 do not detect transmitted light.

このようにして受光部55〜59において検出された検
出結果は、サブCPU48に送られ、更にメインCPU
60に送られて記憶される。そこでサブCPO48は、
タイミングベルト45を1ピッチ分進めて、仕切り壁2
5を符号読み取り位置4つに位置させる。
The detection results detected by the light receiving sections 55 to 59 in this way are sent to the sub CPU 48, and further sent to the main CPU 48.
60 and stored. Therefore, sub-CPO48
Advance the timing belt 45 by one pitch and remove the partition wall 2.
5 at the four code reading positions.

仕切り壁25の符号用の貫通孔の列29は、検体ラック
8の種別を示すものであり、詰め物がされた孔63の位
置と詰め物がされていない孔63の位置を、受光部55
〜58の受光関係によって検出して、4桁の符号を読み
取り、この4桁の符号から検体ラックの種別が割り出さ
れ確認される。
The row 29 of code through holes of the partition wall 25 indicates the type of the sample rack 8, and the positions of the filled holes 63 and the positions of the unfilled holes 63 are determined by the light receiving section 55.
-58 light reception relationships are detected, a four-digit code is read, and the type of sample rack is determined and confirmed from this four-digit code.

この確認された種別の信号も、サブCP tJ 48か
らメインCPU60に送られて記憶される。
This confirmed type of signal is also sent from the sub-CP tJ 48 to the main CPU 60 and stored therein.

次に符号読み取り位置49に位置するのは検体容器受け
21であるが、この検体容器受け21には、検体容器7
が収容されていないので、光源50〜54からの光は、
その侭、光透過用の孔36及び37を透過するので、受
光部55〜58は総て透過光を受光することになり、受
光部55〜58の全部が受光したことを示す信号が、サ
ブCPU48からメインCPU60に送られる。これら
に対して、検体容器受け23に収容されている採血用の
試験管62の場合には、光源50〜54からの光は、総
て試験管62で散乱されるので、受光部55〜58には
透過光は受光されない。
Next, the sample container receiver 21 is located at the code reading position 49;
is not accommodated, the light from the light sources 50 to 54 is
On the other hand, since the light passes through the light transmitting holes 36 and 37, all of the light receiving sections 55 to 58 receive the transmitted light, and the signal indicating that all of the light receiving sections 55 to 58 have received the light is sent to the sub. It is sent from the CPU 48 to the main CPU 60. On the other hand, in the case of the test tube 62 for blood collection housed in the sample container receiver 23, all the light from the light sources 50 to 54 is scattered by the test tube 62, so the light receiving parts 55 to 58 No transmitted light is received.

検体容器受け21に続いて、仕切り壁26が符号読み取
り位置49に位置させられる。この場合も、仕切り壁2
6の符号用の貫通孔の列30の詰め物が詰められた孔6
3の位置及び詰め物が詰められていない孔63の位置を
、光源50〜53からの透過光についての受光部55〜
58における受光関係から4桁の符号を読み取って、収
容されている検体容器7の検体の通し番号が確認される
Following the sample container receiver 21, the partition wall 26 is located at the code reading position 49. In this case as well, partition wall 2
Filled hole 6 of row 30 of through holes for code 6
3 and the position of the hole 63 that is not filled with the filling material are determined by the light receiving portions 55 to 55 for transmitted light from the light sources 50 to 53.
The serial number of the sample contained in the sample container 7 is confirmed by reading the four-digit code from the light receiving relationship at 58.

このようにして、検体ラック8について、符号読み取り
部12を移動させながら、その仕切り壁25〜28及び
検体容器受け20〜24について、順次光源50〜53
からの透過光についての検出が受光部55〜58で行わ
れる。このように、光源50〜53の光について、受光
部55〜58でその透過光についての検出を行うことに
より、検体容器の有無及び大きさを容易に検出すること
ができる。
In this way, while moving the code reading unit 12 in the sample rack 8, the light sources 50 to 53 are sequentially connected to the partition walls 25 to 28 and the sample container receivers 20 to 24.
Detection of transmitted light is performed by light receiving sections 55 to 58. In this way, by detecting the transmitted light from the light sources 50 to 53 using the light receiving units 55 to 58, the presence or absence and size of the sample container can be easily detected.

本例においては、このように検出された検体容器7に係
る信号は、サブCPU48からメインCPU60に送ら
れて類別されて記憶される。
In this example, the signals related to the sample container 7 detected in this way are sent from the sub CPU 48 to the main CPU 60, classified and stored.

メインCPU60は、この記憶した検体ラック8の類別
信号と検体ラック8の他の信号の異状の有無を判断する
。この時、異状とは、試料容器の有無、既に設定された
ものとの試料容器の大きさの不一致などである。異状が
あった場合は、メインCPU60が装置のオペレーター
にその信号を送ったり、分析の続行の判断を行ったりす
る。
The main CPU 60 determines whether there is any abnormality between the stored classification signal of the sample rack 8 and other signals of the sample rack 8. At this time, the abnormality includes the presence or absence of a sample container, a mismatch in the size of the sample container with that already set, and the like. If there is an abnormality, the main CPU 60 sends a signal to the operator of the apparatus or makes a decision to continue the analysis.

異状がなかった場合、メインCPU60は、この記憶し
た検体ラック8の類別信号を、検体ラック8の他の信号
と共に、検体ラック8が符号読み取り部12から検体吸
引採取位置13に送られるまでの経過する時間分遅延さ
せて、分析機器制御用CPU64に送る0分析機器制御
用CPU64は、この信号を、検体分注器14の検体分
注CPU65に送る。検体分注CPU65は、この類別
信号によって、検体吸引採取される検体容器7について
の検体分注ノズル部15の下死点を設定して、検体分注
ノズル15のステッピングモータ(図示されていない、
)を動作させて、検体分注ノズル15を下方に移動させ
て目的の検体の吸引採取を行う。
If there is no abnormality, the main CPU 60 uses the stored classification signal of the sample rack 8 together with other signals of the sample rack 8 to record the progress until the sample rack 8 is sent from the code reading unit 12 to the sample aspiration collection position 13. The analytical device controlling CPU 64 sends this signal to the sample dispensing CPU 65 of the sample dispensing device 14 . Based on this classification signal, the sample dispensing CPU 65 sets the bottom dead center of the sample dispensing nozzle section 15 for the sample container 7 to be aspirated and collected, and controls the stepping motor (not shown) of the sample dispensing nozzle 15.
) to move the sample dispensing nozzle 15 downward to suction and collect the target sample.

(ト)発明の効果 本発明は、複数の液体試料容器配列されている試料容器
収容用の容器に対して、該液体試料容器の配列方向と交
差する方向から、異なる高さに、測定用の光ケーブルを
照射して、その透過強度を測定して、液体試料分注ノズ
ルの下方移動行程を制御するので、従来の試料分注方法
と比較して、各種試料容器が、試料容器収容用の容器に
収容して試料分注を行うことができることになり、例え
ば、従来の試料分注方法では難しかった採血用試験管と
検体カップを同一の検体ラックに配置しての検体分注を
可能とするものであり、試料を移し替える回数を減らし
て、試料の移し問違いが避けられるので、分析精度の向
上を計ることができる。
(g) Effects of the Invention The present invention provides a container for measuring a plurality of liquid sample containers arranged at different heights from a direction intersecting the arrangement direction of the liquid sample containers. Since the downward movement of the liquid sample dispensing nozzle is controlled by irradiating it with an optical cable and measuring its transmitted intensity, it is possible to control the downward movement of the liquid sample dispensing nozzle. For example, it is now possible to dispense samples by placing blood collection test tubes and sample cups in the same sample rack, which was difficult with conventional sample dispensing methods. This reduces the number of sample transfers and avoids transferring the wrong sample, which can improve analysis accuracy.

また、試料容器自体の設置間違いを検出することができ
るので、−mの分析精度の向上を計ることができる。
Moreover, since it is possible to detect a mistake in the installation of the sample container itself, it is possible to improve the accuracy of -m analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、自動化学分析装置を使用する本発明の分析方
法の一実施例について、その概略を示す部分的説明図で
あり、第2図は、第1図の実施例における検体ラック供
給部を中心に、その概略を示す部分的側断面図であり、
第3図は第1図の検出部の部分的正断面図である。 図中の符号については、1は自動分析装置、2は反応デ
ィスク、3はキュベツトロータ、4は反応キュベツト、
5は反応ライン、6は検体分注部、7は検体容器、8は
検体ラック、9は搬送路、10は検体ラック供給部、1
1は間欠的移送部、12は検体容器確認用の符号読み取
り部、13は検体吸引採取位置、14は検体分注器、1
5は検体分注ノズル部、16は移動経路、17は検体分
注位置、18は検体分注ノズル部用の洗浄ウェル、19
は間欠的回転方向、20.21.22.23及び24は
検体容器受け、25.26.27及び28は仕切り壁、
29.30.31及び32は貫通孔、33は矢印、34
及び35は両側部、36及び37は透過光検出用の孔、
38.39.40.41及び42は位置検出用の孔、4
3は送り部材、44は押し部材、45はタイミングベル
ト、46は連結部材、47は案内軸、48はサブCPU
、49は読み取り位置、50.51.52.53及び5
4は光源、55.56.57.58及び59は受光部、
60はメインCPU、61は検体カップ、62は採血用
試験管、63は孔、64は分析機器制御用CPU、65
は検体分注CPUである。
FIG. 1 is a partial explanatory diagram showing an outline of an embodiment of the analysis method of the present invention using an automatic chemical analyzer, and FIG. 2 shows a sample rack supply section in the embodiment of FIG. It is a partial side cross-sectional view showing the outline, centering on
FIG. 3 is a partial front sectional view of the detection section of FIG. 1. Regarding the symbols in the figure, 1 is an automatic analyzer, 2 is a reaction disk, 3 is a cuvette rotor, 4 is a reaction cuvette,
5 is a reaction line, 6 is a sample dispensing unit, 7 is a sample container, 8 is a sample rack, 9 is a transport path, 10 is a sample rack supply unit, 1
1 is an intermittent transfer unit, 12 is a code reading unit for confirming the sample container, 13 is a sample suction collection position, 14 is a sample dispenser, 1
5 is a sample dispensing nozzle section, 16 is a moving path, 17 is a sample dispensing position, 18 is a washing well for the sample dispensing nozzle section, 19
20, 21, 22, 23 and 24 are sample container holders, 25, 26, 27 and 28 are partition walls,
29.30.31 and 32 are through holes, 33 is an arrow, 34
and 35 are both side parts, 36 and 37 are holes for detecting transmitted light,
38, 39, 40, 41 and 42 are holes for position detection, 4
3 is a feeding member, 44 is a pushing member, 45 is a timing belt, 46 is a connecting member, 47 is a guide shaft, 48 is a sub CPU
, 49 is the reading position, 50.51.52.53 and 5
4 is a light source, 55, 56, 57, 58 and 59 are light receiving parts,
60 is a main CPU, 61 is a sample cup, 62 is a test tube for blood collection, 63 is a hole, 64 is a CPU for controlling an analytical device, 65
is the sample dispensing CPU.

Claims (1)

【特許請求の範囲】[Claims] 複数の液体試料容器が配列されている液体試料容器収容
用の容器に対して、液体試料容器の配列方向と交差する
方向から、異なる高さに、測定用の光を照射し、夫々の
測定用の光の透過強度を測定し、この透過強度の測定結
果より、液体試料容器を類別することを特徴とする液体
試料容器の類別検出方法。
A container for storing liquid sample containers in which a plurality of liquid sample containers are arranged is irradiated with measurement light at different heights from a direction intersecting the arrangement direction of the liquid sample containers. 1. A method for detecting the classification of a liquid sample container, comprising: measuring the transmitted intensity of light; and classifying the liquid sample container based on the measurement result of the transmitted intensity.
JP4696288A 1988-02-29 1988-02-29 Detecting method of liquid sample vessel according to assortment Pending JPH01219669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4696288A JPH01219669A (en) 1988-02-29 1988-02-29 Detecting method of liquid sample vessel according to assortment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4696288A JPH01219669A (en) 1988-02-29 1988-02-29 Detecting method of liquid sample vessel according to assortment

Publications (1)

Publication Number Publication Date
JPH01219669A true JPH01219669A (en) 1989-09-01

Family

ID=12761903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4696288A Pending JPH01219669A (en) 1988-02-29 1988-02-29 Detecting method of liquid sample vessel according to assortment

Country Status (1)

Country Link
JP (1) JPH01219669A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008307A (en) * 2008-06-30 2010-01-14 Sysmex Corp Analyzer
EP2098872A3 (en) * 2008-03-07 2015-04-15 Sysmex Corporation Analyzer and method for aspirating specimen
JP2017129595A (en) * 2011-09-30 2017-07-27 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Unitized reagent strip
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
CN112147354A (en) * 2019-06-28 2020-12-29 深圳迈瑞生物医疗电子股份有限公司 Sample analysis system and sample analysis method
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
USD1029291S1 (en) 2011-09-30 2024-05-28 Becton, Dickinson And Company Single piece reagent holder

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10351901B2 (en) 2001-03-28 2019-07-16 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10364456B2 (en) 2004-05-03 2019-07-30 Handylab, Inc. Method for processing polynucleotide-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10179910B2 (en) 2007-07-13 2019-01-15 Handylab, Inc. Rack for sample tubes and reagent holders
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10234474B2 (en) 2007-07-13 2019-03-19 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
EP2098872A3 (en) * 2008-03-07 2015-04-15 Sysmex Corporation Analyzer and method for aspirating specimen
JP2010008307A (en) * 2008-06-30 2010-01-14 Sysmex Corp Analyzer
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
JP2017129595A (en) * 2011-09-30 2017-07-27 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Unitized reagent strip
USD1029291S1 (en) 2011-09-30 2024-05-28 Becton, Dickinson And Company Single piece reagent holder
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
CN112147354A (en) * 2019-06-28 2020-12-29 深圳迈瑞生物医疗电子股份有限公司 Sample analysis system and sample analysis method

Similar Documents

Publication Publication Date Title
JPH01219669A (en) Detecting method of liquid sample vessel according to assortment
AU644278B2 (en) Incubator port closure for automated assay system
US7341691B2 (en) Automatic analyzing apparatus
US4406547A (en) Apparatus for effecting automatic analysis
US8545760B2 (en) Specimen analyzing method and specimen analyzing apparatus
US4595562A (en) Loading and transfer assembly for chemical analyzer
US7171863B2 (en) Transfer unit and automatic analyzing apparatus having such transfer unit
JP3032159B2 (en) Analysis system
JP4119845B2 (en) Stackable aliquot container array
US5439646A (en) Blood coagulation analyzer
JPS62278460A (en) Automatic analyzer
JP2007303937A (en) Autoanalyzer
WO2007139212A1 (en) Automatic analyzer
US6991764B2 (en) Method for replacing used reaction cuvettes in an automatic analyzer depending upon next scheduled assay
JPH01500368A (en) liquid light tube and cap assembly
WO2020235134A1 (en) Automatic analysis device
JPH0266461A (en) Automatic analyzer
EP0504313B1 (en) Sample handling system for an optical monitoring system
JPS6327661B2 (en)
JP2604043B2 (en) Automatic analyzer
JPH04350561A (en) Automatic analyser
CA1293679C (en) Diluent carryover control
EP1293782B1 (en) Automatic analyzing apparatus
JPS6385457A (en) Automatic analyzer for plural items
JP2000137036A (en) Dispensing method