JPH01214343A - Ct image applying type treatment planning apparatus - Google Patents

Ct image applying type treatment planning apparatus

Info

Publication number
JPH01214343A
JPH01214343A JP63038965A JP3896588A JPH01214343A JP H01214343 A JPH01214343 A JP H01214343A JP 63038965 A JP63038965 A JP 63038965A JP 3896588 A JP3896588 A JP 3896588A JP H01214343 A JPH01214343 A JP H01214343A
Authority
JP
Japan
Prior art keywords
radiation
target
image
calculation means
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63038965A
Other languages
Japanese (ja)
Other versions
JPH0649035B2 (en
Inventor
Hiroshi Ota
宏 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63038965A priority Critical patent/JPH0649035B2/en
Publication of JPH01214343A publication Critical patent/JPH01214343A/en
Publication of JPH0649035B2 publication Critical patent/JPH0649035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To determine an accurate radiation field by determining the three-dimensional shape of the radiation field by indicating a target to each CT image using a large number of CT images sliced in a predetermined thickness and calculating the tangential line from a dotted line source with respect to each target and calculating the projection shape of the target on a special plane to calculate the radiation field. CONSTITUTION:With respect to all of the CT images inputted from a CT image input part 1 and stored in a data buffer part 2, targets are inputted by a target indication means 4. The calculation of planning data becoming necessary at the time of positioning of radiation treatment is performed by an operation apparatus 3. A projection shape calculation means 6 calculates the intersecting point of the tangential line calculated by a tangential line calculation means 5 and the plane (special plane) containing the center of rotation of a radiation treatment machine and vertical to the center axis of radiation beam and forms an image, which is obtained by projecting a tumor from a radiation dose position of radiation beam in the tangential direction, on the special plane. On the basis of the projection image calculated by the projection shape calculation means 6, a radiation field having to perform radiation treatment is accurately calculated by a radiation field calculation means 7.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は所定厚さにスライスされたCT両画像多数用い
て放射線治療における照射野を決定するCT画像活用型
治療計画装置に関する。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Field of Application The present invention relates to a CT image-utilizing treatment planning device that determines an irradiation field in radiation therapy using a large number of CT images sliced to a predetermined thickness.

〔従来の技術〕[Conventional technology]

従来、この種の放射線治療計画装置において放射線治療
領域の決定は次の2方法によシ行っていた。第1は1枚
OCT画像を利用して治療対象とする任意形状(以下、
ターゲットと称す)を入力し、照射野をマニュアルで指
定する方法、第2は多数の所定スライス厚OCT画像を
利用して各CT画像上に各々ターゲットを入力して、放
射線治療機の線源を実際は点線源であるが計算上線線源
とみなして各CT両画像ターゲットの投影形状を求め照
射野を決定する方法である。
Conventionally, in this type of radiation treatment planning apparatus, the radiation treatment area has been determined by the following two methods. The first method is to use a single OCT image to treat an arbitrary shape (hereinafter referred to as
The second method is to enter a target on each CT image using a large number of predetermined slice thickness OCT images, and then specify the radiation source of the radiation therapy machine. Although it is actually a point ray source, it is calculated as a line ray source, and the projection shape of each CT image target is determined to determine the irradiation field.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の放射線治療計画装置における放射線治療
領域の決定方法では、前者の場合は1枚OCT画像より
照射野を決定しているので全体の立体的形状を把握でき
ず照射野があいまいとなるという欠点があり、後者の場
合は放射線治療機の線源を線線源とみなしているので、
各07画像のスライスされた面の延長上にあたかも線源
があるものとして、擬似的な照射野を算出しているため
線源を実際の点線源として算出する場合と比較して著し
く不正確な照射野となるという欠点があった。
In the former case, in the method of determining the radiation treatment area using the conventional radiation treatment planning system described above, the irradiation field is determined from a single OCT image, so the overall three-dimensional shape cannot be grasped and the irradiation field becomes ambiguous. There is a drawback; in the latter case, the radiation source of the radiation therapy machine is considered a radiation source, so
Since the pseudo irradiation field is calculated as if the radiation source were located on the extension of the sliced surface of each 07 image, it is significantly inaccurate compared to the case where the radiation source is calculated as an actual point radiation source. It had the disadvantage of becoming an irradiation field.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は所定厚さにスライスされた複数007画像を入
力するCT画像入力部と、入力され九は画像を格納する
データバッファ部と、データバッファ部OCT画像に対
して治療対象となる任意形状を各CT画偉毎に指定しタ
ーゲットとして登録するターゲット指定手段と、点線源
とみなされた放射線治療機の線源から07画像上のター
ゲットについての接線を求める接線計算手段と、放射線
治療機の回転中心軸を含み且つ点線源から照射される放
射線のビーム中心軸に垂直な平面において、前記接線と
の交点を求めターゲットの投影形状を算出する投影形状
算出手段と、投影形状を含む実際の放射線治療用の照射
野を算出する照射野計算手段とを設けたものである。
The present invention includes a CT image input unit that inputs a plurality of images sliced to a predetermined thickness, a data buffer unit that stores the input images, and a data buffer unit that inputs an arbitrary shape to be a treatment target for the OCT image. A target specifying means for specifying each CT image and registering it as a target, a tangent calculation means for calculating a tangent to a target on the 07 image from the radiation source of the radiation therapy machine, which is regarded as a point radiation source, and rotation of the radiation therapy machine. projection shape calculation means for calculating the projected shape of the target by finding the intersection with the tangent in a plane that includes the central axis and is perpendicular to the central axis of the beam of radiation irradiated from the point source; and an actual radiation treatment including the projected shape. and an irradiation field calculation means for calculating the irradiation field for use.

〔作 用〕[For production]

本発明は、多数のスライスされた07画像を用いて各0
7画像にターゲットを指定し、各ターゲットについて点
線源からの接線を求め、特殊平面上にターゲットの投影
形状を求めて照射野を算出するので、正確な照射野を求
めることができる。
The present invention uses a large number of sliced 07 images for each 0
Targets are specified in 7 images, tangents from the point ray source are determined for each target, and the projected shape of the target is determined on a special plane to calculate the irradiation field, so an accurate irradiation field can be determined.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である0 図において、1は所定厚さにスライスされた複数007
画像を入力するCT画像入力部である。
FIG. 1 is a block diagram showing one embodiment of the present invention. In FIG.
This is a CT image input unit that inputs images.

07画像の入力手段としてはCT装置とオンライン接続
して入力するか又は磁気テープ、フロッピィディスク等
の媒体によシCT画偉を転送する方法がある。次に、2
は入力され九〇T画像を格納するデータバッファ部、4
はデータバッファ部の07画像に対して治療対象となる
任意形状を指定しターゲットとして登録するターゲット
指定手段である。5は点線源とみなされた放射線治療機
の線源から指定されたターゲットについての接線を計算
する接線計算手段、6は放射線治療機の回転中心軸を含
み且つ点線源から照射される放射線のビーム中心軸に垂
直な平面において、前記接線との交点を求めターゲット
の投影形状を算出する投影形状算出手段、7は投影形状
を含む実際の放射線治療用の照射野を算出する照射野計
算手段、aはターゲット指定手段4において使用する0
7画像を表示し、且つ実際の放射線治療用照射野の算出
結果を表示する表示部、9はキーボードである。
07 Images can be input by connecting the CT device online or by transferring the CT image to a medium such as a magnetic tape or floppy disk. Next, 2
is a data buffer unit that stores the input 90T image; 4
is a target specifying means for specifying an arbitrary shape to be treated with respect to the 07 image in the data buffer section and registering it as a target. 5 is a tangent calculation means for calculating a tangent to a designated target from the radiation source of the radiation therapy machine, which is considered to be a point radiation source; 6 is a beam of radiation that includes the rotation center axis of the radiation therapy machine and is irradiated from the point radiation source; Projected shape calculating means for calculating the projected shape of the target by finding the intersection with the tangent in a plane perpendicular to the central axis; 7 is an irradiation field calculating means for calculating the actual radiation treatment field including the projected shape; a is 0 used in target specification means 4.
7 is a display unit that displays images and also displays the calculation result of the actual radiation treatment irradiation field; 9 is a keyboard;

なお、3はターゲット指定手段4.接線計算手段5.投
影形状算出手段6.照射野計算手段Tから成る演算装置
であり、ターゲット指定手段4で指定されたターゲット
の記憶を行う。
Note that 3 is a target specifying means 4. Tangent calculation means 5. Projection shape calculation means 6. It is a calculation device consisting of an irradiation field calculation means T, and stores the target designated by the target designation means 4.

この場合のCTiji儂は、治療対象患者体内の任意範
囲に位置する優等の悪性腫瘍をはさむような範囲を所望
の厚さでスライスした多数007画像のことをいう。こ
のCT画儂におけるスライス位置は通常、体軸を足から
頭Kかけてz軸とした場合、z@値に関連付けて表され
る。Z=Qの位置はほぼ腫瘍中心を通る位置に決められ
るが、別に他の位置に決定しても治療計画に際し影響は
ない。
In this case, CTiji refers to a large number of 007 images obtained by slicing an area with a desired thickness such that a malignant tumor located in an arbitrary area within the patient's body is to be treated. The slice position in this CT image is usually expressed in relation to the z@ value, where the body axis extends from the feet to the head K and is defined as the z axis. The position of Z=Q is determined to be a position that passes approximately through the center of the tumor, but even if it is determined to another position, it will not affect the treatment plan.

この場合は腫瘍中心をz=0とした相対座標とする。In this case, relative coordinates are used with the center of the tumor as z=0.

次に、本実施例の動作について説明する。Next, the operation of this embodiment will be explained.

まず、CT画像入力部1より入力され、データバッファ
2に格納された07画像についてターゲット指定手段4
によりCT画像全てKついてターゲットを入力する。以
下、放射線治療の位置決めの際に必要となる計画データ
の算出が演算装置3により行われる。
First, the target designation means 4 uses the target designation means 4 for the 07 image input from the CT image input unit 1 and stored in the data buffer 2.
A target is input for all CT images K. Hereinafter, calculation of planning data necessary for positioning for radiation therapy is performed by the calculation device 3.

計画データの算出では、まず放射線治療機のガントリ回
転中心位置、ガントリ回転角度を決定し、次に患者を所
定位fllc設置した場合の治療台における3次元的な
位置関係を決定する。このガントリ回転中心、ガン) 
IJ回転角度を決定した後、放射線治療機の放射線ビー
ムが@瘍患部を正確に照射するように治療用照射野の形
状を定める。
In calculating the plan data, first, the gantry rotation center position and gantry rotation angle of the radiation therapy machine are determined, and then the three-dimensional positional relationship on the treatment table when the patient is placed at a predetermined position fllc is determined. This gantry rotation center, gun)
After determining the IJ rotation angle, the shape of the treatment irradiation field is determined so that the radiation beam of the radiation therapy machine accurately irradiates the tumor affected area.

この照射野の形状は放射線治療機の線源を点線源として
、腫瘍患部に対して接線方向の線分を多数引くことによ
シ全体として腫瘍領域を包絡する治療領域を求めること
ができる。この接線を求めるのが接線計算手段5であり
、Z軸方向く垂直にスライスされた多数の07画像の各
ターゲットに対して放射線ビームの線源位置から各々接
線を引き接線の3次元空間における線分式を計算により
求める。
The shape of this irradiation field can be determined by using the radiation therapy machine's radiation source as a point radiation source and drawing a number of line segments tangential to the tumor affected area to obtain a treatment area that envelops the tumor area as a whole. The tangent line calculation means 5 calculates this tangent line by drawing a tangent line from the source position of the radiation beam to each target of a large number of 07 images sliced perpendicularly in the Z-axis direction, and calculating the line in the three-dimensional space of the tangent line. Find the fractional formula by calculation.

次に投影形状算出手段6は接線計算手段5によシ求めら
れ7’C接線と、放射線治療機回転中心を含み放射線ビ
ーム中心軸に垂直な平面(以下、特殊平面と称す)との
交点を求め、放射線ビームの線源位置から腫瘍を接線方
向に投影した画像を特殊平面に形成する。この場合、0
7画像は所定間隔により採取されたものであるので腫瘍
形状として入力され九ターゲットは実際の腫瘍形状を離
散的に代表した形状となる。このため、例えば2枚のC
T画像間に存在する腫瘍形状はその画像間隔において補
間することにより擬似的に類推される。
Next, the projection shape calculation means 6 calculates the intersection of the 7'C tangent obtained by the tangent calculation means 5 and a plane (hereinafter referred to as a special plane) that includes the rotation center of the radiation therapy machine and is perpendicular to the radiation beam central axis. Then, an image of the tumor projected tangentially from the source position of the radiation beam is formed on a special plane. In this case, 0
Since the 7 images are taken at predetermined intervals, they are input as the tumor shape, and the 9 targets have shapes that discretely represent the actual tumor shape. For this reason, for example, two C
The shape of the tumor existing between T images can be estimated in a pseudo-analogous manner by interpolating between the images.

そして、投影形状算出手段6により求められた投影画像
に基づいて照射野計算手段7において放射線治療を行う
べき照射野を正確に計算する。
Then, based on the projection image obtained by the projection shape calculation means 6, the radiation field calculation means 7 accurately calculates the radiation field in which radiation therapy should be performed.

次に07画像の斜視図をtgz図に示す。Next, a perspective view of the 07 image is shown in a tgz diagram.

図において、所定厚さでスライスされた2枚OCT画像
10.11は各個にターゲット12.13を含んでいる
。また、C7画像10.11の内、一般に治療計画装置
で扱う07画像は所定厚のスライスの中心を通る中心0
7画像IQa、11a であり、これに伴いターゲット
は中心CT画像10鳳、11a上の12a、13aとな
る。14はガントリ回転中心軸、15は任意ガントリ回
転角度における放射線治療機の放射線ビームの点線源位
置、16は点線源位置15を含み、ガントリ回転中心軸
14と平行な線線源軸、17.18は07画像において
線線源軸16と交叉する点である。19.20は点17
からターゲット12aに対して引いた接線、21.22
は点18からターゲット131に対して引いた接線、2
3は放射線ビーム中心軸24に垂直でガントリ回転中心
軸14t−含んだ特殊平面、25.26.27.28は
接線19,20.21.22と特殊平面23との交点、
29.30は点15からターゲラ)12aK対して引い
た接線、31.32は点15からターゲット13aに対
して引いた接線、33.34は接線29.30と特殊平
面23との交点、35.36は接線31.32と特殊平
面23との交点である。従来は線線源16上の点17.
18からターゲット12a。
In the figure, two OCT images 10.11 sliced at a predetermined thickness each include a target 12.13. Also, among the C7 images 10.11, the 07 image generally handled by a treatment planning device has a center 0 that passes through the center of a slice of a predetermined thickness.
7 images IQa, 11a, and accordingly, the targets are 12a, 13a on the central CT image 10, 11a. 14 is a gantry rotation center axis, 15 is a point source position of the radiation beam of the radiation therapy machine at an arbitrary gantry rotation angle, 16 is a line source axis that includes the point source position 15 and is parallel to the gantry rotation center axis 14; is a point that intersects the line source axis 16 in the 07 image. 19.20 is point 17
The tangent line drawn from to the target 12a, 21.22
is the tangent line drawn from point 18 to target 131, 2
3 is a special plane that is perpendicular to the radiation beam center axis 24 and includes the gantry rotation center axis 14t; 25, 26, 27, 28 are the intersections of the tangents 19, 20, 21, 22 and the special plane 23;
29.30 is the tangent drawn from point 15 to target 12aK, 31.32 is the tangent drawn from point 15 to target 13a, 33.34 is the intersection of tangent 29.30 and special plane 23, 35. 36 is the intersection of the tangents 31 and 32 and the special plane 23. Conventionally, the point 17. on the line source 16.
18 to target 12a.

13aへ引いた接線19,20,21.22と特殊平面
23との交点25.26,27.28を結ぶ直線の範囲
を照射野として決定していたが、実際には点線源15か
ら引いた接線29.30,31.32の特殊平面23と
の交点33,34,35.36を結んだ直線の範囲が真
の照射野とな夛、従来の照射野と真の照射野とは相違す
る形状となる。
The range of the straight line connecting the tangent lines 19, 20, 21.22 drawn to 13a and the intersection points 25.26, 27.28 with the special plane 23 was determined as the irradiation field, but in reality it was drawn from the point source 15. The range of the straight line connecting the intersection points 33, 34, and 35.36 of the tangent lines 29.30 and 31.32 with the special plane 23 is the true irradiation field, and the conventional irradiation field and the true irradiation field are different. It becomes the shape.

次にこの従来の照射野および真の照射野の形状について
第3図により詳細に説明する。(a)図はσ画像40〜
46についての側面断面図である。伽)図は特殊平面2
3上における点線源15.線線源16による照射野を示
す図である。
Next, the shapes of the conventional irradiation field and the true irradiation field will be explained in detail with reference to FIG. (a) The figure shows σ image 40~
46 is a side sectional view of FIG.佽)The figure is special plane 2
Point source on 3 15. 3 is a diagram showing an irradiation field by a line radiation source 16. FIG.

図において、ガントリ回転中心軸14上にはスライスさ
れたCT画像40〜46が存在し、そのZ軸方向のスラ
イス位tは各々Z=−6,−4゜−2,0,2,4,6
である。CT画像40〜46上に各々指定されたターゲ
ット40T〜46Tは特殊平面23上の無限遠からなが
めた場合の側面像として表現されている。放射線ビーム
の源を線線源軸16とした従来の場合に、軸16からタ
ーゲラ)40T〜46Tに引いた接線と特殊平面23の
交点47〜60から照射野を以下の様に求める。
In the figure, sliced CT images 40 to 46 exist on the gantry rotation center axis 14, and the slice positions t in the Z-axis direction are Z=-6, -4°-2, 0, 2, 4, respectively. 6
It is. The targets 40T to 46T specified on the CT images 40 to 46 are expressed as side images viewed from an infinite distance on the special plane 23. In the conventional case where the source of the radiation beam is the line source axis 16, the irradiation field is determined as follows from the intersections 47 to 60 of the special plane 23 and tangents drawn from the axis 16 to the target planes 40T to 46T.

照射野はターゲット毎に矩形形状(属性領域)を求めて
、その属性領域の総和を照射野91とする。各ターゲッ
トにおける矩形形状の属性領域は、まず任意の隣接する
2つの07画像においてそのZCT画偉の中心軸aを引
き、次に1その中心軸aについて交点47〜60を基準
にその左側領域である場合には左側に隣接する07画像
のターゲットの高さとし、右側領域は右側の07画像の
高さとする。これは各07画像の中心軸aに対して各交
点47〜60から垂線を下した場合の矩形形状と同一で
ある。この矩形形状がR性領域であり、これらの総和が
照射野91となる。この照射野91の各矩形形状の最右
端および最左端は2CT画像中心から交点47〜60の
位置を07画像の間隔の1/2ピッチ分左右に拡大した
形状となるように設定されている。
For the irradiation field, a rectangular shape (attribute area) is determined for each target, and the sum of the attribute areas is defined as the irradiation field 91. The rectangular attribute area of each target is obtained by first drawing the center axis a of the ZCT image in any two adjacent 07 images, and then drawing the left side area of the center axis a using the intersection points 47 to 60 as a reference. In some cases, the height of the target of the 07 image adjacent to the left side is set, and the right area is set to the height of the 07 image on the right side. This is the same as the rectangular shape when perpendicular lines are drawn from the intersections 47 to 60 to the central axis a of each 07 image. This rectangular shape is the R-type region, and the sum total thereof becomes the irradiation field 91. The rightmost and leftmost ends of each rectangular shape of this irradiation field 91 are set to have a shape obtained by expanding the positions of the intersections 47 to 60 from the center of the 2CT image to the left and right by 1/2 pitch of the interval of the 07 images.

次に本実施例における線源を点線源15とした場合の照
射野について説明する。
Next, an explanation will be given of the irradiation field when the point radiation source 15 is used as the radiation source in this embodiment.

まず点線源15からターゲット40T〜46Tに引いた
接線と特殊平面23の交点50,57゜61〜63.6
4〜66.67〜69.70−72を求め、次に各07
画像における属性領域を求める。例えばCT画像40の
場合では点80,81.82.83により囲まれる矩形
形状の領域を属性領域とする。このように各07画像に
ついて属性領域を求め、その属性領域の総和を照射野9
0とする。なお、点80.81の中心点および点82゜
、83の中心点を結ぶ軸は点線源15からCT画儂の輪
切夛最外周線である論理輪郭線84との接線を引いた場
合の特殊平面23との交点61.67を結ぶ線と一致す
る。この交点61は点80.81を結ぶ線上にあり、交
点6Tは点82.83を結ぶ線上にある。ここで点80
.82はCT画偉間の中心点から左右Kl!!理輪郭線
84と特殊平面23との交点を結んで求められる投影ス
ライスピッチPの1/2の位置分拡張した点となる。
First, the intersection of the tangent line drawn from the point source 15 to the targets 40T to 46T and the special plane 23 is 50,57°61 to 63.6
Find 4-66.67-69.70-72, then each 07
Find the attribute area in the image. For example, in the case of the CT image 40, a rectangular area surrounded by points 80, 81, 82, and 83 is defined as an attribute area. In this way, the attribute area is determined for each 07 image, and the sum of the attribute areas is calculated as the irradiation field 9.
Set to 0. Note that the axis connecting the center point of point 80, 81 and the center point of points 82° and 83 is obtained by drawing a tangent from the point ray source 15 to the logical contour line 84, which is the outermost circumferential line of the CT image. It coincides with the line connecting the intersection points 61 and 67 with the special plane 23. This intersection 61 is on the line connecting points 80.81, and the intersection 6T is on the line connecting points 82.83. point 80 here
.. 82 is left and right Kl from the center point between the CT images! ! This is a point expanded by 1/2 of the projected slice pitch P obtained by connecting the intersection of the grain contour line 84 and the special plane 23.

このように従来の照射野91は本実施例による真の照射
野90に比べ範囲も狭く且つ位置もずれていることが明
らかであり、線源を銀線源とした従来の場合で唸不正確
な照射野となるが、線源を点源とした本実施例において
は正確な照射野を計算することができる。
In this way, it is clear that the conventional irradiation field 91 has a narrower range and a shifted position compared to the true irradiation field 90 according to this embodiment, and it is extremely inaccurate in the conventional case where the radiation source is a silver ray source. However, in this embodiment where the radiation source is a point source, an accurate radiation field can be calculated.

〔発明の効果〕〔Effect of the invention〕

本発明は多数の所定厚さにスンイスされたCT画儂を用
いて、各07画像にターゲットを指定し、各ターゲット
について点線源からの接線を求め、特殊平面上にターゲ
ットの投影形状を求め照射野を算出するようにしている
ので、照射野の立体的な形状を把握し且つ従来のように
線源を銀線源とした場合の不正確な照射野ではなく、正
N表照射野の決定を行うことができるという効果がある
The present invention uses a large number of CT images drawn to a predetermined thickness, specifies a target in each 07 images, determines the tangent line from a point source for each target, determines the projected shape of the target on a special plane, and irradiates it. Since the field is calculated, the three-dimensional shape of the irradiation field can be grasped and the irradiation field can be determined as a regular N-table irradiation field, rather than the inaccurate irradiation field when the radiation source is a silver radiation source as in the past. It has the effect of being able to do the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
07画像の斜視図、 第3図は従来の照射野および補正後の真の照射野を示す
断面図である。 1・・拳・CT画像入力部、2・・・拳デーメバツファ
、3・Φ・・演算装fl、 411 拳11 Iターゲ
ット指定手段、5・・・Φ接線計算手段、6・・・・投
影形状算出手段、7・・・・照射野計算手段、8・・φ
・表示部、90會・・キーボード。 特許出願人  日本電気株式会社
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a perspective view of a 07 image, and FIG. 3 is a sectional view showing a conventional irradiation field and a true irradiation field after correction. 1...Fist/CT image input unit, 2...Fist deme buffer, 3...Arithmetic unit fl, 411 fist 11 I target designation means, 5...Φ tangent calculation means, 6...Projection shape Calculation means, 7... Irradiation field calculation means, 8...φ
・Display section, 90 meetings...keyboard. Patent applicant: NEC Corporation

Claims (1)

【特許請求の範囲】 所定厚さにスライスされた複数のCT画像を入力するC
T画像入力部と、 入力されたCT画像を格納するデータバッファ部と、 データバッファ部のCT画像に対して治療対象となる任
意形状を各CT画像毎に指定しターゲットとして登録す
るターゲット指定手段と、 点線源とみなされた放射線治療機の線源からCT画像上
のターゲットについての接線を求める接線計算手段と、 前記放射線治療機の回転中心軸を含み且つ点線源から照
射される放射線のビーム中心軸に垂直な平面において、
前記接線との交点を求めターゲットの投影形状を算出す
る投影形状算出手段と、前記投影形状を含む実際の放射
線治療用の照射野を算出する照射野計算手段とを設けた
ことを特徴とするCT画像活用型治療計画装置。
[Claims] C inputting a plurality of CT images sliced to a predetermined thickness
a T-image input section; a data buffer section for storing input CT images; and a target specifying means for specifying an arbitrary shape to be treated as a target for each CT image in the data buffer section and registering it as a target. , a tangent calculation means for calculating a tangent to a target on a CT image from a radiation source of a radiation therapy machine, which is regarded as a point radiation source; and a beam center of radiation irradiated from the point radiation source that includes the rotation center axis of the radiation therapy machine. In the plane perpendicular to the axis,
CT characterized by comprising a projection shape calculation means for calculating the projection shape of the target by finding the intersection with the tangent line, and an irradiation field calculation means for calculating the irradiation field for actual radiation therapy including the projection shape. Image-based treatment planning device.
JP63038965A 1988-02-22 1988-02-22 CT image-based treatment planning device Expired - Lifetime JPH0649035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038965A JPH0649035B2 (en) 1988-02-22 1988-02-22 CT image-based treatment planning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038965A JPH0649035B2 (en) 1988-02-22 1988-02-22 CT image-based treatment planning device

Publications (2)

Publication Number Publication Date
JPH01214343A true JPH01214343A (en) 1989-08-28
JPH0649035B2 JPH0649035B2 (en) 1994-06-29

Family

ID=12539876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038965A Expired - Lifetime JPH0649035B2 (en) 1988-02-22 1988-02-22 CT image-based treatment planning device

Country Status (1)

Country Link
JP (1) JPH0649035B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515526A (en) * 1991-07-15 1993-01-26 Mitsubishi Electric Corp X-ray simulator image processor
US6999556B2 (en) 2003-03-19 2006-02-14 Nakano System Company Radiation therapy treatment planning machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDICAL IMAGIN TECHNOLOGY=S58 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515526A (en) * 1991-07-15 1993-01-26 Mitsubishi Electric Corp X-ray simulator image processor
US6999556B2 (en) 2003-03-19 2006-02-14 Nakano System Company Radiation therapy treatment planning machine

Also Published As

Publication number Publication date
JPH0649035B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US5642293A (en) Method and apparatus for determining surface profile and/or surface strain
Endo et al. HIPLAN-a heavy ion treatment planning system at HIMAC
US3987281A (en) Method of radiation therapy treatment planning
US7204640B2 (en) Apparatus and method for registering 2D radiographic images with images reconstructed from 3D scan data
US6360116B1 (en) Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-operative planning and post-operative evaluations
JP5996092B2 (en) Patient monitoring and methods
JP2000126318A (en) Method and device for computing scattering radiation and computer program product
US11471702B2 (en) Ray tracing for a detection and avoidance of collisions between radiotherapy devices and patient
Duvedi et al. A multipoint method for 5-axis machining of triangulated surface models
US20120253495A1 (en) Defining the volumetric dimensions and surface of a compensator
CN107622530A (en) A kind of triangulation network cutting method of efficiently robust
Altschuler et al. Rapid, accurate, three-dimensional location of multiple seeds in implant radiotherapy treatment planning
JPH01214343A (en) Ct image applying type treatment planning apparatus
Sterling et al. A practical procedure for automating radiation treatment planning
US20050185831A1 (en) Analysis of a multi-dimensional structure
CN110997065B (en) Calibration of radiation therapy treatment plan for a system
JP2564251B2 (en) Radiation treatment planning device
US20040015073A1 (en) Target repositioning error correction filter and method
JP2616595B2 (en) Three-dimensional volume dose estimation device for radiation therapy
JP2002210027A (en) Radiotherapy equipment
JP2621825B2 (en) Radiation treatment planning system
Vandermeulen et al. A new software package for the microcomputer based BRW stereotactic system: integrated stereoscopic views of CT data and angiograms
Wilkinson et al. Experience in implementing the Mark III Rad 8 system for radiotherapy dose computations
EP2087924A1 (en) Method for generating and visualizing an ion beam profile, treatment planning system and computer software
JP7281131B2 (en) Treatment planning device, treatment planning method and program