JPH01208834A - Etching method - Google Patents

Etching method

Info

Publication number
JPH01208834A
JPH01208834A JP3293088A JP3293088A JPH01208834A JP H01208834 A JPH01208834 A JP H01208834A JP 3293088 A JP3293088 A JP 3293088A JP 3293088 A JP3293088 A JP 3293088A JP H01208834 A JPH01208834 A JP H01208834A
Authority
JP
Japan
Prior art keywords
etching
gas
mixed gas
ions
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3293088A
Other languages
Japanese (ja)
Other versions
JPH0628253B2 (en
Inventor
Nobuo Nakamura
信夫 中村
Kiyokazu Nakagawa
清和 中川
Tokuo Kure
久礼 得男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63032930A priority Critical patent/JPH0628253B2/en
Publication of JPH01208834A publication Critical patent/JPH01208834A/en
Publication of JPH0628253B2 publication Critical patent/JPH0628253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the accuracy of etching for fine working by using the mixed gas of an isotropic etching gas being represented by SF6 and having large reactivity and an anisotropic etching gas containing heavy ions easy to be dissociated to a symmetrical shape. CONSTITUTION:A mixed gas mainly comprising at least one kind of a gas selected from a group composed of SF6, CF4, NF3, XeF2 and F2 as an isotropic etching gas and at least one kind of a gas (where X represents at least one kind selected from a group consisting of Cl, Br, I and H) selected from a group made up of (CXF2)2, (CX2F)2 and (CX3)2 is employed, and plasma etching is conducted. Accordingly, since etching can be performed by extremely low high frequency power, a resist can be used as an etching mask, and a vertical etching hole 3 can be formed when an Si substrate 1 is etched, employing the resist 2 as the mask.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエツチング方法に係り、特に微細溝を高精度で
形成するのに好適なドライエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an etching method, and particularly to a dry etching method suitable for forming fine grooves with high precision.

[従来の技術] 半導体集積回路なとの微細パターンの加工には。[Conventional technology] For processing fine patterns such as semiconductor integrated circuits.

反応性ガスのプラズマを用いたドライエツチング法が用
いられている。エツチングガスの代表的なものとしては
、SiあるいはGaAs等の等方性エツチングガスとし
て、F2.SFg、NF3−。
A dry etching method using reactive gas plasma is used. Typical etching gases include isotropic etching gas such as Si or GaAs, F2. SFg, NF3-.

XeF2.CF4y異方性エツチングガスとして、CF
3CO,CF2CO2,CFCQ3.cQ2゜CCn4
.CBrF3.ClF3等が各々知られている。これら
のエツチングガスについては、例えば特開昭51’−1
30173号、特開昭52−9648号、特公昭57−
13137号等に述べられている。
XeF2. As a CF4y anisotropic etching gas, CF
3CO, CF2CO2, CFCQ3. cQ2゜CCn4
.. CBrF3. ClF3 and the like are known. Regarding these etching gases, for example, JP-A-51'-1
No. 30173, JP-A-52-9648, JP-A-57-
13137, etc.

等方性エツチングは主に電気的に中性な粒子によってエ
ツチングされるために、マスク寸法通りの高精度な加工
が難かしい。従って、微細加工やエツチング形状を垂直
にしたい場合には、プラズマから被エツチング物質表面
に向かって加速されたイオンによって行う異方性エツチ
ングが行なわれてきた1反応性ドライエツチングと呼ば
れる方法はこの代表的なものであり、エツチングガスと
しては電気的に中性な粒子によるエツチングが起こりに
<<、イオンの働きだけでエツチングが進むものが選ば
れてきた。
In isotropic etching, since etching is mainly performed using electrically neutral particles, it is difficult to perform highly accurate processing according to mask dimensions. Therefore, when microfabrication or the etching shape is desired to be vertical, anisotropic etching is performed using ions accelerated from plasma toward the surface of the material to be etched.The most common method is one-reactive dry etching. Therefore, etching gases that cause etching by electrically neutral particles have been selected, and those that allow etching to proceed solely through the action of ions have been selected.

[発明が解決しようとする問題点] 上記従来技術では、直流負バイアスによって加速された
イオンによってエツチングするために、イオン衝撃によ
る基板へのダメージの問題や、加速されたイオンがガス
分子と衝突し、方向を変えてSiと衝突することによる
サイドエツチングの問題、あるいは炉壁に吸着した酸素
をたたき出すためにエツチング条件がロット間で異なる
等の問題があった。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, since etching is performed by ions accelerated by a negative direct current bias, there are problems such as damage to the substrate due to ion bombardment and collisions between the accelerated ions and gas molecules. There were problems such as side etching caused by changing direction and colliding with Si, and etching conditions differing between lots in order to knock out oxygen adsorbed on the furnace wall.

上記問題点の中で、イオンダメージを軽減する方法とし
て、等方性エツチングガスであるSF8と、異方性エツ
チングガス、例えばCQ2やCeO2,CC12FB、
5iCQ4等との混合ガスも用いられている。しかし、
これらの場合においてもサイドエツチングの問題は解決
せず、またエツチング形状が混合ガス比率やエツチング
条件によって変わりやすい問題点を持っていた。
Among the above problems, as a method to reduce ion damage, SF8, which is an isotropic etching gas, and anisotropic etching gas, such as CQ2, CeO2, CC12FB,
A mixed gas with 5iCQ4 etc. is also used. but,
Even in these cases, the problem of side etching was not solved, and the etching shape was susceptible to change depending on the mixed gas ratio and etching conditions.

本発明の目的は、この問題点を解決する混合ガスを用い
たエツチング方法を提供することにある。
An object of the present invention is to provide an etching method using a mixed gas that solves this problem.

[問題点を解決するための手段] 上記目的は、等方性エツチングガスであるSF6.CF
4.NF3.XeF2およびF2から成る群から選ばれ
た少なくとも1種類のガスと、異方性エツチングガスで
ある(CXF2)2゜(CX2F)2および(CX3)
2から成る群から選ばれた少くとも1種類のガスとを主
成分とした混合ガスを用いることにより達せられる。た
だし、上記Xは8Q、Br、IおよびHからなる群から
選ばれた少なくとも1種である。
[Means for Solving the Problems] The above purpose was achieved by using SF6. which is an isotropic etching gas. C.F.
4. NF3. at least one type of gas selected from the group consisting of XeF2 and F2, and anisotropic etching gases (CXF2)2゜(CX2F)2 and (CX3)
This can be achieved by using a mixed gas whose main component is at least one type of gas selected from the group consisting of 2. However, the above X is at least one selected from the group consisting of 8Q, Br, I and H.

これらガスのうち、ガスの入手の容易性等の点から等方
性エツチングガスとしてはS F、、異方性エツチング
ガスとしては(CBrF2)2がより好ましい。
Among these gases, SF is more preferable as the isotropic etching gas, and (CBrF2)2 is more preferable as the anisotropic etching gas, from the viewpoint of ease of gas availability.

[作用] ドライエツチングにおけるプラズマ中には、さまざまな
イオンや中性粒子が含まれており、この中でCやSを主
とする物質は反応残渣として基板表面に付着し、エツチ
ングを阻害する。一方1種々のイオンは基板表面に加速
されて衝突するため、基板をエツチングすることはもち
ろんだが、この付着物を除去する働きもしている。上記
等方性エツチングガスと異方性エツチングガスとの混合
ガスによるエツチングは、上記の2つの働きをうまく利
用して、第1図に示す様なエツチング形状が垂直なエツ
チングを行うものである。
[Function] Plasma in dry etching contains various ions and neutral particles, and among these, substances mainly composed of C and S adhere to the substrate surface as reaction residues and inhibit etching. On the other hand, since various ions are accelerated and collide with the substrate surface, they not only etch the substrate, but also serve to remove deposits. Etching with a mixed gas of an isotropic etching gas and an anisotropic etching gas makes good use of the above two functions to perform etching with a vertical etching shape as shown in FIG.

具体的には、高周波電力が非常に低い場合には、イオン
が十分加速されないため反応残渣である付着物は除去さ
れるが、イオンによる基板のエツチングは非常に少ない
、しかし、この付着物が除去された部分は、反応性の高
い中性粒子のF(主に等方性エツチングガスに含まれて
いた)によって容易にエツチングされる。こうして、イ
オン衝撃のある部分でどんどんエツチングされることに
なるので、エツチング形状はイオン方向性に依存する。
Specifically, when the radio frequency power is very low, the ions are not accelerated enough and the deposits, which are reaction residues, are removed, but the etching of the substrate by the ions is very small; The etched portions are easily etched by highly reactive neutral particles of F (mainly contained in the isotropic etching gas). In this way, etching occurs more and more in areas where ions are bombarded, so the etching shape depends on the ion directionality.

すなわち、イオンのほとんどが基板に垂直に入射する場
合は、エツチング形状が垂直になるが、途中でガス分子
等に衝突し散乱する場合は形状が垂直にならず、第2図
や第3図に示した様になる。
In other words, if most of the ions are incident perpendicularly to the substrate, the etched shape will be vertical, but if they collide with gas molecules etc. on the way and are scattered, the shape will not be vertical, and as shown in Figures 2 and 3. It will look like shown.

例えば、ガス圧が10Paでイオンシース幅が1mmの
場合は約6割のイオンが加速中にガス分子等と衝突して
散乱され、方向が変わると言われている。そこで、散乱
の影響をできるだけ小さくする必要があり、その方法と
しては、■ガス圧を下げて平均自由行程を十分大きくす
ること、■高周波電力を下げて衝突時のイオンエネルギ
ーを小さくすることの他に、■散乱角ができるだけ小さ
くなるようなイオンを選ぶことが重要である。
For example, when the gas pressure is 10 Pa and the ion sheath width is 1 mm, it is said that about 60% of the ions collide with gas molecules during acceleration, are scattered, and change direction. Therefore, it is necessary to reduce the influence of scattering as much as possible, and methods for doing so include: - lowering the gas pressure to sufficiently increase the mean free path; and - lowering the high-frequency power to reduce the ion energy at the time of collision. It is important to select ions whose scattering angle is as small as possible.

上述の本発明に係る混合ガスは上記条件を満たすもので
ある。すなわち、上記混合ガスのうちの異方性エツチン
グガス(例えば(CBrFz)z)は、C−〇の結合部
が切れると2つのCBrF2”イオンや中性粒子となる
。これは分子数が約130の重いイオンであり、上記■
の要求を満たすものである。(CBrFz)2以外の本
発明に係るガスも同様である。
The mixed gas according to the present invention described above satisfies the above conditions. That is, the anisotropic etching gas (for example, (CBrFz)z) in the above mixed gas becomes two CBrF2'' ions or neutral particles when the C-0 bond is broken. It is a heavy ion, and the above ■
It satisfies the requirements of The same applies to gases according to the present invention other than (CBrFz)2.

[実施例] エツチング装置として、アノードカップリング型平行平
板電極を有するプラズマエツチング装置を用い、ガスと
してSF6およびC2Br2F4の混合ガスを用いて、
レジストをマスクにSiのエツチングを行った。エツチ
ング装置の電極は直径20cm高周波電源周波数は13
.56MHzである。
[Example] A plasma etching device having an anode-coupled parallel plate electrode was used as the etching device, and a mixed gas of SF6 and C2Br2F4 was used as the gas.
Si was etched using the resist as a mask. The electrode of the etching device has a diameter of 20 cm and the high frequency power supply frequency is 13
.. It is 56MHz.

まず、電極上に被エツチング物を置き、エツチング室を
10−’Pa以下に排気した後、SFBを32SCCM
、C2Br2F4を8SCCM導入し、室内を10Pa
に保ったまま高周波電力0,03W/dで20分間エツ
チングを行った。この時のエツチング速度は1100n
/minであり、2μmの深さのエツチングを行った。
First, the object to be etched is placed on the electrode, the etching chamber is evacuated to below 10-'Pa, and the SFB is heated to 32SCCM.
, C2Br2F4 was introduced at 8SCCM, and the indoor pressure was increased to 10Pa.
Etching was performed for 20 minutes at a high frequency power of 0.03 W/d while maintaining the temperature. The etching speed at this time was 1100n.
/min, and etching was performed to a depth of 2 μm.

第1図はエツチング断面図であり、この様にほとんど垂
直なエツチングができた。エツチング孔の幅は0.5μ
mである。尚、SB6とC2Br2F4との混合比は上
記の例では4:1であるが、通常の真空度および高周波
電力下においては3:1ないし20;1種度の範囲が好
ましい。
FIG. 1 is a cross-sectional view of the etching process, and almost vertical etching was achieved in this way. The width of the etching hole is 0.5μ
It is m. Although the mixing ratio of SB6 and C2Br2F4 is 4:1 in the above example, it is preferably in the range of 3:1 to 20:1 under normal vacuum and high frequency power.

エツチングマスク2はレジストの他Si○2やSi3N
4を用いた場合でも同様の結果を得た。エツチング選択
比(Siとのエツチング速度比)はレジストで約15.
SiO□およびSi3N4では100以上であった。し
かし、高周波電力が0.30W/dを越える条件下でエ
ツチングした場合には、エツチング選択比は高電力の場
合はど小さくなった。この観点から高周波電力は0.3
W/d以下が好ましい。
Etching mask 2 is made of Si○2 or Si3N in addition to resist.
Similar results were obtained when using 4. The etching selection ratio (etching speed ratio with Si) is approximately 15.
It was 100 or more for SiO□ and Si3N4. However, when etching was performed under conditions where the high frequency power exceeded 0.30 W/d, the etching selectivity became smaller at higher power. From this point of view, the high frequency power is 0.3
W/d or less is preferable.

SF6とC2Br2F4の混合ガスに更にF2やHeを
混合した場合にも良好な断面形状が得られ、好ましい。
A good cross-sectional shape can also be obtained by further mixing F2 or He with the mixed gas of SF6 and C2Br2F4, which is preferable.

これらは質量が小さいため、分子量が約130のCBr
F2+イオンと衝突してもその影響が小さいためと考え
られる。
Since these have a small mass, CBr with a molecular weight of about 130
This is thought to be because the effect of collision with F2+ ions is small.

その他のエツチングガスとして1等方性エツチングガス
であるC F 41 N F 3 e X e F 2
 # F 2など、また異方性エツチングガスである(
CCQ F2) 2−(cc Q2F) 2.  (c
c Q3) 2.  (CI F2) 2y(CBr2
F)2なども各々SF6.C2Br2F4と同様の特性
を示した。ただしCQを含むガスではエツチング条件に
よってはサイドエツチングになる傾向が見られた。これ
は、重いイオンが更に分解して軽いイオンになってしま
ったためである。比較のためにSF6とCCU4の混合
ガスを用いたところ、CCQ4の混合率が15%以上で
、あるいは5%の混合率でも圧力が0 、 I Tor
r以上でサイドエツチングとなるなど、狭い範囲でしか
良好なエツチング形状が得られなかった。
Other etching gases include CF 41 NF 3 e X e F 2 which is a monoisotropic etching gas.
It is also an anisotropic etching gas such as #F2 (
CCQ F2) 2-(cc Q2F) 2. (c
c Q3) 2. (CI F2) 2y(CBr2
F)2 etc. are also SF6. It showed similar characteristics to C2Br2F4. However, with a gas containing CQ, there was a tendency for side etching to occur depending on the etching conditions. This is because heavy ions are further decomposed into lighter ions. When a mixed gas of SF6 and CCU4 was used for comparison, when the mixture ratio of CCQ4 was 15% or more, or even when the mixture ratio was 5%, the pressure was 0, I Tor
A good etched shape could only be obtained in a narrow range, with side etching occurring at r or more.

SF6の代りにNF3.CF4.XeF2およびF2°
 を用いた場合にも良好なエツチング形状が得られたが
、その条件範囲は5Flllり場合に比べてやや狭かっ
た。これは、基板に付着する反応残渣の付き方の違いに
よるものと考えられた。
NF3 instead of SF6. CF4. XeF2 and F2°
A good etched shape was also obtained when using 5Fllll, but the range of conditions was slightly narrower than when using 5Fllll. This was thought to be due to the difference in the way reaction residues adhered to the substrate.

上記の結果から、SF、に代表される反応性の大きな等
方性エツチングガスと、対称形に解離し易い重いイオン
を含む異方性エツチングガスとの混合ガスを用いてプラ
ズマエツチングすることにより、微細で深い孔のエツチ
ングが高精度に加工できることが明らかとなった。この
場合、比較的低い高周波電力でプラズマエツチングする
のがより好ましい。
From the above results, plasma etching can be performed using a mixed gas of a highly reactive isotropic etching gas such as SF and an anisotropic etching gas containing heavy ions that are easily dissociated into a symmetrical pattern. It has become clear that fine and deep holes can be etched with high precision. In this case, it is more preferable to perform plasma etching with relatively low radio frequency power.

なお、上記ガスは3種類以上を混合して使用してもよい
こと、および上記Xは同一分子中に1種のみでなく、B
rとCQといった複数種の元素を含んでいてもよいこと
は言うまでもない。
It should be noted that the above gases may be used in combination of three or more types, and the above X is not only one type in the same molecule, but also B.
It goes without saying that it may contain multiple types of elements such as r and CQ.

[発明の効果] 本発明によれば、非常に低い高周波電力でエツチングで
きるために、エツチングマスクとしてレジストをそのま
ま用いることができ、レジストの厚みも少なくて良い。
[Effects of the Invention] According to the present invention, since etching can be performed with extremely low high frequency power, the resist can be used as it is as an etching mask, and the thickness of the resist may be small.

また、壁に吸着した酸素がスパッタされて悪影響を及ぼ
す心配がなくなるなど、超微細加工が再現性良くできる
効果がある6更に、基板へのイオン衝撃がなくなり、素
子特性が向上する効果がある。
In addition, there is no need to worry about harmful effects caused by sputtering of oxygen adsorbed on the walls, allowing ultra-fine processing to be performed with good reproducibility.6Furthermore, ion bombardment of the substrate is eliminated, resulting in improved device characteristics.

プラズマによって分解したイオンが重い場合はど、軽い
イオンを用いた場合に較べてエツチング条件依存性が小
さくなる効果がある。
When ions decomposed by plasma are heavy, the dependence on etching conditions is reduced compared to when lighter ions are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で得られるエツチング断面図、第2図お
よび第3図はイオンの散乱の影響を受けた場合のエツチ
ング断面図である。 1・・・Si基板、2・・・レジスト、3・・・エツチ
ング孔。
FIG. 1 is an etched cross-sectional view obtained by the present invention, and FIGS. 2 and 3 are etched cross-sectional views when affected by ion scattering. 1...Si substrate, 2...resist, 3...etching hole.

Claims (1)

【特許請求の範囲】 1、SF_6、CF_4、NF_3、XeF_2、およ
びF_2からなる群から選ばれた少なくとも1種類のガ
スと、(CXF_2)_2、(CX_2F)_2、およ
び(CX_3)_2からなる群から選ばれた少なくとも
1種類のガス(ただし、上記XはCl、Br、I、およ
びHからなる群から選ばれた少なくとも1種)よりなる
混合ガスによりプラズマエッチングすることを特徴とす
るエッチング方法。 2、上記混合ガスはSF_6と(CBrF_2)_2と
の混合ガスであることを特徴とする特許請求の範囲第1
項記載のエッチング方法。 3、上記エッチングを高周波電力0.3W/cm^2以
下で行うことを特徴とする特許請求の範囲第1項または
第2項記載のエッチング方法。 4、上記混合ガスにHeあるいはH_2が添加されてい
ることを特徴とする特許請求の範囲第1項または第2項
記載のエッチング方法。
[Claims] 1. At least one type of gas selected from the group consisting of SF_6, CF_4, NF_3, XeF_2, and F_2, and the group consisting of (CXF_2)_2, (CX_2F)_2, and (CX_3)_2. An etching method characterized in that plasma etching is performed using a mixed gas of at least one type of gas selected from the following (where X is at least one type of gas selected from the group consisting of Cl, Br, I, and H). 2. Claim 1, wherein the mixed gas is a mixed gas of SF_6 and (CBrF_2)_2.
Etching method described in section. 3. The etching method according to claim 1 or 2, wherein the etching is performed at a high frequency power of 0.3 W/cm^2 or less. 4. The etching method according to claim 1 or 2, wherein He or H_2 is added to the mixed gas.
JP63032930A 1988-02-17 1988-02-17 Etching method Expired - Lifetime JPH0628253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032930A JPH0628253B2 (en) 1988-02-17 1988-02-17 Etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032930A JPH0628253B2 (en) 1988-02-17 1988-02-17 Etching method

Publications (2)

Publication Number Publication Date
JPH01208834A true JPH01208834A (en) 1989-08-22
JPH0628253B2 JPH0628253B2 (en) 1994-04-13

Family

ID=12372639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032930A Expired - Lifetime JPH0628253B2 (en) 1988-02-17 1988-02-17 Etching method

Country Status (1)

Country Link
JP (1) JPH0628253B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477992A2 (en) * 1990-09-28 1992-04-01 Shimadzu Corporation Focused ion beam etching apparatus
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US6942811B2 (en) 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US6949202B1 (en) 1999-10-26 2005-09-27 Reflectivity, Inc Apparatus and method for flow of process gas in an ultra-clean environment
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US6972891B2 (en) 2003-07-24 2005-12-06 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
US7027200B2 (en) 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US7041224B2 (en) 1999-10-26 2006-05-09 Reflectivity, Inc. Method for vapor phase etching of silicon
US7189332B2 (en) 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
US7264850B1 (en) 1992-12-28 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Process for treating a substrate with a plasma
US7645704B2 (en) 2003-09-17 2010-01-12 Texas Instruments Incorporated Methods and apparatus of etch process control in fabrications of microstructures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256728A (en) * 1985-05-06 1986-11-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Silicon etching
JPS6214429A (en) * 1985-07-12 1987-01-23 Hitachi Ltd Bias impression etching and device thereof
JPS63126226A (en) * 1986-11-15 1988-05-30 Mitsubishi Electric Corp Nanufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256728A (en) * 1985-05-06 1986-11-14 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Silicon etching
JPS6214429A (en) * 1985-07-12 1987-01-23 Hitachi Ltd Bias impression etching and device thereof
JPS63126226A (en) * 1986-11-15 1988-05-30 Mitsubishi Electric Corp Nanufacture of semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477992A2 (en) * 1990-09-28 1992-04-01 Shimadzu Corporation Focused ion beam etching apparatus
US5518595A (en) * 1990-09-28 1996-05-21 Shimadzu Corporation Focused ion beam etching apparatus
US7264850B1 (en) 1992-12-28 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Process for treating a substrate with a plasma
US7041224B2 (en) 1999-10-26 2006-05-09 Reflectivity, Inc. Method for vapor phase etching of silicon
US6949202B1 (en) 1999-10-26 2005-09-27 Reflectivity, Inc Apparatus and method for flow of process gas in an ultra-clean environment
US6960305B2 (en) 1999-10-26 2005-11-01 Reflectivity, Inc Methods for forming and releasing microelectromechanical structures
US6942811B2 (en) 1999-10-26 2005-09-13 Reflectivity, Inc Method for achieving improved selectivity in an etching process
US7019376B2 (en) 2000-08-11 2006-03-28 Reflectivity, Inc Micromirror array device with a small pitch size
US7189332B2 (en) 2001-09-17 2007-03-13 Texas Instruments Incorporated Apparatus and method for detecting an endpoint in a vapor phase etch
US7027200B2 (en) 2002-03-22 2006-04-11 Reflectivity, Inc Etching method used in fabrications of microstructures
US7153443B2 (en) 2003-03-28 2006-12-26 Texas Instruments Incorporated Microelectromechanical structure and a method for making the same
US6913942B2 (en) 2003-03-28 2005-07-05 Reflectvity, Inc Sacrificial layers for use in fabrications of microelectromechanical devices
US6849471B2 (en) 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
US6980347B2 (en) 2003-07-03 2005-12-27 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7002726B2 (en) 2003-07-24 2006-02-21 Reflectivity, Inc. Micromirror having reduced space between hinge and mirror plate of the micromirror
US6972891B2 (en) 2003-07-24 2005-12-06 Reflectivity, Inc Micromirror having reduced space between hinge and mirror plate of the micromirror
US7645704B2 (en) 2003-09-17 2010-01-12 Texas Instruments Incorporated Methods and apparatus of etch process control in fabrications of microstructures

Also Published As

Publication number Publication date
JPH0628253B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
KR100515424B1 (en) Anisotropic Plasma Etching Method for Various Substrates
JP4090492B2 (en) Anisotropic etching of silicon
JPH01208834A (en) Etching method
US6303512B1 (en) Anisotropic, fluorine-based plasma etching method for silicon
US6423175B1 (en) Apparatus and method for reducing particle contamination in an etcher
US4734157A (en) Selective and anisotropic dry etching
JP2010283362A (en) Etching process for producing silicon having substantially no undercut on insulator structure
US5376228A (en) Dry etching method
JP2003158099A5 (en)
Ichiki et al. Deep dry etching of borosilicate glass using fluorine-based high-density plasmas for microelectromechanical system fabrication
Beheim et al. Deep RIE process for silicon carbide power electronics and MEMS
Mahorowala et al. Etching of polysilicon in inductively coupled Cl 2 and HBr discharges. I. Experimental characterization of polysilicon profiles
Carlström et al. Low energy ion beam etching of InP using methane chemistry
US6544896B1 (en) Method for enhancing etching of TiSix
JP2007141918A (en) Dry etching method
CN108133888B (en) Deep silicon etching method
Kawabe et al. Selective Ion Beam Etching of Al2 O 3 Films
JPH0363209B2 (en)
JPS629633A (en) Etching method
JPS6365628A (en) Fine processing
Keil et al. PROFILE CONTROL OF SUB-0.3 µm CONTACT ETCH FEATURES IN A MEDIUM-DENSITY OXIDE ETCH REACTOR
JPS61131457A (en) Dry etching gas for silicon compound
JPS62249420A (en) Apparatus for plasma treatment
JPH0691041B2 (en) Reactive sputter etching method
Amirov et al. Etching of silicon and silicon dioxide in dense low-pressure inductively coupled radiofrequency discharge fluorocarbon plasmas

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term