JPH01204313A - Manufacture of superconductive hollow cable made of oxide - Google Patents

Manufacture of superconductive hollow cable made of oxide

Info

Publication number
JPH01204313A
JPH01204313A JP63027535A JP2753588A JPH01204313A JP H01204313 A JPH01204313 A JP H01204313A JP 63027535 A JP63027535 A JP 63027535A JP 2753588 A JP2753588 A JP 2753588A JP H01204313 A JPH01204313 A JP H01204313A
Authority
JP
Japan
Prior art keywords
oxide
superconductive
cable
tape
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63027535A
Other languages
Japanese (ja)
Inventor
Masahiro Ogiwara
荻原 正弘
Katsuzo Aihara
勝蔵 相原
Yasuo Suzuki
保夫 鈴木
Katsuo Koriki
高力 勝男
Naofumi Tada
直文 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63027535A priority Critical patent/JPH01204313A/en
Publication of JPH01204313A publication Critical patent/JPH01204313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to obtain a superconductive hollow cable made of oxide capable of being stacked in layers without applying any bending strain to tape wire material and having a high current density and a lager current capacity by setting a superconductive tape wire material made of oxide and having a high critical density given preset curvature in the tape thickness-direction in a rolling processing stage, in the circumferential direction and the radial direction of an air core cable. CONSTITUTION:After oxide superconductive powder is filled in a metal pipe and a surface reducing process such as wire-drawing is carried out, a rolling process is applied to give a preset curvature in a tape thickness-direction. Then, plurality of superconductive tape wire material 1 made of oxide having a preset curvature obtained by heat treatment are set by soldering etc., to increase the appropriate area in the circumferential direction and the radial direction of a cable cross-section so that an air core cable 2 may be constructed. Or, normally conductive metal pipe 3 of an excellent heat conductivity is employed in the most inside layer of the air core cable, and on the base of this normally conductive metal pipe 3, superconductive tape wire material 1 may be set and stratified. Thus, a superconductive hollow cable 2 made of oxide and having a high current density and a large current capacity can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導中空ケーブルに係り、特に内部冷
却型の高電流密度、かつ、大電流容量のケーブルの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide superconducting hollow cable, and particularly to a method for manufacturing an internally cooled cable with high current density and large current capacity.

〔従来の技術〕[Conventional technology]

最近発見された酸化物超電導体は臨界温度Tcがおよそ
90にであり、液体窒素を冷却媒体に使用して電気抵抗
率零の性質が利用できることから注目されている。酸化
物超電導体を長尺化して線材とする方法は、従来、ジャ
パニーズ、ジャーナル、オブ、アプライド、フィジック
ス第26巻、第5号(1987年)、第L865頁から
第L866頁(Japanese Journal o
f AppliedPhysics VoQ26. N
CL5 (1987) s pp、 L865−L86
6)に記載されているように、酸化物超電導粉末を金属
パイプに詰めて線引き等により所望サイズまで減面加工
した後に熱処理してワイヤー状の線材を得る方法が知ら
れている。あるいは前述の工程で線引き後、圧延加工に
よりテープ形状にしてから熱処理し、テープ線材を得る
方法、その他塗布法、溶射法などにより厚膜形状の線材
を得る方法が知られている。
The recently discovered oxide superconductor has a critical temperature Tc of approximately 90°C, and is attracting attention because its property of zero electrical resistivity can be utilized by using liquid nitrogen as a cooling medium. A method of lengthening an oxide superconductor to make a wire rod has been described in the Japanese Journal of Applied Physics Vol. 26, No. 5 (1987), pages L865 to L866.
f Applied Physics VoQ26. N
CL5 (1987) spp, L865-L86
As described in 6), a method is known in which a metal pipe is packed with oxide superconducting powder, the area is reduced to a desired size by wire drawing, etc., and then heat treated to obtain a wire-like wire. Alternatively, after drawing the wire in the above-mentioned process, it is formed into a tape shape by rolling and then heat-treated to obtain a tape wire, and other methods such as a coating method, a thermal spraying method, etc. are known to obtain a thick film-shaped wire.

超電導線材を電力用の送電ケーブルに用いる場合の一方
法として導体中心部を空芯状にして、その中空部を冷却
媒体の流路とすることが一般的に知られている。ところ
で、電力用送電ケーブルは大電流を移送するので断面積
を大きくしなければならない。
BACKGROUND ART It is generally known that one method of using superconducting wires in power transmission cables is to form the center of the conductor into an air-core shape and use the hollow portion as a flow path for a cooling medium. By the way, since power transmission cables transport large currents, they must have a large cross-sectional area.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

酸化物超電導線材で中空の送電ケーブルを作製する場合
、前述したケーブル断面積を大きくしなければならない
という点で、塗布法、溶射法などの厚膜状線材は積層す
る工程が多くかかり、不利である。また、送電ケーブル
は径サイズ、自重などの制約があり、ケーブルの移送電
流密度を高めることも必要で、それゆえ臨界電流密度の
高い線材が要求される。臨界電流密度の点においては、
酸化物超電導線材の場合、結晶配向性、熱処理時の酸素
拡散性等の面で、ワイヤー線材よりテープ線材の方が優
れている。ところが、−船釣に酸化物超電導線材は耐歪
性などの機械的特性が極めて悪いため、酸化物超電導テ
ープ線材を複数本積層して中空の送電ケーブルを得るに
は中空円筒にスパライル状に巻いて積層するか、中空円
筒の長平方向にストレートに接合して積層するかである
が、いずれの場合も従来のテープ線材では曲げ歪が加わ
り線材内部にクラックが生じ超電導特性が損われやすい
という欠点があった。
When making a hollow power transmission cable using oxide superconducting wire, thick-film wires produced by coating or thermal spraying methods are disadvantageous because they require many layers of layers, in that the cross-sectional area of the cable must be increased as mentioned above. be. Furthermore, power transmission cables have limitations such as diameter size and weight, and it is also necessary to increase the cable's transfer current density, which requires a wire material with a high critical current density. In terms of critical current density,
In the case of oxide superconducting wires, tape wires are superior to wires in terms of crystal orientation, oxygen diffusivity during heat treatment, etc. However, since oxide superconducting wire has extremely poor mechanical properties such as strain resistance, in order to obtain a hollow power transmission cable by laminating multiple oxide superconducting tape wires, it is necessary to wind them in a spiral shape around a hollow cylinder. Either they can be stacked together, or they can be stacked straight in the longitudinal direction of a hollow cylinder, but in either case, conventional tape wires suffer from bending strain, which can easily cause cracks inside the wire and impair superconducting properties. was there.

上記従来技術は酸化物超電導線材の大電流容量化につい
て配慮されておらず、とりわけ酸化物超電導線材の中空
ケーブル化に問題があった。
The above-mentioned conventional technology does not consider increasing the current capacity of the oxide superconducting wire, and there is a particular problem in making the oxide superconducting wire into a hollow cable.

本発明の目的は、高電流密度、大電流容量の酸化物超電
導中空ケーブルの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing an oxide superconducting hollow cable with high current density and large current capacity.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、酸化物超電導粉末を金属パイプに詰め線
引き等の減面加工した後に、テープ厚さ方向に対して所
定の曲率を有するように圧延加工を施し、しかる後に熱
処理して得られた所定の曲率を有する酸化物超電導テー
プ線材を空芯ケーブルを構成するように、ケーブル横断
面に対する周方向及び径方向に複数本ハンダ付は等によ
り接合して大面積化することにより達成される。
The above purpose was achieved by packing the oxide superconducting powder into a metal pipe and subjecting it to surface reduction processing such as wire drawing, then rolling it so that it had a predetermined curvature in the tape thickness direction, and then heat-treating it. Soldering of a plurality of oxide superconducting tape wires having a predetermined curvature in the circumferential direction and radial direction with respect to the cross section of the cable is achieved by joining them to form a large area so as to form an air-core cable.

また、空芯ケーブルの最内層に熱伝導率の優れた常電導
金属パイプを用いて、この常電導金属パイプを基に酸化
物超電導テープ線材を接合し積層してもよい。
Alternatively, a normal conducting metal pipe with excellent thermal conductivity may be used as the innermost layer of the air-core cable, and oxide superconducting tape wires may be bonded and laminated based on this normal conducting metal pipe.

さらに、酸化物超電導テープ線材間に熱伝導率の優れた
テープ形状の常電導金属を介在させてもよい。
Furthermore, a tape-shaped normal conducting metal having excellent thermal conductivity may be interposed between the oxide superconducting tape wires.

〔作用〕[Effect]

圧延加工の段階でテープの厚さ方向に所定の曲率を与え
た高臨界電流密度の酸化物超電導テープ線材を、空芯ケ
ーブルの横断面に対し周方向、及び径方向に接合してい
くことにより、該テープ線材に曲げ歪を与えることなく
積層することができる。
By joining oxide superconducting tape wire with high critical current density, which has been given a predetermined curvature in the thickness direction of the tape during the rolling process, in the circumferential direction and radial direction to the cross section of the air-core cable. , it is possible to laminate the tape wire without applying bending strain.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1の実施例二本実施例を第1図に示す。肉厚1 mm
 、外径201Tf11の加工硬化させた銅パイプに、
肉厚0.5mmの銀シース材で被覆された厚さ4.5m
、厚さ方向中心部の平均曲率半径12.25mnを有す
る酸化物超電導テープ線材を、銅パイプを4分割するよ
うに、銅パイプにハンダ付けし、さらにその上に同様な
方法で平均曲率半径16.25+@の酸化物超電導テー
プをハンダ付けして酸化物超電導中空ケーブルを作製し
た。本実施例によれば、中空部に液体窒素を流し、17
000Aの電流が移送できた。この電流値は、本実施例
で使用した酸化物超電導テープ線材の臨界電流の総和の
90%である。
First Embodiment Two embodiments are shown in FIG. Wall thickness 1mm
, a work-hardened copper pipe with an outer diameter of 201Tf11,
4.5m thick covered with 0.5mm thick silver sheath material
An oxide superconducting tape wire having an average radius of curvature of 12.25 mm at the center in the thickness direction is soldered to a copper pipe so as to divide the pipe into four parts, and then an average radius of curvature of 16 mm is soldered onto the copper pipe in the same manner. An oxide superconducting hollow cable was fabricated by soldering .25+@ oxide superconducting tape. According to this embodiment, liquid nitrogen is poured into the hollow part, and 17
A current of 000A could be transferred. This current value is 90% of the total critical current of the oxide superconducting tape wire used in this example.

第2の実施例二本実施例を第2図に示す。第1の実施例
で用いたのと同等の銅パイプに直径6mの穴を第3図の
如く複数個設け、この銅パイプに第1層目の酸化物超電
導テープ線材をハンダ付けした。この第1層目はケーブ
ル横断面に対する周方向に4ケ所の@2皿の溝を有する
ように構成した。第2層目の酸化物超電導テープ線材は
、厚さ0.1mmの銅テープを介して第1層目に積層し
た。
Second Embodiment Two embodiments are shown in FIG. A copper pipe similar to that used in the first embodiment was provided with a plurality of holes each having a diameter of 6 m as shown in FIG. 3, and the first layer of oxide superconducting tape wire was soldered to the copper pipe. This first layer was configured to have grooves in four locations in the circumferential direction with respect to the cross section of the cable. The second layer of oxide superconducting tape wire was laminated on the first layer via a 0.1 mm thick copper tape.

以下同様に第4層目まで積層した後に、第5層目は溝が
なくなるように、ケーブル周囲を完全に囲むように積層
した。なお、第4層目と第5層目の間の銅テープ及び、
第5層目の酸化物超電導テープ線材は第4層目までの層
と、ケーブル周方向45°ずらして積層した。本実施例
によれば、外層側の層に対する冷却効率を高めることが
でき、中空部に液体窒素を流し、各酸化物超電導テープ
線材の臨界電流の総和の98%まで電流を移送できた。
After laminating up to the fourth layer in the same manner, the fifth layer was laminated so as to completely surround the cable so that there were no grooves. In addition, the copper tape between the fourth layer and the fifth layer,
The fifth layer of oxide superconducting tape wire was laminated with the layers up to the fourth layer shifted by 45° in the cable circumferential direction. According to this example, it was possible to increase the cooling efficiency for the outer layer, and by flowing liquid nitrogen into the hollow part, it was possible to transfer current up to 98% of the total critical current of each oxide superconducting tape wire.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高臨界電流密度の酸化物超電導テープ
線材を曲げ歪を与えることなく、即ち臨界電流密度の低
下を招くことなく積層することができるので、高電流密
度、大電流容量の酸化物超電導中空ケーブルが得られる
According to the present invention, oxide superconducting tape wires with a high critical current density can be laminated without bending strain, that is, without causing a decrease in the critical current density. A superconducting hollow cable is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の酸化物超電導中空ケー
ブル横断面図、第2図は第1図に示した厚さ方向に曲率
を有する酸化物超電導テープ線材の斜視図、第3図は本
発明の第2の実施例で用いた銅パイプの斜視図、第4図
は第2の実施例の酸化物超電導中空ケーブルの横断面図
、第5図は従来の酸化物超電導テープ線材の斜視図であ
る。 1・・・酸化物超電導テープ線材、2・・・酸化物超電
導中空ケーブル、3・・・銅パイプ、4・・・冷却流路
、5・・・酸化物超電導体、6・・・常電導金属シース
、7・・・常電導金属テープ。
FIG. 1 is a cross-sectional view of an oxide superconducting hollow cable according to a first embodiment of the present invention, FIG. 2 is a perspective view of an oxide superconducting tape wire having a curvature in the thickness direction shown in FIG. 1, and FIG. The figure is a perspective view of the copper pipe used in the second embodiment of the present invention, Figure 4 is a cross-sectional view of the oxide superconducting hollow cable of the second embodiment, and Figure 5 is a conventional oxide superconducting tape wire. FIG. DESCRIPTION OF SYMBOLS 1... Oxide superconducting tape wire, 2... Oxide superconducting hollow cable, 3... Copper pipe, 4... Cooling channel, 5... Oxide superconductor, 6... Normal conductivity Metal sheath, 7...Normal conductive metal tape.

Claims (1)

【特許請求の範囲】[Claims] 1、常電導金属と酸化物超電導体から成る酸化物超電導
テープを積層して得る酸化物超電導中空ケーブルにおい
て、テープ厚さ方向に所定の曲率を有する酸化物超電導
テープを積層したことを特徴とする酸化物超電導中空ケ
ーブルの製造方法。
1. An oxide superconducting hollow cable obtained by laminating oxide superconducting tapes made of a normal conducting metal and an oxide superconductor, characterized in that oxide superconducting tapes having a predetermined curvature in the tape thickness direction are laminated. Method for manufacturing oxide superconducting hollow cable.
JP63027535A 1988-02-10 1988-02-10 Manufacture of superconductive hollow cable made of oxide Pending JPH01204313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027535A JPH01204313A (en) 1988-02-10 1988-02-10 Manufacture of superconductive hollow cable made of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027535A JPH01204313A (en) 1988-02-10 1988-02-10 Manufacture of superconductive hollow cable made of oxide

Publications (1)

Publication Number Publication Date
JPH01204313A true JPH01204313A (en) 1989-08-16

Family

ID=12223798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027535A Pending JPH01204313A (en) 1988-02-10 1988-02-10 Manufacture of superconductive hollow cable made of oxide

Country Status (1)

Country Link
JP (1) JPH01204313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114908A (en) * 1989-08-09 1992-05-19 Sumitomo Electric Industries, Ltd. Superconductive conductor
US5276281A (en) * 1990-04-13 1994-01-04 Sumitomo Electric Industries, Ltd. Superconducting conductor
JP2006059811A (en) * 2004-08-17 2006-03-02 Nexans Compound conductor with multi-core superconductive strand
JP2010157440A (en) * 2008-12-26 2010-07-15 Toshiba Corp Oxide superconductor, and method for reducing ac loss of oxide superconductor
JP2015032363A (en) * 2013-07-31 2015-02-16 昭和電線ケーブルシステム株式会社 Superconductive cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114908A (en) * 1989-08-09 1992-05-19 Sumitomo Electric Industries, Ltd. Superconductive conductor
US5276281A (en) * 1990-04-13 1994-01-04 Sumitomo Electric Industries, Ltd. Superconducting conductor
JP2006059811A (en) * 2004-08-17 2006-03-02 Nexans Compound conductor with multi-core superconductive strand
JP2010157440A (en) * 2008-12-26 2010-07-15 Toshiba Corp Oxide superconductor, and method for reducing ac loss of oxide superconductor
JP2015032363A (en) * 2013-07-31 2015-02-16 昭和電線ケーブルシステム株式会社 Superconductive cable

Similar Documents

Publication Publication Date Title
JP4141957B2 (en) Superconductor cables and magnetic devices
US7633014B2 (en) Superconductor cable
JP3474602B2 (en) Superconducting conductor
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
US8112135B2 (en) Superconductive electrical cable
US4103075A (en) Composite monolithic low-loss superconductor for power transmission line
MXPA01008327A (en) A cable, a method of constructing a cable, and use of a cable.
JP2923988B2 (en) Superconducting conductor
JP3051884B1 (en) Laminated superconducting cable
JPH01204313A (en) Manufacture of superconductive hollow cable made of oxide
US3800061A (en) Composite conductor containing superconductive wires
US5689875A (en) Superconductor with high volume copper
AU642681B2 (en) Method of using oxide superconducting conducter
JP2998398B2 (en) Superconducting wire joining method
JP2004200178A (en) Oxide superconductor and its manufacturing method
JP2002140943A (en) Superconductive cable
JP2000067663A (en) Superconductive conductor
JP3568745B2 (en) Oxide superconducting cable
US3233199A (en) Cryotron gate structure
JP3415646B2 (en) Superconducting conductor
JPS6226889Y2 (en)
JP3363164B2 (en) Superconducting conductor
JPH08212844A (en) Oxide superconductor cable
JPH07201231A (en) High-temperature superconductor element wire
JPH05109323A (en) Superconductive assembled conductor