JPH01199132A - Method for extracting error waveform of engagement transmission - Google Patents

Method for extracting error waveform of engagement transmission

Info

Publication number
JPH01199132A
JPH01199132A JP63024614A JP2461488A JPH01199132A JP H01199132 A JPH01199132 A JP H01199132A JP 63024614 A JP63024614 A JP 63024614A JP 2461488 A JP2461488 A JP 2461488A JP H01199132 A JPH01199132 A JP H01199132A
Authority
JP
Japan
Prior art keywords
meshing
transmission error
data
engagement
transformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63024614A
Other languages
Japanese (ja)
Inventor
Osamu Maehara
修 前原
Shigefumi Sasaoka
笹岡 茂史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP63024614A priority Critical patent/JPH01199132A/en
Publication of JPH01199132A publication Critical patent/JPH01199132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To extract an accurate error waveform of engagement transmission by a method wherein an engagement transmission signal is Fourier-transformed and window-processed to slice data and the sliced data is inversely Fourier- transformed. CONSTITUTION:At first, an engagement transmission signal detected from an engaged gear system is Fourier-transformed. This enables a power spectrum of an engagement transmission error on a frequency axis to be obtained. Then, the transformed data is window-processed. This permits data of a specific frequency axis corresponding to each engagement order of the engaged gear system to be sliced, so that power spectrum other than the engagement order can be eliminated consequently. Then the sliced data is inversely Fourier- transformed. This enables a time axis waveform due to correlation of transmission error components of the respective engagement orders to be reproduced with noise components eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、噛合歯車系から検出された歯車伝達誤差信号
中から伝達誤差波形を抽出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for extracting a transmission error waveform from a gear transmission error signal detected from a meshing gear system.

聚迷!す1劃 噛合歯車系からその伝達誤差信号を検出する装置として
は、例えば特公昭61−25301号「伝達誤差測定装
置」がある。
Hesitation! An example of a device for detecting a transmission error signal from a single mesh gear system is ``Transmission Error Measuring Device'' disclosed in Japanese Patent Publication No. 61-25301.

これは噛合歯車系の入力軸と出力軸のそれぞれにa−タ
リエンコーダを取付けてそれぞれ第1、第2のパルス信
号を発生させ、それを各対応する第1、第2の基準パル
ス発生器に送ってそれぞれ第1、第2のパルス信号の中
心周波数に対応した周波数をもっ@1、第2の基準パル
ス信号を形成し、続いて、その第1パルス信号と第1の
基準パルス信号を第1の位相差演算器に、第2のパルス
信号と第2の基準パルス信号を第2の位相差演算器にそ
れぞれ送り、それぞれの位相差を算出し、次いで、Jl
i!算器においてその位相差の少なくとも一方に対して
人、出力軸間の回転伝達比に応じた係数を乗じた後、そ
れと他方の位相差との差を算出するようにしたものであ
る。
This involves attaching an a-tary encoder to each of the input and output shafts of the meshing gear system to generate first and second pulse signals, respectively, and sending them to the corresponding first and second reference pulse generators. to form a second reference pulse signal with a frequency corresponding to the center frequency of the first and second pulse signals, respectively, and then combine the first pulse signal and the first reference pulse signal with a second reference pulse signal. The second pulse signal and the second reference pulse signal are respectively sent to the first phase difference calculator to calculate the respective phase differences, and then Jl
i! The calculator multiplies at least one of the phase differences by a coefficient corresponding to the rotational transmission ratio between the human body and the output shaft, and then calculates the difference between this and the other phase difference.

以上のものにあっては、第1、第2のパル入信号は、そ
れぞれ人、出力軸が微小一定角度回動するごとに発生し
、したがって、その周期は各軸の回転変動に応じて変動
する。他方、この第1、第2のパルス信号から形成され
る第1、第2の基準パルス信号は、その中心周波数に対
応した周波数を有するようにしたものであり、結局、各
軸の定常回転状態時において発生するパルス信号に相当
するものである。したがって、位相差演算器において算
出されるパルス信号と基準パルス信号との位相差は、各
軸において定常回転状態を基準にして、それからの実際
の進みあるいは遅れ回動角を表しており、結局、その一
方に回転伝達比による補正を行なった上で、その両者の
相対差を算出すると、それが両軸間の伝達誤差と対応し
たものとなる。
In the above, the first and second pulse input signals are generated every time the output shaft rotates by a small fixed angle, and therefore, the period varies according to the rotational fluctuation of each shaft. do. On the other hand, the first and second reference pulse signals formed from the first and second pulse signals have frequencies corresponding to the center frequency, and after all, the steady rotation state of each axis This corresponds to a pulse signal that is generated at the same time. Therefore, the phase difference between the pulse signal and the reference pulse signal calculated by the phase difference calculator represents the actual rotation angle of advance or lag from the steady rotation state in each axis. If one of them is corrected by the rotational transmission ratio and then the relative difference between the two is calculated, it corresponds to the transmission error between the two shafts.

以上が噛合歯車系から噛合伝達誤差信号を検出する装置
およびその方法である。
The above is the apparatus and method for detecting a meshing transmission error signal from a meshing gear system.

次に、このようにして検出された噛合伝達信号の表示に
際しては、例えばその信号を微小サンプリング周期でA
−D変換してメモリに蓄えると共に、そのデータを呼出
して時間軸波形(横軸:時間、縦紬:伝達誤差)の形で
CRT上に表示させたり、あるいはそれをFFT(高速
フーリエ変換)処理した後、次数処理(横軸:噛合次数
、縦紬:伝達誤差)を行なう等の処理が行なわれており
、さらに、必要に応じて伝達誤差と所定レベルとの比較
による良否判定も行なわれている。
Next, when displaying the meshing transmission signal detected in this way, for example, the signal is A
-D conversion and storage in memory, the data can be recalled and displayed on a CRT in the form of a time axis waveform (horizontal axis: time, vertical axis: transmission error), or it can be processed using FFT (fast Fourier transform). After that, processing such as order processing (horizontal axis: meshing order, vertical axis: transmission error) is performed, and if necessary, quality judgment is also performed by comparing the transmission error with a predetermined level. There is.

発明が解決しようとする課題 しかしながら、検出された噛合伝達誤差信号中には、歯
形や噛合状態に起因する真の噛合伝達誤差に対応した信
号の他に、その噛合歯車系を駆動するモータやその動力
伝達用ベルト、軸受などに起因する雑音(見掛上の噛合
伝達誤差)71分も含まれており、特に噛合歯車系を実
働状態(高回転、高負荷)で運転しながらの試験におい
ては、その雑音成分が大となり、噛合伝達誤差を前記し
た時間軸波形により確認することは困難なことが多い。
Problems to be Solved by the Invention However, in the detected meshing transmission error signal, in addition to the signal corresponding to the true meshing transmission error caused by the tooth profile and meshing state, there are also signals corresponding to the motor driving the meshing gear system and its This includes 71 minutes of noise (apparent meshing transmission error) caused by power transmission belts, bearings, etc., especially in tests where meshing gear systems are operated under actual conditions (high rotation, high load). , the noise component becomes large, and it is often difficult to confirm the meshing transmission error from the above-mentioned time axis waveform.

このため、時間軸上での噛合伝達誤差の波形観測は、極
めて低速、低負荷の静的に近い条件でしか実現できない
という問題があった。
For this reason, there is a problem in that waveform observation of the meshing transmission error on the time axis can only be realized under conditions close to static at extremely low speeds and low loads.

他方、前記したような噛合伝達誤差信号をFFT処理し
た後、次数処理を行なう方式においては、そのデータの
加算平均を行なうことにより雑音成分を相殺させ、S/
N比を改善させられるので、前記した実働状態での噛合
試験も実現可能となる。しかしながら、噛合歯車系の単
なる良否判定のみではなく、その騒音や振動を解析し、
改善を行なうために実施する噛合試験においては、各次
数ごとの噛合伝達誤差のパワーを観測するだけでは不十
分で、各次数・成分の相互作用であるその時間波形の観
測が必要となるが、この次数処理データからは観測不能
であった。
On the other hand, in the method described above in which order processing is performed after FFT processing the meshing transmission error signal, the noise component is canceled out by averaging the data, and the S/
Since the N ratio can be improved, it becomes possible to carry out the above-mentioned meshing test under actual working conditions. However, it is not just a matter of determining whether the meshing gear system is good or bad, but also analyzing its noise and vibration.
In the meshing tests carried out to make improvements, it is not enough to simply observe the power of the meshing transmission error for each order; it is necessary to observe the time waveform, which is the interaction of each order and component. It was not observable from this order processing data.

課題を解決するための手段 そこで、本発明は、噛合歯車系が実働状態で運転される
条件下においても、雑音成分を除去した噛合伝達誤差の
時間軸波形が得られる噛合伝達誤差波形の抽出方法を提
供するものである。
Means for Solving the Problems Therefore, the present invention provides a method for extracting a meshing transmission error waveform that can obtain a time-domain waveform of a meshing transmission error from which noise components are removed even under conditions in which a meshing gear system is operated in actual operation. It provides:

すなわち、本発明は、先ず噛合歯車系から検出した噛合
伝達信号をフーリエ変換する。
That is, in the present invention, first, a meshing transmission signal detected from a meshing gear system is subjected to Fourier transform.

これにより周波数軸上での噛合伝達誤差のバフ−スペク
トルが得られる0次いで、その変換データに対してウィ
ンド処理を行なう、これにより、噛合歯車系の各噛合次
数に対応した所定周波数軸のデータの切出しを行ない、
結局噛合次数以外のパワースペクトルを除去する。続い
て、その切出データを逆フーリエ変換する。これにより
、各噛合次数の伝達誤差成分の相互作用による時間軸波
形が、雑音成分を除去した状態で再現させられる。
As a result, a buff spectrum of the meshing transmission error on the frequency axis is obtained.Next, window processing is performed on the converted data.This allows the data on the predetermined frequency axis corresponding to each meshing order of the meshing gear system to be Carry out cutting,
In the end, power spectra other than the mesh order are removed. Subsequently, the extracted data is subjected to inverse Fourier transform. As a result, the time-domain waveform resulting from the interaction of the transmission error components of each meshing order is reproduced with noise components removed.

実施例 第1図は、歯数比24/37のζ試噛合系であり、入力
軸を175rpmで回転させ、出力軸に約10kgfm
吸収トルク負荷を与えである。第2図は、その条件下で
検出された駆動、従動輪間の噛合伝達誤差信号(横軸二
時間、縦軸:電圧)であり、第3図は本発明の第1ステ
ツプであるそのフーリエ変換を行なった結果である。
Example Fig. 1 shows a zeta meshing system with a tooth ratio of 24/37, the input shaft rotates at 175 rpm, and the output shaft is loaded with approximately 10 kgfm.
The absorption torque is given by the load. Figure 2 shows the mesh transmission error signal between the drive and driven wheels (horizontal axis: 2 hours, vertical axis: voltage) detected under these conditions, and Figure 3 shows the Fourier error signal (horizontal axis: 2 hours, vertical axis: voltage). This is the result of the conversion.

第2図から明らかなように、この検出直後の生信号のみ
からは、真の伝達誤差波形の観測は困難である。そこで
、本発明の第2ステツプとして、この噛合歯車系の噛合
次数の1次、2次に対応する周波数45.4Hz[(1
75/60)X(24/37)X (24)1,90.
8Hzのパワースペクトルを3.42Hz幅分だけ切出
し、続いて本発明の第3ステツプであるその切出データ
に対しての逆フーリエ変換を実行した結果が第4図であ
る。
As is clear from FIG. 2, it is difficult to observe the true transmission error waveform only from the raw signal immediately after detection. Therefore, as a second step of the present invention, a frequency of 45.4 Hz [(1
75/60)X (24/37)X (24)1,90.
FIG. 4 shows the result of cutting out the 8 Hz power spectrum by a width of 3.42 Hz and then performing inverse Fourier transform on the cut data, which is the third step of the present invention.

第1図には、パワーの大きかった回転1次 4゜成分な
どの雑音の除去が行なわれた伝達誤差波形が再現されて
いる。
FIG. 1 reproduces the transmission error waveform in which noise such as the first-order 4° rotation component, which had a large power, has been removed.

尚、上記一連の処理は、FFTアナライザ  ・等の解
析処理装置により実行できる。
Note that the series of processes described above can be executed by an analysis processing device such as an FFT analyzer.

l1へA町 以上のとおりであり、本発明は、時間軸信号として得ら
れる噛合伝達誤差信号をフーリエ変換して周波数軸信号
に変換後、伝達誤差成分と対応する所定の周波数軸上の
成分のみを切出して逆フーリエ変換し、時間軸信号を再
現するようにしたものであり、雑音成分が確実に除去さ
れるので、天動噛合状態など雑音中に噛合伝達誤差が埋
もれているような検出信号しか得られない条件下でも正
確に噛合伝達誤差波形を抽出することができ、それによ
り、詳細に伝達挙動の解析が行なえる結果、歯車の改善
等に有力な情報を得ることができる。
The above is as above, and in the present invention, after converting the meshing transmission error signal obtained as a time axis signal into a frequency axis signal by Fourier transform, only the component on the predetermined frequency axis corresponding to the transmission error component is extracted. This method reproduces the time-domain signal by extracting and inverse Fourier transform, and since the noise component is reliably removed, it is possible to detect detection signals where mesh transmission errors are buried in noise, such as in the state of spiral mesh. It is possible to accurately extract the meshing transmission error waveform even under conditions where only the meshing transmission error can be obtained, and as a result, it is possible to analyze the transmission behavior in detail, and as a result, it is possible to obtain useful information for improving gears, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は供試噛合歯車系のモデル図、第2図は第1図の
噛合歯車系から検出された噛合伝達誤差信号の時間軸波
形を示す波形図、第3図は第2図の波形に本発明に基づ
(フーリエ変換を実施して得られたパワースペクトルの
波形図、第4図は本発明に基づいて第3図の波形図から
切出されたパワースペクトルを逆フーリエ変換して雑音
を除去した状態で再現した噛合伝達誤差の時間軸波形を
示す波形図である。
Figure 1 is a model diagram of the tested meshing gear system, Figure 2 is a waveform diagram showing the time axis waveform of the meshing transmission error signal detected from the meshing gear system of Figure 1, and Figure 3 is the waveform of Figure 2. FIG. 4 is a waveform diagram of a power spectrum obtained by performing Fourier transform based on the present invention. FIG. FIG. 7 is a waveform diagram showing a time axis waveform of meshing transmission error reproduced with noise removed.

Claims (1)

【特許請求の範囲】[Claims] 1、噛合歯車系から検出した噛合伝達誤差信号をフーリ
エ変換し、次いでその変換データに対してウィンドウ処
理して噛合歯車系の各噛合次数に対応した所定周波数軸
上のデータを切出し、続いてその切出データを逆フーリ
エ変換するところの歯車伝達誤差波形の抽出方法。
1. Fourier transform the meshing transmission error signal detected from the meshing gear system, then perform window processing on the transformed data to extract data on a predetermined frequency axis corresponding to each meshing order of the meshing gear system, and then A method for extracting gear transmission error waveforms when inverse Fourier transform is performed on cutout data.
JP63024614A 1988-02-04 1988-02-04 Method for extracting error waveform of engagement transmission Pending JPH01199132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024614A JPH01199132A (en) 1988-02-04 1988-02-04 Method for extracting error waveform of engagement transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024614A JPH01199132A (en) 1988-02-04 1988-02-04 Method for extracting error waveform of engagement transmission

Publications (1)

Publication Number Publication Date
JPH01199132A true JPH01199132A (en) 1989-08-10

Family

ID=12143026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024614A Pending JPH01199132A (en) 1988-02-04 1988-02-04 Method for extracting error waveform of engagement transmission

Country Status (1)

Country Link
JP (1) JPH01199132A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030850A (en) * 2003-07-10 2005-02-03 Chi Mei Electronics Corp Noncontact method and apparatus for inspecting electrical connection part
JP2007132767A (en) * 2005-11-10 2007-05-31 Jtekt Corp Drive shaft damage diagnosis device
JP2012522985A (en) * 2009-04-02 2012-09-27 ハネウェル・インターナショナル・インコーポレーテッド System and method for gearbox health monitoring
JP2014044216A (en) * 2008-08-26 2014-03-13 Nikon Corp Encoder system and signal processing method
JP2015006705A (en) * 2013-06-25 2015-01-15 株式会社ダイヘン Controller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863831A (en) * 1981-10-13 1983-04-15 Sumitomo Metal Ind Ltd Monitoring method for periodically moving body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5863831A (en) * 1981-10-13 1983-04-15 Sumitomo Metal Ind Ltd Monitoring method for periodically moving body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030850A (en) * 2003-07-10 2005-02-03 Chi Mei Electronics Corp Noncontact method and apparatus for inspecting electrical connection part
JP4586124B2 (en) * 2003-07-10 2010-11-24 奇美電子股▲ふん▼有限公司 Non-contact inspection method and non-contact inspection device for electrical connection
JP2007132767A (en) * 2005-11-10 2007-05-31 Jtekt Corp Drive shaft damage diagnosis device
JP2014044216A (en) * 2008-08-26 2014-03-13 Nikon Corp Encoder system and signal processing method
JP2012522985A (en) * 2009-04-02 2012-09-27 ハネウェル・インターナショナル・インコーポレーテッド System and method for gearbox health monitoring
JP2015006705A (en) * 2013-06-25 2015-01-15 株式会社ダイヘン Controller

Similar Documents

Publication Publication Date Title
US4931949A (en) Method and apparatus for detecting gear defects
US6408696B1 (en) Coherent phase line enhancer spectral analysis technique
Hou et al. A tacholess order tracking method for wind turbine planetary gearbox fault detection
Tsao et al. An insight concept to select appropriate IMFs for envelope analysis of bearing fault diagnosis
US20070176759A1 (en) Abnormality diagnosing method for sound or vibration and abnormality diagnosing apparatus for sound or vibration
CN106092310A (en) A kind of automotive transmission vibration noise off-line test method
JPS59164938A (en) Apparatus for detecting abnormality of gear
US20220229113A1 (en) Power Conversion Device, Rotating Machine System, and Diagnosis Method
Remond et al. From transmission error measurements to angular sampling in rotating machines with discrete geometry
US6024324A (en) Method of monitoring an epicyclic assembly of a vehicle equipped with acceleration sensors in particular a helicopter
PAwlik Single-number statistical parameters in the assessment of the technical condition of machines operating under variable load
Pawlik The use of the acoustic signal to diagnose machines operated under variable load
JPH01199132A (en) Method for extracting error waveform of engagement transmission
El Morsy et al. Rolling bearing fault diagnosis techniques-autocorrelation and cepstrum analyses
CN103221791B (en) Method for monitoring a rotary element belonging to a mechanical transmission of a wind turbine
CN110219816A (en) Method and system for Fault Diagnosis of Fan
JPH02222818A (en) Gear abnormality diagnostic apparatus
RU2643696C1 (en) Method of vibration diagnostics of gas turbine engine gear reducer
Zhang et al. An order analysis based second-order cyclic function technique for planetary gear fault detection
JPH0566150A (en) Method and device for analyzing rotating degree ratio
RU2631493C1 (en) Method of gear teeth diagnostics
Li Gear fault monitoring based on order tracking and bi-spectrum under running-up condition
JP2947508B2 (en) Gear meshing inspection method
Ratanasumawong et al. Inspection of tooth surface geometry by means of vibration measurement (Assessment of tooth surface undulation from synchronous averaged signal and application of frequency response function)
Iizuka et al. Relationship Between Rotational Angle and Time-Synchronous-Averaged Meshing Vibration of Plastic Gears