JPH011982A - Direction measuring device - Google Patents

Direction measuring device

Info

Publication number
JPH011982A
JPH011982A JP62-158083A JP15808387A JPH011982A JP H011982 A JPH011982 A JP H011982A JP 15808387 A JP15808387 A JP 15808387A JP H011982 A JPH011982 A JP H011982A
Authority
JP
Japan
Prior art keywords
azimuth
degrees
signal
fine
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-158083A
Other languages
Japanese (ja)
Other versions
JPH077048B2 (en
JPS641982A (en
Inventor
岩尾 俊洋
Original Assignee
日本電気株式会社
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP15808387A priority Critical patent/JPH077048B2/en
Priority claimed from JP15808387A external-priority patent/JPH077048B2/en
Publication of JPS641982A publication Critical patent/JPS641982A/en
Publication of JPH011982A publication Critical patent/JPH011982A/en
Publication of JPH077048B2 publication Critical patent/JPH077048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は方位測定装置に関し、%4CTACAN(Ta
ctical Air Navigation  Sy
stem) システムにおいて、地上局に対する航空機
の仁愛を測定する方位測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an azimuth measuring device, and relates to a direction measuring device.
ctical Air Navigation System
stem) system, it relates to an azimuth measuring device that measures the benevolence of an aircraft with respect to a ground station.

〔従来の技術〕[Conventional technology]

一般に、TACAN装置における方位測定は次のように
して行われている。TACAN地上装置は、指向性をも
つ空中線を毎秒15回の割合で回転しつつ、この空中線
を介して毎秒平均的2700ppS(Pulse Pa
1r Per 5econd)の距離測定用ランダムパ
ルス信号、または約37.5秒に一回2700pps一
定の局識別パルス信号を送出する。これとともに、この
空中線の指向性がある特定の基準方位を指したときに、
前記ランダムパルス信号と区別することのできる方位基
準パルス信号として主基準パルスを基準方位信号として
空中線の一回転につき−回、副基準パルス信号を8回送
出する。
Generally, direction measurement in a TACAN device is performed as follows. The TACAN ground equipment transmits an average of 2700 ppS (Pulse Pa) per second through a directional antenna that rotates at a rate of 15 times per second.
A random pulse signal for distance measurement (1r per 5 seconds) or a constant station identification pulse signal of 2700 pps is sent out once every 37.5 seconds. Along with this, when the directivity of this antenna points to a certain reference direction,
As an azimuth reference pulse signal that can be distinguished from the random pulse signal, a main reference pulse is used as a reference azimuth signal, and a sub reference pulse signal is transmitted eight times per rotation of the antenna.

これをTACAN地上装置に対し一定の方向にある機上
TACAN装置で受信すると、地上装置の空中線の指向
性が回転するに従って受信パルス信号は基本周波数15
Hz及び135)1zの包絡線によって振幅に調を受け
たパルスとして受信される。
When this is received by the onboard TACAN device located in a fixed direction with respect to the TACAN ground device, the received pulse signal changes to a fundamental frequency of 15 as the directivity of the antenna of the ground device rotates.
Hz and is received as a pulse modulated in amplitude by an envelope of 135) 1 z.

この受信される振幅変調パルスのエンベロープの基本波
(15Hz)成分の位相(θ1)を前記方位主基準パル
ス伯号蛍信時点を基準にして測定すれば、これにより航
空機の万位角を主基準方位からの゛rACAN租方位角
として0〜360度の範囲で求まる。同僚に、振]陥変
肖パルスエンベロープの135Hz成分の位相(θl)
をM記方位副基準パルス信号受信時点を基準にして測定
すれば、電気角0〜360度の範囲をT A CA N
精方位角として0度〜40度の範囲で求まる。’11’
ACAN方位角(θ)を決定するために、’f’ A 
CA N粗方位角(θl)は方位を40度セクタに分割
するために用いられ、前記TACAN精方位角は40度
セクタ内における正確な方位を決定するために使用され
る。この関係を式で表わすS:40度セクタ決定至a(
i(小数点以下切り捨て) θ=8x4Q(度)十09′   ・・・・・・・・・
・・・ (2)となfiTACAN方位角は(2)で求
まる。
If the phase (θ1) of the fundamental wave (15 Hz) component of the envelope of the received amplitude modulated pulse is measured with reference to the time point when the azimuth main reference pulse signal is signaled, this will allow the aircraft's azimuth angle to be determined as the main reference. It is determined as the rACAN azimuth angle from the azimuth in the range of 0 to 360 degrees. To my colleague, the phase of the 135Hz component of the deformed pulse envelope (θl)
If measured with reference to the time of reception of the M azimuth sub-reference pulse signal, the range of electrical angles from 0 to 360 degrees is T A C N
The fine azimuth angle is determined in the range of 0 degrees to 40 degrees. '11'
To determine the ACAN azimuth (θ), 'f' A
The CAN coarse azimuth (θl) is used to divide the bearing into 40 degree sectors, and the TACAN fine azimuth is used to determine the exact bearing within the 40 degree sector. This relationship is expressed by a formula S: 40 degree sector determination a(
i (round down to the nearest whole number) θ=8x4Q (degrees) 109' ・・・・・・・・・
... (2) The fiTACAN azimuth can be found using (2).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のTACAN袈置のよ装な無線航法装置で
は、空間電波の乱れ及び受信したパルス振幅変調のラン
ダム性等により、15Hz振幅変調信号と135Hz振
幅変調信号の位相関係がずれて受信されることがある。
In the conventional radio navigation device such as the TACAN system described above, the phase relationship between the 15 Hz amplitude modulation signal and the 135 Hz amplitude modulation signal is shifted due to the disturbance of the spatial radio waves and the randomness of the received pulse amplitude modulation. Sometimes.

このような場合に、前記(2)式のような方法でTAC
AN方位測定を行うと、40度セクタの境界付近等で、
前記S決定のみかけ上の誤りにより方位角(θ)の誤測
定(40度誤差)を起こすという欠点がある。いま、た
とえば、方位角が79度(40度セクタ境界付近)の場
合、粗方位角(θl)が82度として求まり、精方位角
(θ會)が39にとして求まったと仮定すると、前記+
1) 、 (2)式にこの値を代入すると方位角(θ)
は119度として求まり、実際(真)の方位角79度に
対し40度ずれた上述の40度誤差を含む値として求ま
るという欠点がある。
In such a case, TAC is
When measuring the AN direction, near the boundary of the 40 degree sector, etc.
There is a drawback that an erroneous measurement (40 degree error) of the azimuth angle (θ) occurs due to the apparent error in the S determination. For example, if the azimuth angle is 79 degrees (near the 40 degree sector boundary), and assuming that the coarse azimuth angle (θl) is found as 82 degrees and the fine azimuth angle (θ) is found as 39 degrees, then the +
1) Substituting this value into equations (2) yields the azimuth angle (θ)
is determined as 119 degrees, which has the disadvantage that it is determined as a value including the above-mentioned 40 degree error, which is 40 degrees off from the actual (true) azimuth angle of 79 degrees.

本発明の目的は上述した欠点を除去し、空間電波の乱れ
及びパルス振幅変調のランダム性による15)izと1
35Hz振幅変調信号間の位相ずれがセクタ占有角のほ
ぼ1/2の±19.9度まで40度編差を起こすことな
く安定した方位出力が得られる方位測定装置を提供する
ことにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and to solve the problems caused by disturbance of spatial radio waves and randomness of pulse amplitude modulation.
It is an object of the present invention to provide an azimuth measuring device in which a stable azimuth output can be obtained without causing a 40-degree deviation up to a phase shift between 35 Hz amplitude modulated signals of ±19.9 degrees, which is approximately 1/2 of the sector occupation angle.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の装置は、航空機等の移動体に搭載され、地上の
固定局から送信される360度範囲の粗方位信号とその
基準方位信号ならびに前記基準360反をN115に等
分したセクタのそれぞれについて設定する精方位信号を
受信しつつ前記移動体の前記固定局に対する方位を測定
する方位測定装置dにおいて、前記粗方位信号と精方位
信号を互いに独立的に抽出する方位信号抽出手段と、こ
の方位信号抽出手段によって抽出した前記粗方位信号と
梢方位1M号とを受けつつこれら2つの方位信号間の位
相ずれを前記セクタの占有角度の1/2以下の範囲内で
補正して前記固定局に対する方位を算出する方位算出手
段とを備えて構成される。
The device of the present invention is mounted on a mobile object such as an aircraft, and transmits a coarse azimuth signal in a 360-degree range transmitted from a fixed station on the ground, its reference azimuth signal, and each sector obtained by equally dividing the reference 360 degrees into N115. The direction measuring device d measures the direction of the mobile object relative to the fixed station while receiving a fine direction signal to be set, comprising direction signal extraction means for extracting the coarse direction signal and the fine direction signal independently of each other; While receiving the coarse azimuth signal and the treetop azimuth No. 1M extracted by the signal extracting means, the phase shift between these two azimuth signals is corrected within a range of 1/2 or less of the occupation angle of the sector, and the signal is directed to the fixed station. and azimuth calculation means for calculating the azimuth.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

第1図に示すブロック図は、パルス復調器1.サンプル
ホールド/フィルタ2.基準方位パルス検出器3.A−
D変換器41等間隔時間カウンタ5゜5in−Cos発
生器6.粗方位(θl)算出器7.精方位(09′)算
出器8および方位算出器9を備えて構成され、これら構
成要素中方位算出界〆9が方位算出手段であり、他は粗
方位信号と精方位信号を互いに独立的に抽出する方位信
号抽出手段を形成する。
The block diagram shown in FIG. 1 shows a pulse demodulator 1. Sample hold/filter 2. Reference direction pulse detector 3. A-
D converter 41 Equal interval time counter 5° 5in-Cos generator 6. Coarse direction (θl) calculator 7. It is configured with a fine direction (09') calculator 8 and a direction calculator 9, and among these components, the direction calculation field 9 is the direction calculation means, and the others calculate the coarse direction signal and the fine direction signal independently of each other. A direction signal extracting means is formed.

空中線で受信されたTACAN地上−J&置からの信号
は、機上受信機によう増幅及び帯域F波されてパルス復
A器1に供給され、ここで復調されてべ一スバ/ドにお
けるパルスに変換される。このパルスはサンプルホール
ド/フィルタ2及び基準方位パルス信号検出器3に供給
される。サンプルホールド/フィルタ2は、供給された
各ベースパ/ドパルスのピークレベルをホールドし、そ
の中に含まれる不要な高調波成分を除去するためにスム
ージングした後A−D変換器4に供給される。A−D変
換器4は、等間隔時間カウンタ5から受ける一定間隔の
サンプル信号で前記パルスのピークレベルをディジタル
量に変換する。
The signal received by the antenna from the TACAN ground station is amplified by the onboard receiver, converted into a band F wave, and then supplied to the pulse demodulator 1, where it is demodulated and converted into a pulse at the baseband. converted. This pulse is supplied to a sample hold/filter 2 and a reference azimuth pulse signal detector 3. The sample hold/filter 2 holds the peak level of each supplied base pad/do pulse, smooths it to remove unnecessary harmonic components contained therein, and then supplies it to the A/D converter 4. The A/D converter 4 converts the peak level of the pulse into a digital quantity using the regularly spaced sample signal received from the equally spaced time counter 5.

基準方位パルス信号検出器3は、入力ベースパントパル
スの中に含まれる基準方位パルス信号を検出して、15
14zごとの検出時点に基準方位パルス信号を発生し、
これを等間隔時間カウンタ5に供給する。等間隔時間カ
ウンタ5は、一定周期のクロックをカウントして一定間
隔のサンプル信号を出力し、A−D変換器4及び5in
−Cos発生器6に供給するっまた、等間隔時間カウン
タ5は、前記基準方位パルス信号の供給を受けるごとに
°01にリセットされ再スタートされる。S in −
Cos発生イJ6は、前記基準方位パルス信号に同期し
て、同一周期で前記一定間隔のサンプル信号tiO値で
の5in(2r/li)、 Co5(2π/li)を発
生する。ただし、fは基準方位信号の周波数である。こ
のディジタルfisin(2π/li)及びCos (
:)r/li )は粗方位(al)算出器8に供給され
る。また、前記A−D変換器4からは、パルス振+19
Wiのディジタル斌a1が粗方位(θK)算出器7に供
給さnる。徂方位算小器7は、ディジタル量alと5i
n(2π/li )を乗算してディジタル1a18in
(2π/li)を得て、これを累積加算する。同様に、
ディジタル量cO5(2π/li)とaiを乗算してデ
ィジタル量町Co51(2π/li)を累積加算する。
The reference azimuth pulse signal detector 3 detects the reference azimuth pulse signal included in the input base punt pulse, and
A reference direction pulse signal is generated at every 14z detection time,
This is supplied to the equal interval time counter 5. The equal interval time counter 5 counts a clock of a constant period and outputs a sample signal of a constant interval.
In addition, the equidistant time counter 5 is reset to 01 and restarted each time it receives the reference azimuth pulse signal. S in -
The Cos generator J6 generates 5 inches (2r/li) and Co5 (2π/li) of the sample signal tiO value at the constant interval in the same cycle in synchronization with the reference azimuth pulse signal. However, f is the frequency of the reference direction signal. This digital fisin (2π/li) and Cos (
:)r/li) is supplied to a coarse orientation (al) calculator 8. Further, from the A-D converter 4, the pulse amplitude +19
A digital signal a1 of Wi is supplied to a coarse azimuth (θK) calculator 7. The azimuth calculator 7 has digital quantities al and 5i
Multiply by n(2π/li) to obtain digital 1a18in
(2π/li) is obtained and cumulatively added. Similarly,
The digital quantity cO5 (2π/li) is multiplied by ai, and the digital quantity Co51 (2π/li) is cumulatively added.

これら累積加算は、予め定めた一定時間間隔内に含まれ
るai8in(2π/li )及びalCos (2π
/li)の積和を行いこれらディジタルiをX、Yとし
、それぞれ一定時間間隔の終りごとに粗方位算出(θ凰
)を次式をもとに行い、粗方位角度(al)を2くめ、
真方位算出回路9に供給される。
These cumulative additions include ai8in (2π/li) and alCos (2π
/li), these digital i are set as X and Y, and at the end of each fixed time interval, the rough azimuth calculation (θ凰) is performed based on the following formula, and the rough azimuth angle (al) is divided into 2. ,
The signal is supplied to the true direction calculation circuit 9.

IXI≦IYIのとき θ1 :jan−” X/Y IXI>IYIのとき θ1=cot−凰 Y/X また、前記8in−Cos発生器6は、前記一定間隔の
サンプル信号tiO値でSin (18f/li)及び
Co5(18π/li)を発生する。このディジタル量
5in(18π/li)及びCos (18πハi)は
前記A−D変換器4からのalとともに、精方位算小器
8に供給される。精方位(θ*’)IK−小器8は、前
記粗方位(al)算出器(θ1)と同様の演算処理を行
い、各一定時間間隔の終わシごとに精方位(09′)金
求め、真の方位算出回路9に供給される。
When IXI≦IYI, θ1:jan-” li) and Co5 (18π/li). These digital quantities 5in (18π/li) and Cos (18π high) are supplied to the precision azimuth calculator 8 along with al from the A-D converter 4. The fine azimuth (θ*') IK-small device 8 performs the same calculation process as the coarse azimuth (al) calculator (θ1), and calculates the fine azimuth (09') at the end of each fixed time interval. ) and is supplied to the true direction calculation circuit 9.

このようにして互いに独立的に、周波数領域処理を介し
て求められた角度θ1.θ1は前記基準方位信号からの
偏位角度に相当する。
The angles θ1 . θ1 corresponds to the deviation angle from the reference azimuth signal.

次にタカン方位角(θ)の算出方法について述べる。前
記方位算出器〆9は、第2図に示すように、40度セク
タ(8)検出器101乗算器11.減算器12,13,
15、加算器14.18、判定器16、及びセレクタ1
7から構成される。
Next, a method for calculating the Takan azimuth (θ) will be described. As shown in FIG. 2, the azimuth calculator 9 includes a 40 degree sector (8) detector 101 multiplier 11. Subtractors 12, 13,
15, adder 14.18, determiner 16, and selector 1
Consists of 7.

40度セクタ(8)検出器10は、粗方位角θlの値に
応じたセクタ値S(整数)を決定する。Sは、θ監=0
〜360度を40度セクタごとに分割した値で、θ1の
値に応じて0,1.・・・、8のいずれかの値をとる。
The 40 degree sector (8) detector 10 determines a sector value S (integer) according to the value of the rough azimuth angle θl. S is θ supervisor = 0
It is a value obtained by dividing ~360 degrees into 40 degree sectors, and is 0, 1, etc. depending on the value of θ1. ..., 8.

乗算器11は、前記Sの値に40度を乗算し、40度セ
クタの境界角度θaを求め、減算512,15、加算器
14、及びセレクタ17に供給さる。減算器12は粗方
位角度θlと40度セクタの境界角度θaの偏位角θb
を求め、減算器13に供給される。
The multiplier 11 multiplies the value of S by 40 degrees to obtain the boundary angle θa of the 40 degree sector, which is supplied to the subtractors 512 and 15, the adder 14, and the selector 17. The subtractor 12 calculates the deviation angle θb between the rough azimuth angle θl and the boundary angle θa of the 40 degree sector.
is calculated and supplied to the subtracter 13.

減算器13は、前記θbと精方位角θ、′の偏位角θC
を求め判定器16に供給する。判定器16は、前記θC
が1α1未満か、−α以上か、あるいは+α以上かを判
定し、その判定結果に応じた判定信号19.20.ある
いは21がセレクタ17に供給する。セレクタ17は、
前記判定信号に対応する乗算器11の出力データ、減算
器15の出力データあるいは加算器14の出力データを
選択し、加算器18には前記3つのデータのうちの1デ
ータが供給される。加算器14は、乗算器11の出力デ
ータ(SX40度)値に40度を加え出力する。減算器
15は前記乗算器11の出力データ(SXJQ度)値か
ら40度を減算してその値を出方し、それぞれセレクタ
17に供給する。
The subtracter 13 calculates the deviation angle θC between the θb and the fine azimuth angle θ,′.
is determined and supplied to the determiner 16. The determiner 16 determines the θC
is less than 1α1, greater than or equal to −α, or greater than or equal to +α, and judgment signals 19.20. Alternatively, 21 supplies the selector 17. The selector 17 is
The output data of the multiplier 11, the output data of the subtracter 15, or the output data of the adder 14 corresponding to the determination signal are selected, and one of the three data is supplied to the adder 18. The adder 14 adds 40 degrees to the output data (SX40 degrees) value of the multiplier 11 and outputs the result. A subtracter 15 subtracts 40 degrees from the output data (SXJQ degree) value of the multiplier 11, outputs the value, and supplies the resulting value to the selector 17, respectively.

加算器18は前記精方位角09′とセレクタ17から供
給される前記3つのデータのうちの1つの選択データを
加算することによシタカン方位角θを求める。本実施例
では、前記αを20度に設定している。
The adder 18 adds the fine azimuth angle 09' and selected data of one of the three data supplied from the selector 17 to obtain the vertical azimuth θ. In this embodiment, α is set to 20 degrees.

いま、ここで、前記粗方位角θ!を82度、前記精方位
角θ9′を39.8度と仮定した場合のタカン方位角θ
を求めてみる。
Now, here, the rough azimuth angle θ! is 82 degrees, and the fine azimuth angle θ9' is 39.8 degrees.
I'll try to find it.

すなわち、前記θbは、S=2であるからθb二θl−
8X40(度) =82−80(度) =2(度) また、前記θ。は θ0=θb−θ、t =2−39.8(度) =−37,8(度) 前記セレクタ17の出力データPは P =sx4o−40(度) =40(度) 故にタカン方位角θは θ二θ、 ’+ P =39.8+40(度) =79.3(度) として求められる。
That is, since S=2, the above θb is θb2θl−
8X40 (degrees) = 82-80 (degrees) = 2 (degrees) Also, the above θ. is θ0 = θb-θ, t = 2-39.8 (degrees) = -37.8 (degrees) The output data P of the selector 17 is P = sx4o-40 (degrees) = 40 (degrees) Therefore, Takan azimuth θ is determined as θ2θ, '+P = 39.8+40 (degrees) = 79.3 (degrees).

また、精方位角θ1を79.8度、精方位角09′を0
.2度と仮定すると、 θb=θl 5x40(度) =79.8−40(犯 =39.g(度) θ0=θb−θ、1 =39.3−0.2(度) =39.6(度) となシ、このときのセレクタ17の出力データPは P =SX40+40(度) =80(度) 故にタカン方位角θは θ=09′十P =0.2+80(度) =80.2(度〕 として求められる。
Also, the fine azimuth angle θ1 is 79.8 degrees, and the fine azimuth angle 09' is 0.
.. Assuming 2 degrees, θb = θl 5x40 (degrees) = 79.8-40 (crime = 39.g (degrees) θ0 = θb-θ, 1 = 39.3-0.2 (degrees) = 39.6 (degrees) At this time, the output data P of the selector 17 is P = SX40 + 40 (degrees) = 80 (degrees) Therefore, the Takan azimuth θ is θ = 09'0P = 0.2 + 80 (degrees) = 80. 2 (degrees).

次に粗方位角θ1が79.8度、精方位角09′が39
.8度の場合は、 θb= θ夏−8X40(度) ニア9,8−40(度) =39.8(度) θ0=θb−θ、l =39.8−39.8 (度) =0(度) となシ、このときのセレクタ17の出力データPはP=
40(度) 故にタカン方位θは θ=θ、′+P =39.8+40(度) =79.8(度) として求められる。
Next, the coarse azimuth angle θ1 is 79.8 degrees, and the fine azimuth angle 09' is 39 degrees.
.. In the case of 8 degrees, θb = θ Summer - 8X40 (degrees) Near 9, 8 - 40 (degrees) = 39.8 (degrees) θ0 = θb - θ, l = 39.8 - 39.8 (degrees) = 0 (degrees), the output data P of the selector 17 at this time is P=
40 (degrees) Therefore, the Takan direction θ is obtained as θ=θ, '+P = 39.8+40 (degrees) = 79.8 (degrees).

以上の実施例は、特に最近のディジタル信号処  □理
方式に適しており、マイクロプロセッサ及びROM、R
AM等を用いることにょシ、ハードウェアも簡単化され
、容易に実現できる。
The embodiments described above are particularly suitable for modern digital signal processing systems, and are suitable for microprocessors, ROMs, and RAMs.
By using AM or the like, the hardware is also simplified and can be easily realized.

また、この例はTACAN装置に実施した例であるが、
TACAN装置と同等な性能を有する他の装置にも容易
に実施することができることは明らかである。
Also, although this example is an example implemented in a TACAN device,
It is clear that it can easily be implemented in other devices with comparable performance to the TACAN device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、粗方位信号と精方位信号
とを互いに独立的に周波数領域で抽出するとともに、セ
クタ占有角の最大1/2の範囲内で前記両方付信号間の
位相ずれを補正する手段を備えることによシ、空間電波
のみだれ及びパルス振幅変調のランダム性等による15
Hz振幅変調と135Hz振幅変調信号の位相関係がセ
クタ占有角度の最大172以下、TACAN装置の場合
は最大±19.9度までずれて受信される場合でも安定
した方位出力が得られるという効果がある。
As explained above, the present invention extracts the coarse azimuth signal and the fine azimuth signal independently from each other in the frequency domain, and also eliminates the phase shift between the two signals within a range of a maximum of 1/2 of the sector occupancy angle. By providing a means for correcting, 15
The effect is that a stable azimuth output can be obtained even when the phase relationship between the Hz amplitude modulation and 135Hz amplitude modulation signals is received with a maximum sector occupancy angle of 172 degrees or less, or up to ±19.9 degrees in the case of TACAN equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は第1
図のメ方位算出蕃Zを詳細に示すプロッり図である。 1・°・・°・パルス復’FAD、2・・・・・・サン
プルホールド7フイルタ、3・・・・・・基準方位パル
ス検出器、4・・団・A−D変換器、5・・・・・・等
間隔時間カウンタ、6・・・・・・Sin * Cos
発生器、7・・・・・・粗方位(’t) n用益、8・
・・・・・精方位(01′)算出器、9・・・・・・方
位算出資1.10・・・・・・40度セクタ(S)検出
器、11・・・・・・乗算器、12,13,15・・・
・・・減算器、14.18・旧・・加算器、16・・・
・・・判定回路、17・・・用セレクタ。 代理人 弁理士  内 原   晋
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
FIG. 3 is a plot diagram showing in detail the direction calculation axis Z in the figure. 1.°...° Pulse return'FAD, 2...Sample hold 7 filter, 3...Reference direction pulse detector, 4. Group A-D converter, 5. ...Evenly spaced time counter, 6...Sin * Cos
Generator, 7... Coarse direction ('t) n Usufruct, 8.
...Precise direction (01') calculator, 9 ...Direction calculation contribution 1.10 ...40 degree sector (S) detector, 11 ...Multiply Vessel, 12, 13, 15...
...Subtractor, 14.18・Old...Adder, 16...
... Judgment circuit, selector for 17.... Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】 航空機等の移動体に搭載され、地上の固定局から送信さ
れる360度範囲の粗方位信号とその基準方位信号なら
びに前記基準方位信号を共通とし360度をN個に等分
したセクタのそれぞれについて設定する精方位信号を受
信しつつ前記移動体の前記固定局に対する方位を測定す
る方位測定装置において、 前記粗方位信号と精方位信号を互いに独立的に抽出する
方位信号抽出手段と、この方位信号抽出手段によって抽
出した前記粗方位信号と精方位信号とを受けつつこれら
2つの方位信号間の位相ずれを前記セクタの占有角度の
1/2以下の範囲内で補正して前記固定局に対する方位
を算出する方位算出手段とを備えて成ることを特徴とす
る方位測定装置。
[Claims] A coarse azimuth signal with a range of 360 degrees transmitted from a fixed station on the ground mounted on a mobile object such as an aircraft, its reference azimuth signal, and the reference azimuth signal are common, and 360 degrees is equal to N pieces. In an azimuth measuring device that measures the azimuth of the mobile object relative to the fixed station while receiving a fine azimuth signal set for each divided sector, azimuth signal extraction extracts the coarse azimuth signal and the fine azimuth signal independently of each other. means, and receiving the coarse azimuth signal and fine azimuth signal extracted by the azimuth signal extraction means, and correcting the phase shift between these two azimuth signals within a range of 1/2 or less of the occupation angle of the sector. An azimuth measuring device comprising azimuth calculation means for calculating an azimuth with respect to the fixed station.
JP15808387A 1987-06-24 1987-06-24 Azimuth measuring device Expired - Fee Related JPH077048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15808387A JPH077048B2 (en) 1987-06-24 1987-06-24 Azimuth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15808387A JPH077048B2 (en) 1987-06-24 1987-06-24 Azimuth measuring device

Publications (3)

Publication Number Publication Date
JPS641982A JPS641982A (en) 1989-01-06
JPH011982A true JPH011982A (en) 1989-01-06
JPH077048B2 JPH077048B2 (en) 1995-01-30

Family

ID=15663922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15808387A Expired - Fee Related JPH077048B2 (en) 1987-06-24 1987-06-24 Azimuth measuring device

Country Status (1)

Country Link
JP (1) JPH077048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948419A (en) * 1986-12-18 1990-08-14 E. I. Du Pont De Nemours And Company Herbicidal pyridine sulfonamides
KR101463062B1 (en) * 2012-12-21 2014-11-19 연세대학교 산학협력단 Signal processing device and method, receiver and apparatus for measuring distance

Similar Documents

Publication Publication Date Title
US4975710A (en) Methods and apparatus for direction of arrival measurement and radio navigation aids
US6169519B1 (en) TCAS bearing measurement receiver apparatus with phase error compensation method
US4331958A (en) Processing device for angular deviation measurement signals of a monopulse radar
EP0341772B1 (en) System for the course correction of a spinning projectile
EP0345836B1 (en) System for determining the angular spin position of an object spinning about an axis
CN110133642B (en) DC offset compensation method for radar sensor
JP4901833B2 (en) Radar equipment
CN112782645A (en) Data fitting angle measurement method for four-arm helical antenna
JP3808431B2 (en) Direction finding device
JPH011982A (en) Direction measuring device
JP2014010110A (en) Angle measurement device and angle measurement method
JP6318774B2 (en) Object displacement detection signal processor
Fabrizio Geolocation of HF skywave radar signals using multipath in an unknown ionosphere
CN115561744B (en) Nonlinear node detection method and detector
JPH0836042A (en) Gps receiver and speed deciding means using the gps receiver
US3988733A (en) VOR receiver with improved performance in a Doppler navigation system
JPH0341796B2 (en)
JP3404526B2 (en) Direction finding receiver
JPH06160522A (en) Fish detector for measurement
JPH02304384A (en) Azimuth measuring system
JPH077048B2 (en) Azimuth measuring device
WO2006094510A1 (en) Fm-cw radar
CN114895303B (en) High-precision synthetic angle measurement method for distributed radar
US4617568A (en) MTI Radar
US11346916B2 (en) Geolocation of an electromagnetic emitter utilizing receptor pattern slope