JPH01183853A - Thin-film filed-effect transistor and manufacture thereof - Google Patents

Thin-film filed-effect transistor and manufacture thereof

Info

Publication number
JPH01183853A
JPH01183853A JP740288A JP740288A JPH01183853A JP H01183853 A JPH01183853 A JP H01183853A JP 740288 A JP740288 A JP 740288A JP 740288 A JP740288 A JP 740288A JP H01183853 A JPH01183853 A JP H01183853A
Authority
JP
Japan
Prior art keywords
layer
gate
thin film
amorphous silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP740288A
Other languages
Japanese (ja)
Inventor
Meiko Ogawa
小川 盟子
Mitsushi Ikeda
光志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP740288A priority Critical patent/JPH01183853A/en
Publication of JPH01183853A publication Critical patent/JPH01183853A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a short-circuit between a metallic layer, and n<+>a-Si by anodizing the exposed section of a metal after patterning. CONSTITUTION:An amorphous silicon thin-film 11 is formed onto an insulating substrate 1, and a gate insulating film 12, a metallic layer capable of being anodized as a gate electrode 13 and a protective insulating film 14 are laminated and formed in succession. Laminated layers are removed through etching while being left only in a gate formation predetermined region, and the side face of the gate-electrode metallic layer exposed through etching is anodized. Accordingly, since an oxide film 23 is shaped onto the surface, the anodizing film 23 can block a short circuit even when a metal and n<+>a-Si are brought into contact, thus preventing the short circuit between the metal and n<+>a-Si.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、薄膜電界効果トランジスタとその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a thin film field effect transistor and a method for manufacturing the same.

(従来の技術) 大面積9品精細、高画質かつ宮価なパネルデイスプレィ
の実現手段として、アクティブマトリクス型液晶表示装
置が有望視されているが、そのスイッチング素子として
、非晶(αシリコン(a−5i)膜を用いた薄膜トラン
ジスタ(TPT)が用いられている。
(Prior Art) Active matrix liquid crystal display devices are seen as a promising means of realizing large-area, 9-item, high-definition, high-quality, and inexpensive panel displays, but their switching elements are made of amorphous (α silicon) A-5i) A thin film transistor (TPT) using a film is used.

第4図に従来のTPTの具体的構造を示す。ガラス基板
1の上にアドレス線及びゲートとなる配線パターン2を
形成し、ゲート絶縁膜3.a−3i層4 、 n” a
−5i層5を堆積し、a−siWJの島を形成する。次
に画素電極を形成した後にソース・ドレイン電極6S、
 6D及びデータ線となる配線を形成する。
FIG. 4 shows the specific structure of a conventional TPT. A wiring pattern 2 serving as an address line and a gate is formed on a glass substrate 1, and a gate insulating film 3. a-3i layer 4, n”a
-5i layer 5 is deposited to form islands of a-si WJ. Next, after forming the pixel electrode, the source/drain electrode 6S,
Wiring to become 6D and data lines is formed.

この種のデイスプレィは、大面積、高精細化に伴って、
トランジスタの数が非常に多くなり、無欠陥で作ること
は困難になる。又、デイスプレィのsf細度が向上し、
マスクアライメントの要求精度が上がった際には、第4
図に示すような逆スタツガ型では、対応する事ができな
い。一方、第3図に示すようなコプラナ型を用いセルフ
ァライン構造にすることにより、合せ精度はほぼ完全に
できる。しかし、コプラナ型の薄膜トランジスタを用い
た場合、ゲートメタル+P23とn+a−3i層25s
As this type of display becomes larger and has higher definition,
The number of transistors increases significantly, making it difficult to manufacture them without defects. In addition, the SF fineness of the display has improved,
When the required precision of mask alignment increases, the fourth
This cannot be done with the reverse staggered type shown in the figure. On the other hand, by using a coplanar type as shown in FIG. 3 and creating a self-line structure, almost perfect alignment accuracy can be achieved. However, when using a coplanar thin film transistor, the gate metal +P23 and the n+a-3i layer 25s
.

25Dがゲート絶縁膜22の側面においてショートする
という不良が発生する事がある。したがって、すべての
トランジスタを無欠陥で形成する事は非常に困難であっ
た。
A defect in which the 25D is shorted on the side surface of the gate insulating film 22 may occur. Therefore, it has been extremely difficult to form all transistors without defects.

なお、第3図において、21はa−5i層、22はゲー
ト絶縁IL  23はゲートメタル、25Sはソースの
n”a−3i層5,250はドレインのn+a−SiM
、 26は保S絶縁膜、27Gはゲート電極、27Sは
ソース電極、27Dはドレイン電極を示す。 また、第
4図において、2はゲート電極の配線パターン、3はゲ
ート絶縁膜、4はa−3i層、5はn十a−3i層、 
6Sはソース電極、 6Dはドレイン電極を夫々示して
いる。
In FIG. 3, 21 is an a-5i layer, 22 is a gate insulating IL, 23 is a gate metal, 25S is a source n''a-3i layer 5, and 250 is a drain n+a-SiM layer.
, 26 is an S-preserving insulating film, 27G is a gate electrode, 27S is a source electrode, and 27D is a drain electrode. In addition, in FIG. 4, 2 is the wiring pattern of the gate electrode, 3 is the gate insulating film, 4 is the a-3i layer, 5 is the n0a-3i layer,
6S indicates a source electrode, and 6D indicates a drain electrode.

(発明が解決しようとする課題) 以上のようにコプラナ型のTPTにおいて金属層とn”
a−3i間のシ目−トをなくす事は困難であった。
(Problems to be Solved by the Invention) As described above, in a coplanar TPT, a metal layer and an
It was difficult to eliminate the seams between a and 3i.

本発明は、コプラナ型のTPTにおける金属層とn”a
−5i間のショートをなくす事を目的とする。
The present invention provides a metal layer and n”a in coplanar TPT.
The purpose is to eliminate short circuit between -5i.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明の第1は薄膜電界効果トランジスタは、絶縁性
基板上に形成されn十層を有する非晶質シリコン薄膜と
、この非晶質シリコン薄膜の一部でなり前記n+層に隣
接するゲート電極形成予定域の上面に順次vL層して形
成されたゲート絶縁膜、側面に陽極酸化の施されたゲー
ト電極、およびゲート配線層と、前記n十層上に形成さ
れたソース電極およびドレイン電極を具備したことを特
徴とするものであり、ゲート電極金属層がTaおよびT
aを含む合金であることを特徴とする。次にその製造方
法は、絶縁性基板上に非晶質シリコン薄膜を形成する工
程と、前記非晶質シリコン薄膜上にゲート絶縁膜、ゲー
ト電極になる陽極酸化の可能な金属層。
(Means for Solving the Problems) A first aspect of the present invention is that a thin film field effect transistor includes an amorphous silicon thin film formed on an insulating substrate and having n0 layers, and a part of this amorphous silicon thin film. A gate insulating film formed as a VL layer in sequence on the upper surface of the gate electrode formation area adjacent to the n+ layer, a gate electrode whose side surfaces are anodized, and a gate wiring layer, and on the n+ layer. The gate electrode metal layer is formed of Ta and T.
It is characterized by being an alloy containing a. Next, the manufacturing method includes a step of forming an amorphous silicon thin film on an insulating substrate, a gate insulating film, and a metal layer that can be anodized to become a gate electrode on the amorphous silicon thin film.

および保護絶縁膜を順次積層して形成する工程と、前記
積層層をゲート形成予定域のみ残し同一のエツチングマ
スクによってエツチング除去する工程と、前記エツチン
グにより露出したゲート電極金属層の側面に陽極酸化を
施す工程と、前記非晶質シリコン薄膜の露出部に不純物
ドーピングを施しソースおよびドレインの各電極を形成
する工程を含むものであり、ゲート絶縁膜をプラズマC
VDまたはスパッタリングにより形成することを特徴と
する。
and a step of sequentially laminating and forming a protective insulating film, a step of removing the laminated layer by etching using the same etching mask leaving only the area where the gate is to be formed, and anodic oxidation on the side surfaces of the gate electrode metal layer exposed by the etching. The method includes a step of applying impurity doping to the exposed portion of the amorphous silicon thin film to form source and drain electrodes.
It is characterized by being formed by VD or sputtering.

(作 用) パターニング後、金属の露出部を陽極酸化することによ
って表面に酸化膜が形成されるため、たとえ金属とn”
a−5iが接触しても、陽極酸化膜がショートをブロッ
クすることができるので金属とn”a−3i間のショー
トをなくすことができる。
(Function) After patterning, an oxide film is formed on the surface by anodic oxidation of the exposed parts of the metal.
Even if the a-5i contacts, the anodic oxide film can block the short-circuit, so that the short-circuit between the metal and the n''a-3i can be eliminated.

(実施例) 以下、この発明の一実施例につき第1図、および第2図
を参照して説明する。
(Example) An example of the present invention will be described below with reference to FIG. 1 and FIG. 2.

第1図に示される一例の薄膜電界効果トランジスタの構
成は、ガラス基板1の上面に順次積層して形成された非
晶質シリコンのa−3i層II、ゲート絶縁膜のSi0
g層12.グー1〜電極のTa層13.保護絶縁膜のS
iOつ層14を備え、前記Ta層13の側面は陽極酸化
により形成されたTag、23になっている。そして、
 このTa層13にはゲート電極配線層17Gが設けら
れている。また、前記5inX層12の一部の上部に形
成されたソース、ドレインの各領域のn”a−5i層1
55.15Dにソース電極17S、ドレイン電極170
が夫々形成されている。なj7、前記各電極、電極配線
層上を除く全面は保護絶縁膜16で被覆されている。
The structure of the example thin film field effect transistor shown in FIG.
g layer 12. Goo 1 to Ta layer 13 of the electrode. S of protective insulating film
It has an iO layer 14, and the side surface of the Ta layer 13 is a tag 23 formed by anodizing. and,
This Ta layer 13 is provided with a gate electrode wiring layer 17G. Further, the n"a-5i layer 1 of each source and drain region is formed on a part of the 5inX layer 12.
55. Source electrode 17S and drain electrode 170 at 15D
are formed respectively. j7, the entire surface except for the above-mentioned electrodes and the electrode wiring layer is covered with a protective insulating film 16.

次に、この発明にかかる薄膜電界効果トランジスタの!
XI造方法の一実施例につき、第2134を参照して説
明する。
Next, the thin film field effect transistor according to the present invention!
An example of the XI manufacturing method will be described with reference to No. 2134.

ガラス基板1上にプラズマCVDによりa−3i層30
00人 11.5iOxff2000人 12を堆積し
、スパッターによりTa層を800人13堆積させる。
A-3i layer 30 is formed on the glass substrate 1 by plasma CVD.
00 people 11.5 iOxff 2000 people 12 is deposited, and a Ta layer is deposited by sputtering to 800 people 13.

プラズマCVDによりSiOx絶縁膜を2000人堆積
させる(第1図a)。
2000 SiOx insulating films are deposited by plasma CVD (FIG. 1a).

次に、同一パターンで前記5in)4層14に対する希
釈されたIIF(BHF)によるエツチング、TaW1
13に対するケミカルドライエツチング(CDE)、S
i0g層12に対するN114Fによるエツチングを順
次施す(第1図b)。次に、クエン酸0.1%水溶液中
で0.5A/afで120Vまで陽極酸化を行い、Si
Ox絶縁膜より露出しているTa層13の側面部をTa
oy層23にする(第1図C)。次に、PI(3プラズ
マ中でa−Si層11の表面をプラズマドープしてソー
ス、ドレイン領域のn中領域15S、 150を形成し
た後に、SiOつ絶縁膜16をプラズマCVDで堆積さ
せたのち、 コンタクトホールを開ける(第1図d)。
Next, etching with diluted IIF (BHF) on the 5 inch) 4 layer 14 with the same pattern, TaW1
Chemical dry etching (CDE) for 13, S
The i0g layer 12 is sequentially etched with N114F (FIG. 1b). Next, anodization was performed in a 0.1% citric acid aqueous solution at 0.5 A/af to 120 V, and the Si
The side surface of the Ta layer 13 exposed from the Ox insulating film is
oy layer 23 (FIG. 1C). Next, the surface of the a-Si layer 11 is plasma-doped in PI (3 plasma) to form n-middle regions 15S and 150 of the source and drain regions, and then an SiO2 insulating film 16 is deposited by plasma CVD. , Drill a contact hole (Fig. 1d).

次に、lを1−厚にスパッタにより堆積させ、ゲート電
極配線層17G、及び。
Next, a gate electrode wiring layer 17G and a gate electrode interconnection layer 17G are deposited by sputtering to a thickness of 1-1.

ソース、ドレイン電極175.170を形成する(第1
図e)ことにより薄膜電界効果トランジスタの形成が達
成される。
Form source and drain electrodes 175 and 170 (first
By means of figure e) the formation of a thin film field effect transistor is achieved.

上記実施例ばかりではなく、  a  Si/SiOx
/TaOつ/ゲートという構造が同じTPTであれば、
ソース、ドレインの構造がどのようであっても、同様の
効果が得られる。陽極酸化膜はTa0yに限らず、AQ
O□Tie、でも良い。
In addition to the above embodiments, a Si/SiOx
If the TPT has the same structure of /TaO2/gates,
Similar effects can be obtained regardless of the structure of the source and drain. The anodic oxide film is not limited to Ta0y, but also AQ.
O□Tie is fine.

Tie、かない場合には、約30%のトランジスタネ良
があったがTaを2000人つけ、絶縁膜−Ta−絶縁
膜の各層を同一パターンでエツチングした後、陽極酸化
を行なってTaoX部を形成すると不良が0〜1%に減
少し、大きな効果が得られた。
When Tie was not present, there was about 30% transistor error, but 2000 Ta layers were added, and after etching each layer of the insulating film - Ta - insulating film in the same pattern, anodization was performed to form the TaoX part. As a result, the number of defects was reduced to 0-1%, and a great effect was obtained.

〔発明の効果〕〔Effect of the invention〕

上に述べてきたように、本発明によれば、トランジスタ
ネ良の原因となるショートがほぼ零となり、デイスプレ
ィの画質が大幅に向上でき、且つ製品の歩留りが大幅に
向上できる。
As described above, according to the present invention, the number of short circuits that cause transistor failure can be reduced to almost zero, and the image quality of a display can be greatly improved, and the yield of products can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる一実施例の断面図、第2図a−
eは本発明の製造方法を工程順に示すいずれも断面図、
第3図は従来のコプラナ型TPTの断面図、第4図は従
来の逆スタツガ型TPTの断面図である。 1 ・・・・・・ガラス基板 11・・・・・・ a −5i層 12・・・・・・5iflx層(ゲート絶縁膜)13・
・・・・・Ta層(ゲート電極)23・・・・・・Ta
Ox層 14・・・・・・Si00層(絶縁保脛膜)代理人 弁
理士  井 上 −力 筒1図 第  2  図 (芝のlン 第 2 図 (νす2) 第  3  図 第  4  図
FIG. 1 is a sectional view of an embodiment according to the present invention, and FIG.
e is a cross-sectional view showing the manufacturing method of the present invention in order of steps;
FIG. 3 is a sectional view of a conventional coplanar TPT, and FIG. 4 is a sectional view of a conventional inverted staggered TPT. 1...Glass substrate 11...a-5i layer 12...5iflx layer (gate insulating film) 13.
...Ta layer (gate electrode) 23 ...Ta
Ox layer 14... Si00 layer (insulating tibia membrane) Agent Patent attorney Inoue - Rikitsutsu 1 Figure 2 (Shiba's ln Figure 2 (vsu 2) Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上に形成されn^+層を有する非晶質
シリコン薄膜と、この非晶質シリコン薄膜の一部でなり
前記n^+層に隣接するゲート電極形成予定域の上面に
順次積層して形成されたゲート絶縁膜、側面に陽極酸化
の施されたゲート電極およびゲート配線層と、前記n^
+非晶質シリコン層上に形成されたソース電極およびド
レイン電極とを具備したことを特徴とする薄膜電界効果
トランジスタ。
(1) An amorphous silicon thin film formed on an insulating substrate and having an n^+ layer, and a part of this amorphous silicon thin film on the upper surface of an area where a gate electrode is to be formed adjacent to the n^+ layer. A gate insulating film, a gate electrode and a gate wiring layer whose side surfaces are anodized, and the n^
+ A thin film field effect transistor comprising a source electrode and a drain electrode formed on an amorphous silicon layer.
(2)絶縁性基板上に非晶質シリコン薄膜を形成する工
程と、前記非晶質シリコン薄膜上にゲート絶縁膜、ゲー
ト電極になる陽極酸化の可能な金属層および保護絶縁膜
を順次積層して形成する工程と、前記積層層をゲート形
成予定域のみ残し同一のエッチングマスクによってエッ
チング除去する工程と、前記エッチングにより露出した
ゲート電極の側面に陽極酸化を施す工程と、前記非晶質
シリコン薄膜の露出部に不純物ドーピングを施しソース
およびドレインの各電極を形成する工程を含む薄膜電界
効果トランジスタの製造方法。
(2) Forming an amorphous silicon thin film on an insulating substrate, and sequentially laminating a gate insulating film, a metal layer that can be anodized to become a gate electrode, and a protective insulating film on the amorphous silicon thin film. a step of etching away the laminated layer using the same etching mask leaving only the region where the gate is to be formed; a step of anodizing the side surface of the gate electrode exposed by the etching; A method for manufacturing a thin film field effect transistor, comprising a step of doping an exposed portion of the transistor with an impurity to form source and drain electrodes.
JP740288A 1988-01-19 1988-01-19 Thin-film filed-effect transistor and manufacture thereof Pending JPH01183853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP740288A JPH01183853A (en) 1988-01-19 1988-01-19 Thin-film filed-effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP740288A JPH01183853A (en) 1988-01-19 1988-01-19 Thin-film filed-effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01183853A true JPH01183853A (en) 1989-07-21

Family

ID=11664886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP740288A Pending JPH01183853A (en) 1988-01-19 1988-01-19 Thin-film filed-effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01183853A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994401A (en) * 1987-01-16 1991-02-19 Hosiden Electronics Co., Ltd. Method of making a thin film transistor
US5061648A (en) * 1985-10-04 1991-10-29 Hosiden Electronics Co., Ltd. Method of fabricating a thin-film transistor
EP0513590A2 (en) * 1991-05-08 1992-11-19 Seiko Epson Corporation Thin-film transistor and method for manufacturing it
EP0588370A2 (en) * 1992-09-18 1994-03-23 Matsushita Electric Industrial Co., Ltd. Manufacturing method of thin film transistor and semiconductor device utilized for liquid crystal display
US5604137A (en) * 1991-09-25 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Method for forming a multilayer integrated circuit
US5619045A (en) * 1993-11-05 1997-04-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5736414A (en) * 1994-07-14 1998-04-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US5849611A (en) * 1992-02-05 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Method for forming a taper shaped contact hole by oxidizing a wiring
US6004831A (en) * 1991-09-25 1999-12-21 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a thin film semiconductor device
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
WO2001075981A1 (en) * 2000-04-04 2001-10-11 Matsushita Electric Industrial Co.,Ltd. Thin-film semiconductor device and method for manufacturing the same
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6867431B2 (en) 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061648A (en) * 1985-10-04 1991-10-29 Hosiden Electronics Co., Ltd. Method of fabricating a thin-film transistor
US4994401A (en) * 1987-01-16 1991-02-19 Hosiden Electronics Co., Ltd. Method of making a thin film transistor
EP0513590A2 (en) * 1991-05-08 1992-11-19 Seiko Epson Corporation Thin-film transistor and method for manufacturing it
US5561075A (en) * 1991-05-08 1996-10-01 Seiko Epson Corporation Method of manufacturing an active matrix panel
US6136625A (en) * 1991-05-08 2000-10-24 Seiko Epson Corporation Method of manufacturing an active matrix panel
US5814539A (en) * 1991-05-08 1998-09-29 Seiko Epson Corporation Method of manufacturing an active matrix panel
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6979840B1 (en) 1991-09-25 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having anodized metal film between the gate wiring and drain wiring
US5604137A (en) * 1991-09-25 1997-02-18 Semiconductor Energy Laboratory Co., Ltd. Method for forming a multilayer integrated circuit
US6004831A (en) * 1991-09-25 1999-12-21 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a thin film semiconductor device
US5849611A (en) * 1992-02-05 1998-12-15 Semiconductor Energy Laboratory Co., Ltd. Method for forming a taper shaped contact hole by oxidizing a wiring
US6147375A (en) * 1992-02-05 2000-11-14 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6476447B1 (en) 1992-02-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device including a transistor
EP0588370A3 (en) * 1992-09-18 1994-06-08 Matsushita Electric Ind Co Ltd Manufacturing method of thin film transistor and semiconductor device utilized for liquid crystal display
EP0588370A2 (en) * 1992-09-18 1994-03-23 Matsushita Electric Industrial Co., Ltd. Manufacturing method of thin film transistor and semiconductor device utilized for liquid crystal display
US6867431B2 (en) 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5619045A (en) * 1993-11-05 1997-04-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5736414A (en) * 1994-07-14 1998-04-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2001075981A1 (en) * 2000-04-04 2001-10-11 Matsushita Electric Industrial Co.,Ltd. Thin-film semiconductor device and method for manufacturing the same
US6812493B2 (en) 2000-04-04 2004-11-02 Matsushita Electric Industrial Co., Ltd. Thin-film semiconductor element and method of producing same

Similar Documents

Publication Publication Date Title
EP0782040A2 (en) Method for manufacturing liquid crystal display
JPH01183853A (en) Thin-film filed-effect transistor and manufacture thereof
JPH05323373A (en) Production of thin film transistor panel
JPH08236775A (en) Film transistor, and its manufacture
JPH0580650B2 (en)
JPH01102434A (en) Matrix type liquid crystal panel
JP3094610B2 (en) Method for manufacturing thin film transistor
JPH01185522A (en) Substrate for driving display device
JPS62286271A (en) Manufacture of thin-film transistor substrate
JPS61188967A (en) Thin film transistor
JP3114303B2 (en) Thin film transistor panel and method of manufacturing the same
JP3270920B2 (en) Manufacturing method of liquid crystal display device
JPH0815733A (en) Thin film transistor panel and its production
JPH07110496A (en) Production of active matrix panel
JPH07114043A (en) Liquid crystal display device and its production
JP2000012863A (en) Thin-film transistor and display device using the same
JP2638069B2 (en) Thin film pattern forming method and active matrix substrate using the same
JP2980803B2 (en) Method of forming metal wiring
JPH03145627A (en) Thin film transistor array
JPH06163586A (en) Thin-film transistor matrix and its manufacture
JPH02130551A (en) Thin film pattern and production thereof as well as matrix circuit board formed by using this pattern and image display device
JP2001144297A (en) Manufacturing method for thin-film transistor
KR100265053B1 (en) Display panel and manufacturing method thereof
JPH07104315A (en) Liquid crystal display device
KR100705615B1 (en) Method for fabricating tft lcd