JPH01179765A - Aluminum nitride sintered body and production thereof - Google Patents

Aluminum nitride sintered body and production thereof

Info

Publication number
JPH01179765A
JPH01179765A JP63002184A JP218488A JPH01179765A JP H01179765 A JPH01179765 A JP H01179765A JP 63002184 A JP63002184 A JP 63002184A JP 218488 A JP218488 A JP 218488A JP H01179765 A JPH01179765 A JP H01179765A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
weight
thermal conductivity
iia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63002184A
Other languages
Japanese (ja)
Inventor
Akira Yamakawa
晃 山川
Masaya Miyake
雅也 三宅
Hitoshi Sakagami
坂上 仁之
Hisao Takeuchi
久雄 竹内
Koichi Sogabe
浩一 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63002184A priority Critical patent/JPH01179765A/en
Publication of JPH01179765A publication Critical patent/JPH01179765A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title dense sintered body contg. a specified amt. of carbon, having superior characteristics such as superior heat conductivity, insulating property and a high dielectric constant and useful for a semiconductor device by adding a fatty acid salt of a IIa or IIIa metal to AlN powder and sintering them. CONSTITUTION:The title sintered body is an AlN sintered body contg. 0.01-0.2wt.% C and 0.01-1.0% (expressed in terms of oxide) IIa or IIIa metal and having >=150w/mk, especially >=180w/mk heat conductivity and 0.001-1.0% oxygen content. A fatty acid salt of the group IIa or IIIa metal such as yttrium palmitate or stearate is added to AlN powder by 0.01-1.0% (expressed in terms of metal oxide) and they are mixed, molded and sintered at 1,500-2,200 deg.C to obtain the sintered body.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化アルミニウム焼結体およびその製造方法に
係り、更に詳しくは緻密質で熱伝導性、絶縁性、誘電率
などの実用」二の諸特性に秀れている窒化アルミニウム
焼結体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum nitride sintered body and a method for manufacturing the same, and more specifically, the present invention relates to an aluminum nitride sintered body and a method for manufacturing the same, and more specifically, it is dense and has practical properties such as thermal conductivity, insulation, and dielectric constant. The present invention relates to a method for producing an aluminum nitride sintered body that has excellent properties.

[従来の技術] 最近のLSIの進歩はめざましく、集積度の向上が著し
い。これには、ICチップサイズの向上も寄与しており
、ICチップサイズの向上に伴ってパッケージ当りの発
熱量か増大している。このため基板材料の放熱性か重要
視されるようになってきた。また、従来IC基板として
用いられていたアルミナ焼結体の熱伝導率では放熱性が
不十分てあり、ICチップの発熱量の増大に対応できな
くなりつつある。このためアルミナ基板に代わるものと
して、高熱伝導性のベリリア側板が検討されているが、
へりリアは毒性か強く取扱いか難しいという欠点かある
[Prior Art] Recent advances in LSI have been remarkable, and the degree of integration has been significantly improved. The improvement in IC chip size also contributes to this, and as the IC chip size improves, the amount of heat generated per package increases. For this reason, importance has been placed on the heat dissipation properties of substrate materials. Further, the thermal conductivity of alumina sintered bodies conventionally used as IC substrates is insufficient in heat dissipation, and it is becoming impossible to cope with the increase in the amount of heat generated by IC chips. For this reason, highly thermally conductive beryllia side plates are being considered as an alternative to alumina substrates.
Herilia has the disadvantage of being highly toxic and difficult to handle.

窒化アルミニウム(A 1 N)は、本来、材質的に高
熱伝導性、薗絶縁性を有し、毒性もないため、半導体工
業において絶縁材料あるいはパッケージ飼料として注目
を集めている。
BACKGROUND ART Aluminum nitride (A 1 N) originally has high thermal conductivity and insulation properties, and is non-toxic, so it is attracting attention as an insulating material or packaging feed in the semiconductor industry.

[発明が解決しようとする問題点] 上述のように窒化アルミニウムは理論的には111、結
晶としては高熱伝導性、高絶縁性を有する材料である。
[Problems to be Solved by the Invention] As described above, aluminum nitride is a material having theoretically 111 and high thermal conductivity and high insulation properties as a crystal.

しかしながら、窒化アルミニウム粉末から焼結体を製造
する場合、窒化アルミニウム粉末自体の焼結性か良くな
いため、粉末成形後、焼結して得られる窒化アルミニウ
ム焼結体の相対密度(窒化アルミニウムの理論密度3.
26g/cm3を基準とする)は、焼結条件にも依るが
、高々70〜80%しか示さず、多量の気孔を包含する
However, when producing a sintered body from aluminum nitride powder, the sinterability of the aluminum nitride powder itself is not good, so the relative density of the aluminum nitride sintered body obtained by sintering after powder compaction (aluminum nitride theory) Density 3.
26 g/cm3), depending on the sintering conditions, shows only 70 to 80% at most and includes a large amount of pores.

一方、窒化アルミニウム焼結体の如き絶縁性セラミック
スの熱伝導機構は、フォノン伝導を主体とするため気孔
、不純物等の欠陥はフォノン散乱を起こし、熱伝導性は
低レベルのものしか得られない。
On the other hand, the heat conduction mechanism of insulating ceramics such as aluminum nitride sintered bodies is mainly based on phonon conduction, and defects such as pores and impurities cause phonon scattering, resulting in only a low level of thermal conductivity.

緻密質で、良好な熱伝導性の窒化アルミニウム焼結体を
得るため窒化アルミニウム粉末に種々の焼結助剤を添加
し、ホットプレスあるいは常圧焼結することか試みられ
ており、かなり良質の焼結体が得られている。たとえば
、酸化カルシウム(Cab)、酸化バリウム(B a 
O)、酸化ストロンチウム(SrO)などを窒化アルミ
ニウム粉末に添加して焼結する方法(特公昭58−49
510号)かある。この方法によれば相対密度98%以
上で、熱伝導率0.10〜0.13cal 7cm・s
ee −deg(42〜54W/m、k) (室温)の
ものが得られている。しかし、この程度の値の熱伝導率
では今後のIC,LSIの集積度向上による発熱量の増
大に対応するには十分とはいえない。
In order to obtain a dense aluminum nitride sintered body with good thermal conductivity, attempts have been made to add various sintering aids to aluminum nitride powder and perform hot pressing or pressureless sintering. A sintered body has been obtained. For example, calcium oxide (Cab), barium oxide (Ba
A method of adding strontium oxide (SrO), strontium oxide (SrO), etc. to aluminum nitride powder and sintering it (Japanese Patent Publication No. 58-49
No. 510). According to this method, the relative density is 98% or more, the thermal conductivity is 0.10 to 0.13 cal, 7 cm・s
ee-deg (42 to 54 W/m, k) (room temperature) has been obtained. However, this level of thermal conductivity cannot be said to be sufficient to cope with the increase in heat generation due to future improvements in the degree of integration of ICs and LSIs.

一方、緻密質で高強度の窒化アルミニウム焼結体を得る
ことを目的として、窒化アルミニウム粉末にY2O3及
びSiO2等を添加する試みもなされており(特公昭5
(i−9475号)、98%以上の相対密度を得ている
か、熱伝導率は0.07cal/cm−see −dc
g(29W/m、k)に満たない程の低レベルである。
On the other hand, attempts have been made to add Y2O3, SiO2, etc. to aluminum nitride powder with the aim of obtaining a dense and high-strength aluminum nitride sintered body (Tokukō Kokō 5).
(No. i-9475), the relative density is 98% or more, and the thermal conductivity is 0.07 cal/cm-see-dc.
The level is so low as to be less than g (29 W/m, k).

本発明の目的は、今後の半導体用絶縁材料あるいはパッ
ケージ飼料として好適に使用できるような緻密質で且つ
熱伝導性、絶縁性、誘電率などの実用上の緒特性に優れ
ている窒化アルミニウム焼結体とその製造方法を提供す
ることにある。
The object of the present invention is to produce sintered aluminum nitride that is dense and has excellent practical characteristics such as thermal conductivity, insulation, and dielectric constant, so that it can be suitably used as an insulating material for semiconductors or packaged feed in the future. The objective is to provide the body and its manufacturing method.

[問題点を解決するための手段] 上記目的を達成するための本発明の構成は、炭素を0,
1〜0.2重量%含有し、熱伝導率が150W/mk以
上である窒化アルミニウム焼結体である。特にIIa族
およびIIra族金属の何れがを酸化物換算で0.01
〜10重量%、酸素を0.001〜1.0重量%含有す
るものは熱伝導率が180W/mk以上である。
[Means for solving the problems] The structure of the present invention for achieving the above object is to reduce carbon to 0,
It is an aluminum nitride sintered body containing 1 to 0.2% by weight and having a thermal conductivity of 150 W/mk or more. In particular, which of Group IIa and Group IIra metals is 0.01 in terms of oxide
-10% by weight, and those containing 0.001 to 1.0% by weight of oxygen have a thermal conductivity of 180 W/mk or more.

このような窒素アルミニウム焼結体の製造法は、IIa
族および■a族金属の何れがの脂肪酸塩を酸化物換算で
0.01〜1.0重量%混合した後成形し、非酸化性雰
囲気中、1500〜2200 ℃で焼結するものである
The method for producing such a nitrogen aluminum sintered body is IIa
After mixing 0.01 to 1.0% by weight of fatty acid salts of group metals and group IIa metals in terms of oxides, the mixture is molded and sintered at 1500 to 2200°C in a non-oxidizing atmosphere.

本発明の焼結体においては、炭素の含有量が0.001
〜0.2重足%とする。 0.001重量%未満では、
熱伝導率か低くなるし、0.2重量%を越えると、焼結
体の緻密化か不十分である。炭素の残留のために窒化ア
ルミニウム成形体には、炭素源となる物質を含有せしめ
る必要がある。
In the sintered body of the present invention, the carbon content is 0.001
~0.2%. Less than 0.001% by weight,
Thermal conductivity decreases, and if it exceeds 0.2% by weight, the sintered body will not be sufficiently densified. In order to retain carbon, the aluminum nitride molded body must contain a substance that serves as a carbon source.

炭素の供給源としては成形助剤、添加炭素、雰囲気から
の侵入炭素、焼結助剤として与えることか可能である。
Carbon can be supplied as a forming aid, added carbon, carbon introduced from the atmosphere, or a sintering aid.

発明者らは炭素源として、焼結助剤となるUa、■a族
元索の脂肪酸化合物を用いることが特に好ましい結果を
得ることを見出した。
The inventors have found that particularly favorable results can be obtained by using, as a carbon source, a fatty acid compound of group Ua, which serves as a sintering aid.

炭素の効果は明らかではないが、AIN中の酸素量を低
減させるに効果的なものと考えられる。
Although the effect of carbon is not clear, it is thought to be effective in reducing the amount of oxygen in AIN.

Ua、ma族元素は酸化物換算で0.01〜1.0重量
%とする0、01重量%未満では緻密化が不十分であり
、10重量%を越えると熱伝導率が低下する。焼結体中
の酸素量はo、ooi〜1,0重量%である。 1.0
重量%を越えると熱伝導率が低く、0.0口重量%未満
に制御することは困難である。
The Ua and Ma group elements should be 0.01 to 1.0% by weight in terms of oxide. If it is less than 0.01% by weight, densification will be insufficient, and if it exceeds 10% by weight, the thermal conductivity will decrease. The amount of oxygen in the sintered body is from o,ooi to 1.0% by weight. 1.0
If it exceeds 0.0% by weight, the thermal conductivity is low and it is difficult to control it to less than 0.0% by weight.

焼結助剤としてのna、Ha族元素は、酸化物をはじめ
、水酸化物、炭酸塩等を用いることができるか、特に脂
肪酸塩か好ましく、発明者らはステアリン酸、パルミチ
ン酸等種々の脂肪酸塩を用いて良好な結果を得た。焼結
体の製法は常法の窒化アルミニウムの製法に準すること
か可能である。
As the Na and Ha group elements as sintering aids, oxides, hydroxides, carbonates, etc. can be used, and fatty acid salts are particularly preferable. Good results were obtained using fatty acid salts. The method for manufacturing the sintered body can be based on the conventional method for manufacturing aluminum nitride.

[実施例] 以下、実施例によって、本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 平均粒径か1.0μ以下で酸素含量が1.0重量パーセ
ントの高純度AIN粉末(比表面積2m’/g)に、酸
化物換算で表1に示す配合量のIIa。
Example 1 High purity AIN powder (specific surface area 2 m'/g) with an average particle size of 1.0 μm or less and an oxygen content of 1.0 weight percent was mixed with IIa in the amount shown in Table 1 in terms of oxide.

ma族ステアリン酸化合物と 5重量%のPVBを添加
し、エタノール中で10時間ボールミルで混合後、成形
し、1900℃の窒素気流中で2時間焼結した。
A MA group stearic acid compound and 5% by weight of PVB were added and mixed in ethanol in a ball mill for 10 hours, then molded and sintered in a nitrogen stream at 1900°C for 2 hours.

得られた焼結体の相対密度と熱伝導率、PCTによる重
量増加率(120℃、100%RH。
Relative density and thermal conductivity of the obtained sintered body, weight increase rate due to PCT (120°C, 100% RH.

1.00H)を下記第1表に示す。1.00H) are shown in Table 1 below.

この表に示す結果から本発明の窒化アルミニウム焼結体
の特性がすぐれていることが判る。
From the results shown in this table, it can be seen that the aluminum nitride sintered body of the present invention has excellent characteristics.

実施例2 実施例1を示した第1表3の組成によりステアリン酸に
かわって、パルミチン酸を用いたところ、同様の効果が
確認された。
Example 2 When palmitic acid was used in place of stearic acid according to the composition shown in Table 1 shown in Example 1, similar effects were confirmed.

表1 [発明の効果] 以上説明したように、本発明は高熱伝導で信頼性の高い
窒化アルミニウム焼結体であって、比較的容易に製造す
ることができる。そして、本発明の窒化アルミニウム焼
結体は、IC基板、放熱板、構造材料等に適した特性を
もち、実用性の高いものである。
Table 1 [Effects of the Invention] As explained above, the present invention provides a highly reliable aluminum nitride sintered body with high thermal conductivity, and can be produced relatively easily. The aluminum nitride sintered body of the present invention has characteristics suitable for IC substrates, heat sinks, structural materials, etc., and is highly practical.

特許出願人 住友電気工業株式会社 代理人 弁理士 小 松 秀 岳Patent applicant: Sumitomo Electric Industries, Ltd. Agent Patent Attorney Hidetake Komatsu

Claims (3)

【特許請求の範囲】[Claims] (1)炭素を0.001〜0.2重量%含有し、熱伝導
率が150W/mk以上であることを特徴とする窒化ア
ルミニウム焼結体。
(1) An aluminum nitride sintered body containing 0.001 to 0.2% by weight of carbon and having a thermal conductivity of 150 W/mk or more.
(2)IIa族およびIIIa族金属の何れかを酸化物換算
で0.01〜1.0重量%、酸素を0.001〜1.0
重量%含有し、熱伝導率が180W/mk以上である特
許請求の範囲第(1)項記載の窒化アルミニウム焼結体
(2) 0.01 to 1.0% by weight of either Group IIa or Group IIIa metals and 0.001 to 1.0% of oxygen in terms of oxide.
% by weight, and has a thermal conductivity of 180 W/mk or more.
(3)窒化アルミニウム粉末に、IIa族およびIIIa族
金属の何れかの脂肪酸塩を前記金属の酸化物換算で0.
01〜1.0重量%混合した後成形し、非酸化性雰囲気
中、1500〜2200℃で焼結することを特徴とする
窒化アルミニウム焼結体の製造方法。
(3) Add 0.0% fatty acid salt of either group IIa or group IIIa metal to aluminum nitride powder in terms of oxide of the metal.
1. A method for producing an aluminum nitride sintered body, which comprises mixing 0.01 to 1.0% by weight, molding, and sintering at 1500 to 2200°C in a non-oxidizing atmosphere.
JP63002184A 1988-01-08 1988-01-08 Aluminum nitride sintered body and production thereof Pending JPH01179765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63002184A JPH01179765A (en) 1988-01-08 1988-01-08 Aluminum nitride sintered body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63002184A JPH01179765A (en) 1988-01-08 1988-01-08 Aluminum nitride sintered body and production thereof

Publications (1)

Publication Number Publication Date
JPH01179765A true JPH01179765A (en) 1989-07-17

Family

ID=11522277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63002184A Pending JPH01179765A (en) 1988-01-08 1988-01-08 Aluminum nitride sintered body and production thereof

Country Status (1)

Country Link
JP (1) JPH01179765A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047831A1 (en) * 1999-12-28 2001-07-05 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact, and ceramic substrate for use in apparatus for manufacturing and inspecting semiconductor
US6719931B2 (en) 2000-01-10 2004-04-13 Basf Aktiengesellschaft Low-viscosity, melamine-formaldehyde resin microcapsule dispersions with reduced formaldehyde content
US6900149B1 (en) 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246866A (en) * 1986-04-15 1987-10-28 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JPS632860A (en) * 1986-06-20 1988-01-07 ティーディーケイ株式会社 Aluminum nitride sintered body
JPS6317263A (en) * 1986-07-10 1988-01-25 旭硝子株式会社 Manufacture of aluminum nitride sintered body
JPS63182260A (en) * 1987-01-20 1988-07-27 株式会社東芝 High heat conductive aluminum nitride sintered body
JPS63270361A (en) * 1987-04-28 1988-11-08 Toshiba Corp Sintered aluminum nitride of high thermal conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246866A (en) * 1986-04-15 1987-10-28 株式会社村田製作所 Manufacture of aluminum nitride sintered body
JPS632860A (en) * 1986-06-20 1988-01-07 ティーディーケイ株式会社 Aluminum nitride sintered body
JPS6317263A (en) * 1986-07-10 1988-01-25 旭硝子株式会社 Manufacture of aluminum nitride sintered body
JPS63182260A (en) * 1987-01-20 1988-07-27 株式会社東芝 High heat conductive aluminum nitride sintered body
JPS63270361A (en) * 1987-04-28 1988-11-08 Toshiba Corp Sintered aluminum nitride of high thermal conductivity

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900149B1 (en) 1999-09-06 2005-05-31 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US6964812B2 (en) 1999-09-06 2005-11-15 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US7015166B2 (en) 1999-09-06 2006-03-21 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
WO2001047831A1 (en) * 1999-12-28 2001-07-05 Ibiden Co., Ltd. Carbon-containing aluminum nitride sintered compact, and ceramic substrate for use in apparatus for manufacturing and inspecting semiconductor
US6719931B2 (en) 2000-01-10 2004-04-13 Basf Aktiengesellschaft Low-viscosity, melamine-formaldehyde resin microcapsule dispersions with reduced formaldehyde content

Similar Documents

Publication Publication Date Title
JPH0563435B2 (en)
KR960006248B1 (en) Sintered body of aluminium nitride and the method for producing the same
US5482905A (en) Aluminum nitride sintered body and method of producing the same
JPS61117160A (en) Aluminium nitride sintered body and manufacture
JPH01179765A (en) Aluminum nitride sintered body and production thereof
JP2678213B2 (en) Manufacturing method of aluminum nitride sintered body
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2620260B2 (en) Manufacturing method of aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
KR960001429B1 (en) Process for producing sintered bodies of aluminium nitromal
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JPH06329474A (en) Sintered aluminum nitride and its production
JPS63134570A (en) Manufacture of aluminum nitride sintered body
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JPS61201670A (en) Aluminum nitride sintered body and manufacture
JP3606923B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0566905B2 (en)
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JPH057349B2 (en)
JPH03218977A (en) Production of aluminum nitride sintered body
JPS61286266A (en) Manufacture of aluminum nitride base sintered body
JPH01179764A (en) Aluminum nitride sintered body and production thereof
JPH0587468B2 (en)
US5061664A (en) Preparation of sintered aluminum nitride