JPH01165029A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH01165029A
JPH01165029A JP32130287A JP32130287A JPH01165029A JP H01165029 A JPH01165029 A JP H01165029A JP 32130287 A JP32130287 A JP 32130287A JP 32130287 A JP32130287 A JP 32130287A JP H01165029 A JPH01165029 A JP H01165029A
Authority
JP
Japan
Prior art keywords
face
film
vapor deposition
deposition rate
curl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32130287A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yoshida
吉田 和悦
Kazushige Imagawa
今川 一重
Masaaki Futamoto
二本 正昭
Yukio Honda
幸雄 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP32130287A priority Critical patent/JPH01165029A/en
Publication of JPH01165029A publication Critical patent/JPH01165029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To eliminate curling and to obtain a medium having both flat faces by changing the vapor deposition speed of a Co-Cr film for the 1st face and the vapor deposition speed for the 2nd face and setting the vapor deposition speed for the 1st face higher than the vapor deposition for the 2nd face. CONSTITUTION:The Co-Cr film having 0.3mum thickness is formed continuously on one face of a high-polymer film 11 by using a continuous take-up type vacuum deposition device. The surface temp. of a can is kept at 250 deg.C and the vapor deposition at 500nm/s at this time. This tape is further turned over and the Co-Cr film is formed to 0.3mum on the surface reverse from the first vapor deposition surface. The curl delta is generated if both the 1st face and 2nd face are produced at the same vapor deposition speed at this time. The curl decreases as the vapor deposition of the 2nd face is gradually lowered. The flat both-face medium is thus obtd. in a 180-250nm/s range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は垂直磁気記録用媒体に係り、特に両面に磁性膜
を設けた両面媒体において、カールが少なく平坦な媒体
を作製する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a perpendicular magnetic recording medium, and particularly to a method for producing a flat medium with little curl in a double-sided medium in which magnetic films are provided on both sides.

〔従来の技術〕[Conventional technology]

東北大学の岩崎等によって提案された垂直磁気記録方式
(特公昭58−19)は記録密度が高くなるほど反磁界
が減少するため1本質的に高密度記録に適した方式であ
る。特に、この垂直記録方式を、フレキシブルディスク
の分野に適用した場合、記録密度が一挙に5〜10倍以
上向上することが期待されるため、その開発が精力的に
行われている。
The perpendicular magnetic recording method proposed by Iwasaki et al. of Tohoku University (Special Publication No. 58-1988) is essentially a method suitable for high-density recording because the demagnetizing field decreases as the recording density increases. In particular, when this perpendicular recording method is applied to the field of flexible disks, it is expected that the recording density will be improved by 5 to 10 times or more at once, and therefore its development is being actively carried out.

垂直記録に用いられる記録媒体としては、真空蒸着法や
スパッタリング法で作製したCo−Cr膜が通常用いら
れる。フレキシブルディスクは有機高分子フィルムを、
100〜300℃程度加熱し、上記した方法でCo−C
r膜を被着形成することによって作られる。しかし、こ
の場合、基板として剛性の小さなポリイミドなどの高分
子フィルムを用いるため、温度膨張係数の違いを原因と
したカール、あるいはG o −Crli自身のもつ内
部応力を原因とした大きなカールが発生する。また、磁
性薄膜を磁気記録層とした両面媒体は既に。
As a recording medium used for perpendicular recording, a Co--Cr film produced by a vacuum evaporation method or a sputtering method is usually used. Flexible disks are made of organic polymer film,
Co-C is heated to about 100 to 300°C and processed using the method described above.
It is made by depositing a r film. However, in this case, since a polymer film such as polyimide with low rigidity is used as a substrate, curls caused by differences in thermal expansion coefficients or large curls caused by the internal stress of Go-Crli itself occur. . Additionally, double-sided media with a magnetic thin film as a magnetic recording layer are already available.

特開昭52−112306号、同56−169220号
等において知られている。
This method is known from Japanese Patent Application Laid-open Nos. 52-112306 and 56-169220.

上記カールを無くすためには1片面に膜を形成した後、
その反対面に同一条件で膜を形成すれば。
In order to eliminate the above curl, after forming a film on one side,
If a film is formed on the opposite side under the same conditions.

両面におけるカールが打消し合い平坦化されるように考
えられる。しかし、この方法でカールを解消することは
難しく、通常の場合、第1回目に膜を形成した時のカー
ルが大きくなり、完全には膜を平坦化することができな
い。そのため、故意に膜厚を表、裏面で変える方法が特
開昭60−191424号として知られ、また蒸着温度
を故意に表、裏面で変える方法がある。
It is thought that the curls on both sides are canceled out and flattened. However, it is difficult to eliminate curls with this method, and in normal cases, the curls become large when the film is formed the first time, and the film cannot be completely flattened. Therefore, a method of intentionally changing the film thickness on the front and back sides is known as Japanese Patent Application Laid-Open No. 191424/1982, and there is also a method of intentionally changing the deposition temperature on the front and back sides.

〔発明が解決しようとした問題点〕[Problem that the invention sought to solve]

しかし、上記の方法はいずれにおいても表、裏面の磁気
特性が異るため、両面型フレキシブルディスクとしては
好ましくない。本発明は、上記した問題点を解決するた
めになされたもので、両面とも同一の磁気特性をもち、
かつカールの少ないフレキシブルディスクを提供するこ
とにある。
However, in any of the above methods, the front and back surfaces have different magnetic properties, so they are not preferred for double-sided flexible disks. The present invention was made to solve the above-mentioned problems, and both sides have the same magnetic properties,
Another object of the present invention is to provide a flexible disk with less curling.

[問題点を解決するための手段〕 本発明の方法は、記録媒体の担体となる高分子フィルム
の両面における磁性膜形成速度を、いずれか一方におい
て速く、他方において遅く、より好ましくは、最初の膜
形成速度を速く、その裏面側の速度を遅くしたことを特
徴としたものである。
[Means for Solving the Problems] The method of the present invention increases the rate of magnetic film formation on both sides of a polymer film serving as a carrier of a recording medium, such that the rate of magnetic film formation is high on one side and slow on the other side, and more preferably at the initial rate. It is characterized by a high film formation speed and a slow film formation speed on the back side.

〔作用〕[Effect]

本発明は、Co−Cr膜等の内部応力が引張り応力で、
しかも蒸着速度が速くなるほどその応力が大きくなるこ
と、また温度膨張係数の違いを原因とした(バイメタル
効果)応力が圧縮応力であり両者の極性が異ることを利
用して、カール発生を抑制したものである。
In the present invention, the internal stress of the Co-Cr film etc. is tensile stress,
In addition, the stress increases as the deposition rate increases, and the stress caused by the difference in temperature expansion coefficient (bimetallic effect) is compressive stress, and the polarity of the stress is different, which suppresses the occurrence of curling. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を実施例により説明する。 The details of the present invention will be explained below using examples.

実施例1 第1図に示した連続巻取式真空蒸着装置を用いて、ポリ
イミドテープ(カプトン200H;東し−デュボン社製
)の片面に厚さ0.3μmのG。
Example 1 Using the continuous winding type vacuum evaporation apparatus shown in FIG. 1, G was coated on one side of a polyimide tape (Kapton 200H; manufactured by Toshi-Dubon Co., Ltd.) to a thickness of 0.3 μm.

−Cr膜を連続的に形成した。この時のキャン表面温度
は、250℃、蒸着速度は500 n m / sとし
た。さらにこのテープをひつくり返して、最初の蒸着面
とは逆面に厚す0.3μmのCo−Cr膜を形成した。
-Cr film was continuously formed. At this time, the can surface temperature was 250° C., and the deposition rate was 500 nm/s. Furthermore, this tape was turned over to form a Co--Cr film with a thickness of 0.3 μm on the opposite side to the first vapor-deposited side.

この時のキャン表面温度は250℃としたが、蒸着速度
を80,100゜240.500nm/sと変化させ、
4種類の両面蒸着膜を作製した。
The can surface temperature at this time was 250°C, but the deposition rate was changed to 80,100°240.500 nm/s.
Four types of double-sided vapor deposited films were produced.

このようにして作製した試料から直径130+uaの円
盤状試料を打抜いた。
A disk-shaped sample with a diameter of 130+ua was punched out from the sample thus prepared.

試料のカールの大きさは、第2図に示したように、試料
を平面上に置いた時、平面とカールの頂点の距離δで表
すことにする。またこの時、第1回蒸着面を上に向けた
時、凸にカールした場合を正(プラス)のカールとした
The size of the curl of a sample is expressed by the distance δ between the plane and the vertex of the curl when the sample is placed on a plane, as shown in FIG. Further, at this time, when the first vapor deposition surface was turned upward, a case where the film curled in a convex manner was defined as a positive (plus) curl.

第3図に第2回目の蒸着速度を変えて作製した試料のカ
ールを示した。図から分かるように、第1、第2面とも
同じ蒸着速度(500nm/s)で作製した試料では、
正のカールが生じてるのに対して、蒸着速度を遅くして
行くに従い、カールが減少し180〜250nm/sの
範囲で平坦な両面媒体が得られた。
FIG. 3 shows the curls of the samples produced by changing the second deposition rate. As can be seen from the figure, in the sample prepared at the same deposition rate (500 nm/s) on the first and second surfaces,
While positive curl occurred, as the deposition rate was decreased, the curl decreased and a flat double-sided medium was obtained in the range of 180 to 250 nm/s.

実施例2 ポリイミドテープとG o −Cr膜の間に厚さ30n
mのGe層をキャン温度250℃で蒸着した後、蒸着速
度350nm/sでCo−Cr膜を蒸着した。さらにこ
のテープをひつくり返して、逆面に30nmのGa層を
形成した後、さらに蒸着速度80,150,350,5
00nm/sでG o −Cr膜を形成した。このよう
にして作製したCo−Cr膜のカールを実施例1と同様
にして測定した。その結果を第3図中に破線で示した。
Example 2 Thickness 30n between polyimide tape and Go-Cr film
After depositing a Ge layer of m at a can temperature of 250° C., a Co—Cr film was deposited at a deposition rate of 350 nm/s. This tape was further turned over to form a 30 nm Ga layer on the opposite side, and then the evaporation rate was 80, 150, 350, 5.
A G o -Cr film was formed at a speed of 00 nm/s. The curl of the Co--Cr film thus produced was measured in the same manner as in Example 1. The results are shown in FIG. 3 by broken lines.

図から明らかなどと<、MいGe層を設けた場合にも、
第1面のCo−Crの蒸着速度より遅い条件、約100
 n m / sにおいて平坦な媒体が得られることが
分かる。
As is clear from the figure, even when a M Ge layer is provided,
Conditions that are slower than the Co-Cr deposition rate on the first surface, about 100
It can be seen that a flat medium is obtained at nm/s.

第4図に、Co −Cr [Iの垂直方向保磁力(Ha
上)と蒸着速度の関係を示したが、図から明らかなごと
く、保磁力には大きな変化が見られない。
Figure 4 shows the vertical coercive force (Ha
(above) and the deposition rate, but as is clear from the figure, there is no significant change in coercive force.

以上の実施例から明らかなように、Co −Crの両面
媒体を作製する時に、第1回蒸着面形成時の蒸着速度よ
り、第2回蒸着面の蒸着速度を遅くすることにより平坦
な媒体を得ることが可能となる。
As is clear from the above examples, when producing a double-sided Co-Cr medium, a flat medium is created by slowing down the deposition rate on the second deposition surface compared to the deposition rate during the formation of the first deposition surface. It becomes possible to obtain.

なお、第1回、第2回の蒸着速度の関係については、蒸
着温度、Co−Cr膜厚、ベースフィルムの厚さや機械
的特性によって変わるものであり、本実施例にとられれ
るものではないが、どの場合でも、第2回目の蒸着速度
を、第1回目に比較し遅くすることが必要である。
Note that the relationship between the first and second evaporation rates varies depending on the evaporation temperature, Co-Cr film thickness, base film thickness, and mechanical properties, and is not included in this example. However, in any case, it is necessary to make the second deposition rate slower than the first deposition rate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、両面フレキシブルディスク媒体の、そ
れぞれの面の磁気特性を変えることなく。
According to the present invention, the magnetic properties of each side of a double-sided flexible disk medium are not changed.

カールを無くすことができるので、両面平坦な媒体を製
作するのに効果がある。
Since curl can be eliminated, it is effective in producing media that are flat on both sides.

なお本実施例においては、磁性膜としてG o −Cr
膜を例示したが、Co−V、Co−Ni。
Note that in this example, G o -Cr is used as the magnetic film.
Examples of films include Co-V and Co-Ni.

C0−0等の膜についても同様な効果が得られる。Similar effects can be obtained with films such as C0-0.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続蒸着装置の概略側断面図、第2図はカール
の測定法の説明図、第3図はカールの大きさと蒸着速度
の関係図、第4図は保磁力と蒸着速度の関係を示した図
である。 1・・・供給ロール、2・・・ベースフィルム、3・・
・加熱キャンロール、4・・・巻取ロール、5・・・E
/B電子銃、6・・・co−Cr用ルツボ、7・・・G
a用ルツボ。 8・・・シャッター、9・・・Co−Cr両面媒体、1
゜・・・Co−Cr1li、11・・・ベースフィルム
Figure 1 is a schematic side sectional view of the continuous evaporation device, Figure 2 is an explanatory diagram of the method for measuring curl, Figure 3 is a diagram of the relationship between curl size and deposition rate, and Figure 4 is the relationship between coercive force and deposition rate. FIG. 1... Supply roll, 2... Base film, 3...
・Heating can roll, 4... Winding roll, 5...E
/B electron gun, 6...co-Cr crucible, 7...G
Crucible for a. 8...Shutter, 9...Co-Cr double-sided medium, 1
゜...Co-Cr1li, 11...Base film.

Claims (1)

【特許請求の範囲】 1、有機高分子フィルムの表面に直接、もしくは高透磁
層、あるいは非磁性層を介してCo−Cr合金を主成分
とした磁性膜を形成し、片面づつ順次形成して、両面媒
体を作製する工程において、第1面のCo−Cr膜の蒸
着速度と、第2面における蒸着速度を変えることを特徴
とした磁気記録媒体の製造方法。 2、第1面の蒸着速度を第2面の蒸着速度より速くする
ことを特徴とした特許請求の範囲第1項記載の磁気記録
媒体の製造方法。
[Claims] 1. A magnetic film mainly composed of a Co-Cr alloy is formed directly on the surface of an organic polymer film, or via a high magnetic permeability layer or a non-magnetic layer, and is sequentially formed on one side at a time. A method for manufacturing a magnetic recording medium, characterized in that in the step of manufacturing a double-sided medium, the deposition rate of the Co--Cr film on the first side and the deposition rate on the second side are changed. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the deposition rate on the first surface is made faster than the deposition rate on the second surface.
JP32130287A 1987-12-21 1987-12-21 Production of magnetic recording medium Pending JPH01165029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32130287A JPH01165029A (en) 1987-12-21 1987-12-21 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32130287A JPH01165029A (en) 1987-12-21 1987-12-21 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01165029A true JPH01165029A (en) 1989-06-29

Family

ID=18131057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32130287A Pending JPH01165029A (en) 1987-12-21 1987-12-21 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01165029A (en)

Similar Documents

Publication Publication Date Title
US5314745A (en) Magnetic recording medium having a glass substrate, heat retaining non magnetic metal layer formed over the substrate, amorphous nip layer, Cr layer and magnetic layer
US5858566A (en) Seeded underlayer in magnetic thin films
US6077603A (en) Seeded underlayer in magnetic thin films
JPH01165029A (en) Production of magnetic recording medium
EP0178685B1 (en) Perpendicular magnetic recording medium and method of making same
JPH0393024A (en) Metallic thin film type magnetic recording medium
JPH0656650B2 (en) Magnetic recording medium
JP3166304B2 (en) Manufacturing method of magnetic recording medium
JPS61196430A (en) Production of magnetic recording medium
JPS6374121A (en) Production of perpendicular magnetic recording medium
JPH1011735A (en) Magnetic recording medium
JPH04188430A (en) Magnetic recording tape having excellent abrasion resistance and corrosion resistance and manufacture thereof
JPS60138723A (en) Magnetic recording medium
JPS62236141A (en) Production of magnetic recording medium
JPH0451889B2 (en)
JPS60209931A (en) Formation of thin film
JPS6267721A (en) Thin film type magnetic recording medium
JPH01102718A (en) Magnetic recording medium
JPH07101500B2 (en) Perpendicular magnetic recording medium
JPS61126632A (en) Production of magnetic recording medium
JPS6220138A (en) Production of magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPS61242332A (en) Device for producing vertical magnetic recording medium
JPH03273528A (en) Production of magnetic disk
JPS60140526A (en) Magnetic recording medium for vertical recording