JPH01164795A - Method for synthesizing diamond particles - Google Patents

Method for synthesizing diamond particles

Info

Publication number
JPH01164795A
JPH01164795A JP62320141A JP32014187A JPH01164795A JP H01164795 A JPH01164795 A JP H01164795A JP 62320141 A JP62320141 A JP 62320141A JP 32014187 A JP32014187 A JP 32014187A JP H01164795 A JPH01164795 A JP H01164795A
Authority
JP
Japan
Prior art keywords
diamond particles
plasma
powder
diamond
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62320141A
Other languages
Japanese (ja)
Other versions
JP2584805B2 (en
Inventor
Kazuaki Kurihara
和明 栗原
Kenichi Sasaki
謙一 佐々木
Motonobu Kawarada
河原田 元信
Nagaaki Etsuno
越野 長明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62320141A priority Critical patent/JP2584805B2/en
Publication of JPH01164795A publication Critical patent/JPH01164795A/en
Application granted granted Critical
Publication of JP2584805B2 publication Critical patent/JP2584805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0008Reflectors for light sources providing for indirect lighting
    • F21V7/0016Reflectors for light sources providing for indirect lighting on lighting devices that also provide for direct lighting, e.g. by means of independent light sources, by splitting of the light beam, by switching between both lighting modes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To continuously obtain diamond particles uniform in particle diameter with a simple device at high yield and at low cost by injecting gaseous powder incorporating diamond particles to thermal plasma jetted as a plasma jet and quenching the thermal plasma. CONSTITUTION:A DC plasma torch having a cathode 1 and an anode 2 is used and voltage is impressed between both electrodes 1, 2 while allowing discharge gas to flow and DC arc discharge is generated and arc plasma of >=5000 deg.C is generated and also a gaseous raw material consisting of H2 and CH4 which have fed to an arc plasma generating part from a discharge gas pipeline 5 provided on the anode 2 is heated and activated and jetted as high-velocity plasma jet 3. Then gaseous powder 4 incorporating fine diamond particles to be nucleus is injected to this jetted thermal plasma 3 through a powder filter 15 and allowed to collide against it and quenched and diamond is grown in a vapor phase on the surfaces of the fine diamond particles. Then diamond particles having been regulated to required size are sized with a size classifier 9 via a pump 8 and recovered in a powder collector 10.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、熱プラズマシェラI・によりダイヤモンドを
気相合成する方法に関し、 粒径の均一なダイヤモンド粒子を簡単な装置で単純な工
程により連続的に高収率で安価に製造することを目的と
し、 プラズマトーチを用い、アーク放電により発生せしめた
熱プラズマをプラズマジェットとして噴出させ、これに
ダイヤモンド粒子を含むパウダーガスを噴射させて熱プ
ラズマを象、冷させることによりダイヤモンド粒子の表
面にダイヤモンドを気相成長させ、かつ反応ガスを分粒
器を含む循環系中を通して循環せしめることにより高い
収率で、粒径の均一なダイヤモンド粒子を気相成長させ
る。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for vapor-phase synthesis of diamond using a thermal plasma sheller I, which continuously synthesizes diamond particles with a uniform particle size through a simple process using a simple device. With the aim of manufacturing at low cost with high yield, a plasma torch is used to eject thermal plasma generated by arc discharge as a plasma jet. By doing this, diamond is grown in a vapor phase on the surface of the diamond particles, and by circulating the reaction gas through a circulation system including a particle sizer, diamond particles having a uniform particle size are grown in a vapor phase with a high yield.

〔産業上の利用分野〕[Industrial application field]

本発明はダイヤモンド粒子の合成方法に関し、更に詳し
くは陰極及び陽極を有するDCブラスマトーチを用い、
DCアーク放電により発生せしめた熱プラズマをプラズ
マジェットとして噴出させ、これにダイヤモンド粒子を
含むパウダーガスを噴射させて熱プラズマガスを象、冷
させることによりダイヤモンド粒子の表面に粒径のそろ
ったダイヤモンドを低価格で連続的に気相成長させる方
法に関する。
The present invention relates to a method for synthesizing diamond particles, and more specifically, using a DC plasma torch having a cathode and an anode,
Thermal plasma generated by DC arc discharge is ejected as a plasma jet, and powder gas containing diamond particles is injected into the thermal plasma gas, which is then cooled to form diamonds with uniform particle sizes on the surface of the diamond particles. Concerning a method for continuous vapor phase growth at low cost.

ダイヤモンドは炭素(C)の同素体であり、所謂ダイヤ
モンド構造を示し、モース(Mohs )硬度10とあ
らゆる物質の中で最も硬度の大きい材料であり、また熱
伝導度は100OW / ml+と他の材料より格段に
優れている。
Diamond is an allotrope of carbon (C), exhibiting a so-called diamond structure, and is the hardest material among all substances, with a Mohs hardness of 10, and has a thermal conductivity of 100 OW/ml+, which is higher than other materials. It's extremely good.

また、同じ同素体で非晶質ではあるが透明で絶縁物であ
るダイヤモンド状炭素があり、このものはダイヤモンド
より劣るが高い熱伝導度と硬度を示している。
Another allotrope, diamond-like carbon, is an amorphous but transparent insulator that exhibits higher thermal conductivity and hardness than diamond.

これらのことからダイアモンドは各種の用途が期待され
ており、例えば、硬度が大きいことを利用してダイヤモ
ンド砥粒は高硬度金属やファインセラミックスの加工用
として広く用いられており、これらの加工には必要不可
欠なものである。
For these reasons, diamond is expected to have various uses.For example, due to its high hardness, diamond abrasive grains are widely used for processing high-hardness metals and fine ceramics. It is essential.

〔従来の技術〕[Conventional technology]

ダイヤモンド砥粒は、従来、高温高圧法や衝撃法で一般
に製造されていたが、これらの方法は、大型の設備が必
要で、しかもハツチ処理であり、更に反応生成物が金属
やグラファイトとの混合物であるため、ダイ−X・モン
ドの分離、さらには分粒の後工程が必要であり、工業的
製造方法としてはその製造工程及び価格の両面で充分な
ものではなかった。
Diamond abrasive grains have traditionally been produced using high-temperature and high-pressure methods or impact methods, but these methods require large-scale equipment, require hatching, and produce reaction products that are mixed with metals and graphite. Therefore, a post-process of separation of Dai-X.Mondo and further sizing is required, and as an industrial manufacturing method, it is not sufficient in terms of both the manufacturing process and the cost.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記したように、従来のダイヤモンド砥粒の製造方法は
製造工程及び価格の点で工業的な方法としては不充分な
ものであり、本発明はかかる問題を解決して粒径の均一
なダイヤモンド粒子を簡単な装置で単純な工程により連
続的に高収率で安価に製造することを目的とする。
As mentioned above, the conventional method for manufacturing diamond abrasive grains is insufficient as an industrial method in terms of manufacturing process and cost, and the present invention solves these problems and produces diamond particles with a uniform particle size. The aim is to produce continuously with high yield and at low cost using simple equipment and simple steps.

〔問題的を解決するだめの手段〕[Failure to solve problems]

前記目的は、本発明に従えば、プラズマトーチを用い、
アーク放電により発生せしめた熱プラズマをプラズマジ
ェットとして噴出させ、これにダイヤモンド粒子を含む
パウダーガスを噴射させて熱プラズマを急冷させること
によりダイヤモンド粒子の表面にダイヤモンドを気相成
長させ、かつ反応ガスを分粒器を含む循環系中を通して
循環せしめることにより高い収率で、粒径の均一なダイ
ヤモンド粒子を気相成長させることによって解決される
According to the invention, said object is achieved by using a plasma torch,
Thermal plasma generated by arc discharge is ejected as a plasma jet, and powder gas containing diamond particles is injected into the plasma jet to rapidly cool the thermal plasma, thereby causing diamond to grow in a vapor phase on the surface of the diamond particles. The solution is to vapor phase grow diamond particles of uniform size with high yield by circulation through a circulation system including a particle sizer.

〔作 用〕[For production]

本発明は、我々が先に特願昭62’−83318(昭和
62年4月3日出願)において提案した良質のダイヤモ
ンドを高速で合成できるプラズマジェットCVD装置を
使用したダイヤモンドの化学気相成長方法を用いて均一
な粒径を有するダイヤモンド粒子を単純な工程で安価に
合成するものである。
The present invention is a diamond chemical vapor deposition method using a plasma jet CVD device that can synthesize high-quality diamonds at high speed, which we previously proposed in Japanese Patent Application No. 62'-83318 (filed on April 3, 1986). This method uses a simple process to synthesize diamond particles with a uniform particle size at low cost.

第1図は本発明に従ったダイヤモンド粒子の製造プロセ
スを示す概略図面であり、第1図において、1は陰極、
2は陽極、3はプラズマジェット、4はパウダーガス、
5は放電ガス配管、6はパウダーガス配管、7はチャン
バー、8はポンプ、9は分粒器、10ば粉末補集器、1
1は分粒器、12は水素ガス(H2)ボンへ、13はメ
タンガス(CIL)ボンへ、14は流量計、15はパウ
ダーフィーダー、16はアーク電源である。
FIG. 1 is a schematic drawing showing the manufacturing process of diamond particles according to the present invention, and in FIG. 1, 1 is a cathode;
2 is an anode, 3 is a plasma jet, 4 is a powder gas,
5 is a discharge gas pipe, 6 is a powder gas pipe, 7 is a chamber, 8 is a pump, 9 is a particle sizer, 10 is a powder collector, 1
1 is a particle sizer, 12 is a hydrogen gas (H2) bomb, 13 is a methane gas (CIL) bomb, 14 is a flow meter, 15 is a powder feeder, and 16 is an arc power source.

本発明においては、好ましくは陰極及び陽極を有するD
Cプラズマトーチを用いる熱プラズマCVD法によって
、陰極1と陽極2の間に放電ガスを流しながら電圧を印
加してDCアーク放電を起こさせ、5000℃以上のア
ークプラズマを発生させる。
In the present invention, D preferably has a cathode and an anode.
By a thermal plasma CVD method using a C plasma torch, DC arc discharge is caused by applying a voltage while flowing a discharge gas between the cathode 1 and the anode 2, thereby generating arc plasma at a temperature of 5000° C. or higher.

一方、陽極2に設けられている放電ガス配管5よりアー
クプラズマ発生部に供給された原料ガスは急速に高温度
にまで加熱されて活性化し、密度の高いラジカルを発生
し、また体積が膨張して超高速のプラズマジェット3と
なって噴射する。
On the other hand, the raw material gas supplied to the arc plasma generating part from the discharge gas pipe 5 provided in the anode 2 is rapidly heated to a high temperature and activated, generating high-density radicals and expanding its volume. It becomes an ultra-high-speed plasma jet 3 and is ejected.

本発明では、例えば■−12及びCl14混合ガスのア
ーク放電によって生じた温度5000℃以上のプラズマ
トーチ1〜3にパウダーフィーダ15を通して、核とな
る微粒子を含んだパウダーガス4を衝突させて急冷する
ことにより、核粒子表面にダイヤモンドがコーティング
される。この粒子を含む排ガスを循環させて繰り返しプ
ラズマジェットに衝突せしめることにより、ダイヤモン
ド粒子は成長していき、所望の大きさになったダイヤモ
ンド粒子は分粒器9で分粒され、粉末補集器10に回収
される。
In the present invention, for example, the powder feeder 15 is passed through the plasma torches 1 to 3 at a temperature of 5000° C. or more generated by arc discharge of a mixed gas of -12 and Cl14, and the powder gas 4 containing fine particles serving as a nucleus is collided with the plasma torches 1 to 3 to rapidly cool the gas. As a result, the surface of the core particle is coated with diamond. By circulating the exhaust gas containing these particles and repeatedly colliding with the plasma jet, the diamond particles grow. When the diamond particles reach a desired size, they are divided by the particle sizer 9 and the powder collector 10 will be collected.

更に分粒器11では、粒子を含まない放電ガスを作る。Furthermore, the particle sizer 11 produces a discharge gas that does not contain particles.

この方法では原料ガス、反応生成物を循環させるため、
極めて高い収率でダイヤモンド粒子を連続的に合成でき
る。なお、ここで用いる分粒器9及び11はともに、乾
式遠心分離型分粒器などを用いることができる。特に最
初の分粒器9ては循環する粒子のうち所望のサイズのダ
イヤモンドを捕集回収するために設けられたもので、例
えばサイクロトロン式分粒器を用いることができ、逆に
分粒器11では微小サイズの粉末を除去するために、例
えばアキュカット式の分粒器と0.1 μm程度のフィ
ルターを組み合せたものを用いることができる。
This method circulates the raw material gas and reaction products, so
Diamond particles can be synthesized continuously with extremely high yields. Note that both the particle sizers 9 and 11 used here may be dry centrifugal type particle sizers or the like. In particular, the first particle sizer 9 is provided to collect and recover diamonds of a desired size among the circulating particles, and for example, a cyclotron type particle sizer can be used; In order to remove micro-sized powder, for example, a combination of an AccuCut type granulator and a filter of about 0.1 μm can be used.

原料ガスは水素ガス(H2)を主とし、これに炭素源と
して、炭素化合物ガス、例えば、メタンガス(CH4)
を用いる。また、必要に応じて、放電を安定化させるた
めのヘリウム、アルゴン等の不活性ガスや、グラフアイ
1〜の発生をおさえるために水蒸気、更には酸素ガスや
過酸化水素ガス等の酸化性ガスを混合しても良い。
The raw material gas is mainly hydrogen gas (H2), and a carbon compound gas such as methane gas (CH4) is added to this as a carbon source.
Use. In addition, if necessary, inert gas such as helium or argon to stabilize the discharge, water vapor to suppress the generation of graph eye 1~, and oxidizing gas such as oxygen gas or hydrogen peroxide gas. may be mixed.

核となる微粒子は、ダイヤモンドのほかに炭化硅素(S
iC) 、炭化タングステン(WC)、炭化チタン(T
iC) 、アルミナ(八1□03)、モリフ゛デン(M
O)等DCプラズマジェットCVD法によってダイヤモ
ンドコーティングができる物質なら何でも良い。
In addition to diamond, the fine particles that serve as the core include silicon carbide (S).
iC), tungsten carbide (WC), titanium carbide (T
iC), alumina (81□03), molybdenum (M
Any material that can be coated with diamond by the DC plasma jet CVD method, such as O), may be used.

〔実施例〕〔Example〕

以下に本発明の詳細な説明するが、本発明の技術的範囲
をこれらの範囲に限定するものでないことばいうまでも
ない。
The present invention will be described in detail below, but it goes without saying that the technical scope of the present invention is not limited to these ranges.

臭鞭健上 第1図に示したような循環系装置を用いてダイヤモンド
粒子を合成した。
Diamond particles were synthesized using a circulatory system apparatus as shown in Figure 1.

即ち、2重量%Y2O3添加タングステンを電極とした
プラズマトーチを用いた装置で、放電ガス流量201!
/min、パウダーガス流ff1201/min、メタ
ン(CI+4)濃度2容積%アーク電流2OA、アーク
電圧110V、核粒子を平均粒径0.5μmのダイヤモ
ンド粒子パウダーを供給量1 g/hの条件で、回収ダ
イヤモンド粒の粒径を50μmとして、10時間の連続
運転を行った。なお、分粒器9は前記したサイクロトロ
ン式の分粒器を用い、分粒器11はアキュカッ1〜式〇
分粒器と0.1μmのフィルターを組み合せたものを用
いた。
That is, in an apparatus using a plasma torch with an electrode made of tungsten added with 2% Y2O3, the discharge gas flow rate is 201!
/min, powder gas flow ff1201/min, methane (CI+4) concentration 2% by volume, arc current 2OA, arc voltage 110V, and diamond particle powder with an average particle size of 0.5 μm as a core particle was supplied at a rate of 1 g/h. Continuous operation was performed for 10 hours with the particle size of the recovered diamond particles being 50 μm. The particle sizer 9 used was the above-mentioned cyclotron type particle sizer, and the particle sizer 11 used was a combination of an Accu-Kat 1 to type 0 particle sizer and a 0.1 μm filter.

その結果、約Log/hrのダイヤモンド粒子を得るこ
とができた。   ′ 得られたダイヤモンド粒子の物性はX線回折、ラマン分
光で調べたとごろ、良質の立方晶ダイヤモンドが得られ
たことが確認され、また硬度は約50μm径の粒子を金
属中に埋め込み、これをマイクロビッカース硬度計で調
べたところ、7000〜10000 kg/mm2てあ
った。
As a result, diamond particles of about Log/hr could be obtained. ' The physical properties of the obtained diamond particles were examined by X-ray diffraction and Raman spectroscopy, and it was confirmed that high-quality cubic diamond was obtained. When examined using a micro Vickers hardness tester, the hardness was found to be 7,000 to 10,000 kg/mm2.

実施±1 ダイヤモンド粒子の代りにSiCを核粒子として、また
原料ガスとしてメタノールを用いた以外は、実施例1と
同様にして、第1図の装置を用いてダイヤモンド粒子を
製造した。即ち、メタノール濃度4容積%、核粒子とし
て粒径1μmのSiCを4g/hrて供給して回収ダイ
ヤモンド径50μmで連続運転し、ダイヤモンド粒子を
約20g/hrの速度で製造した。
Implementation ±1 Diamond particles were produced using the apparatus shown in FIG. 1 in the same manner as in Example 1, except that SiC was used as a core particle instead of diamond particles and methanol was used as a raw material gas. That is, methanol concentration was 4% by volume, SiC having a particle size of 1 μm was supplied as a core particle at a rate of 4 g/hr, and diamond particles were produced at a rate of about 20 g/hr by continuous operation with a recovered diamond diameter of 50 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば単純な装置及び工程で、高圧を用いて安
価で連続的に高い収率でダイヤモンド粒子を合成するこ
とができるため、ダイヤモンド粒子のコストを大幅に低
減させることができる。
According to the present invention, diamond particles can be synthesized inexpensively and continuously in a high yield using a simple device and process using high pressure, so that the cost of diamond particles can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従ったダイヤモンド粒子の製造プロ
セスを示す概略図面であう4 1・・・陰h、2・・・陽極、3・・・プラズマジェッ
ト、4・・・パウダーガス、訃−・放電ガス配管、6・
・・パウダーガス配管、7・・・ヂャンバー、8・・・
ポンプ、9・・・分粒器、10・・・粉末捕集器、11
・・・分粒器、12・・・水素ガスボンベ、13・・・
メタンガスボンベ、′14・・・流量計、15・・・パ
ウダーフィーダー1・・・陰極 2・・・陽極 3・・・プラズマジェット 4・・・パウダーガス 5・・・放電ガス配管 6・・・パウダーガス配管 7・・・チャンバー 8・ ポンプ 9・ ・分粒器 10・・・粉末捕集器 11・・・分粒器 12・・・水素ガスボンベ 13・・・メタンポンベ 14・・・流量計 15・・・パウダーフィーダ ]6・・・アーク電源
FIG. 1 is a schematic drawing showing the manufacturing process of diamond particles according to the present invention.・Discharge gas piping, 6・
... Powder gas piping, 7... Chamber, 8...
Pump, 9... Particle sizer, 10... Powder collector, 11
...Particle sizer, 12...Hydrogen gas cylinder, 13...
Methane gas cylinder, '14...Flowmeter, 15...Powder feeder 1...Cathode 2...Anode 3...Plasma jet 4...Powder gas 5...Discharge gas piping 6... Powder gas piping 7...Chamber 8...Pump 9...Particle sizer 10...Powder collector 11...Particle sizer 12...Hydrogen gas cylinder 13...Methane pump 14...Flow meter 15 ... Powder feeder] 6... Arc power supply

Claims (1)

【特許請求の範囲】 1、プラズマトーチを用い、アーク放電により発生せし
めた熱プラズマをプラズマジェットとして噴出させ、こ
れにダイヤモンド粒子を含むパウダーガスを噴射させて
熱プラズマを急冷させることによりダイヤモンド粒子の
表面にダイヤモンドを気相成長させ、かつ反応ガスを分
粒器を含む循環系中を通して循環せしめることにより高
い収率で、粒径の均一なダイヤモンド粒子を気相成長さ
せる方法。 2、熱プラズマが水素及びガス状炭化水素を含むガスを
活性化したものである特許請求の範囲第1項に記載の方
法。 3、水素及びガス状炭化水素を含むガスが更に不活性ガ
スを含む特許請求の範囲第2項記載の方法。 4、熱プラズマの温度が5000℃以上の温度である特
許請求の範囲第1項記載の方法。
[Claims] 1. Using a plasma torch, the thermal plasma generated by arc discharge is ejected as a plasma jet, and a powder gas containing diamond particles is injected into the plasma jet to rapidly cool the thermal plasma. A method of growing diamond particles with a uniform particle size in a high yield in a vapor phase by growing diamond on the surface in a vapor phase and circulating a reaction gas through a circulation system that includes a particle sizer. 2. The method according to claim 1, wherein the thermal plasma is an activated gas containing hydrogen and gaseous hydrocarbons. 3. The method according to claim 2, wherein the gas containing hydrogen and gaseous hydrocarbon further contains an inert gas. 4. The method according to claim 1, wherein the temperature of the thermal plasma is 5000° C. or higher.
JP62320141A 1987-12-19 1987-12-19 Method for synthesizing diamond particles Expired - Lifetime JP2584805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320141A JP2584805B2 (en) 1987-12-19 1987-12-19 Method for synthesizing diamond particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320141A JP2584805B2 (en) 1987-12-19 1987-12-19 Method for synthesizing diamond particles

Publications (2)

Publication Number Publication Date
JPH01164795A true JPH01164795A (en) 1989-06-28
JP2584805B2 JP2584805B2 (en) 1997-02-26

Family

ID=18118166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320141A Expired - Lifetime JP2584805B2 (en) 1987-12-19 1987-12-19 Method for synthesizing diamond particles

Country Status (1)

Country Link
JP (1) JP2584805B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005701A1 (en) * 1988-11-16 1990-05-31 Andrew Carey Good Diamond production
WO1992005110A1 (en) * 1990-09-24 1992-04-02 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of The Navy Flame or plasma synthesis of diamond under turbulent and transition flow conditions
US5443861A (en) * 1991-05-16 1995-08-22 Utp Sshweissmaterial Gmbh & Co. Kg Process for manufacture of synthetic diamond layers on substrates
US5635254A (en) * 1993-01-12 1997-06-03 Martin Marietta Energy Systems, Inc. Plasma spraying method for forming diamond and diamond-like coatings
JP2010526664A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Particle production system and fluid recirculation method
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US20150274534A1 (en) * 2014-03-31 2015-10-01 Case Western Reserve University Nanoscale diamond particles and method of forming nanoscale diamond particles
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191321U (en) * 2014-03-10 2014-06-19 エンシュウ株式会社 Cleaning tool

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005701A1 (en) * 1988-11-16 1990-05-31 Andrew Carey Good Diamond production
WO1992005110A1 (en) * 1990-09-24 1992-04-02 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of The Navy Flame or plasma synthesis of diamond under turbulent and transition flow conditions
US5443861A (en) * 1991-05-16 1995-08-22 Utp Sshweissmaterial Gmbh & Co. Kg Process for manufacture of synthetic diamond layers on substrates
US5635254A (en) * 1993-01-12 1997-06-03 Martin Marietta Energy Systems, Inc. Plasma spraying method for forming diamond and diamond-like coatings
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2010526664A (en) * 2007-05-11 2010-08-05 エスディーシー マテリアルズ インコーポレイテッド Particle production system and fluid recirculation method
JP2016027940A (en) * 2007-05-11 2016-02-25 エスディーシーマテリアルズ, インコーポレイテッド Particle production system and fluid recirculation method
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US20150274534A1 (en) * 2014-03-31 2015-10-01 Case Western Reserve University Nanoscale diamond particles and method of forming nanoscale diamond particles
US9969620B2 (en) * 2014-03-31 2018-05-15 Case Western Reserve University Nanoscale diamond particles and method of forming nanoscale diamond particles

Also Published As

Publication number Publication date
JP2584805B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
JPH01164795A (en) Method for synthesizing diamond particles
US11072533B2 (en) Manufacture of tungsten monocarbide (WC) spherical powder
US4882138A (en) Method for preparation of diamond ceramics
JPH04232274A (en) Coating method of drill with cvd diamond
JPH03275596A (en) Synthesizing method for hexagonal diamond with hydrogen plasma jet utilized therefor
JP3452665B2 (en) Method for synthesizing diamond single crystal and single crystal diamond
RU2593061C1 (en) Method of obtaining ultra-disperse powders of titanium
US5075095A (en) Method for preparation of diamond ceramics
US5783335A (en) Fluidized bed deposition of diamond
WO1990005701A1 (en) Diamond production
JPH0238304A (en) Improved abrasive grain of fine diamond and production thereof
CN106587063A (en) Method for synthesizing titanium carbide through soft mechanical force chemical auxiliary microwaves
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
DE102011014204B4 (en) Process for synthesizing diamonds
JP2601315B2 (en) Fine polycrystalline diamond particles and method for producing the same
JPH01201098A (en) Synthesis of diamond
JPS5950014A (en) Manufacture of silicon powder
JPH01317198A (en) Method for synthesizing diamond or the like
JPH0643280B2 (en) Vapor phase synthesis of film diamond
RU2638471C2 (en) Method for producing powder of titanium carbonitride
Gogotsi et al. Hydrothermal synthesis of diamond: challenges and opportunities
JPH0674199B2 (en) Diamond synthesis method
JPH03141199A (en) Production of single crystal cvd diamond
JP3980138B2 (en) Diamond manufacturing method
JPS62108716A (en) Production of cubic boron nitride