JPH01163135A - Sustained release base - Google Patents

Sustained release base

Info

Publication number
JPH01163135A
JPH01163135A JP62322570A JP32257087A JPH01163135A JP H01163135 A JPH01163135 A JP H01163135A JP 62322570 A JP62322570 A JP 62322570A JP 32257087 A JP32257087 A JP 32257087A JP H01163135 A JPH01163135 A JP H01163135A
Authority
JP
Japan
Prior art keywords
polymer
sustained release
base
copolymer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP62322570A
Other languages
Japanese (ja)
Inventor
Takao Okada
隆雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Chemical Co Ltd
Original Assignee
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Chemical Co Ltd filed Critical Taki Chemical Co Ltd
Priority to JP62322570A priority Critical patent/JPH01163135A/en
Publication of JPH01163135A publication Critical patent/JPH01163135A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sustained release base having a proper softening point, showing biodegrading properties, comprising a polymer prepared by reacting a polymer or copolymer of lactic acid and/or glycolic acid with a polyhydric alcohol or polyethylene glycol. CONSTITUTION:A sustained release base comprising a polymer prepared by directly condensing lactic acid and/or glycolic acid through dehydration, e.g., under reduced pressure to give a polymer or copolymer and reacting the polymer or copolymer with a polyhydric alcohol (e.g., ethylene glycol or pinacol) or polyethylene glycol. This sustained release base has especially excellent biodegrading properties and can control release of drug to organism. The base is useful as an implanting material for organisms by blending with hydroxyapatite, retaining material for cells and microorganisms, carrier as microcapsule, soil improver, degradable agricultural film, quality improver for fruits, gas separating permeable film, aroma, surfactant, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は徐放性基剤に関し、殊に生分解性に優れ、生体
内への薬物の放出制御が可能な基剤に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sustained release base, and particularly to a base that has excellent biodegradability and is capable of controlling the release of a drug into a living body.

(従来の技術) 乳酸、グリコール酸等のポリマーは、生分解性、生体吸
収性を有するために、従来より手術用縫合糸等の生分解
性医用材料に応用されている。
(Prior Art) Polymers such as lactic acid and glycolic acid are biodegradable and bioabsorbable, and have thus far been applied to biodegradable medical materials such as surgical sutures.

また、近年に於ては生体への薬物投与を制御するための
薬物放出制御システム(DDS;Drug deliv
erysystem)用の基剤として各種検討が行なわ
れている。
In addition, in recent years, drug release control systems (DDS) have been developed to control drug administration to living organisms.
Various studies are being carried out as a base material for the erythrium pyrolysis system.

この様なりDS基剤としては、所定期間に一定量の薬物
を生体内部に放出する機能を有すると共に、生体に対し
ては基剤中に触媒、有機溶媒等の不純物を含まず、副作
用のない純粋な成分の基剤が望まれる。
In this way, the DS base has the function of releasing a certain amount of drug into the body over a predetermined period of time. A base of pure ingredients is desired.

従来より知られる1L酸、グリコール酸等のポリマーは
、徐放期間を長くするために高分子量のものが所望され
、原料としてラクチド、グリコリ1−を用いて重合が行
われた。
Conventionally known polymers such as 1L acid and glycolic acid are desired to have a high molecular weight in order to prolong the sustained release period, and polymerization has been carried out using lactide and glycol 1- as raw materials.

しかしこのものは、高分子量であるため基剤は固体状で
あり、従って、これと薬剤等とを混合する際には高温で
基剤を溶融する必要があり、薬物の変性、分解等の問題
を生じた。
However, since this product has a high molecular weight, the base is solid, and therefore, when mixing it with drugs, it is necessary to melt the base at high temperature, which causes problems such as denaturation and decomposition of the drug. occurred.

一方、乳酸、グリコール酸を原料とし、無触媒下で脱水
重縮合を行い、低分子量のポリマーを!5る方法も従来
より知られている。
On the other hand, using lactic acid and glycolic acid as raw materials, we perform dehydration polycondensation without a catalyst to create low molecular weight polymers! 5 methods are also conventionally known.

しかし、このものは低分子量であるから上述の薬物の変
成、分解等の問題は回避されるものの、乳酸、グリコー
ル酸のモノマー、オリゴマーヲ多含し、酸価が高いため
生体組織への刺激性が強くなり問題となるばかりでなく
、使用する薬物等の種類によっては薬物との混合、保存
時に薬物の変成等を生じる。
However, although this product has a low molecular weight and avoids the problems of drug denaturation and decomposition mentioned above, it contains a large amount of lactic acid and glycolic acid monomers and oligomers, and has a high acid value, so it is irritating to living tissues. Not only does it become stronger and become a problem, but depending on the type of drug used, it may cause denaturation of the drug when mixed with the drug or stored.

また、このものは生分解性が早過ぎ、徐放性基剤として
の機能が殆どない。
Furthermore, this product biodegrades too quickly and has almost no function as a sustained release base.

一方、1L酸、グリコール酸等のポリマーとラクトンあ
るいはα−オキシ酪酸、α−オキシ吉草酸等のヒドロキ
シカルボン酸との共重合体を得ることにより、重合体の
軟化を行う方法が知られている。
On the other hand, a method is known in which a polymer is softened by obtaining a copolymer of a polymer such as 1L acid or glycolic acid and a lactone or a hydroxycarboxylic acid such as α-oxybutyric acid or α-oxyvaleric acid. .

(特開昭47−2032B号) しかし、このものは生体内での分解性が1L酸等の単独
重合体に比べて低下することで、生分解性の徐放性基剤
としては好ましくない。
(JP-A-47-2032B) However, this material is not preferable as a biodegradable sustained release base because its degradability in vivo is lower than that of a homopolymer such as 1L acid.

このように、乳酸、グリコール酸等のポリマーからなる
徐放性基剤として、薬物等との混合性が良く、生体組織
への刺激性のない、生分解性に優れる基剤は、未だ見出
されていないのが現状である。
As described above, a sustained release base made of polymers such as lactic acid and glycolic acid that has good miscibility with drugs, etc., is non-irritating to living tissues, and has excellent biodegradability has yet to be found. The current situation is that this has not been done.

(発明が解決しようとする問題点) 本発明者らは前記問題点を解決すべく、生分解性を有す
る徐放性基剤として所望され、生体に対して副作用のな
い基剤であり、しかも薬物の分解、徐放性制御の問題に
於いて用途の制限がされることのない広範な用途に適用
し得る優れた基剤を得るべく鋭意研究を重ねた。
(Problems to be Solved by the Invention) In order to solve the above-mentioned problems, the present inventors have sought to obtain a sustained-release base that is biodegradable, has no side effects on living organisms, and is We have carried out extensive research in order to obtain an excellent base that can be used in a wide range of applications without any restrictions on drug decomposition or sustained release control.

(問題点を解決するための手段) その結果、乳酸及び/又はグリコール酸の重合体又は共
重合体と多価アルコールまたはポリエチレングリコール
とを反応させて得られるポリマーが適度な軟化点を有し
、生分解性の徐放性基剤として優れることを見出し、係
る知見に基づき本発明を完成させたものである。
(Means for solving the problem) As a result, a polymer obtained by reacting a polymer or copolymer of lactic acid and/or glycolic acid with a polyhydric alcohol or polyethylene glycol has an appropriate softening point, We have discovered that it is excellent as a biodegradable sustained release base, and have completed the present invention based on this knowledge.

即ち、本発明は乳酸及び/又はグリコール酸の重合体又
は共重合体と多価アルコールまたはポリエチレングリコ
ールとを反応させてなる徐放性基剤に関する。
That is, the present invention relates to a sustained release base obtained by reacting a polymer or copolymer of lactic acid and/or glycolic acid with a polyhydric alcohol or polyethylene glycol.

(作 用) 以下、本発明を更に詳細に説明する。(for production) The present invention will be explained in more detail below.

本発明の乳酸及び/又はグリコール酸の重合体又は共重
合体は、−船釣な方法により製造されるものであれば何
れのものであってもよい。
The polymer or copolymer of lactic acid and/or glycolic acid of the present invention may be any polymer or copolymer as long as it is produced by a method that does not require a boat.

例えば、γLN!、グリコール酸を減圧下で直接脱水重
縮合することにより、重合体又は共重合体を得ることが
できる。(湯原ら、工化、 68(5) 、 983(
1965)また、乳酸、グリコール酸を酸化亜鉛等の触
媒存在下で減圧蒸留を行い、ラクチド、グリコリドを得
た後、これらをテトラフェニルスズ、塩化第一スズ等の
触媒存在下で重合反応を行うことによっても製造できる
。(Kulkarni 、 J 、Biomed、Ma
ter、Res、、、!L、169(1971)) また、これらの場合に使用する乳酸のモノマーは、0体
、L体、DL体のいずれのものであってもよい。
For example, γLN! A polymer or copolymer can be obtained by directly dehydrating and polycondensing glycolic acid under reduced pressure. (Yubara et al., Koka, 68(5), 983(
1965) Also, after distilling lactic acid and glycolic acid under reduced pressure in the presence of a catalyst such as zinc oxide to obtain lactide and glycolide, these are subjected to a polymerization reaction in the presence of a catalyst such as tetraphenyltin and stannous chloride. It can also be manufactured by (Kulkarni, J., Biomed, Ma.
Ter, Res...! L, 169 (1971)) Furthermore, the lactic acid monomer used in these cases may be any of the 0-form, L-form, and DL-form.

本発明ではこの様にして得られる乳酸及び/又はグリコ
ール酸の重合体又は共重合体の数平均分子量が300〜
10.000のものを使用する。
In the present invention, the number average molecular weight of the lactic acid and/or glycolic acid polymer or copolymer obtained in this manner is 300 to 300.
10.000 is used.

この場合に、これら重合体の分子量がこの範囲を逸脱し
、300を下廻ると乳酸、グリコール酸のモノマー、オ
リゴマーを重合するため、後述の多価アルコール等の反
応後に於いても酸価が高く、生体組織への刺激性が強く
なることで問題となる。
In this case, if the molecular weight of these polymers deviates from this range and falls below 300, monomers and oligomers of lactic acid and glycolic acid will be polymerized, resulting in a high acid value even after the reaction with polyhydric alcohols, etc. described below. , which becomes a problem as it becomes more irritating to living tissues.

また逆に、分子量が10,000を土建ると、後述の多
価アルコール等との反応を行っても本発明の効果が得ら
れない。
Conversely, if the molecular weight is less than 10,000, the effects of the present invention cannot be obtained even if the reaction with a polyhydric alcohol or the like described below is performed.

多価アルコールの種類としては、2価アルコールのエチ
レングリコール、プロピレングリコール、トリメチレン
グリコール、ピナコール、3価アルコールのグリセリン
等を使用することができる。
As the type of polyhydric alcohol, dihydric alcohols such as ethylene glycol, propylene glycol, trimethylene glycol, pinacol, and trihydric alcohol such as glycerin can be used.

また、ポリエチレングリコールは、数平均分子量が概ね
150〜10,000の範囲のものを使用する。
Moreover, the polyethylene glycol used has a number average molecular weight of approximately 150 to 10,000.

尚、本発明で使用する多価アルコールの種類は、特段こ
れらに限定されないが、多価アルコール及びポリエチレ
ングリコールの融点は、概ね70°C以下のものを使用
する。
The type of polyhydric alcohol used in the present invention is not particularly limited to these, but the polyhydric alcohol and polyethylene glycol used have a melting point of about 70°C or less.

乳酸及び/又はグリコール酸の重合体又は共重合体と多
価アルコールまたはポリエチレングリコールと使用割合
は、1L酸及び/又はグリコール酸の重合体に対する多
価アルコールまたはポリエチレングリコールの当量比が
0.3〜5.0の範囲となる割合で使用する。
The ratio of the lactic acid and/or glycolic acid polymer or copolymer to the polyhydric alcohol or polyethylene glycol is such that the equivalent ratio of the polyhydric alcohol or polyethylene glycol to the 1L acid and/or glycolic acid polymer is from 0.3 to Use at a ratio within the range of 5.0.

尚、これらの当量比とは、乳酸及び/又はグリコ−ル酸
の重合体の場合には、ポリマー鎖末端のカルボキシル基
数(平均)に基づき、ポリエチレングリコールの場合に
は、同様にヒドロキシル基数(平均)に基づく。
In addition, these equivalent ratios are based on the number of carboxyl groups (average) at the end of the polymer chain in the case of lactic acid and/or glycolic acid polymers, and are based on the number of hydroxyl groups (average) in the case of polyethylene glycol. )based on.

これらの原料を用いて反応を行う方法に関していえば、
先ず使用する1し酸及び/又はグリコール酸の重合体又
は共重合体をこれらの軟化温度である100〜250℃
で加熱溶融を行い、これに多価アルコールまたはポリエ
チレングリコールを添加して反応を行う。
Regarding the method of conducting the reaction using these raw materials,
First, the monoacid and/or glycolic acid polymer or copolymer to be used is heated to the softening temperature of 100 to 250°C.
The mixture is heated and melted, and a polyhydric alcohol or polyethylene glycol is added thereto to carry out a reaction.

反応は窒素ガスの導入下で行い、反応時間は使用するf
L酸重重合体の分子量、多価アルコール等の種類によっ
て異なり限定できないが、大l131〜10時間程度の
反応が必要である。
The reaction is carried out under the introduction of nitrogen gas, and the reaction time is the f
Although the reaction time is not limited and varies depending on the molecular weight of the L acid polymer, the type of polyhydric alcohol, etc., the reaction time is approximately 11 to 10 hours.

また別の方法として、加熱溶融時に!・ルエン、ベンゼ
ン等を脱水剤として用いるか、あるいは10〜100m
mHg程度の減圧下で反応を行うこともできる。
Another method is when heating and melting!・Use toluene, benzene, etc. as a dehydrating agent, or use 10 to 100 m
The reaction can also be carried out under reduced pressure of about mHg.

反応後に得られる本発明の基剤は、原料の成分組成によ
っても異なるが、通常ペースト状の形態であることから
、薬物の添加混合は常温で、あるいは若干の加熱下で行
うことが可能である。
The base of the present invention obtained after the reaction differs depending on the component composition of the raw materials, but since it is usually in a paste form, it is possible to add and mix the drug at room temperature or under slight heating. .

従って、血管成長因子等のポリペプチド、制ガン剤、イ
ンターフェロン等の薬物は、基剤との混合時に加熱によ
る変質がなく、安定な状態で基剤中に保持させる。
Therefore, polypeptides such as vascular growth factors, anticancer drugs, drugs such as interferon, etc. are not altered by heating when mixed with the base, and are held in a stable state in the base.

本発明の基剤は、徐放性基剤として優れた特質を有する
ことから、薬物のDDS用基剤としてのみならず、他に
ヒドロキシアパタイト等を混合させた生体用インブラン
ト材、菌体、微生物の保持剤、マイクロカプセルとして
の担体、土壌改良剤、崩壊性農業用フィルム、果実の品
質向上剤、気体分離透過膜、芳香剤、界面活性剤への応
用等その応用用途は広範なものである。
Since the base of the present invention has excellent characteristics as a sustained release base, it can be used not only as a base for DDS of drugs, but also as an implant material for living organisms mixed with hydroxyapatite etc., for bacterial cells, Its applications are wide-ranging, including microbial retention agents, carriers as microcapsules, soil conditioners, collapsible agricultural films, fruit quality improvers, gas separation permeable membranes, aromatics, and surfactants. be.

(実施例) 以下に本発明の実施例を掲げて更に説明を行うが、本発
明はこれらに限定されるものではない。
(Example) The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

尚、%は特に断わらない限り全てxi%を示す。In addition, all percentages indicate xi% unless otherwise specified.

実施例1 温度計、窒素導入管、排気口を備えた内容積100m1
の反応器に、数平均分子量1,400のボIJ−di−
ラクチド20gとグリセリン(98,5%、来由薬品工
業0(転)製試薬)14gを加え、215°Cのオイル
パス中に浸漬させた。
Example 1 Internal volume 100m1 equipped with a thermometer, nitrogen inlet pipe, and exhaust port
In a reactor, IJ-di-
20 g of lactide and 14 g of glycerin (98.5%, reagent manufactured by Raiyu Yakuhin Kogyo 0 (Ten)) were added, and the mixture was immersed in an oil path at 215°C.

窒素ガス流量を100m1/minで反応容器中に導入
し、5時間反応を行った。
A nitrogen gas flow rate of 100 ml/min was introduced into the reaction vessel, and the reaction was carried out for 5 hours.

反応後に得られたペースト状の本発明徐放性基剤の酸価
をJIS K6901(液状不飽和ポリエステル樹脂試
験方法)の酸価測定法に基づき測定した。
The acid value of the paste-like sustained release base of the present invention obtained after the reaction was measured based on the acid value measurement method of JIS K6901 (liquid unsaturated polyester resin test method).

また、l H−NMRによりグリセリン末端基の一〇H
2−0−由来のピークのシフトで反応性の有無は確認し
た。
In addition, by lH-NMR, the glycerin terminal group
The presence or absence of reactivity was confirmed by the shift of the peak derived from 2-0-.

更に、本発明の基剤の軟化点を調べるため、約0゜5g
を銅板上に匠き、これを徐々に昇温させてガラス俸で曳
糸し始める温度を求め、これを軟化点温度とした。
Furthermore, in order to investigate the softening point of the base material of the present invention, approximately 0.5 g of
was created on a copper plate, and the temperature was gradually raised to determine the temperature at which stringing began with a glass ball, and this was taken as the softening point temperature.

これらの結果を第1表に示した。These results are shown in Table 1.

また比較のために、前記グリセリンに代えて、D−マン
ニット(来由薬品工業((ワ製試薬)の2.7gを使用
して同様に反応を行なった。(比較例1)この比較例品
並びに反応を行わないポリーdl−ラクチドについて前
記と同様に酸価、軟化点の測定を行い、結果を第1表に
示した。
For comparison, the same reaction was carried out using 2.7 g of D-mannite (Kiyu Yakuhin Kogyo (Wa reagent)) instead of the glycerin. (Comparative Example 1) This comparative example The acid value and softening point of the product and the unreacted poly dl-lactide were measured in the same manner as above, and the results are shown in Table 1.

実施例2 温度計、窒素導入管、排気口を備えた内容積300m1
の反応器に、数平均分子i3,100のポリーL−ラク
チドの80gを入れ、195℃のオイルパス中に浸漬さ
せた。
Example 2 Internal volume 300m1 equipped with thermometer, nitrogen inlet pipe, and exhaust port
80 g of poly-L-lactide with a number average molecular weight i of 3,100 was placed in a reactor and immersed in an oil path at 195°C.

ポリーL−ラクチドの溶融後、エチレングリコール(和
光紬薬工業■製試薬)の3.2gをこれに加え、窒素ガ
ス流量を150m1/winで反応容器中に導入し、8
時間反応を行った。
After melting the poly-L-lactide, 3.2 g of ethylene glycol (reagent manufactured by Wako Tsumugi Pharmaceutical Co., Ltd.) was added thereto, and nitrogen gas was introduced into the reaction vessel at a flow rate of 150 m1/win.
A time reaction was performed.

また、上記エチレングリコールに代えて、プロピレング
リコール(和光純薬玉業■製試薬)の3.9g、1.8
−オクタンジオール(和光紬薬工業@裂試薬)の7.5
gを用いて同様に反応を行った。
In addition, in place of the above ethylene glycol, 3.9 g of propylene glycol (reagent manufactured by Wako Pure Chemical Industries Ltd.), 1.8
-7.5 of octanediol (Wako Tsumugi Kogyo @Shire Reagent)
A similar reaction was carried out using g.

反応後に得られたワックス状の本発明徐放性基剤のS2
価、軟化点温度を実施例1と同様に測定し、また’ H
−NMRによる末端基の反応の有無を確認し、これらの
結果を第2表に示した。
S2 of the wax-like sustained release base of the present invention obtained after the reaction
The value and softening point temperature were measured in the same manner as in Example 1, and 'H
The presence or absence of reaction of the end groups was confirmed by -NMR, and the results are shown in Table 2.

更に、反応を行わないポリーL−ラクチドについて同様
に酸価、軟化点の測定を行い、併せて結果を第2表に示
した。
Furthermore, the acid value and softening point of poly-L-lactide which was not subjected to the reaction were measured in the same manner, and the results are also shown in Table 2.

第2表 実施例3 実施例2と同じ反応器に、数平均分子量1 、800の
L−乳酸−グリコール酸共重合体(L−乳酸含量46モ
ル%)の60gを入れ、これに第3表に示した各分子量
のポリエチレングリコール(和光純薬玉業■製試薬)の
所定量を加えた。
Table 2 Example 3 Into the same reactor as in Example 2, 60 g of L-lactic acid-glycolic acid copolymer (L-lactic acid content: 46 mol%) with a number average molecular weight of 1 and 800 was added. A predetermined amount of polyethylene glycol (reagent manufactured by Wako Pure Chemical Industries, Ltd.) of each molecular weight shown in 1 was added.

これを210°Cのオイルパス中に浸漬し、窒素ガス流
量を130m1/winで反応器中に導入しながら6時
間反応を行った。
This was immersed in an oil path at 210°C, and a reaction was carried out for 6 hours while introducing nitrogen gas into the reactor at a flow rate of 130 ml/win.

反応後に得られたペースト状の本発明徐放性基剤の酸価
、軟化点温度を実施例1と同様に測定し、またI H−
N)IRによりポリエチレングリコール由来の−CH2
−0−基の反応の有無を確認し、これらの結果を第3表
に示した。
The acid value and softening point temperature of the paste-like sustained release base of the present invention obtained after the reaction were measured in the same manner as in Example 1, and IH-
N) -CH2 derived from polyethylene glycol by IR
The presence or absence of reaction of the -0- group was confirmed, and the results are shown in Table 3.

更に、反応を行わないLIL酸−グリコール酸共重合体
について同様に酸価、軟化点の測定を行い、併せて結果
を第3表に示した。
Furthermore, the acid value and softening point of the unreacted LIL acid-glycolic acid copolymer were similarly measured, and the results are also shown in Table 3.

第3表 実施例4 実施例2と同じ反応器に、数平均分子i 3 、600
のポリ=し一ラクチドの30gと数平均分子量7,50
0のポリエチレングリコール(和光紬薬工業側製試薬。
Table 3 Example 4 In the same reactor as Example 2, number average molecule i 3 , 600
30 g of poly-lactide with a number average molecular weight of 7,50
0 polyethylene glycol (reagent manufactured by Wako Tsumugi Pharmaceutical Co., Ltd.)

116.000)の62.5Kを加えた。116,000) of 62.5K was added.

これを220°Cのオイルパス中に浸漬し、窒素ガス流
量を220m1/minで反応器中に導入しながら5.
5時間反応を行った。
5. This was immersed in an oil path at 220°C, and nitrogen gas was introduced into the reactor at a flow rate of 220 ml/min.
The reaction was carried out for 5 hours.

反応後に白色ワックス状の本発明徐放性基剤91gを得
たところ、このものは水溶性で界面活性を有するもので
あった。
After the reaction, 91 g of the sustained release base of the present invention in the form of white wax was obtained, which was water-soluble and had surface activity.

この基剤の酸価、軟化点温度を実施例1と同様に測定し
、また’H−NMRによる末端基の反応の有無を確認し
、これらの結果を第4表に示した。
The acid value and softening point temperature of this base were measured in the same manner as in Example 1, and the presence or absence of reaction of the terminal group was confirmed by 'H-NMR. These results are shown in Table 4.

更に、反応を行わないポリーL−ラクチドについて同様
に酸価、軟化点の測定を行い、併せて結果を第4表に示
した。
Furthermore, the acid value and softening point of poly-L-lactide which was not subjected to the reaction were measured in the same manner, and the results are also shown in Table 4.

特許出願人  多木化学株式会社Patent applicant: Taki Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 乳酸及び/又はグリコール酸の重合体又は共重合体と多
価アルコールまたはポリエチレングリコールとを反応さ
せてなる徐放性基剤。
A sustained release base obtained by reacting a polymer or copolymer of lactic acid and/or glycolic acid with a polyhydric alcohol or polyethylene glycol.
JP62322570A 1987-12-18 1987-12-18 Sustained release base Withdrawn JPH01163135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322570A JPH01163135A (en) 1987-12-18 1987-12-18 Sustained release base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322570A JPH01163135A (en) 1987-12-18 1987-12-18 Sustained release base

Publications (1)

Publication Number Publication Date
JPH01163135A true JPH01163135A (en) 1989-06-27

Family

ID=18145157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322570A Withdrawn JPH01163135A (en) 1987-12-18 1987-12-18 Sustained release base

Country Status (1)

Country Link
JP (1) JPH01163135A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278629A (en) * 1988-09-14 1990-03-19 Taki Chem Co Ltd Medical composition
US5143730A (en) * 1988-07-25 1992-09-01 Henkel Kommanditgesellschaft Auf Aktien Resorbable bone wax
US5236702A (en) * 1983-02-28 1993-08-17 Henkel Kommanditgesellschaft Auf Aktien Composition and method for blood coagulation on hard body tissues
EP0697865A4 (en) * 1992-06-05 1995-09-27 Arch Dev Corp Water and uv degradable lactic acid polymers
US5552454A (en) * 1988-08-09 1996-09-03 Henkel Kommanditgesellschaft Auf Aktien New materials for bone replacement and for joining bones or prostheses
JP2000237297A (en) * 1999-02-24 2000-09-05 Taki Chem Co Ltd Biological material
JP2004215712A (en) * 2003-01-09 2004-08-05 Taki Chem Co Ltd Biomaterial
KR100449893B1 (en) * 2001-12-10 2004-09-22 한국과학기술원 Composition of In Situ Implant Using Biodegradable Polymer Containing Polyethyleneglycol
WO2006045183A1 (en) * 2004-10-25 2006-05-04 The University Of British Columbia Polymer barrier compositions for surgical wounds
CN1305928C (en) * 2003-10-27 2007-03-21 启东致远生物科技有限公司 Method for preparing biodegradable material
KR100886599B1 (en) * 2001-04-12 2009-03-05 가부시끼가이샤 구레하 Glycolide production process, and glycolic acid oligomer for glycolide production
US7615233B2 (en) 2001-07-10 2009-11-10 Canon Kabushiki Kaisha Particulate construct comprising polyhydroxyalkanoate and method for producing it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191714A (en) * 1982-04-22 1983-11-09 インペリアル ケミカル インダストリーズ ピーエルシー Copolymer, manufacture and pharmaceutical or veterinary composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191714A (en) * 1982-04-22 1983-11-09 インペリアル ケミカル インダストリーズ ピーエルシー Copolymer, manufacture and pharmaceutical or veterinary composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236702A (en) * 1983-02-28 1993-08-17 Henkel Kommanditgesellschaft Auf Aktien Composition and method for blood coagulation on hard body tissues
US5308623A (en) * 1988-07-25 1994-05-03 Henkel Kommanditgesellschaft Auf Aktien Resorbable bone wax
US5143730A (en) * 1988-07-25 1992-09-01 Henkel Kommanditgesellschaft Auf Aktien Resorbable bone wax
US5552454A (en) * 1988-08-09 1996-09-03 Henkel Kommanditgesellschaft Auf Aktien New materials for bone replacement and for joining bones or prostheses
JPH0278629A (en) * 1988-09-14 1990-03-19 Taki Chem Co Ltd Medical composition
EP0697865A4 (en) * 1992-06-05 1995-09-27 Arch Dev Corp Water and uv degradable lactic acid polymers
EP0697865A1 (en) * 1992-06-05 1996-02-28 Arch Development Corporation Water and uv degradable lactic acid polymers
JP2000237297A (en) * 1999-02-24 2000-09-05 Taki Chem Co Ltd Biological material
KR100886599B1 (en) * 2001-04-12 2009-03-05 가부시끼가이샤 구레하 Glycolide production process, and glycolic acid oligomer for glycolide production
US7615233B2 (en) 2001-07-10 2009-11-10 Canon Kabushiki Kaisha Particulate construct comprising polyhydroxyalkanoate and method for producing it
KR100449893B1 (en) * 2001-12-10 2004-09-22 한국과학기술원 Composition of In Situ Implant Using Biodegradable Polymer Containing Polyethyleneglycol
JP2004215712A (en) * 2003-01-09 2004-08-05 Taki Chem Co Ltd Biomaterial
CN1305928C (en) * 2003-10-27 2007-03-21 启东致远生物科技有限公司 Method for preparing biodegradable material
WO2006045183A1 (en) * 2004-10-25 2006-05-04 The University Of British Columbia Polymer barrier compositions for surgical wounds

Similar Documents

Publication Publication Date Title
US5321113A (en) Copolymers of an aromatic anhydride and aliphatic ester
US4438253A (en) Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same
JP3328285B2 (en) Rubber-modified polylactide and / or glycolide compositions
US5578662A (en) Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
JP2700646B2 (en) Polymeric polyanhydride
US7321008B2 (en) Bioabsorbable branched polymers end-capped with diketene acetals
US4800219A (en) Polylactide compositions
US4719246A (en) Polylactide compositions
US4766182A (en) Polylactide compositions
JP3428807B2 (en) Absorbable polyoxaester
KR100668046B1 (en) Preparation and characterization of polyethyleneglycol/polyesters as biocompatible themo-sensitive materials
CA2314151C (en) Polyhydroxyalkanoate compositions having controlled degradation rates
US6258382B1 (en) Drug sustained-released biomaterial
NO771902L (en) USUALLY SOLID, BIOABSORBABLE, HYDROLYZABLE, POLYMERED REACTION PRODUCT, AND PROCEDURES FOR THE PRODUCTION OF SUCH
JPH01163135A (en) Sustained release base
JP2009501559A (en) Resorbable polyetheresters and their use to produce medical implants
JPH01103622A (en) Preparation of dl-lactic acid-glycolic acid copolymer
JPH04283227A (en) Hydrolyzable resin composition
JPH0278629A (en) Medical composition
CA2218447C (en) Bioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
KR20150132318A (en) Polylactone polymers prepared from monol and diol polymerization initiators possessing two or more carboxylic acid groups
JP3301505B2 (en) Polylactic acid copolymer
CN101037500B (en) Usage of amidocyanogen containing small molecule compound and method for preparing biodegradable materials
JP3374530B2 (en) Method for producing aliphatic polyester copolymer
JPS6357533A (en) Sustained release base

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees