JPH01162199A - Electron beam irradiation equipment - Google Patents

Electron beam irradiation equipment

Info

Publication number
JPH01162199A
JPH01162199A JP31898587A JP31898587A JPH01162199A JP H01162199 A JPH01162199 A JP H01162199A JP 31898587 A JP31898587 A JP 31898587A JP 31898587 A JP31898587 A JP 31898587A JP H01162199 A JPH01162199 A JP H01162199A
Authority
JP
Japan
Prior art keywords
electron beam
tube current
filament
voltage
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31898587A
Other languages
Japanese (ja)
Inventor
Takeshi Kusaba
草場 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP31898587A priority Critical patent/JPH01162199A/en
Publication of JPH01162199A publication Critical patent/JPH01162199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To get a unified electron beam irradiation for a unit area, by arranging a control electrode between a filament and an accelerating electrode, and supplying a control voltage to the control electrode to change an intensity of the electron beam. CONSTITUTION:A control electrode 13 is arranged between a filament 12 and accelerating electrodes 14a-14n. In case that a transporting speed of a matter to be irradiated is changed, a deviation between an actual electric current of a detecting tube from a detecting pass of a tube current 27 and a directing tube current from a directing pass of tube current 26 which is to be determined by the transporting speed of the irradiated matter, is detected by a current controlling circuit 23 to feed a voltage controlling circuit 18. A voltage of an electrode 13 is feedback-controlled so as to coincide the detecting tube current with the directing tube current. Therewith, the actual tube current is precisely followed by the tube current decided by the transporting speed. With this procedure, an electron irradiation for a unit area is unified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば生ゴム、電線外被等に電子線を照射す
る電子線照射装置に関するものであり、特に電子線を被
照射物の移動速度に応じて照射するようにした電子線照
射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electron beam irradiation device for irradiating electron beams onto, for example, raw rubber, electric wire sheathing, etc. This invention relates to an electron beam irradiation device that irradiates according to the conditions.

(従来の技術) この種の従来の電子線照射装置としては、例えば真空容
器のネック部に設けた電子放出用のフィラメントおよび
電子加速用の加速電極と、コーン部の前面に設けた金属
箔膜と、真空容器のネック部の外側であって前記加速電
極と金属箔膜との間に設けた偏向コイルとを有する電子
線照射管と、この電子線照射管を作動させるフィラメン
ト電源および直流高圧電源回路とを具える電子線照射装
置に、被照射物の移動速度の影響を補正するために、被
照射物を移動させる搬送装置の搬送速度に応じてフィラ
メント電源の電圧を制御する制御回路を加えたものがあ
る。
(Prior Art) This type of conventional electron beam irradiation device includes, for example, a filament for electron emission and an acceleration electrode for accelerating electrons provided at the neck of a vacuum container, and a metal foil film provided on the front surface of a cone. an electron beam irradiation tube having a deflection coil provided outside the neck portion of the vacuum container between the accelerating electrode and the metal foil film; a filament power source and a DC high voltage power source for operating the electron beam irradiation tube; In order to correct the influence of the moving speed of the irradiated object, a control circuit is added to the electron beam irradiation device comprising a circuit, which controls the voltage of the filament power source according to the conveyance speed of a conveyance device that moves the irradiated object. There is something.

この電子線照射装置は以下のように動作する。This electron beam irradiation device operates as follows.

すなわち、フィラメントにフィラメント電源回路から所
定電圧が印加されると、熱電子が加速電極に向けて放出
される。この熱電子は、直流高圧電源回路から複数の加
速電極に電圧分圧抵抗器を介して所定電圧が印加される
と加速され、さらに偏向コイルで偏向されて電子線照射
管の金属箔膜の照射窓から被照射物に電子線として照射
される。
That is, when a predetermined voltage is applied to the filament from a filament power supply circuit, thermoelectrons are emitted toward the accelerating electrode. These thermoelectrons are accelerated when a predetermined voltage is applied from a DC high-voltage power supply circuit to multiple accelerating electrodes via a voltage dividing resistor, and are further deflected by a deflection coil to irradiate the metal foil film of the electron beam irradiation tube. The object to be irradiated is irradiated with an electron beam through the window.

この場合、加速電圧(直流高電圧)が一定であれば、電
子線照射管を流れる電流(以下管電流と称す)も一定で
ある。ここで管電流を変化させるためには、フィラメン
トに印加する高電圧を変化させる方法とフィラメント温
度を変化させる方法が考えられるが、前者は高電圧を制
御するため装置が高価になるので一般的に後者が採用さ
れている。
In this case, if the accelerating voltage (DC high voltage) is constant, the current flowing through the electron beam irradiation tube (hereinafter referred to as tube current) is also constant. Here, in order to change the tube current, there are two methods: changing the high voltage applied to the filament and changing the filament temperature, but the former is generally not used because the equipment is expensive because it controls the high voltage. The latter has been adopted.

この方法により、すなわちフィラメントの加熱用電圧を
変化させて管電流を所望の値に変化させることができる
。このフィラメントの加熱用電圧を、被照射物が例えば
ベルトコンベア等の搬送装置により搬送される場合に、
搬送速度の変化に応じて変化させていた。すなわち搬送
速度が速くなると、フィラメント加熱用電圧も上昇する
ように設定されていた。
By this method, the tube current can be changed to a desired value by changing the filament heating voltage. This filament heating voltage is applied when the object to be irradiated is transported by a transport device such as a belt conveyor.
It was changed according to changes in conveyance speed. That is, the filament heating voltage was set to increase as the transport speed increased.

(発明が解決しようとする問題点) しかしながら、この種の従来の電子線照射装置は、フィ
ラメント加熱用電圧の変化によりフィラメント温度を変
化させ、管電流を変化させようとしたため、フィラメン
ト加熱用電圧を急にステップ的に変化させても、フィラ
メントの物理的要素から決定される熱定数により、管電
流が対応して変化するまでにフィラメントの物理的要素
による熱時定数に基づく時間、遅れが生じてしまうとい
う問題があった。この時間遅れは例えばフィラメント加
熱用電圧をIOVから15Vに変化させた時、管電流が
100mAから300mAに変化するのに約1〜2分か
かり、実際にはほとんど変化に追随し得ないものである
。したがってこのような場合には被照射物に対する電子
線照射量が不均一になり、搬送装置の非常停止等の極端
な場合にはその被照射物は照射量過多のため不良品とな
り、除去後廃棄されるという欠点があった。
(Problems to be Solved by the Invention) However, in this type of conventional electron beam irradiation device, the filament temperature is changed by changing the filament heating voltage and the tube current is changed, so the filament heating voltage is changed. Even if a sudden change is made in a stepwise manner, the thermal constant determined by the physical factors of the filament causes a delay, which is determined by the thermal time constant due to the physical factors of the filament, before the tube current changes correspondingly. There was a problem with putting it away. This time delay means that, for example, when the filament heating voltage is changed from IOV to 15V, it takes about 1 to 2 minutes for the tube current to change from 100mA to 300mA, and in reality, it is almost impossible to follow the change. . Therefore, in such cases, the amount of electron beam irradiation on the irradiated object becomes uneven, and in extreme cases such as an emergency stop of the transport device, the irradiated object becomes a defective product due to the excessive irradiation amount and must be discarded after removal. It had the disadvantage of being

このような欠点の具体的な例を以下に述べる。Specific examples of such drawbacks will be described below.

まず電線の耐熱性向上やビニルシートの機械的耐摩耗性
向上のための電子線照射においては、被照射物が連続物
であるので製造ラインの搬送速度は変動しやす(、それ
を常に一定に保つのは非常に困難である0例えば電線の
絶縁被覆材であるビニル系材料の場合においては、芯線
に被着させる絶縁材の母材の外径が引取長さの増大につ
れて減少するという電線の製造方法の性質に基づき製造
ラインの搬送速度を常に変化させる必要があるため、絶
縁材の母材の外径を連続的に計測し、その計測値に応じ
て電線の引取速度、すなわち搬送速度をフィードバック
制御することにより電線の仕上り外径を一定に保つよう
にしている。このため、従来の電子線照射装置では所期
の目的を達成できないという問題があった。さらに、タ
イヤ用部材として用いられるコーチイツトコードの場合
、すなわちカレンダーと称される装置を用いて有機繊維
の両面にゴムシートを貼合せてコーチイツトコードを成
形し、そのコーチイツトコードを巻取装置で巻取る際に
巻取装置の前段に電子線照射装置を設けた場合において
は、例えばゴムシート供給装置のトラブルのためにカレ
ンダーに異常が起きて搬送装置を急減速させたり、非常
停止させると、停止時に電子線を照射された部材は照射
量過多のため不良品となり、廃棄処分にされるという問
題があった。
First, in electron beam irradiation to improve the heat resistance of electric wires and the mechanical abrasion resistance of vinyl sheets, the irradiated object is a continuous object, so the conveyance speed on the production line tends to fluctuate (although it must be kept constant at all times). For example, in the case of vinyl-based materials used as insulation coatings for electric wires, the outer diameter of the base material of the insulation material applied to the core wire decreases as the length of the wire increases. Because it is necessary to constantly change the conveyance speed of the production line based on the nature of the manufacturing method, the outer diameter of the base material of the insulation material is continuously measured, and the wire take-up speed, that is, the conveyance speed, is adjusted according to the measured value. Feedback control is used to keep the finished outer diameter of the wire constant.For this reason, there was a problem that conventional electron beam irradiation equipment could not achieve the intended purpose.Furthermore, it was used as a tire component. In the case of coachite cord, a device called a calendar is used to form a coachite cord by laminating rubber sheets on both sides of organic fibers, and when the coachite cord is wound up with a winding device, If an electron beam irradiation device is installed in the front stage of the conveyor, for example, if an abnormality occurs in the calendar due to a problem with the rubber sheet supply device and the conveyance device suddenly decelerates or comes to an emergency stop, the electron beam will be irradiated when the conveyance device is stopped. There was a problem in that the parts that were exposed to radiation became defective due to excessive irradiation and were disposed of.

また、上述した問題点は搬送速度の変動だけでなく、ベ
ルト上に種々の異なる被照射量が必要な被照射物を載せ
て搬送しながら電子線の照射を行なう時にも同様に生ず
るものである。
Furthermore, the above-mentioned problems occur not only due to fluctuations in conveyance speed, but also when irradiation with electron beams is carried out while conveying objects to be irradiated that require various irradiation doses on a belt. .

本発明の目的は被照射物の搬送速度に応じて電子線照射
管の管電流を変化させて、単位面積当りの電子線照射量
を一定値に制御したり、被照射物に応じて照射量を変化
させるために、電子線強度をきわめて速い応答速度で変
化させることにより従来装置の欠点を除去した電子線照
射装置を提供するものである。
The purpose of the present invention is to control the amount of electron beam irradiation per unit area to a constant value by changing the tube current of the electron beam irradiation tube according to the transport speed of the object to be irradiated, and to adjust the amount of irradiation according to the object to be irradiated. An object of the present invention is to provide an electron beam irradiation device that eliminates the drawbacks of conventional devices by changing the electron beam intensity at an extremely fast response speed in order to change the electron beam intensity.

(問題点を解決するための手段および作用)本発明の電
子線照射装置は電子を放出するフィラメントと、この電
子を加速する加速電極とを真空容器のネック部に設け、
コーン部の前面に金属箔膜を設け、加速電極と金属箔膜
との間の真空容器の外側に電子線を偏向する偏向コイル
を設けた電子線照射装置において、前記フィラメントと
加速電極との間に制御電極を配置し、この制御電極に制
御電圧を印加して電子線強度を変化させるよう構成した
ものであ名。この電子線照射装置は、管電流を被照射物
、例えば搬送装置の速度変化に、時間遅れがほとんどな
く極めて高精度に追随させるように制御電極の印加電圧
を制御するようにしたため、搬送速度の変動にも拘らず
単位面積当りの電子線照射量を一定値に保つことができ
、したがって均一な製品を製造することができる。さら
に前述したような不良品の発生がほとんど無いため、製
造コストを低減させることもできる。
(Means and effects for solving the problem) The electron beam irradiation device of the present invention includes a filament that emits electrons and an accelerating electrode that accelerates the electrons in the neck of a vacuum container.
In an electron beam irradiation device in which a metal foil film is provided on the front surface of the cone part, and a deflection coil for deflecting the electron beam is provided on the outside of the vacuum container between the accelerating electrode and the metal foil film, between the filament and the accelerating electrode. A control electrode is placed at the top of the electron beam, and a control voltage is applied to the control electrode to change the intensity of the electron beam. This electron beam irradiation device controls the voltage applied to the control electrode so that the tube current follows changes in the speed of the object to be irradiated, such as the transport device, with very high precision with almost no time delay. Despite fluctuations, the amount of electron beam irradiation per unit area can be maintained at a constant value, and therefore uniform products can be manufactured. Furthermore, since there is almost no occurrence of defective products as described above, manufacturing costs can also be reduced.

(実施例) 第1図は本発明による電子線照射装置の一例の構成を示
す線図的断面図である。真空容器11のネック部の後端
にはフィラメント12を設け、その前方に制御電極13
、複数の加速電極14a。
(Example) FIG. 1 is a diagrammatic cross-sectional view showing the configuration of an example of an electron beam irradiation apparatus according to the present invention. A filament 12 is provided at the rear end of the neck portion of the vacuum vessel 11, and a control electrode 13 is provided in front of the filament 12.
, a plurality of accelerating electrodes 14a.

14b、 −−−−,14nを設ける。通常加速電極の
個数は7〜8個である。真空容器11のコーン部の前面
開口を、例えば厚さ20μの金属箔膜15で閉じる。ま
た、真空容器11の外側には加速電極14a〜14nと
金属箔膜15との間に偏向コイル16を巻装する。第1
図においてフィラメント12と加速電極14aとの間の
制御電極13を除去したものが従来の電子線照射装置と
同じものである。
14b, ----, 14n are provided. Usually, the number of accelerating electrodes is 7 to 8. The front opening of the cone portion of the vacuum container 11 is closed with a metal foil film 15 having a thickness of 20 μm, for example. Furthermore, a deflection coil 16 is wound around the outside of the vacuum container 11 between the acceleration electrodes 14a to 14n and the metal foil film 15. 1st
In the figure, the one in which the control electrode 13 between the filament 12 and the accelerating electrode 14a is removed is the same as the conventional electron beam irradiation device.

フィラメント12は、例えばAClooVを印加するフ
ィラメント電源回路17に接続し、制御電極13は電圧
制御回路18に接続し、電圧制御回路18は電流制御回
路23に接続し、偏向コイル16は通常2〜5KHzの
偏向周波数を有する偏向回路19に接続する。また、直
流高圧電源回路20を設け、300〜750kVの高電
圧を抵抗21で分圧した電圧を加速電極14a〜14n
に印加する。真空容器11は通常のように接地する。電
流制御回路23を直流高圧電源回路2oと接地抵抗24
との接合点までの管電流検出経路27および搬送装置2
5の出力端までの管電流指令経路26に接続する。また
、第1図において、符号22は電子流を照射すべき部材
であり、本例ではカレンダロールから連続的に供給され
るイシナライナ用ゴムシートである。
The filament 12 is connected to a filament power supply circuit 17 that applies, for example, AClooV, the control electrode 13 is connected to a voltage control circuit 18, the voltage control circuit 18 is connected to a current control circuit 23, and the deflection coil 16 is normally 2 to 5 KHz. is connected to a deflection circuit 19 having a deflection frequency of . Further, a DC high voltage power supply circuit 20 is provided, and a voltage obtained by dividing a high voltage of 300 to 750 kV by a resistor 21 is applied to the accelerating electrodes 14a to 14n.
to be applied. The vacuum container 11 is grounded as usual. The current control circuit 23 is connected to the DC high voltage power supply circuit 2o and the grounding resistor 24.
Tube current detection path 27 and conveyance device 2 to the junction point with
It is connected to the tube current command path 26 to the output end of No. 5. Further, in FIG. 1, reference numeral 22 is a member to which the electron flow is irradiated, and in this example, it is a rubber sheet for Isina liner that is continuously supplied from a calender roll.

いま、フィラメントにフィラメント電源回路17から例
えばAClooVが印加され、加速電極14a、14b
、−−−−,14nに直流高圧電源回路20から抵抗2
1を介して例えば300〜750kVの高電圧が分圧さ
れて印加されると、フィラメントから放出された熱電子
は加速され、さらに偏向コイル16で偏向されて金属箔
膜の照射窓からゴムシート上に電子線として照射される
。このときの管電流値■。は次式(I)で表わされる。
Now, for example, AClooV is applied to the filament from the filament power supply circuit 17, and the accelerating electrodes 14a, 14b
, ----, resistor 2 from the DC high voltage power supply circuit 20 to 14n.
When a high voltage of, for example, 300 to 750 kV is applied as a partial voltage through the filament 1, the thermionic electrons emitted from the filament are accelerated and further deflected by the deflection coil 16, and are sent from the irradiation window of the metal foil film onto the rubber sheet. is irradiated as an electron beam. The tube current value at this time ■. is expressed by the following formula (I).

ここでW:被照射物の走査幅(cm) V:被照射物の搬送速度(m/sec)M:電子線照射
量(Mrad) K:電子線加速電圧により定まる定数 例えば500kV(7)場合、K=0.34である。
Here, W: Scanning width of the irradiated object (cm) V: Transport speed of the irradiated object (m/sec) M: Electron beam irradiation amount (Mrad) K: Constant determined by the electron beam acceleration voltage For example, in the case of 500 kV (7) , K=0.34.

これらの中でWおよびMは被照射物が特定されれば定ま
る定数であるため、管電流値I0は被照射物の搬送速度
に正比例する。ここで制御電極電圧vcをフィラメント
電圧vfに対して負電位にすると管電流は減少する。こ
の関係は第2図に示すように制御電極電圧vc−vfの
とき管電流■。
Since W and M are constants that are determined once the object to be irradiated is specified, the tube current value I0 is directly proportional to the transport speed of the object to be irradiated. Here, when the control electrode voltage vc is set to a negative potential with respect to the filament voltage vf, the tube current decreases. This relationship is shown in FIG. 2, when the control electrode voltage is vc-vf, the tube current is .

=300(mA)となり、VC=V、 −500(V)
のとき■。=0となるような関係である。
= 300 (mA), VC = V, -500 (V)
When ■. The relationship is such that =0.

ここでフィラメントで高温に加熱された熱電子が、フィ
ラメント電圧■fに対して正電位となる第1加速電極1
4aに印加された負の高電圧により、運動エネルギーを
与えられて飛び出す電子数を、フィラメント電圧vfに
対して負電位となる制御電極電圧vcによってフィラメ
ント表面電界を負にすることにより、連続的に任意の管
電流値に抑制制御することができる。これがため、被照
射物の搬送速度が変化した場合、管電流検出経路27か
らの実際の検出管電流と被照射物の搬送速度により定ま
る管電流指令経路26からの指令管電流との偏差を電流
制御回路23で検出して電圧制御回路18に入力し、検
出管電流が指令管電流に一致するように制御電極電圧v
oをフィードバック制御することにより、実際の管電流
と搬送速度により定まる管電流■。、とを、従来装置の
ようなフィラメントの熱時定数に基づく時間遅れ(最大
1〜2分)を除去できるので極めて高精度(応答速度数
ミリ5ec)に追随させることができ、したがって単位
面積当りの電子線照射量を均一化できる。
Here, the thermoelectrons heated to a high temperature by the filament have a positive potential with respect to the filament voltage f.The first accelerating electrode 1
The number of electrons given kinetic energy and ejected by the negative high voltage applied to 4a is continuously reduced by making the filament surface electric field negative by the control electrode voltage vc, which has a negative potential with respect to the filament voltage vf. Suppression control can be performed to any tube current value. Therefore, when the transport speed of the irradiated object changes, the deviation between the actual detected tube current from the tube current detection path 27 and the command tube current from the tube current command path 26 determined by the transport speed of the irradiated object is determined by the current. It is detected by the control circuit 23 and inputted to the voltage control circuit 18, and the control electrode voltage v is adjusted so that the detection tube current matches the command tube current.
By feedback controlling o, the tube current ■ is determined by the actual tube current and conveyance speed. , and can be tracked with extremely high precision (response speed of several millimeters 5 ec) because the time delay (maximum 1 to 2 minutes) caused by the thermal time constant of the filament, which is the case with conventional devices, can be removed. The amount of electron beam irradiation can be made uniform.

本発明は上述した例にのみ限定されるものではなく、幾
多の変更を加え得ることもちろんである。
It goes without saying that the present invention is not limited to the above-mentioned examples, but can be modified in many ways.

例えば上述した例では搬送速度に応じて制御電極電圧を
変化させたが、制御電極電圧をパルス状に変化させて被
照射物の幅方向において選択的に所定の範囲のみ電子線
照射を行なうようにすることもできる。さらに本発明は
搬送装置上に異種の被照射物が混在する場合においても
、各々の被照射物に対応した所望の電子線照射量を入力
して連続的に電子線照射を行なうこともできる。
For example, in the above example, the control electrode voltage was changed according to the transport speed, but it is also possible to change the control electrode voltage in a pulsed manner to selectively irradiate only a predetermined range in the width direction of the irradiated object. You can also. Further, the present invention allows continuous electron beam irradiation by inputting a desired electron beam irradiation amount corresponding to each object, even when different types of objects to be irradiated coexist on the transport device.

(発明の効果) 以上説明したように本発明によれば、管電流を搬送装置
の速度変化に極めて高精度に追随させて単位面積当りの
電子線照射量を均一化することができ、したがって製品
の品質向上および不良品発生の排除によるコスト低減を
図ることができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to make the tube current follow the speed change of the conveying device with extremely high precision and to make the electron beam irradiation amount per unit area uniform, thereby making it possible to make the electron beam irradiation amount per unit area uniform. It is possible to improve the quality of products and reduce costs by eliminating the occurrence of defective products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電子線照射装置の一実施例の構成
を示す線図、 第2図は管電流■。と、フィラメント電圧■。 に対する制御電極電圧vcの電位差との関係を表わすグ
ラフである。 11・・・真空容器    12・・・フィラメント1
3・・・制御電極 14a〜14n・・・加速電極 15・・・金属箔膜    16・・・偏向コイル特許
出願人  株式会社ブリデストン 第1図 第2図 υ    500 Vf萄(V)
FIG. 1 is a diagram showing the configuration of an embodiment of the electron beam irradiation device according to the present invention, and FIG. 2 is a diagram showing the tube current. and the filament voltage ■. 3 is a graph showing the relationship between the potential difference of the control electrode voltage vc and the control electrode voltage vc. 11... Vacuum container 12... Filament 1
3... Control electrodes 14a to 14n... Accelerating electrode 15... Metal foil film 16... Deflection coil Patent applicant Brideston Co., Ltd. Figure 1 Figure 2 υ 500 Vf (V)

Claims (1)

【特許請求の範囲】[Claims] 1、電子を放出するフィラメントと、この電子を加速す
る加速電極とを真空容器のネック部に設け、コーン部の
前面に金属箔膜を設け、加速電極と金属箔膜との間の真
空容器の外側に電子線を偏向する偏向コイルを設けた電
子線照射装置において、前記フィラメントと加速電極と
の間に制御電極を配置し、この制御電極に制御電圧を印
加して電子線強度を変化させるよう構成したことを特徴
とする電子線照射装置。
1. A filament that emits electrons and an accelerating electrode that accelerates the electrons are provided at the neck of the vacuum container, a metal foil film is provided on the front surface of the cone, and the space between the accelerating electrode and the metal foil film is In an electron beam irradiation device provided with a deflection coil for deflecting an electron beam on the outside, a control electrode is disposed between the filament and the accelerating electrode, and a control voltage is applied to the control electrode to change the electron beam intensity. An electron beam irradiation device characterized by comprising:
JP31898587A 1987-12-18 1987-12-18 Electron beam irradiation equipment Pending JPH01162199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31898587A JPH01162199A (en) 1987-12-18 1987-12-18 Electron beam irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31898587A JPH01162199A (en) 1987-12-18 1987-12-18 Electron beam irradiation equipment

Publications (1)

Publication Number Publication Date
JPH01162199A true JPH01162199A (en) 1989-06-26

Family

ID=18105202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31898587A Pending JPH01162199A (en) 1987-12-18 1987-12-18 Electron beam irradiation equipment

Country Status (1)

Country Link
JP (1) JPH01162199A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523864A (en) * 2008-05-22 2011-08-25 エゴロヴィチ バラキン、ウラジミール X-ray method and apparatus used in combination with a charged particle cancer treatment system
US8688197B2 (en) 2008-05-22 2014-04-01 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US8791435B2 (en) 2009-03-04 2014-07-29 Vladimir Egorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US9058910B2 (en) 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523864A (en) * 2008-05-22 2011-08-25 エゴロヴィチ バラキン、ウラジミール X-ray method and apparatus used in combination with a charged particle cancer treatment system
US8688197B2 (en) 2008-05-22 2014-04-01 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US9058910B2 (en) 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US8791435B2 (en) 2009-03-04 2014-07-29 Vladimir Egorovich Balakin Multi-field charged particle cancer therapy method and apparatus

Similar Documents

Publication Publication Date Title
EP0704102B1 (en) Electron beam array for surface treatment
EP0543935B1 (en) Particle beam generator
EP1849888B1 (en) Vacuum deposition apparatus of the winding type
EP1686197B1 (en) Take-up vacuum deposition method and take-up vacuum deposition apparatus
US3330748A (en) Method and apparatus for irradiating organic polymers with electrons
JPH01162199A (en) Electron beam irradiation equipment
GB1168813A (en) Control System for Vapour-Deposition Coating apparatus
US4079328A (en) Area beam electron accelerator having plural discrete cathodes
JP2016156060A (en) Thin film formation device for sheet and method of manufacturing sheet with thin film
EP0434018B1 (en) Electron accelerator
JP6896795B2 (en) Thin film forming device and thin film forming method
US4959550A (en) Automatic exchanger of an electron beam irradiator for window foil
JPH06158319A (en) Method and device for continuous coating of nonconducting sheet in vacuum
WO2014156154A1 (en) Manufacturing method for porous polymer film
JPS6046367A (en) Vapor deposition apparatus
JP2002341100A (en) Electron beam irradiation device
JP2510225B2 (en) Electron beam irradiation device
US6877344B2 (en) Preparation of optical fiber
US3204096A (en) Apparatus for projecting an electron beam along a curved path having variable impedance
JPH059585A (en) Method and apparatus for electron beam irradiation
JP3135864B2 (en) Ion plasma type electron gun and its control method
JPH0954200A (en) Electron beam irradiation device
JP2024059349A (en) Prepreg Manufacturing Equipment
JP2005172534A (en) Electron beam irradiation device
US20170062172A1 (en) Electron beam apparatus with adjustable air gap