JPH01158354A - Reagent and method for immunological measurement of many components - Google Patents

Reagent and method for immunological measurement of many components

Info

Publication number
JPH01158354A
JPH01158354A JP31826887A JP31826887A JPH01158354A JP H01158354 A JPH01158354 A JP H01158354A JP 31826887 A JP31826887 A JP 31826887A JP 31826887 A JP31826887 A JP 31826887A JP H01158354 A JPH01158354 A JP H01158354A
Authority
JP
Japan
Prior art keywords
sensitized
particle
particle size
antibody
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31826887A
Other languages
Japanese (ja)
Inventor
Kimio Yoneda
米田 公生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP31826887A priority Critical patent/JPH01158354A/en
Publication of JPH01158354A publication Critical patent/JPH01158354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To achieve simultaneous measurement, by allowing a mixture of a plurality of sensitized fine particles, which are obtained by respectively sensitizing a plurality of fine particle carriers having different average particle sizes with different antibodies or antigens, to generate coagulation reaction between the antigens or antibodies of a liquid specimen. CONSTITUTION:Each sensitized fine particle is prepared by sensitizing a fine particle carrier with an antigen or antibody in a physical adsorbing manner or covalent bond manner. Next, when three kinds of substances A, B, C to be examined are measured, three kinds of antibody sensitized fine particles of anti-A, anti-B, anti-C, wherein fine particle carriers respectively different in an average particle size are sensitized with the specific antibodies corresponding to the substances to be examined, are separately prepared and mixed to prepare a measuring particle suspension. This suspension is reacted with a liquid specimen such as serum to coagulate the fine particles each other corresponding to the concns. of the substances A, B, C to be examined and the concns. of said substances are measured from particle size distributions to be collated with a preliminarily calculated calibration curve. Therefore, many components can be simultaneously measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は血清、尿、その他の体液である被検液中に存
在する2種類以上の物質を測定する免疫学的多成分測定
用試薬と測定方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an immunological multi-component measurement reagent for measuring two or more substances present in a test fluid such as serum, urine, or other body fluids. It is related to the measurement method.

〔−従来の技術〕[-Conventional technology]

血清や尿、体液等に存在する抗原や抗体を検出測定し、
疾患の診断を行なうことは一般に広〈実施されている。
Detects and measures antigens and antibodies present in serum, urine, body fluids, etc.
Diagnosis of diseases is generally widely practiced.

この測定方法の一つとして、検体中に含まれる抗原また
は抗体と、これに対する特異的な抗体または抗原を感作
させた感作微粒子とを反応させ、該微粒子の凝集反応ま
たは凝集阻止反応を肉眼で、あるいは電気的、光学的に
測定する方法(いわゆる凝集試験)は、反応時間が短か
くかつ鋭敏であることから広く利用されている。
One of the measurement methods is to react the antigen or antibody contained in the sample with sensitized fine particles that have been sensitized with a specific antibody or antigen, and observe the agglutination reaction or agglutination inhibition reaction of the fine particles with the naked eye. Measuring methods (so-called agglutination tests) are widely used because their reaction time is short and they are sensitive.

この場合、通常の臨床検査においては、1回の測定操作
で1成分の定量を行なっているが、近年の臨床医学の進
歩から、微少量の検体を用い・多数の検査項目をより短
時間に測定することが求められている。
In this case, in normal clinical tests, one component is quantified in a single measurement operation, but with recent advances in clinical medicine, a small amount of specimen can be used and a large number of test items can be performed in a shorter time. Measurement is required.

この目的のために、それぞれ異なる2種類以上の測定抗
原に対応する抗体をそれぞれ別個に感作させて得た2種
類以上の感作微粒子を混合してイ史用する方法(特開昭
59−40166号公報)や2種類以上の測定抗原に対
応する抗体を同一担体に感作させた感作微粒子を使用す
る方法(特開昭59−24256号公報)が提案されて
いる。
For this purpose, a method is used in which two or more types of sensitized fine particles obtained by separately sensitizing antibodies corresponding to two or more different antigens to be measured are mixed and used. 40166) and a method using sensitized fine particles in which the same carrier is sensitized with antibodies corresponding to two or more types of antigens to be measured (Japanese Unexamined Patent Publication No. 59-24256).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記公開公報に開示の方法は、測定成分の総和を測定す
ることができるが、1回の測定で個々の成分を定量的に
測定することができないという問題があった。
Although the method disclosed in the above-mentioned publication can measure the sum of the components to be measured, there is a problem in that the individual components cannot be quantitatively measured in one measurement.

このため、多成分を個別に定量測定するためには検査項
目の数だけ測定を繰り返さなければならない。しかしな
がら、そのためには、必要な検体(主に血清や体液)が
多量となり患者の苦痛が増大する。また、多数の検体を
処理するには多くの時間と労力を要し、患者にとって必
要な項目が省略されてしまう恐れがある。
Therefore, in order to quantitatively measure multiple components individually, it is necessary to repeat the measurement for the number of test items. However, this requires a large amount of specimen (mainly serum and body fluids), which increases patient pain. Furthermore, processing a large number of samples requires a lot of time and effort, and there is a risk that items necessary for the patient may be omitted.

したがって、この発明の目的は、1回の測定操作で多成
分を同時に測定することができる免疫学的多成分測定用
試薬と測定方法を提供することである。
Therefore, an object of the present invention is to provide a reagent for immunological multicomponent measurement and a measurement method that can simultaneously measure multiple components in a single measurement operation.

〔問題点を解決するための手段〕 この発明の免疫学的多成分測定用試薬は、互いに平均粒
子径の異なる複数の微粒子担体にそれぞれ異なる抗体ま
たは抗原を感作させた複数の感作微粒子の混合物からな
るものである。
[Means for Solving the Problems] The reagent for immunological multi-component assay of the present invention comprises a plurality of sensitized microparticles in which a plurality of microparticle carriers having different average particle diameters are sensitized with different antibodies or antigens. It consists of a mixture.

この発明の免疫学的多成分測定方法は、前記試薬中の複
数の感作微粒子の混合物と被検液に含まれる複数の抗原
または抗体との間で凝集反応を起こさせ、この凝集反応
に基づく粒子径分布の変化を測定し、前記被検液に含ま
れる抗原または抗体を測定するものである。
The immunological multicomponent measurement method of the present invention causes an agglutination reaction between a mixture of a plurality of sensitized fine particles in the reagent and a plurality of antigens or antibodies contained in a test liquid, and is based on the agglutination reaction. The change in particle size distribution is measured to measure the antigen or antibody contained in the test liquid.

この発明において抗原または抗体を感作するために用い
る微粒子担体としては、たとえばポリスチレンラテック
スなどの合成ラテックスやコロジオン粒子、活性炭、ベ
ントナイト、カオリン、人や動物の赤血球等があげられ
る。これらの粒子のうち合成ラテックスや動物の赤血球
などは平均粒子径が異なり、かつそれぞれは粒子径分布
幅の狭い粒子群を利用することができるため、この発明
において好適に使廟可能である。さらに合成ラテックス
は一般に担体としての性能や保存安定性にすぐれる。
Examples of the particulate carrier used for sensitizing antigens or antibodies in this invention include synthetic latex such as polystyrene latex, collodion particles, activated carbon, bentonite, kaolin, and human or animal red blood cells. Among these particles, synthetic latex, animal red blood cells, etc. have different average particle diameters, and each particle group can be used as a particle group with a narrow particle size distribution, so they can be suitably used in the present invention. Furthermore, synthetic latex generally has excellent performance as a carrier and storage stability.

この発明に用いる感作微粒子の調製方法は従来公知の手
段により行なうことができる。すなわち、ポリスチレン
ラテックスなどの微粒子担体に抗原または抗体を物理的
吸着または共有結合的に感作させて、各感作微粒子を作
成する。
The sensitized fine particles used in this invention can be prepared by conventionally known means. That is, each sensitized fine particle is created by sensitizing an antigen or antibody to a fine particle carrier such as polystyrene latex by physical adsorption or covalent bonding.

ここでいう抗原とは例えば血清蛋白であるヒトアルブミ
ン、ヒトイムノグロブリンG、ヒトフィブリノーゲン、
アルファーフェトプロティン、ホルモン類などが挙げら
れる。また抗体とは上記抗原などに対する特異抗体を意
味する。なお、この発明における抗原、抗体は上述の抗
原や抗体のみに限定されるものではない。
The antigens mentioned here include, for example, serum proteins such as human albumin, human immunoglobulin G, human fibrinogen,
Examples include alpha-fetoprotein and hormones. Furthermore, the term "antibody" refers to a specific antibody against the above-mentioned antigens. Note that the antigens and antibodies in this invention are not limited to the above-mentioned antigens and antibodies.

使用する複数の微粒子担体における平均粒子径の差は、
それぞれの感作微粒子の凝集に基づく凝集粒子を判別す
る上で、約0.018以上、なかんず< 0.1 u以
上であるのが好ましい、平均粒子径の差がこの範囲より
小なるときは、現在実用化されている装置の判別能力を
考慮すると、それぞれの粒子径分布が接近しすぎるため
判別が困難になるため好ましくないが、将来の装置の改
良によっては0.001μ程度の差まで困難なく判別で
きるようになるものと考えられる。また、平均粒子径の
差にとくに上限はないが、差があまりに大きくなると、
たとえばレーザーを光源とするレーザー利用光散乱測定
装置を用いて粒子を光学的に検出する場合には、測定用
のレーザー光が2波長必要となるなど、測定装置が複雑
となり、コストアップになる。したがって、平均粒子径
の蹄としては約20μ以下、なかんずく10μ以下であ
るのが好ましい。
The difference in average particle diameter of the multiple microparticle carriers used is
In order to distinguish between aggregated particles based on the aggregation of each sensitized fine particle, it is preferable that the difference in average particle diameter is about 0.018 or more, especially < 0.1 u or more, and when the difference in average particle diameter is smaller than this range, Considering the discrimination ability of devices currently in practical use, it is not desirable because the particle size distributions of each particle are too close to each other, making it difficult to distinguish. However, depending on future improvements to the device, it will be difficult to distinguish between particles of about 0.001μ. It is thought that this will make it possible to distinguish without any difference. Also, although there is no upper limit to the difference in average particle diameter, if the difference becomes too large,
For example, when particles are optically detected using a laser-based light scattering measuring device that uses a laser as a light source, two wavelengths of laser light are required for measurement, which makes the measuring device complicated and increases costs. Therefore, it is preferable that the average particle diameter is about 20 microns or less, particularly 10 microns or less.

また、それぞれの感作微粒子担体の混合割合は、混合後
の各粒子の反応槽内濃度がほぼ同程度であり、少なくと
も1桁以上は異ならないようにすることが望ましい、f
i度が1桁以上具なると、粒子の計数誤差を起こしやす
くなる。各粒子の反応槽内濃度は使用する測定装置に最
適な濃度になればよく、たとえば光散乱粒子カウンタを
利用する場合は、各粒子群の反応槽内濃度が0.01〜
O,1w/V%になるのが適当である。
In addition, the mixing ratio of each sensitized fine particle carrier is preferably such that the concentration of each particle in the reaction tank after mixing is approximately the same and does not differ by at least one order of magnitude.
When the i degree is more than one digit, particle counting errors are likely to occur. The concentration of each particle in the reaction tank should be the optimum concentration for the measuring device used. For example, when using a light scattering particle counter, the concentration of each particle group in the reaction tank should be 0.01 to
O.1 w/V% is appropriate.

この発明の測定方法は、個別には粒子凝集反応に基づい
ている。すなわち被検液中に含まれる抗原または抗体と
、これに対する特異的な抗体または抗原を感作させた感
作微粒子担体とを反応させ、この微粒子担体の凝集反応
または凝集阻止反応に基づく粒子径分布の変化を測定し
、これより対象とする物質の定量を行なうものである。
The measuring method of the present invention is individually based on a particle agglutination reaction. In other words, the antigen or antibody contained in the test liquid is reacted with a sensitized particulate carrier sensitized with a specific antibody or antigen, and the particle size distribution is determined based on the agglutination reaction or agglutination inhibition reaction of the particulate carrier. This method measures the change in the amount of water, and then quantifies the substance of interest.

この発明で使用する粒子径分布測定装置としては、粒子
群中の個々の粒子塊について、その粒子径または粒子体
積を計測することにより該粒子群の粒子径分布を測定す
る装置であればよく、例えば静電容量式粒度分布測定装
置、電気抵抗式粒度分布測定装置、光散乱粒子カウンタ
ー(特開昭60−111963号公報を参照)などを単
独でまたは組み合せて使用することができる。
The particle size distribution measuring device used in this invention may be any device that measures the particle size distribution of a particle group by measuring the particle size or particle volume of each particle agglomerate in the particle group. For example, a capacitance type particle size distribution measuring device, an electrical resistance type particle size distribution measuring device, a light scattering particle counter (see JP-A-60-111963), etc. can be used alone or in combination.

この発明の粒子径分布の変化を解析する方法としては、
該粒子径分布の変化が抗原抗体反応にもとづく粒子の凝
集反応速度を直接または間接に反映しているものとして
解析できる手段であればよく、例えば■特定粒子径粒子
群の時間的変化、■ある反応時間における特定粒子径粒
子群の濃度、■ある反応時間における特定粒子径粒子群
の比率などを凝集反応速度に対応する測定値として求め
る。この際、あらかじめ対象成分濃度既知の検体により
検量線を作成しておき、対象成分未知の被検液の測定値
を求め検量線と照合すれば、測定しようとする対象成分
を定量することができる。
As a method for analyzing changes in particle size distribution of this invention,
Any method can be used as long as the change in particle size distribution can be analyzed as directly or indirectly reflecting the agglutination reaction rate of particles based on antigen-antibody reaction, for example, The concentration of a specific particle size particle group during a reaction time, (2) the ratio of a specific particle size particle group during a certain reaction time, etc. are determined as measured values corresponding to the aggregation reaction rate. At this time, by creating a calibration curve in advance using samples with known concentrations of the target component, and then obtaining the measured values of the test liquid with unknown target components and comparing them with the calibration curve, the target component to be measured can be quantified. .

なお、ここでいう特定粒子径粒子群とは、未凝集の単一
粒子径をもつ単位粒子群、2個の単位粒子よりなる2個
凝集粒子群または3個の単位粒子よりなる3個凝集粒子
群などを意味している。
Note that the specific particle size particle group here refers to a group of unagglomerated unit particles having a single particle size, a group of two agglomerated particles consisting of two unit particles, or a group of three agglomerated particles consisting of three unit particles. It means a group etc.

〔作用〕[Effect]

この発明における同時多成分測定方法を模式的に説明す
る。
The simultaneous multi-component measurement method in this invention will be schematically explained.

A、B、Cの3種の被検物質を測定する場合、それぞれ
平均粒子径の異なる微粒子担体に、これらの被検物質に
対応する特異抗体(または抗原)を感作した抗A抗体感
作微粒子、抗B抗体感作微粒子、抗C抗体感作微粒子の
3種類を別個に調製しておき、これらを適当な割合で混
合したA、B。
When measuring three types of test substances A, B, and C, anti-A antibody sensitization is performed by sensitizing fine particle carriers with different average particle diameters with specific antibodies (or antigens) corresponding to these test substances. A and B are prepared by separately preparing three types of microparticles, anti-B antibody-sensitized microparticles, and anti-C antibody-sensitized microparticles, and mixing these in an appropriate ratio.

C測定用粒子懸濁液を調整する。この懸濁液と血清や尿
などの被検液とを反応させ所定時間後の反応混合物中の
粒子径分布を測定する。すると被検液中のA、B、Cの
被検物質の濃度に応じ、それぞれに対応する抗体を感作
した微粒子同士で凝集が生じる。
Prepare particle suspension for C measurement. This suspension is reacted with a test liquid such as serum or urine, and the particle size distribution in the reaction mixture is measured after a predetermined period of time. Then, depending on the concentration of test substances A, B, and C in the test liquid, aggregation occurs between fine particles sensitized with the corresponding antibodies.

かくして得られた粒子径分布より各測定項目に対応する
粒子径粒子群の時間的変化または濃度や比率を計測し、
あらかじめ求めておいた検量線と照合することで、被検
体中のA、B、Cそれぞれの被検物質を同時に定量する
ことができる。
From the particle size distribution obtained in this way, the temporal change or concentration or ratio of the particle group corresponding to each measurement item is measured,
By comparing with a calibration curve determined in advance, each of the test substances A, B, and C in the sample can be quantified simultaneously.

また、凝集阻止反応を利用する場合は抗A抗体感作微粒
子に代えてA抗原感作微粒子を用いる。
Furthermore, when using an agglutination inhibition reaction, A antigen-sensitized fine particles are used instead of anti-A antibody-sensitized fine particles.

この場合、反応系に抗A抗体を添加すれば被検液中のA
抗原の濃度に関連した凝集阻止反応が生じる。すなわち
、検体にA抗原感作微粒子と抗A抗体とを添加して反応
させると、検体中のA抗原の量に応じてA抗原感作微粒
子と抗A抗体との凝集反応がブロックされるため、微粒
子間の凝集が検体を含まない場合に比べて減少する。こ
の減少量は検体中のA抗原の量と相関するので、あらか
じめ検量線をつくっておけば、A抗原の定量が可能とな
る。したがって、凝集阻止反応は通常の凝集反応では定
量できないハブテンの定量を行う目的で利用される。
In this case, if anti-A antibody is added to the reaction system, A
An antiaggregation reaction occurs that is related to the concentration of antigen. In other words, when A antigen-sensitized fine particles and anti-A antibody are added to a specimen and reacted, the agglutination reaction between A antigen-sensitized fine particles and anti-A antibody is blocked depending on the amount of A antigen in the specimen. , the aggregation between microparticles is reduced compared to when no analyte is included. Since this amount of decrease correlates with the amount of A antigen in the sample, if a standard curve is prepared in advance, the A antigen can be quantified. Therefore, the aggregation inhibition reaction is used for the purpose of quantifying habuten, which cannot be determined by normal aggregation reactions.

また各感作微粒子の最適反応時間が異なる場合は、混合
粒子懸濁液と被検液とをある程度反応させたのち、各最
適反応時間ごとに反応液の一部を取り出して反応を完結
させ、個々に粒子径分布の測定をすることで各成分の定
量を行ったり、あるいは反応時間の長い感作微粒子から
順次反応系に添加し、反応終了時に各感作微粒子の最適
反応時間となるように調整することにより、反応終了時
に粒子径分布を測定して、被検物質の濃度を同時に定量
することができる。
In addition, if the optimum reaction time for each sensitized fine particle is different, after allowing the mixed particle suspension and the test liquid to react to some extent, a portion of the reaction liquid is taken out at each optimum reaction time to complete the reaction. You can quantify each component by measuring the particle size distribution individually, or you can add sensitized particles to the reaction system sequentially starting with the longest reaction time, so that the optimal reaction time for each sensitized particle is reached at the end of the reaction. By adjusting, the particle size distribution can be measured at the end of the reaction and the concentration of the test substance can be determined simultaneously.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、1回の測定で多成分を同時、に定量
することができ、そのため測定に要する時間が短縮され
、また必要な検体量も少なくて子むという効果がある。
According to this invention, multiple components can be quantified simultaneously in a single measurement, thereby reducing the time required for measurement and reducing the amount of sample required.

〔実施例〕〔Example〕

以下、実施例により説明する。 Examples will be explained below.

実施例: (a)  抗アルファーフェトプロティン(AFP)抗
体感作微粒子の調製 0、1 Mグリシン緩衝液(pl+8.2 >に懸濁さ
せた粒子径1.0μ、濃度5−/ν%のポリスチレンラ
テックスの懸濁液1容量部に対して、抗AFPウサギ血
清γ−グロブリン分画を0.1 Mグリシン緩衝液(p
H8,2)に1w/v%になるよう溶解した溶液4容量
部を加え、37℃で2時間窓作後、遠心分離により上澄
を除き、Q、 5 w / v%ウシ血清アルブミン、
0.05%アジ化ナトリウムを含む0.1Mグリンシ緩
衝液(pH8,2)の10容量部に再懸濁させて0.5
 w / v%の抗AFP抗体感作微粒子懸濁液を得た
Examples: (a) Preparation of anti-alpha-fetoprotein (AFP) antibody-sensitized microparticles Polystyrene with a particle diameter of 1.0μ and a concentration of 5-/ν% suspended in 0 and 1 M glycine buffer (pl+8.2) To 1 volume of latex suspension, anti-AFP rabbit serum γ-globulin fraction was added to 0.1 M glycine buffer (p
Add 4 volumes of a solution dissolved in H8, 2) to 1 w/v%, incubate at 37°C for 2 hours, remove the supernatant by centrifugation, and add Q, 5 w/v% bovine serum albumin,
Resuspend in 10 volumes of 0.1M Grinsci buffer (pH 8.2) containing 0.05% sodium azide to obtain 0.5% sodium azide.
A w/v% anti-AFP antibody sensitized microparticle suspension was obtained.

(1))  抗癌胎児性抗原(CEA)抗体感作微粒子
担体の調製 前記(a)と同様の方法で行なった。なお、担体は粒子
径0.7μのポリスチレンラテックスを用いた。
(1)) Preparation of anti-carcinoembryonic antigen (CEA) antibody-sensitized microparticle carrier The same method as in (a) above was carried out. Note that polystyrene latex with a particle size of 0.7 μm was used as the carrier.

(CI  AFP、CEA測定用感作微粒子懸濁液の調
整 上記(a)、 (b)でそれぞれ調製した抗AFP抗体
感作微粒子懸濁液と抗CEA抗体感作微粒子懸濁液とを
1=1の比率で混合しAFP、CEA測定用感作粒子懸
濁液を調整した。
(Preparation of sensitized fine particle suspension for CI AFP and CEA measurement The anti-AFP antibody-sensitized fine particle suspension and the anti-CEA antibody-sensitized fine particle suspension prepared in (a) and (b) above were mixed at 1=1). A sensitized particle suspension for AFP and CEA measurement was prepared by mixing at a ratio of 1:1.

(d)  BiYl#溶液の調製 ■ AFP標準溶液: CEA 50μg/a+1.1
%ウシ血清アルブミン(BSA)を含む食塩加リン酸緩
衝液(PBSバッファー)にそれぞれAFPを濃度が0
.50.100.200. 500μg/mlになるよ
うにン容解した。
(d) Preparation of BiYl# solution■ AFP standard solution: CEA 50μg/a+1.1
AFP was added to a saline phosphate buffer (PBS buffer) containing % bovine serum albumin (BSA) at a concentration of 0.
.. 50.100.200. The solution was dissolved to a concentration of 500 μg/ml.

■ CEA標準溶液: A F P 50μg/m+、
 1%ウシ血清アルブミン(BSA)を含む食塩加リン
酸緩衝液(PBSバッファー)にそれぞれCEAを濃度
が0.50.100.200. 500μg/mlにな
るよう溶解した。
■ CEA standard solution: AFP 50μg/m+,
CEA was added to a saline phosphate buffer (PBS buffer) containing 1% bovine serum albumin (BSA) at concentrations of 0.50, 100, and 200, respectively. It was dissolved to a concentration of 500 μg/ml.

(e)  粒子径分布の測定 ■ 上記(a)の抗AFP抗体感作微粒子懸濁液25μ
!に、0.5 w/シ%ウシ血清アルブミンおよび0.
05%アジ化ナトリウムを含む0.1 Mグリシン緩衝
液(pH8,2)の25μlと、上記(→■のAFP標
’4i8i’& (A F P 濃度100 ng/m
l)の100μlと、1%ウシ血清アルブミンを含むP
BSバッファー100μeとを加え、37°Ct’30
分間軽く撹拌させながら反応させ、反応終了後、直ちに
光散乱粒子カウンタにて粒子径分布を測定した。
(e) Measurement of particle size distribution ■ 25μ of the anti-AFP antibody-sensitized fine particle suspension of (a) above
! to 0.5 w/% bovine serum albumin and 0.5 w/% bovine serum albumin.
25 μl of 0.1 M glycine buffer (pH 8,2) containing 0.5% sodium azide and the AFP standard '4i8i'& (AFP concentration 100 ng/m
100 μl of P) containing 1% bovine serum albumin
Add 100μe of BS buffer and heat at 37°Ct'30
The reaction was allowed to proceed for a minute with gentle stirring, and immediately after the reaction was completed, the particle size distribution was measured using a light scattering particle counter.

その結果を第1図に示す、同図において、Aは非凝集粒
子群、Bは2個凝集粒子群をそれぞれ示している。なお
、グラフの横軸に示す相対粒子径とは、信号強度に基づ
く相対的な値である(第2〜3図も同様)。
The results are shown in FIG. 1, where A indicates a group of non-agglomerated particles and B indicates a group of two aggregated particles. Note that the relative particle diameter shown on the horizontal axis of the graph is a relative value based on the signal intensity (the same applies to FIGS. 2 and 3).

■ 上記(b)の抗CEA抗体感作微粒子懸濁液25μ
lに、0.5w/v%ウシ血清アルブミンおよび0.0
5%アジ化ナトリウムを含む0.1Mグリシン緩衝液(
pH8,2)の25μ2と、上記(d)■のAFP標準
溶液(AFP濃度I Q OB/ml)の100μ!と
、1%ウシ血清アルブミンを含むPBSバッファー10
0μlとを加え、37°Cで30分間軽く撹拌させなが
ら反応させ、反応終了後、直ちに光散乱粒子カウンタに
て粒子径分布を測定した。
■ 25μ of the anti-CEA antibody sensitized fine particle suspension of (b) above
l, 0.5 w/v% bovine serum albumin and 0.0
0.1M glycine buffer containing 5% sodium azide (
25μ2 of pH 8,2) and 100μ of the AFP standard solution (AFP concentration I Q OB/ml) in (d)■ above! and PBS buffer 10 containing 1% bovine serum albumin.
0 .mu.l was added and allowed to react with gentle stirring at 37.degree. C. for 30 minutes. Immediately after the reaction was completed, the particle size distribution was measured using a light scattering particle counter.

その結果を第2図に示す、同図において、Cは非凝集粒
子群、Dは2個凝集粒子群をそれぞれ示している。
The results are shown in FIG. 2, where C indicates a group of non-agglomerated particles and D indicates a group of two aggregated particles.

■ 上記(C)のAFP、CEA測定用感作粒子懸濁液
50μlに上記(d)■のAFP標準溶液(AFPfi
度200 ng/ml)の50ulと、(d)■のCE
A標準溶液(CEA′a度200 ng/ml)の50
μffiと、1%ウシ血清アルブミンを含むPBSバッ
ファーlOOμeとをそれぞれ加え、37°Cで30分
間軽く撹拌させながら反応させ、反応終了後、直ちに光
散乱粒子カウンタにて粒子径分布を測定した。
■ Add the AFP standard solution (AFPfi) of (d) ■ above to 50 μl of the sensitized particle suspension for AFP and CEA measurement of (C) above.
50 ul of 200 ng/ml) and CE of (d)■
50 of A standard solution (CEA'a degree 200 ng/ml)
μffi and PBS buffer lOOμe containing 1% bovine serum albumin were added, and the mixture was allowed to react at 37°C for 30 minutes with gentle stirring. Immediately after the reaction was completed, the particle size distribution was measured using a light scattering particle counter.

その結果を第3図に示す。同図に示す粒子径分布は、第
1図の粒子径分布と第2図の粒子径分布とを重ね合わせ
たようになり、各ピークは左から順に粒子径0.7μの
非凝集粒子群C1粒子径l、0μの非凝集粒子群A、粒
子径0.7μの2個凝集粒子群りおよび粒子径1.0μ
の2個凝集′粒子群Bをそれぞれ示している。
The results are shown in FIG. The particle size distribution shown in the figure is a superposition of the particle size distribution in Figure 1 and the particle size distribution in Figure 2, and each peak is in order from the left to the non-agglomerated particle group C1 with a particle size of 0.7μ. Particle size l, non-agglomerated particle group A with particle size 0μ, two agglomerated particle group with particle size 0.7μ, and particle size 1.0μ
The two agglomerated 'particles group B are shown respectively.

(「)検量線の作成 AFP−CEA測定用微粒子懸濁液各50μlを、1%
BSAを含むPBSバッファー100μ2の入った反応
用試験管に入れ、所定濃度のAFP標準溶液100μ2
を加えて37°Cで30分間軽く撹拌しながら反応させ
た0反応終了後、直ちに光散乱粒子カウンタにて反応混
合物の粒子径分布を測定した。ここで、平均粒子径1.
0μの粒子群の測定粒子数と、この平均粒子径粒子群の
2個の粒子が凝集した2個凝集粒子群の測定粒子数とを
それぞれX 1. X 2とすると、平均粒子径1.0
μの粒子群、すなわち抗AFP抗体感作微粒子の凝集率
Y(%)は次式から求められる。
(“) Creation of a calibration curve 50 μl of each fine particle suspension for AFP-CEA measurement was added at 1%
Place 100μ2 of AFP standard solution at the specified concentration in a reaction test tube containing 100μ2 of PBS buffer containing BSA.
was added and reacted at 37°C for 30 minutes with gentle stirring. Immediately after the completion of the reaction, the particle size distribution of the reaction mixture was measured using a light scattering particle counter. Here, the average particle diameter is 1.
The number of particles measured in the 0μ particle group and the number of particles measured in the two agglomerated particle group, in which two particles of this average particle diameter particle group are aggregated, are each expressed as X 1. If X 2, the average particle diameter is 1.0
The aggregation rate Y (%) of the particle group μ, that is, the anti-AFP antibody-sensitized fine particles, is determined from the following formula.

X、+(2XXl) 得られた凝集率と標準溶液のAFPfi度とからAFP
の検量線を求めた。これを第4図に示す。
X, + (2XXl) From the obtained aggregation rate and the AFPfi degree of the standard solution, AFP
A calibration curve was obtained. This is shown in FIG.

また、これと同様にして平均粒子径0.7μの粒子群す
なわち抗CEA抗体感作粒子の凝集率と標準溶液のCE
AiJ度よりCEAの検量線を求めた。
In the same manner, the aggregation rate of the particle group with an average particle diameter of 0.7μ, that is, the anti-CEA antibody-sensitized particles, and the CE of the standard solution.
A calibration curve of CEA was determined from the AiJ degree.

これを第5図に示す。This is shown in FIG.

なお、第4図に示す検量線は濃度50μg/ mlのC
EA存在下でのものであるが、CEA濃度が変化しても
同じ検量線が得られた。また、第5図に示す検量線は濃
度50μg/ mlのAFP存在下でのものであるが、
この場合もAFPfi度度が変化しても同じ検量線が得
られた。このことから、反応液中のAFP、CEAはそ
れぞれに対応した抗体を感作した粒子とのみ凝集反応し
、相互の凝集反応に影響を与えず、交差凝集反応も生じ
ないことがわかる。
The calibration curve shown in Figure 4 is based on C at a concentration of 50 μg/ml.
Although this was in the presence of EA, the same calibration curve was obtained even if the CEA concentration was changed. Furthermore, the calibration curve shown in Figure 5 is in the presence of AFP at a concentration of 50 μg/ml.
In this case as well, the same calibration curve was obtained even if the AFPfi degree changed. This shows that AFP and CEA in the reaction solution aggregate only with particles sensitized with the respective antibodies, do not affect mutual agglutination reactions, and do not cause cross-agglutination reactions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はAFP抗体感作粒子懸濁液にAFP標準溶液を
反応させて測定した粒子径分布を示すグラフ、第2図は
CEA抗体感作粒子懸!A液にCEA標準溶液を反応さ
せて測定した粒子径分布を示すグラフ、第3図はAFP
、CEA測定用感作粒子懸濁液にAFP標準標準液8液
EA標準溶液とを反応させて測定した粒子径分布を示す
グラフ、第4図はAFP濃度と凝集率との関係を示すA
FPの検量線、第5図はCEA濃度と凝集率との関係を
示すCEAの検量線である。 絹′rruff+径→ 第1図 相灯覆+径 → 第2図 紐灯Fi−Jf!−=− 第 3 図 AFPJ1度(ng/ml) 第4図 CEAJ度(ng /ml ) 手続補正占用) 昭和63年01月29日
Figure 1 is a graph showing the particle size distribution measured by reacting an AFP standard solution with an AFP antibody-sensitized particle suspension, and Figure 2 is a graph showing the particle size distribution measured by reacting an AFP antibody-sensitized particle suspension with an AFP standard solution. A graph showing the particle size distribution measured by reacting CEA standard solution with liquid A, Figure 3 is AFP.
, A graph showing the particle size distribution measured by reacting a sensitized particle suspension for CEA measurement with 8 standard AFP standard solutions and an EA standard solution. Figure 4 shows the relationship between AFP concentration and aggregation rate.
FP Calibration Curve FIG. 5 is a CEA calibration curve showing the relationship between CEA concentration and agglutination rate. Silk 'rruff + diameter → Figure 1 Phase lantern cover + diameter → Figure 2 String lamp Fi-Jf! -=- Figure 3 AFPJ 1 degree (ng/ml) Figure 4 CEAJ degree (ng/ml) (procedural amendment exclusive use) January 29, 1985

Claims (2)

【特許請求の範囲】[Claims] (1)互いに平均粒子径の異なる複数の微粒子担体にそ
れぞれ異なる抗体または抗原を感作させた複数の感作微
粒子の混合物からなる免疫学的多成分測定用試薬。
(1) A reagent for immunological multi-component assay consisting of a mixture of a plurality of sensitized microparticles in which a plurality of microparticle carriers having different average particle diameters are sensitized with different antibodies or antigens.
(2)互いに平均粒子径の異なる複数の粒子群微粒子担
体にそれぞれ異なる抗体または抗原を感作させた複数の
感作微粒子の混合物と被検液に含まれる抗原または抗体
との間で凝集反応を起こさせる工程と、 前記各感作微粒子の凝集反応に基づくそれぞれの粒子径
分布の変化から前記被検液に含まれる抗原または抗体を
測定する工程とを含む免疫学的多成分測定方法。
(2) An agglutination reaction occurs between a mixture of multiple sensitized microparticles in which the microparticle carriers of multiple particle groups with different average particle diameters are sensitized with different antibodies or antigens, and the antigen or antibody contained in the test liquid. an immunological multi-component measurement method comprising the steps of: causing the sensitized fine particles to undergo an agglutination reaction; and measuring an antigen or antibody contained in the test liquid from a change in particle size distribution based on an agglutination reaction of each of the sensitized fine particles.
JP31826887A 1987-12-15 1987-12-15 Reagent and method for immunological measurement of many components Pending JPH01158354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31826887A JPH01158354A (en) 1987-12-15 1987-12-15 Reagent and method for immunological measurement of many components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31826887A JPH01158354A (en) 1987-12-15 1987-12-15 Reagent and method for immunological measurement of many components

Publications (1)

Publication Number Publication Date
JPH01158354A true JPH01158354A (en) 1989-06-21

Family

ID=18097303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31826887A Pending JPH01158354A (en) 1987-12-15 1987-12-15 Reagent and method for immunological measurement of many components

Country Status (1)

Country Link
JP (1) JPH01158354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189250A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Bumper structure
JP2018523123A (en) * 2015-07-23 2018-08-16 ハイコア バイオメディカル エルエルシー On-board kitting on equipment
JP2018524597A (en) * 2015-07-15 2018-08-30 ハイコア バイオメディカル エルエルシー Customizable equipment
WO2019087367A1 (en) * 2017-11-02 2019-05-09 株式会社島津製作所 Analysis method, calibration curve creation method, and coagulation analyzer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189250A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Bumper structure
JP2018524597A (en) * 2015-07-15 2018-08-30 ハイコア バイオメディカル エルエルシー Customizable equipment
JP2020064074A (en) * 2015-07-15 2020-04-23 ハイコア バイオメディカル エルエルシー Customizable device
US10928399B2 (en) 2015-07-15 2021-02-23 Hycor Biomedical, Llc Customizable instrument
JP2022111311A (en) * 2015-07-15 2022-07-29 ハイコア バイオメディカル エルエルシー Customizable device
JP2018523123A (en) * 2015-07-23 2018-08-16 ハイコア バイオメディカル エルエルシー On-board kitting on equipment
WO2019087367A1 (en) * 2017-11-02 2019-05-09 株式会社島津製作所 Analysis method, calibration curve creation method, and coagulation analyzer
CN111295590A (en) * 2017-11-02 2020-06-16 株式会社岛津制作所 Analysis method, calibration curve creation method, and coagulation analysis device
JPWO2019087367A1 (en) * 2017-11-02 2020-11-12 株式会社島津製作所 Analytical method, calibration curve creation method and solidification analyzer
CN111295590B (en) * 2017-11-02 2023-07-04 株式会社岛津制作所 Analysis method, calibration curve production method, and coagulation analysis device

Similar Documents

Publication Publication Date Title
US4080264A (en) Immunoassay by light scattering spectroscopy
JPH03502246A (en) Coagulation methods for the analysis of substances
JPS5915860A (en) Method of analyzing antibody, antigen or antibody:antigen composite body
JPS6314783B2 (en)
JPH01163662A (en) Detection of antigen and/or antibody and test kit for detection
US5362655A (en) Process for the determination of a specifically bindable substance
EP1801590B1 (en) Method of assaying antigen and reagent therefor
US4851329A (en) Immunoassay employing optical pulse particle size analysis
US5093271A (en) Method for the quantitative determination of antigens and antibodies by ratio of absorbances at different wavelengths
JP2603843B2 (en) Measuring method of antigen or antibody
JPH01158354A (en) Reagent and method for immunological measurement of many components
JPH01301165A (en) Immunoassay
JPS6281567A (en) Quantification method using particle agglutination reaction
JPH03123861A (en) Immunochemical measurement method of haptens
JPS6336151A (en) Quantitative determination of fine particle by measuring fluorescent intensity
JPS6281566A (en) Quantification method by measurement of fluorescent intensity of fine particle
JPH01147367A (en) Method and reagent for measuring blood clotting factor
JP3618797B2 (en) Immunoassay
JPH0448265A (en) Immunoassay
JP3916189B2 (en) Reagent for immunoassay and immunoassay
JP2745705B2 (en) Antigen / antibody assay
GB1600139A (en) Method and apparatus for the measurement of antigens and antibodies
JPS6262291B2 (en)
JPS5992353A (en) Measuring method of flocculating reaction using insoluble carrier particle
JPH03118472A (en) Insulin assay and reagent therefor