JPH01155199A - Sonobuoy mine - Google Patents

Sonobuoy mine

Info

Publication number
JPH01155199A
JPH01155199A JP31355187A JP31355187A JPH01155199A JP H01155199 A JPH01155199 A JP H01155199A JP 31355187 A JP31355187 A JP 31355187A JP 31355187 A JP31355187 A JP 31355187A JP H01155199 A JPH01155199 A JP H01155199A
Authority
JP
Japan
Prior art keywords
sonobuoy
data
mine
section
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31355187A
Other languages
Japanese (ja)
Inventor
Noboru Shida
志田 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31355187A priority Critical patent/JPH01155199A/en
Publication of JPH01155199A publication Critical patent/JPH01155199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE: To realize a radio wave control of a mine by providing an acoustic sensor, a radio sonobuoy section for transmitting/receiving signals to/from aircraft and a mine section which supplies self-diagnosis data to the radio sonobuoy section and is controlled in detonation by the radio sonobuoy section. CONSTITUTION: An aircraft supplies a control signal to a radio wave receiving circuit 13 through an antenna 11. The content of the control signal is sent to a control circuit 27 of a mine section 2 on each demand for the sensor data, the self-diagnosis data of each sensor, and detonation. Data obtained by acoustic, hydraulic-pressure, and magnetic sensors 15, 21 and 22 are input to processing circuits 23, 24, and 25, respectively, stored in a memory circuit 26, and sent from a radio-wave-transmitting circuit 14 to the aircraft. On a demand for the self-diagnosis data, a self-diagnosis circuit 28 compares a diagnostic data with a standard data and supplies the diagnostic data as the self-diagnosis data. Moreover, the detonation demand is supplied to a controlling circuit 27, and a detonator 29 initiates explosion. Thus a radio-wave control of a mine becomes possible and target-locating information can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はソノブイ機雷に関し、特に航空を等の運搬プラ
ットフォームから海上に投下され、潜水艦などの海中の
目標の放射する音響情報を補捉するソノブイと、係維式
で設定深度に保持されるかもしくは沈底式で海底に沈設
される機雷とを組合わせて両者の有する欠点の相互補完
を図ったソノブイ機雷に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to sonobuoy mines, and more particularly to sonobuoy mines that are dropped onto the sea from a carrier platform such as an aircraft and that capture acoustic information emitted by underwater targets such as submarines. This relates to a sonobuoy mine that is designed to compensate for the shortcomings of both by combining the mine with a mooring type mine that is held at a set depth, or a submerged type mine that is deposited on the seabed.

〔従来の技術〕[Conventional technology]

航空機から海上に投下されたのち、音響センサとしての
ハイドロホンを海中に吊下して海中音に含まれる目標音
を補捉し、これを電波によって航空機搭載の管制センタ
に送出して目標を探知するソノブイはよく知られている
。このソノブイの動作は、投下後自動的に所定の動作を
開始し完了するものと、管部1センタから送出されるコ
マンドで制御されるものと2通りの形式があり、それぞ
れ運用目的によって使い分けられている。
After being dropped from an aircraft into the sea, a hydrophone acting as an acoustic sensor is suspended into the sea to capture the target sound contained in the underwater sound, and this is transmitted via radio waves to a control center onboard the aircraft to detect the target. Sonobuoys that do this are well known. There are two types of sonobuoy operations: one that automatically starts and completes a predetermined operation after dropping, and one that is controlled by commands sent from the pipe center 1, and each can be used depending on the operational purpose. ing.

一方、係維式や沈床式の機雷は、海中における設定深度
、状態において相異するが、いずれにせよ、音響、水圧
、磁気センナのいずれかもしくは複合利用によシ、近接
した目標による音響、水圧、磁気の変化データを得て、
この変化が所定の設定条件を調定するとき起爆するとい
う感応形式のものが主流をなし、−朝有事の際には多用
されることもよく知られている。
On the other hand, tethered and sunk mines differ in the setting depth and conditions under the sea, but in any case, they can be used either by acoustic, hydraulic, or magnetic sensors, or by a combination of them. Obtain data on changes in water pressure and magnetism,
It is well known that the mainstream is a type that detonates when this change adjusts to a predetermined setting condition, and is often used in morning emergencies.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のソノブイおよび機雷にはそれぞれ次のよ
うな間vμがある。
The conventional sonobuoys and mines described above each have the following distance vμ.

すなわち、ソノブイは、その運用形態が浮遊式であるた
め、定点で所要のデータ収集ができない。
In other words, because the sonobuoy operates in a floating manner, it is not possible to collect the necessary data at a fixed point.

このことは、収集したデータから目標の位置を管制セン
タで決定しようとする際の精度の低下を招くこととなる
This results in a decrease in accuracy when the control center attempts to determine the location of the target from the collected data.

また、投下装置の物理的なサイズ制約から、目標データ
を得る手段としては音響センサに限定されており、水圧
、磁気センサ吟の他のセンナを利用することは極めて困
難で、このことは目標探知機能の増大を抑圧する原因と
なっている。
In addition, due to the physical size constraints of the dropping device, the means to obtain target data is limited to acoustic sensors, and it is extremely difficult to use other sensors such as water pressure and magnetic sensors. This is the cause of suppressing the increase in function.

一方、機雷は、物理的なサイズ制約はソノブイに比して
大幅に緩和され、音響、水圧、磁気等の各種センサの複
合利用も可能であるが、反面、−旦敷設されると陸上か
ら有線形式で管制する方法しかなく、機雷の機能状態の
監視もしくけ最適U・j1作制御のだめの運用もこの条
件で大幅に制限されてしまうという問題がある。
On the other hand, the physical size constraints of sea mines are significantly relaxed compared to sonobuoys, and the combined use of various sensors such as acoustics, water pressure, and magnetism is possible. The problem is that the only way to control the mines is through formal control, and this condition greatly limits the ability to monitor the functional status of mines and control the optimal U-J1 operation.

本発明の目的は上述した欠点を除去し、ソノブイと機雷
とを結合し、ソノブイを定点に係維するとともに、ソノ
ブイ管制用の電波チャンネルを利用して機雷を電波によ
って管制しつるソノブイ機雷を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks, and provide a sonobuoy mine that combines a sonobuoy and a mine, anchors the sonobuoy to a fixed point, and controls the mine by radio waves using a radio wave channel for controlling the sonobuoy. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のソノブイ機雷は、所定の個数の71イドロホン
を有する音響センサを接続した連結ケーブルの一端と接
続して海上に浮遊し航空機搭載の管制センタとの間で電
波による制御信号の受信々らびに前記制御信号に対する
応答信号の送信を行なうソノブイ部と、前記連結ケーブ
ルの他端に接続されて前記ソノブイ部を固定し前記音響
センサのほか水圧センサもしくは磁気センサの少なくと
もいずれか一方のセンサによるデータに加えて前記音響
および水圧ならびに磁気センサに関する自己診断データ
を前記ソノブイ部から受ける前記制御信号の制御のもと
に前記応答信号発生に必要なデータとして前記ソノブイ
に供給しかつ前記制御によってその起爆の制御を受ける
係維式もしくは沈床式の機雷部とを備えて構成される。
The sonobuoy mine of the present invention is connected to one end of a connecting cable connected to an acoustic sensor having a predetermined number of 71 hydrophones, floats on the sea, and receives control signals by radio waves between it and an aircraft-mounted control center. a sonobuoy unit that transmits a response signal to the control signal; and a sonobuoy unit that is connected to the other end of the connection cable to fix the sonobuoy unit and receives data from at least one of a water pressure sensor and a magnetic sensor in addition to the acoustic sensor. In addition, self-diagnosis data regarding the acoustic, water pressure, and magnetic sensors are supplied to the sonobuoy as data necessary for generating the response signal under the control of the control signal received from the sonobuoy section, and the detonation thereof is controlled by the control. It is comprised of a moored or sunken mine section that can be used to receive heavy loads.

〔実施例〕〔Example〕

次に、図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

第1図に示す実施例の構成は、航空機搭載の管制センタ
から機雷の動作制御のだめの電波による制御信号を受け
、また、この制御信号の制御のもとに機雷から受ける諸
データを応答信号として電波によって送出するソノブイ
部1、ソノブイ1から連結ケーブル3を介して供給され
る制御信号によってその動作が制御される機雷部2を備
えて構成される。
The configuration of the embodiment shown in Fig. 1 is such that it receives control signals by radio waves from an aircraft-mounted control center to control the operation of mines, and also receives various data from the mines as response signals under the control of these control signals. It is comprised of a sonobuoy section 1 that sends out radio waves, and a mine section 2 whose operation is controlled by control signals supplied from the sonobuoy 1 via a connecting cable 3.

ソノブイ部1は、アンテナ11、送受切替回路12、電
波受信回路13、電波発信回路14および音砦センサ1
5を備えて構成され、音響センサ15は1個もしくは複
数のハイドロホンが連結ケーブル3に取付けられた状態
で電源(図示せず)の供給を受けつつ海中に吊下され、
かつ連結ケーブルを介して機雷部2に係維状態に固定さ
れる。
The sonobuoy section 1 includes an antenna 11, a transmission/reception switching circuit 12, a radio wave reception circuit 13, a radio wave transmission circuit 14, and a sound fort sensor 1.
5, the acoustic sensor 15 is suspended in the sea while receiving power (not shown) with one or more hydrophones attached to the connecting cable 3,
It is also fixed to the mine section 2 in a locked state via a connecting cable.

ソノブイ部1は、通常連結ケーブル3従って音響センサ
15とともに機雷部2の内部に収納され、投下時に連結
ケーブル3を灯り出す形式で海上に浮上して浮遊する状
態で運用される。
The sonobuoy section 1 is normally housed inside the mine section 2 together with the connecting cable 3 and the acoustic sensor 15, and is operated in a state where it floats on the sea surface with the connecting cable 3 illuminated when dropping.

第2図は第1図の実施例のソノブイ機雷の運用状態を示
す説明図である。航空機等の運搬プラットフォームに搭
載時にあっては、沈底型の円筒形の磯?lW部2の内部
にソノブイ部1、音響センサ15を含む連結ケーブル3
が格納され、投下して機雷部2が海底Bに着底するまで
連結ケーブル4を繰り出しながら浮力を利用して海面W
に浮遊した状態でソノブイ部1が機雷部2に係維される
。この離脱機構は、投下着水時における衝撃を利用する
ソノブイの受圧離脱機構に準じた手段で容易に実施しう
る。第2図は機雷部2が沈床式の場合であるが、係維式
の場合は機雷自体がアンカー等で海中に係維される。
FIG. 2 is an explanatory diagram showing the operational state of the sonobuoy mine of the embodiment shown in FIG. When loaded onto a transportation platform such as an aircraft, is it a sunken cylindrical rock? A connecting cable 3 including a sonobuoy part 1 and an acoustic sensor 15 inside the lW part 2
is stored and dropped, and the connecting cable 4 is fed out until the mine part 2 touches the bottom of the seabed B, and the mine part 2 is lowered to the sea surface W using buoyancy.
The sonobuoy section 1 is anchored to the mine section 2 while floating. This detachment mechanism can be easily implemented by a means similar to the pressure release mechanism of a sonobuoy that utilizes the impact generated when the vessel is dropped and submerged. Figure 2 shows a case where the mine section 2 is of a sunken type, but in the case of a moored type, the mine itself is moored in the sea with an anchor or the like.

再び第1図に戻って実施例の説明を続けする。Returning again to FIG. 1, the description of the embodiment will be continued.

連結ケーブル3の他端と結合し海底に沈床するかもしく
は海中に係維される機雷部2は、複数種類のセンサ、本
実施例の場合は音響上/す15のほかに水圧センサ21
および磁気センサ22による取得データを利用する感応
機雷として構成され、これら各センサのデータ処理のた
めの音響データ処理回路23、水圧データ処理回路24
および磁気データ処理回路25を有する。なお、上述の
各センサによる取得データは起爆装[29にも提供され
る。
The mine section 2, which is connected to the other end of the connecting cable 3 and is sunk on the seabed or moored under the sea, is equipped with a plurality of types of sensors, in the case of this embodiment, in addition to the acoustic pressure sensor 15, the water pressure sensor 21
It is configured as a sensitive mine that utilizes the data acquired by the magnetic sensor 22, and an acoustic data processing circuit 23 and a hydraulic data processing circuit 24 for processing data from each of these sensors.
and a magnetic data processing circuit 25. Note that the data obtained by each of the above-mentioned sensors is also provided to the detonator [29].

さらに、これら各データ処理回路によって得られる収集
データを格納するメモリ回路26、収集データの書き込
み、読み出し制御のほか、自己診断データの読出し、起
爆に関する制御等のシステム制御を指令する制御回路2
7、自己診断回路28等を備えて構成され、第1図には
なお、機雷部2の起爆装置29を併設して示す。
Furthermore, there is a memory circuit 26 that stores the collected data obtained by each of these data processing circuits, and a control circuit 2 that commands system control such as writing and reading control of collected data, reading self-diagnosis data, and control related to detonation.
7. It is constructed with a self-diagnosis circuit 28, etc., and a detonator 29 of the mine section 2 is also shown in FIG.

次に第1図の実施例の動作について説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.

管制センタを搭載する航空機からVHF帯を利用する数
10チャ/ネルのソノブイチャンネルのうちから選択し
たチャンネルを利用する制御信号がアンテナ11を介し
て送受切替回路12に供給され、入力を電波受信回路1
3に供給する。この制御信号の内容は大別すると3棟類
あり、そのlは所望のセンサデータの要求、その2は各
センナの自己診断データの要求その3は起爆装[29を
必要に応じて起爆せしめる起爆要求である。
A control signal using a channel selected from among several dozen sonobuoy channels using the VHF band from an aircraft equipped with a control center is supplied via an antenna 11 to a transmission/reception switching circuit 12, and the input is sent to a radio wave receiving circuit. 1
Supply to 3. The contents of this control signal can be roughly divided into three types: 1 is a request for desired sensor data, 2 is a request for self-diagnosis data of each sensor, and 3 is a detonator that detonates the detonator [29] as necessary. It is a request.

電波受信回路13から出力する制御信号は、上述したい
ずれかの要求を有するもので、機雷部20制御回路27
に送出される。
The control signal output from the radio wave receiving circuit 13 has any of the above-mentioned requirements, and the control signal output from the mine section 20 control circuit 27
sent to.

センサデータ要求の場合は次のようにして処理される。A sensor data request is processed as follows.

音響センサ15、水圧センサ21および磁気↓ンサ22
による取得データはそれぞれ音響データ処理回路23、
水圧データ処理回路24および磁気データ処理回路25
に入力されて所定の形式でディジタル化される。これら
センサデータは、制御回路27の内蔵プログラムの制御
のもとに書込み/読出し制御信号を受け、そのすべても
しくは選択したセンサデータがメモリ回路26に書き込
まれ、センサデータとして読出されて連結ケーブル3を
介して電波発信回路14に供給される。
Acoustic sensor 15, water pressure sensor 21 and magnetic sensor 22
The data acquired by the acoustic data processing circuit 23,
Hydraulic data processing circuit 24 and magnetic data processing circuit 25
The data is input into the computer and digitized in a predetermined format. These sensor data receive write/read control signals under the control of the built-in program of the control circuit 27, and all or selected sensor data is written to the memory circuit 26, read out as sensor data, and connected to the connecting cable 3. The signal is supplied to the radio wave transmitting circuit 14 via the signal.

?ff波発信回路14id、このセンサデータにもとづ
いて所定のFM変調形式によるVHF帯の応答信号を発
生、これを送受切替回路12、アンテナ11を介して筑
空気等の管制センタ搭載プラットフォームに送出する。
? The FF wave transmitting circuit 14id generates a VHF band response signal in a predetermined FM modulation format based on this sensor data, and sends this via the transmission/reception switching circuit 12 and antenna 11 to a control center mounting platform such as Chikuei.

管制センタ側では、こうして複数のセンサによるセンサ
データを選択的に取得でき、目標探知のだめの情報量を
ソノブイ単体の場合よりも大幅に増大することができる
In this way, the control center can selectively acquire sensor data from a plurality of sensors, and the amount of information needed for target detection can be significantly increased compared to the case of a single sonobuoy.

なお、従来のソノブイにあっては、音響センサ15はン
゛舟中に自由吊下され、従ってソノブイとともに波浪の
影%を受けて上下に揺動し、この揺動による低周波雑音
を捨い易いという問題があるが、本実施例ではこの問題
も音響センサ15の固定によシt1ぼ完全に排除できる
こととなる。
In the case of conventional sonobuoys, the acoustic sensor 15 is freely suspended in the boat, and therefore, together with the sonobuoy, it swings up and down under the influence of waves, and the low-frequency noise caused by this swing is discarded. However, in this embodiment, this problem can be almost completely eliminated by fixing the acoustic sensor 15.

矢に、自己詮所データ安来の場合の動作について述べる
Next, we will discuss the operation in the case of self-inspection data Yasugi.

自己診断データ要求の場合には、制御回路27の書込み
/読出し制御信号によって音響データ処理回路23、水
圧データ処理回路24および磁気データ処理回路25の
各センサからの診断用データがメモリ回路26に喜き込
み、また読出されて自己診断回路28に供給される。
In the case of a self-diagnosis data request, the diagnostic data from each sensor of the acoustic data processing circuit 23, hydraulic data processing circuit 24, and magnetic data processing circuit 25 is sent to the memory circuit 26 by the write/read control signal of the control circuit 27. The data is written in, read out, and supplied to the self-diagnosis circuit 28.

この診断用データは音袢、水圧および磁気の各センサな
らびに各ゲータ処理回路の動作の正常性を監睨するため
に利用されるもので、各データ処理回r5にあらかじめ
設定したチエツクポイントから正常性イ認に必要な診断
用データを取得し、これを自己診断回路28で41準デ
ータと比較してS作が正常であるか否かを確認したのち
所定の形式の自己診rrfr f−夕として電波発信回
路14に供給する。電波発信回路14はこれによってF
M変調によるVHF波の応答信号を発信し送受切替回路
12およびアンテナ11を介して航空局の管制センタに
送出する。管制センタではこうして常時ソノブイ部1を
含み機雷部2の動作状況を監視することができる。
This diagnostic data is used to monitor the normality of the operation of the sound, water pressure, and magnetic sensors as well as each gator processing circuit. The self-diagnosis circuit 28 compares this with the 41 semi-data to confirm whether the S operation is normal or not, and then performs a self-diagnosis in a predetermined format. It is supplied to the radio wave transmission circuit 14. This causes the radio wave transmitting circuit 14 to
A VHF wave response signal with M modulation is transmitted and sent to the control center of the aviation station via the transmission/reception switching circuit 12 and antenna 11. In this way, the control center can constantly monitor the operational status of the mine section 2, including the sonobuoy section 1.

機雷部2を例等かの理由で自爆させたい場合には起爆要
求を指令する制御信号が制御回路27に供給され、起爆
装置29を起動する起爆(8号が起爆装置29に供給さ
れこれを起爆せしめる。
If it is desired that the mine section 2 self-destruct for some reason, a control signal instructing a detonation request is supplied to the control circuit 27, and a detonation signal that starts the detonator 29 (No. 8 is supplied to the detonator 29 to activate it) Detonate it.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれけ、ソノブイと係維もし
くは沈低機雷を連接して利用することKより、定点にお
いて各種センサデータを同時もしくは選択的に収集する
状態で機雷の電波による管制が可能となり、目標探知情
報を大幅に増大するとともに機雷設置場所の自由度を著
しく増大することができ、かり音響センサに対する低周
波雑音の影響を著しく低減したソノブイ機雷が実現でき
るという効果がある。
As explained above, by using sonobuoys and anchored or sunk mines in conjunction with the present invention, it is possible to control mines using radio waves while simultaneously or selectively collecting various sensor data at a fixed point. This has the effect of significantly increasing target detection information, significantly increasing the degree of freedom in mine installation locations, and realizing a sonobuoy mine that significantly reduces the influence of low-frequency noise on acoustic sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のソノブイ機雷の一実施例を示すブロッ
ク図、gg2図は第1図の実施例のソノブイ機雷の運用
状況を示す説明図である。 1・・・・・・ンノプイ部、2・・・・・・機雷部、3
・・・・・・連結ケーブル、11・・・・・・アンテナ
、12・・・・・・送受切替回路、13・・・・・・電
波受信回路、14・・・・・・電波発信回路、15・・
・・・・音響センサ、21・・・・・・水圧センサ、2
2・・・・・・磁気センサ、23・・・・・・音響デー
タ処理回路、24・・・・・・水圧データ処理回路、2
5・・・・・・ゲタ気データ処理回路、26・・・・・
・メモリ回路、27・・・・・・制御回路、28・・・
・・・自己診断回路、29・・・・・・起爆装置。 代理人 弁理士  内 原   晋 $jWJ
FIG. 1 is a block diagram showing an embodiment of the sonobuoy mine of the present invention, and FIG. gg2 is an explanatory diagram showing the operational status of the sonobuoy mine of the embodiment of FIG. 1. 1...Nnopui Department, 2...Mine Department, 3
......Connection cable, 11...Antenna, 12...Transmission/reception switching circuit, 13...Radio wave reception circuit, 14...Radio wave transmission circuit , 15...
...Acoustic sensor, 21...Water pressure sensor, 2
2... Magnetic sensor, 23... Acoustic data processing circuit, 24... Water pressure data processing circuit, 2
5...Getaki data processing circuit, 26...
・Memory circuit, 27... Control circuit, 28...
...Self-diagnosis circuit, 29...Detonator. Agent Patent Attorney Susumu Uchihara $jWJ

Claims (1)

【特許請求の範囲】[Claims] 所定の個数のハイドロホンを有する音響センサを接続し
た連結ケーブルの一端と接続して海上に浮遊し航空機搭
載の管制センタとの間で電波による制御信号の受信なら
びに前記制御信号に対する応答信号の送信を行なうソノ
ブイ部と、前記連結ケーブルの他端に接続されて前記ソ
ノブイ部を固定し前記音響センサのほか水圧センサもし
くは磁気センサの少なくともいずれか一方のセンサによ
るデータに加えて前記音響および水圧ならびに磁気セン
サに関する自己診断データを前記ソノブイ部から受ける
前記制御信号の制御のもとに前記応答信号発生に必要な
データとして前記ソノブイに供給しかつ前記制御によっ
てその起爆の制御を受ける係維式もしくは沈底式の機雷
部とを備えて成ることを特徴とするソノブイ機雷。
It is connected to one end of a connecting cable to which an acoustic sensor having a predetermined number of hydrophones is connected, and is floating on the sea and receives control signals by radio waves and transmits response signals to the control signals between it and the control center on board the aircraft. a sonobuoy section connected to the other end of the connection cable to fix the sonobuoy section, and a sonobuoy section that is connected to the other end of the connection cable and that collects data from at least one of a water pressure sensor and a magnetic sensor in addition to the acoustic sensor; The self-diagnosis data concerning the sonobuoy is supplied to the sonobuoy as data necessary for generating the response signal under the control of the control signal received from the sonobuoy section, and the detonation of the sonobuoy is controlled by the control. A sonobuoy mine characterized by comprising a mine part.
JP31355187A 1987-12-10 1987-12-10 Sonobuoy mine Pending JPH01155199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31355187A JPH01155199A (en) 1987-12-10 1987-12-10 Sonobuoy mine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31355187A JPH01155199A (en) 1987-12-10 1987-12-10 Sonobuoy mine

Publications (1)

Publication Number Publication Date
JPH01155199A true JPH01155199A (en) 1989-06-19

Family

ID=18042682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31355187A Pending JPH01155199A (en) 1987-12-10 1987-12-10 Sonobuoy mine

Country Status (1)

Country Link
JP (1) JPH01155199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297101A (en) * 1992-04-17 1993-11-12 Nec Corp Underwater float guide system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297101A (en) * 1992-04-17 1993-11-12 Nec Corp Underwater float guide system

Similar Documents

Publication Publication Date Title
US6657921B1 (en) Marine seismic sensor deployment system including reconfigurable sensor housings
US4912464A (en) Anchor alarm for boats and the like
US5052814A (en) Shallow marine seismic system and method
CN101057160B (en) Method and device for seismic data acquisition
US5319376A (en) Arctic submarine buoy and application methods
EP2474467A1 (en) A marine device to record seismic and/or electromagnetic data
CN104044748B (en) Aircraft black box position reporting and course line tracking
JP2003232865A (en) System aiming at collection of earthquake data on sea bottom earth layer by using sea-bottom-installed earthquake data collecting station
US4110726A (en) Navigation system and method for determining the position of an ocean mining ship
US5404339A (en) Retriever for a seismic streamer cable
US20060215494A1 (en) Autolocating underwater beacon and method for deployment thereof
US4408488A (en) Generalized drifting oceanographic sensor
CN103950545A (en) Airplane black box position apprizing and route tracking system
CN204197305U (en) Aircraft black box position reporting and course line track channel
JPH0968575A (en) Measurement system for underwater data
JPH01155199A (en) Sonobuoy mine
RU61895U1 (en) AUTONOMOUS SEISMOACOUSTIC HYDROPHYSICAL STATION
US7177232B1 (en) Wireless radio frequency hydrophone system
CN102788992A (en) Method and equipment used for collecting seismic data
JP2000193755A (en) Device and method for installing submarine seismometer
US5398214A (en) Pressure responsive clasp
JP2004345434A (en) Sea area intrusion warning method
JPS6252485A (en) System for observing sea bottom
US5033354A (en) Deep operating monitor and destruct device
JPH04120489A (en) Underwater sound data collecting apparatus