JPH01154571A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH01154571A
JPH01154571A JP62312021A JP31202187A JPH01154571A JP H01154571 A JPH01154571 A JP H01154571A JP 62312021 A JP62312021 A JP 62312021A JP 31202187 A JP31202187 A JP 31202187A JP H01154571 A JPH01154571 A JP H01154571A
Authority
JP
Japan
Prior art keywords
layer
electrode
light
photoactive layer
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62312021A
Other languages
Japanese (ja)
Inventor
Masao Yoshikawa
吉川 雅夫
Tetsuo Suzuki
哲郎 鈴木
Akio Kojima
小島 明夫
Masayuki Shiyoji
正幸 所司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62312021A priority Critical patent/JPH01154571A/en
Publication of JPH01154571A publication Critical patent/JPH01154571A/en
Priority to US07/450,288 priority patent/US4992109A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a photoelectric converter which can be easily manufactured inexpensively with large area and high conversion efficiency with flexibility by incorporating specific phenylene compound in an optically active layer. CONSTITUTION:A photoelectric converter is composed, for example, of a structure in which a photoconductive organic semiconductor and an optically active layer 2 including a compound represented by a formula I are sandwiched between a front electrode 1 and a back electrode 4. Since light is incident from the electrode 1, the front electrode becomes a light transmittive. Both the front and back electrodes may be solely employed, or may be provided with a support or protective layer. The electrodes 1, 4 are connected by leads or the like to an external circuit to be employed in a practical use. This optically active layer 3 may be of a layer for generating a charge by the light similarly to the layer 2 or may be of a layer permitting efficient movement of charge generated from the layer 2. R1, R2, R3, R4 in the formula I are hydrogen, substituted or nonsubstituted aryl, and the R1, the R2, and the R3, the R4 may form a ring.

Description

【発明の詳細な説明】 [技術分野] 本発明は有機光導電体を用いた光電変換素子(有機太陽
電池)に関するものであり、光センサ−、イメージセン
サ−等に応用される。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a photoelectric conversion element (organic solar cell) using an organic photoconductor, and is applied to optical sensors, image sensors, etc.

[従来技術] 無機半導体を用いた光電変換素子を作製する試みは多く
なされてきている。その目標はa)変換率が高く、b)
安値な光電変換素子である。
[Prior Art] Many attempts have been made to produce photoelectric conversion elements using inorganic semiconductors. The goal is a) high conversion rate and b)
It is a low-priced photoelectric conversion element.

中結晶Si、多結晶S tSCdS、CdTe。Medium crystalline Si, polycrystalline S tSCdS, CdTe.

GaAs、アモルファスSi等の実用化か試みられてい
るが、これらは全てb)の1]標を満足しているとは言
い難い。
Attempts have been made to put GaAs, amorphous Si, etc. to practical use, but it is hard to say that all of these satisfy the criterion b) (1).

この欠点を改善するために有機半導体を用いて光電変換
素子を作製する試みか近年なされている。使用された有
機半導体層としては以下の例がある。
In order to improve this drawback, attempts have been made in recent years to fabricate photoelectric conversion elements using organic semiconductors. Examples of the organic semiconductor layers used are as follows.

(イ)スピナー塗布されたメロシアニン染料層(特開昭
51−122389 、特開昭53−131782及び
ニー、ケー、ゴウシュ(A、に、Ghosh)著の「ジ
ャーナル、オフ。アプライド、フィジソクス(J、Ap
pl、Phys、)J 49.5982.1978)(
ロ)フタロシアニン蒸む層またはオバレン等の電子供与
体層とピリリウム系染料等の電子受容体層を積層したも
の(特開昭54−27787特開昭60−201672
及びアール、オー、ラウトフ−r (R,O,Lout
ry)著の[ジャーナル、オブ、アプライド、フィジッ
クス J、Appl。
(a) Merocyanine dye layer coated with a spinner (JP-A-51-122389, JP-A-53-131782, and "Journal, Off. Applied, Phys. Ap
pl, Phys, ) J 49.5982.1978) (
b) Laminated layer of phthalocyanine vapor layer or electron donor layer such as obalene and electron acceptor layer such as pyrylium dye (JP-A-54-27787, JP-A-60-201672)
and R, O, Loutfu-r (R, O, Lout
[Journal of Applied Physics J, Appl.

Phys、) J 52.5218.1981)(ハ)
ピリリウム系染料とポリカーボネートから生成する共晶
錯体層(特開昭54−27387)(ニ)無金属フタロ
シアニンをバインダーに分散させた層(特開昭55−9
497) (ホ)n型シリコンとp型ドープされたポリアセチレン
薄膜を積層したもの (特開昭55−1301、82、
特開昭55−138879及びビー、アール、ワインバ
ーガー(B、R,Weinnberger)著のアプラ
イド、フィジックス9 レター(Appl、Phys、
Lett、)3g、 555.1981)(へ)真空薄
青されたメロシアニン染料層(特開昭56−35477
) これらは、これらの有機半導体を単独または適当なバイ
ンダーと共に媒体中に溶解または分散した溶液を基板上
に塗布したり、あるいは低温度で真空蒸着し、更にその
上に別の導電層を設けることで安価に大面積のものが得
られるが、変換効率が低すぎ、実用には供されなかった
Phys,) J 52.5218.1981) (c)
Eutectic complex layer formed from pyrylium dye and polycarbonate (JP-A-54-27387) (d) Layer in which metal-free phthalocyanine is dispersed in a binder (JP-A-55-9)
497) (e) Laminated layer of n-type silicon and p-type doped polyacetylene thin film (JP-A-55-1301, 82,
Japanese Patent Publication No. 55-138879 and Applied Physics 9 Letter by B. R. Weinnberger (Appl, Phys,
Lett,) 3g, 555.1981) (to) Vacuum pale blue merocyanine dye layer (JP-A-56-35477
) These can be produced by applying a solution of these organic semiconductors alone or together with a suitable binder dissolved or dispersed in a medium onto a substrate, or by vacuum-depositing them at low temperatures, and then providing another conductive layer thereon. Although a large-area product can be obtained at low cost, the conversion efficiency was too low to be put to practical use.

[11的] 本発明は以上のような従来の欠点を解決するためになさ
れたものであって、安価で大面積が容易に作製でき、可
撓性もあって有機材料を用いたものとしては、高い変換
効率を有し、従来に比べて太陽光、室内光のスペクトル
分布にあった光電変換素子を提供することを目的とする
[11] The present invention has been made to solve the above-mentioned conventional drawbacks, and is inexpensive, easy to manufacture in a large area, flexible, and using organic materials. The present invention aims to provide a photoelectric conversion element that has high conversion efficiency and is more suitable for the spectral distribution of sunlight and indoor light than conventional ones.

[溝 成] 本発明は上記目的を達成するために、可視光領域で光キ
ヤリア生成能力のある有機半導体かそれ単独または適当
なバインダーとともに用いられた場合[前記(イ)〜(
へ)]の欠点を改良すべく鋭意研究した結果、 透光性フロント電極、光活性層および背面電極をHする
光電変換素子において、前記光活性層か少なくとも、下
記一般式で示されるフェニレンジアミン化合物を含有す
ることによって、光電流が大幅に上昇し、その結果、光
電変換効率か上昇するという発見に基づくものである。
[Mizosei] In order to achieve the above object, the present invention provides an organic semiconductor capable of generating optical carriers in the visible light region, or when used alone or together with a suitable binder [said (a) to (a).
As a result of intensive research to improve the drawbacks of This is based on the discovery that by containing , the photocurrent increases significantly and, as a result, the photoelectric conversion efficiency increases.

一般式 ただし、上記一般式における、R1、R2、R3、R4
は水素、置換または無置換のアルキル基、置換または無
置換のアリール基であり、R1とR2およびR3とR4
とは環を形成していてもよい。
General formula However, in the above general formula, R1, R2, R3, R4
are hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, and R1 and R2 and R3 and R4
may form a ring.

本発明の光電変換素子は、例えば、光導電性何機半導体
と上記化合物を含む光活性層(1)が2つの電t!il
i!(フロント電極、背面電極)にサンドイッチされた
構成から成る。
In the photoelectric conversion element of the present invention, for example, the photoactive layer (1) containing a photoconductive semiconductor and the above-mentioned compound has two electric charges. il
i! (front electrode, back electrode).

フロント電極側から光が入射するため、フロント電極は
光透過性となっている。
Since light enters from the front electrode side, the front electrode is transparent.

フロント、背面電極とも単独で使用されてもよいし、支
持体あるいは保護層か設けられていてもよい。第1〜第
3図にはこれらの例が示されている。
Both the front and back electrodes may be used alone or may be provided with a support or a protective layer. Examples of these are shown in FIGS. 1-3.

フロント電極、背面電極からはリード線等により、外部
回路と接続され、実際の使用に供される。
The front electrode and the back electrode are connected to an external circuit through lead wires, etc., and used for actual use.

光活性層は単層である必要はなく、2層の例が第1〜第
3図の(b)図にそれぞれ示されている。この光活性層
(II)は光活性層(1)と同様に光により電荷を発生
させる層でもよいし、光活性層(I)で発生した電荷を
効率よく移動させる層でもよい。第1(b)図の例では
光活性層(I)はフロント電極側に描かれているが光活
性層(II)はフロント電極側にあっても勿論良い。ま
た、光活性層(I)は異なる光導電性有機材料から成る
複層であってもよい。
The photoactive layer need not be a single layer; examples of two layers are shown in FIGS. 1-3(b), respectively. This photoactive layer (II) may be a layer that generates charges by light like the photoactive layer (1), or may be a layer that efficiently transfers the charges generated in the photoactive layer (I). In the example of FIG. 1(b), the photoactive layer (I) is drawn on the front electrode side, but it goes without saying that the photoactive layer (II) may be on the front electrode side. The photoactive layer (I) may also be a multilayer consisting of different photoconductive organic materials.

本発明は上記光活性層(I)にかかわるものである。The present invention relates to the photoactive layer (I).

光活性層(1)は光11((射て正孔と電子を発生させ
る層である。このためには、層内に電界か存在すること
か必要て、これはフロント電極と背面電iの間に外部か
ら電圧を印加するか、または異なる仕事関数を有する金
属をフロント電極と背面電極に使用するか、または光活
性層(1)がフロントまたは背面電極もしくは光活性層
(n)と接合した時に、お互いのフェルミレベル(また
は仕事関数)の違いにより、熱キャリアか移動し、接合
障壁が形成されることで外部電圧なしても達成される。
The photoactive layer (1) is a layer in which light (11) is emitted and generates holes and electrons.For this purpose, it is necessary that an electric field exists within the layer, and this is caused by the presence of an electric field between the front electrode and the back electrode. an external voltage is applied between them, or metals with different work functions are used for the front and back electrodes, or the photoactive layer (1) is bonded to the front or back electrode or the photoactive layer (n). Sometimes, due to the difference in their Fermi levels (or work functions), heat carriers move and a junction barrier is formed, which can be achieved without an external voltage.

光活性層(I)は層中に一般式(A)で示されるフェニ
レンジアミン化合物を含む層である。
The photoactive layer (I) is a layer containing a phenylenediamine compound represented by the general formula (A).

この層には他の必須成分として、可視光に吸収をaする
光導電性有機半導体を含んでいる。また必要ならば適当
なバインダーを含んでいてもよい。
This layer contains, as another essential component, a photoconductive organic semiconductor that absorbs visible light. It may also contain a suitable binder if necessary.

我々はかかるフェニレンシアミン化合物が存在すると、
存在しない場合に比較して、光活性層(I)で光照射時
に生成する光電流量が飛躍的に増大し、それにより変換
効率か増大することを見出した。
We believe that the presence of such phenylenecyamine compounds
It has been found that the amount of photocurrent generated in the photoactive layer (I) upon irradiation with light increases dramatically compared to the case where it does not exist, thereby increasing the conversion efficiency.

ここで光変換素子とは、第1図のフロントおよび背面電
極間に外部電圧を印加しないで光照射した場合に起電力
または電流もくしはその両方を生じ、また外部電圧の印
加の状態では大きな光電流がとり出せる素子のことであ
る。
Here, a photoconversion element is one that generates an electromotive force or current, or both, when light is irradiated without applying an external voltage between the front and back electrodes in Figure 1, and that generates a large amount of electromotive force or current when an external voltage is applied. This is an element from which photocurrent can be extracted.

光活性層(1)は前述のごとく、一般式で示されるフェ
ニレンジアミン化合物と可視光に吸収を有する光導電性
有機半導体を必須成分として含む層である。
As described above, the photoactive layer (1) is a layer containing as essential components a phenylenediamine compound represented by the general formula and a photoconductive organic semiconductor that absorbs visible light.

一般式で表わされるフェニレンシアミン化合物は層中で
他の有機半導体やバインダーと結晶化せずに均一に相溶
する能力か高く、また、有機化合物の中ではイオン化ポ
テンシャルが小さく、また正孔移動度も高い。
The phenylenecyamine compound represented by the general formula has a high ability to be uniformly compatible with other organic semiconductors and binders in the layer without crystallization, and has a low ionization potential among organic compounds, and has a low hole transfer potential. The degree is also high.

ここで光活性層(I)での各成分の川底は、フェニレン
ジアミン化合物  1〜70wt96可視光に吸収を何
する光導電性有機半導体30〜90wt% バインダー         0〜50vt%であり、
好ましくはそれぞれ5〜50vt%、40〜70wt%
、10〜40vt%である。
Here, the base of each component in the photoactive layer (I) is: 1 to 70 wt% of a phenylene diamine compound, 30 to 90 wt% of a photoconductive organic semiconductor that absorbs visible light, and 0 to 50 wt% of a binder.
Preferably 5 to 50 vt% and 40 to 70 wt%, respectively.
, 10-40vt%.

フェニレンジアミン化合物の割合が低くなると、同化合
物の添加の効果が弱くなり、また、フェニレンジアミン
化合物の割合か高くなると相対的に光吸収光導電性有機
半導体の濃度が低くなり、それにより光吸収量が小さく
なる。
As the proportion of the phenylenediamine compound decreases, the effect of adding the same compound becomes weaker, and as the proportion of the phenylenediamine compound increases, the concentration of the light-absorbing photoconductive organic semiconductor becomes relatively lower, thereby reducing the amount of light absorbed. becomes smaller.

光導電性有機半導体の割合が少くなると光吸収量が小さ
くなり、また、該割合か多くなると、フェニレンジアミ
ン化合物の濃度が相対的に低くなり、添加効果が弱くな
る。
When the proportion of the photoconductive organic semiconductor decreases, the amount of light absorption decreases, and when the proportion increases, the concentration of the phenylenediamine compound becomes relatively low, and the effect of addition becomes weak.

バインダーの瓜が少いとフェニレンジアミン化合物が結
晶化する確立が高まり、また、多いと光電荷の発生、移
動にかかわる部分の二が少くなり、効率か低下する。
If the amount of binder is small, the probability that the phenylenediamine compound will crystallize increases, and if it is large, the amount of parts involved in the generation and movement of photocharges will be reduced, resulting in a decrease in efficiency.

光活性層の膜厚は0.01〜10μmで適当である。The thickness of the photoactive layer is suitably 0.01 to 10 μm.

最適膜厚は用いる光導電性有機半導体の種類や樹脂によ
っても異なるか0.05〜3μmか好ましい。薄いと光
吸収量が小さくなり、またフロント/背面電極間でピン
ホールの確率が高くなる。
The optimum film thickness varies depending on the type of photoconductive organic semiconductor and resin used, and is preferably 0.05 to 3 μm. If it is thin, the amount of light absorbed will be small, and the probability of pinholes occurring between the front and back electrodes will increase.

厚くなると発生した正孔および電子の一方か?電極に到
達するまでの距離が長くなり、途中で失活する確率が高
まり、効率か低下する。
Is it one of the holes and electrons generated as the thickness increases? The distance it takes to reach the electrode increases, the probability of deactivation on the way increases, and efficiency decreases.

尚、水層は上記有機半導体を必要ならば樹脂とともに適
当な媒体中に混合し、上記有機半導体か顔料の場合はボ
ールミル等の方法で顔料を粉砕し、均一なスラリーを作
製するか、有機アミン等の溶剤中に顔料を溶解するかし
た後、フェニレンジアミン化合物を添加し、これらを背
面電極あるいは支持体上の背面電極あるいは支持体上の
フロント電極上に塗布して形成される。
For the aqueous layer, mix the above-mentioned organic semiconductor with a resin if necessary in a suitable medium, and in the case of the above-mentioned organic semiconductor or pigment, grind the pigment using a method such as a ball mill to create a uniform slurry, or mix it with an organic amine. After dissolving the pigment in a solvent such as the like, a phenylenediamine compound is added, and these are coated on the back electrode or the back electrode on the support, or the front electrode on the support.

この様に形成された光活性層は、フェニレンジアミン化
合物かない場合とくらべ、開放電圧(Voc)か若干増
大し、また、短絡電流(Jsc)が大幅に上昇する。変
換効率(η)は次式、1n (P i n : 入射光エネルギー、ff:フィルフ
ァクター)で決定される。
The photoactive layer formed in this manner has a slightly increased open circuit voltage (Voc) and a significant increase in short circuit current (Jsc) compared to the case without the phenylenediamine compound. The conversion efficiency (η) is determined by the following formula, 1n (P i n : incident light energy, ff: fill factor).

本発明の素子はフェニレンシアミン化合物を添加してい
ないものとくらべ、高い変換効率をもたらす。この理由
としてフェニレンジアミン化合物は有機物としては低い
イオン化ポテンシャルを存するため、光吸収により光導
電性有機1’−導体中に生成した光電荷のうち、正孔が
容易にフェニレンジアミン化合物に注入される。また、
該化合物は正孔移動度も高い。このため、未添加の系と
くらべ、正孔と電子の再結合の確率の低下がもたらされ
、また正孔の移動効率の上昇も図られたことか考えられ
る。
The device of the present invention provides higher conversion efficiency than a device without the addition of a phenylenecyamine compound. The reason for this is that since the phenylenediamine compound has a low ionization potential as an organic substance, holes among the photocharges generated in the photoconductive organic 1'-conductor by light absorption are easily injected into the phenylenediamine compound. Also,
The compound also has high hole mobility. For this reason, it is thought that the probability of recombination of holes and electrons is lowered compared to the system without addition, and the efficiency of hole transfer is also increased.

また、勿論外部から電圧を印加した場合にも、大きな光
電流が取り出せ、従って感度に優れた光電変換素子とし
て用いられる。
Moreover, of course, even when a voltage is applied from the outside, a large photocurrent can be extracted, and therefore it is used as a photoelectric conversion element with excellent sensitivity.

本発明で用いられるフェニレンジアミン化合物は下記の
一般式で表わされる。
The phenylenediamine compound used in the present invention is represented by the following general formula.

ただし、上記Rl 、R2、R3、R4は水素、無置換
又はハロケン原子、シアノ基、フェニル基で置換された
アルキル基、 無置換又はハロゲン原子、シアノ基、ニトロ基、アルキ
ル基で置換されたフェニル基、ナフチル基、アントリル
基等の縮合芳香環基、カルバゾリル基、フラニル基、チ
エニル基、インドリル基等のへテロ環基を表わす。
However, Rl, R2, R3, and R4 above are hydrogen, unsubstituted or an alkyl group substituted with a haloken atom, cyano group, or phenyl group, or unsubstituted or a phenyl group substituted with a halogen atom, a cyano group, a nitro group, or an alkyl group. group, a fused aromatic ring group such as a naphthyl group or anthryl group, or a heterocyclic group such as a carbazolyl group, a furanyl group, a thienyl group, or an indolyl group.

R1、R2及びR3、R4は環を形成していてもよい。R1, R2 and R3, R4 may form a ring.

上記一般式で表わされる化合物には、 1.4−ビス(N、N−ジフェニルアミノ)ベンゼン、 1.4−ビス(N−フェニル−N −1−リルーアミノ
)ベンゼン、 ■、4−ビス[N−フェニル−N−(4−メトキンフェ
ニル)−アミノコベンゼン、 1.4−ビス(N、N−ジトリルアミノ)ヘンセン、1
− (N、N−ジフェニル)アミノ−4−(N−フェニ
ル−N−メトキシフェニル−アミノ)ベンゼン、 1−(N、)J−ジフェニル)アミノ−4−(N、N−
ジエチルアミノ−ベンゼン、 4− (N、N−ジフェニル)アミノ−アニリン、1.
4−ビス[N−フェニル−N−(4−ジエチルアミノ)
フェニル−アミノコベンゼン、1.4−ビス(N、N−
ジベンジルアミノ)ベンゼン、 ■、4−ビス(N、N−ジメチルアミノ)ベンゼン、■
、4−ビス(N、N−ジエチルアミノ)ベンゼン、1−
 (N、N−ジメチルアミノ)−4−(N−メチル−N
−フェニルアミノ)ベンゼン、 N、N’−ジフェニルフェニレンジアミン、N、N’−
ジトリルフェニレンジアミン、■、4−ビス[N−フェ
ニル−N−(4−クロルフェニル)アミノコベンゼン、 1−(4−アミノフェニル)アミノ−4−フェニルアミ
ノ−ベンゼン、 1.4−ビス[N−(3−メチルフェニル)−N=フェ
ニル−アミノコベンゼン、 1.4−ビス[N−(3−メトキシフェニル)−N−フ
ェニル−アミノコベンゼン、 1.4−ビス[N−(2−メチルフェニル)−N−フェ
ニル−アミノコベンゼン、 等が挙げられる。
The compounds represented by the above general formula include 1,4-bis(N,N-diphenylamino)benzene, 1,4-bis(N-phenyl-N-1-lyluamino)benzene, 4-bis[N -Phenyl-N-(4-methquinphenyl)-aminocobenzene, 1.4-bis(N,N-ditolylamino)hensen, 1
- (N,N-diphenyl)amino-4-(N-phenyl-N-methoxyphenyl-amino)benzene, 1-(N,)J-diphenyl)amino-4-(N,N-
Diethylamino-benzene, 4-(N,N-diphenyl)amino-aniline, 1.
4-bis[N-phenyl-N-(4-diethylamino)
Phenyl-aminocobenzene, 1,4-bis(N,N-
dibenzylamino)benzene, ■, 4-bis(N,N-dimethylamino)benzene, ■
, 4-bis(N,N-diethylamino)benzene, 1-
(N,N-dimethylamino)-4-(N-methyl-N
-phenylamino)benzene, N,N'-diphenylphenylenediamine, N,N'-
Ditolylphenylenediamine, ■, 4-bis[N-phenyl-N-(4-chlorophenyl)aminocobenzene, 1-(4-aminophenyl)amino-4-phenylamino-benzene, 1,4-bis[ N-(3-methylphenyl)-N=phenyl-aminocobenzene, 1.4-bis[N-(3-methoxyphenyl)-N-phenyl-aminocobenzene, 1.4-bis[N-(2 -methylphenyl)-N-phenyl-aminocobenzene, and the like.

フロント電極層及びその支持体について。Regarding the front electrode layer and its support.

アルミニウム、鉛、亜鉛、タンタル、ニッケ゛ル、チタ
ン、コバルト、ニオブ、銅、ハステロイC1金、白金、
銀、パラジウム等の半透明の金属や酸化スズ、ITO等
の金属酸化物等がフロント電極として使用でき、支持体
としては、ガラス、透明プラスチックフィルムが用いら
れる。背面電極及びその支持体について:はとんどの金
属が背面電極として使用できる。
Aluminum, lead, zinc, tantalum, nickel, titanium, cobalt, niobium, copper, Hastelloy C1 gold, platinum,
A translucent metal such as silver or palladium or a metal oxide such as tin oxide or ITO can be used as the front electrode, and glass or a transparent plastic film can be used as the support. Regarding the back electrode and its support: Most metals can be used as the back electrode.

支持体としてはガラス、透明プラスチックフィルムが用
いられる。
Glass or transparent plastic film is used as the support.

光活性層(II)について: この層はa)光活性層(1)に使用の顔料の感光波長の
低い領域をおぎなうために、他の電Gf発生有機半導体
を含むが、b)光活性層(’ I )との間で接合障壁
を形成する層が、C)光活性1’1J(1)で発生した
正孔と電子のどちらかを有効に移動させる層である。
Regarding the photoactive layer (II): This layer contains a) other Gf-generating organic semiconductors in order to cover the low sensitivity wavelength range of the pigments used in the photoactive layer (1), and b) the photoactive layer The layer that forms a junction barrier between C) photoactive 1'1J (1) is a layer that effectively moves either holes or electrons generated in (1).

このうちa)の層は後述の光活性層(I)の例示化合物
のうち(1)と補正の色調を有する化合物が効果が高く
、これは光活性層(1)と同様に塗布して形成される。
Among these layers, a compound having a color tone correcting to that of (1) among the exemplified compounds of the photoactive layer (I) described later is highly effective for layer a), and is formed by coating in the same manner as the photoactive layer (1). be done.

b)の層は酸化亜鉛、酸化チタン、硫化カドミウム、セ
レン結晶、酸化鉛等の微粒子を接若剤樹脂に分散して形
成される。
The layer b) is formed by dispersing fine particles of zinc oxide, titanium oxide, cadmium sulfide, selenium crystals, lead oxide, etc. in an adhesive resin.

C)の層として光活性層(I)の添加剤か、それより更
にIp値の低い電子供与体を適当な樹脂に混合して形成
される。
The layer C) is formed by mixing the additive of the photoactive layer (I) or an electron donor with an even lower Ip value with a suitable resin.

本発明の必須成分として用いられる光吸収性角°機半導
体はジスアゾ顔料、トリスアゾ顔料等のアゾ顔料、フタ
ロシアニン系顔料、キナクリドン系顔料、ペリレン系顔
料、芳香族多環牛ノン系顔料、インジゴ系顔料、チオイ
ンジゴ系顔料等の顔料やトリフェニルメタン染料、シア
ニン染料、メロシアニン染料等の染料が挙げられる。
The light-absorbing angle machine semiconductor used as an essential component of the present invention includes azo pigments such as disazo pigments and trisazo pigments, phthalocyanine pigments, quinacridone pigments, perylene pigments, aromatic polycyclic boron pigments, and indigo pigments. , thioindigo pigments, and dyes such as triphenylmethane dyes, cyanine dyes, and merocyanine dyes.

バインダとして用いられる樹脂の例としては、ポリエス
テル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポ
リウレタン樹脂、エポキシ樹脂、アルキッド樹脂、フェ
ノール樹脂、メラミン樹脂、アクリル樹脂、セルロース
樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニリデ
ン樹脂、フッ化ビニリデン樹脂、ブチラール樹脂、ポリ
ビニルカルバゾール樹脂、ポリスチレン樹脂、ポリイミ
ド樹脂、ポリアクリロニトリル樹脂、塩ビー酢ビ共重合
体、塩化ビニリデン−アクリロニトリル共重合体、スチ
レン−無水マレイン酸共重合体、スチレン−ブタジェン
共重合体、エチルセルロース等が挙げられる。
Examples of resins used as binders include polyester resins, polycarbonate resins, polyamide resins, polyurethane resins, epoxy resins, alkyd resins, phenolic resins, melamine resins, acrylic resins, cellulose resins, vinyl acetate resins, vinyl chloride resins, and vinylidene chloride. Resin, vinylidene fluoride resin, butyral resin, polyvinylcarbazole resin, polystyrene resin, polyimide resin, polyacrylonitrile resin, vinyl chloride-vinyl acetate copolymer, vinylidene chloride-acrylonitrile copolymer, styrene-maleic anhydride copolymer, styrene -butadiene copolymer, ethyl cellulose, etc.

次に本発明の光電変換素子の構造例を第1〜3図に示し
た概略図で説明する。b図はa図で示した光活性層を補
足するために第2の光活性層を追加した例を示す。
Next, structural examples of the photoelectric conversion element of the present invention will be explained with reference to the schematic diagrams shown in FIGS. 1 to 3. Figure b shows an example in which a second photoactive layer is added to supplement the photoactive layer shown in figure a.

図中、■は透光性フロント電極、2は光活性層(I)、
3は光活性層(II)、4は背iIj電極、5はフロン
ト電極支持体、6は背面電極支持体を示す。なお、これ
らの構造は用途に応じているいろと応用変化させること
ができることを理解すべきである。
In the figure, ■ is a translucent front electrode, 2 is a photoactive layer (I),
3 is a photoactive layer (II), 4 is a back iIj electrode, 5 is a front electrode support, and 6 is a back electrode support. It should be understood that these structures can be varied in various ways depending on the application.

本発明をさらに具体的に説明するために以下に実施例を
示すが、本発明はこれに限定されるものではない。
Examples are shown below to further specifically explain the present invention, but the present invention is not limited thereto.

実施例1 下記の構造のアゾ顔料0.9gとブチラール樹脂(UC
C社製XYHL)の5%テトラヒドロフラン溶液9gと
を3日間ボールミリングした後にテトラヒドロフランで
更に希釈し5wt%の溶液を作製した。
Example 1 0.9 g of azo pigment with the following structure and butyral resin (UC
9 g of a 5% tetrahydrofuran solution (XYHL manufactured by Company C) was ball milled for 3 days, and then further diluted with tetrahydrofuran to prepare a 5 wt % solution.

この溶液に顔料と同重量のド記構造式で示される添加物
を加え、撹拌した後に塗布液を作製した。
To this solution was added an additive represented by the following structural formula in the same weight as the pigment, and after stirring, a coating solution was prepared.

この塗布液にインジウムをドープした酸化スズ(以下I
TOと称する)を設けたガラス基板を浸漬し、5mm/
秒の速度で基板をひきあげ、ITO基板上に塗膜を設け
た。
This coating solution is indium-doped tin oxide (hereinafter referred to as I).
A glass substrate provided with
The substrate was pulled up at a speed of seconds to form a coating film on the ITO substrate.

この上に、800nmにおける透過率が約4.8%とな
る様に半透明のアルミニウムを真空蒸着した後、ITO
とアルミニウムに銀ペーストにて銅の細線を接続した。
On top of this, semitransparent aluminum was vacuum-deposited so that the transmittance at 800 nm was about 4.8%, and then ITO
A thin copper wire was connected to the aluminum using silver paste.

この試料に対し、At電極側から660%mの単色光を
照射(顔料分散膜に到達した光m P ! noを1.
45μv/c−に設定)しながら、画電極に6mv/秒
で掃引されるランプ波を印加して電流−電圧特性を測定
した。その結果 Voc−0,91V Jsc−49,lnA/ c+f (’r−0,24 てあった。
This sample was irradiated with 660% m monochromatic light from the At electrode side (the light m P ! no that reached the pigment dispersion film was 1.
The current-voltage characteristics were measured by applying a ramp wave swept at 6 mv/sec to the picture electrode while setting the voltage to 45 μv/c-. The result was Voc-0,91V Jsc-49,lnA/c+f ('r-0,24).

電極の透過率を補正した600%mにおける光電変換効
率(η′)は0,74%であった。
The photoelectric conversion efficiency (η') at 600% m after correcting the transmittance of the electrode was 0.74%.

実施例2 実施例1の添加剤の添加量を実施例1の172に変えた
以外は実施例1と同様に添加物を含何する試料を作製し
た。
Example 2 A sample containing an additive was prepared in the same manner as in Example 1, except that the amount of the additive added in Example 1 was changed to 172.

この試料に600r+mの単色光をAl電極側から入射
(Pin’ = 1.45 μv/cシ)し、実施例1
と同様に光電変換効率を測定したところ下記の様な結果
が得られた。
Monochromatic light of 600 r+m was incident on this sample from the Al electrode side (Pin' = 1.45 μv/c), and Example 1
When the photoelectric conversion efficiency was measured in the same manner as above, the following results were obtained.

Voc=0.8[1V Jsc−65,5nA/ cJ fr−0,28 η−−1,01% 比較例1 添加物を加えないこと以外は実施例1と同様に試料を作
製し、800%mの単色光をAt電極から入射(Pin
’ −1,45μw/cJ) して、同様に光電変換効
率を測定したところ下記の様な結果が得られた。
Voc=0.8[1V Jsc-65,5nA/cJ fr-0,28 η-1,01% Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that no additives were added, and 800% m monochromatic light is incident from the At electrode (Pin
'-1.45 μw/cJ), and the photoelectric conversion efficiency was similarly measured, and the following results were obtained.

Voc−0,77’J Jsc−1,35nA/ c4 1’r−0,25 η−−0,018% 実施例3 実施例1のアゾ顔料を下記のものに変え、また添加剤を
下記のものに変えた以外は実施例1と同様に添加物を含
有する試料を作製した。
Voc-0,77'J Jsc-1,35nA/c4 1'r-0,25 η--0,018% Example 3 The azo pigment in Example 1 was changed to the following, and the additives were changed to the following. A sample containing the additive was prepared in the same manner as in Example 1 except that the sample was changed to a different one.

この試料に580%mの単色光をAl電極側から入射(
Pin’=1.55μw/c+#) L、実施例1と同
様に光電変換効率を7Il11定したところ下記の様な
結果が得られた。
Monochromatic light of 580% m is incident on this sample from the Al electrode side (
Pin'=1.55 μw/c+#) L. When the photoelectric conversion efficiency was determined as 7Il11 in the same manner as in Example 1, the following results were obtained.

Voc=0.99V Jsc−71,5nA/ co! rr−0,23 η−−1,05% アゾ顔料 添加剤 比較例2 添加物を加えないこと以外は実施例1と同様に試料を作
製し、flioonmの単色光をAt電極から入射(P
in’=1.45μw/cJ) して、同様に光7u変
換効率を測定したところ下記の様な結果か得られた。
Voc=0.99V Jsc-71,5nA/co! rr-0,23 η--1,05% Azo pigment additive comparative example 2 A sample was prepared in the same manner as in Example 1 except that no additive was added, and monochromatic light of flionm was incident from the At electrode (P
in'=1.45 μw/cJ), and when the light 7u conversion efficiency was similarly measured, the following results were obtained.

Voc=0.74 V Jsc−2,50n^/ cJ rr−0,22 η″−0,026% 実施例4 実施例3の添加剤を下記に変えた以外は実施例3と同様
に添加物を含有する試料を作製した。
Voc=0.74 V Jsc-2,50n^/cJ rr-0,22 η''-0,026% Example 4 Same additives as in Example 3 except that the additives in Example 3 were changed to the following. A sample containing .

この試料に580%mの単色光をA1電極側から入射(
Pin’−1,5μw/cat) L、実施例1と同様
に充電変換効率を測定したところ下記の様な結果か得ら
れた。
Monochromatic light of 580% m is incident on this sample from the A1 electrode side (
When the charging conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voc−1,00V Jsc−54,4nA/ cJ rf’−0,24 実施例5 実施例3の添加剤を下記に変えた以外は実施例3と同様
に添加物を含イイする試料を作製した。
Voc-1,00V Jsc-54,4nA/cJ rf'-0,24 Example 5 A sample containing additives was prepared in the same manner as in Example 3 except that the additive in Example 3 was changed to the following. .

この試料に580nmの111色光をAl電極側から入
射(Pin’= 1.55μv/cnり L、実施例1
と同様に光電変換効率を測定したところ下記の様な結果
か?1)られた。
111 colored lights of 580 nm were incident on this sample from the Al electrode side (Pin' = 1.55 μv/cn L, Example 1
When I measured the photoelectric conversion efficiency in the same way as above, I got the following results. 1) It was done.

Voc−0,96V Jsc−48,4nA/ cnf rr−0,21 クー−0,83% 実施例6 実施例3の添加剤をF記に変えた以外は実施例3と同様
に添加物を含有する試料を作製した。
Voc-0,96V Jsc-48,4nA/cnf rr-0,21 Cu-0,83% Example 6 Contains additives in the same manner as Example 3 except that the additive in Example 3 was changed to F. A sample was prepared.

この試キー1に580nmの単色光を電極側から入射(
Pin’= 1.54μw/cot) L、実施例1と
同様に光電変換効率をtpj定したところ下記の様な結
果がtすられた。
580 nm monochromatic light is incident on this test key 1 from the electrode side (
Pin'=1.54 μw/cot) When the photoelectric conversion efficiency was determined as tpj in the same manner as in Example 1, the following results were obtained.

Voc−0,HV Jsc−57,1nA/ CJ fr−0,24 実施例7 実施例3の添加剤を下記に変えた以外は実施例3と同様
に添加物を含有する試料を作製した。
Voc-0,HV Jsc-57,1nA/CJ fr-0,24 Example 7 A sample containing additives was prepared in the same manner as in Example 3 except that the additives in Example 3 were changed to the following.

この試料に580rvの単色光をAl電極側から入射(
Pin’ −1,55μv/an) L、実施例1と同
様に光電変換効率をΔll]定したところ下記の様な結
果が得られた。
Monochromatic light of 580 rv is incident on this sample from the Al electrode side (
When the photoelectric conversion efficiency was determined as Δll] in the same manner as in Example 1, the following results were obtained.

Voc−0,92V Jsc−67,4nA/ c♂ rr−0,23 実施例8 実施例1のアゾ顔料をβ型銅フタロシアニンに変えた以
外は実施例1と同様に添加物を含有する試料を作製した
Voc-0,92V Jsc-67,4nA/ c♂ rr-0,23 Example 8 A sample containing additives was prepared in the same manner as in Example 1 except that the azo pigment in Example 1 was changed to β-type copper phthalocyanine. Created.

この試料に620nmの単色光をAl電極側から入射(
Pin’ −1,5μν/Cシ)し、実施例1と同様に
光電変換効率を測定したところ下記の様な結果か得られ
た。
Monochromatic light of 620 nm is incident on this sample from the Al electrode side (
When the photoelectric conversion efficiency was measured in the same manner as in Example 1, the following results were obtained.

Voc−0,93V JSC−22,2nA/ at rf−0,24 η−−0.3396 比較例3 添加物を加えないこと以外は実施例5と同様に試料を作
製し、820nmの単色光をAI電極から入射(Pin
’ −1,5μv/d) して、同様に光電変換効率を
測定したところ下記の様な結果か得られた。
Voc-0,93V JSC-22,2nA/at rf-0,24 η--0.3396 Comparative Example 3 A sample was prepared in the same manner as in Example 5 except that no additives were added, and 820 nm monochromatic light was emitted. Incidence from AI electrode (Pin
'-1.5 μv/d), and the photoelectric conversion efficiency was measured in the same manner, and the following results were obtained.

Voc−0,72V Jsc−10,4nA/ c4 1’l’−0,26 η−−O,ta% [効 果コ 以上述べた様に、本発明によれば、フェニレンジアミン
化合物を光活性層に添加することにより、高い光電流を
示し、かつ安価で大面積の光電変換素子が達成できる。
Voc-0,72V Jsc-10,4nA/c4 1'l'-0,26 η--O,ta% [Effect As described above, according to the present invention, a phenylenediamine compound is added to the photoactive layer. By adding it to , it is possible to achieve a photoelectric conversion element that exhibits a high photocurrent, is inexpensive, and has a large area.

このため、従来、単独またはバインダーとの混合系で、
低い光電流のため使用不可であった光導電性有機半導体
も有効に利用できる様になり、月料の選択範囲を広げる
ことができる。
For this reason, conventionally, alone or in combination with a binder,
Photoconductive organic semiconductors, which were previously unusable due to their low photocurrent, can now be used effectively, and the range of monthly charges can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜第3図すは本発明の光電変換素子の断面を示
す概略図である。 1・・・透光性フロント電極、2・・・光活性層(1)
、3・・・光活性層(n)、4・・・背面電極、訃・・
フロント電極支持体、 6・・・背面電極支持体。 手続補正書 (鮫) 昭和63年11月22日 特許庁長官 吉 1)文 毅 殿 事件との関係   特許出願人 名 称  株式会社リコー 58補正命令の日付    (自発) (別 紙) (1)明細書中、特許請求の範囲を下記のとおりに5丁
圧する。 「2、特許請求の範囲 透光性フロント電極、光活性層および背面電極を有する
光電変換素子において、前記光活性層が少な(とも、下
記一般式で示されるフェニレンジアミン化合物を含有し
ていることを特徴とする光電変換素子。 一般式 ただし、上記一般式における、RI 、R2、R3% 
R4は水素、置換または無置換のアリール基であり、R
1とR2およびR3とR4とは環を形成していてもよい
。」 (2)第5頁下から9〜8行目「置換または・・・・・
・アルキル基、」を削除する。 (3)第12頁第1〜2行「無置換又は・・・・・・ア
ルキル基、」を削除する。 (4)第13頁第1〜2行、第8〜11行の記載を削除
する。 (5)明細書第15頁第4行「補正」を「補色」と補正
する。 (6)同じく、下記の箇所にある「添加物」を「添加剤
」に補正する。 第18頁上段の化学式の下節2行、 第19頁下から 4行目、 第20頁第 8行、 第21頁下から 3行目、 第25頁第 3行、下から 7行目、 (7)同じく、下記の箇所にある「同様に添加物を含有
する試料」を「同様の試料」に補正する。 第20頁、末行、 第22頁、第 9行、 第23頁、第 1行、下から 5行目、第24頁、「実
施例7」から3行目 (8)同じく、第21頁下から3行目の「実施例1」を
「実施例3」に補正する。 (9)同、下から2行目r600Jをr580Jに補正
する。同、末行r 1.45Jをr 1.55Jに補正
する。
FIGS. 1a to 3 are schematic diagrams showing cross sections of the photoelectric conversion element of the present invention. 1... Transparent front electrode, 2... Photoactive layer (1)
, 3... Photoactive layer (n), 4... Back electrode, end...
Front electrode support, 6... Back electrode support. Procedural amendment (Shark) November 22, 1988 Director General of the Japan Patent Office Yoshi 1) Relationship with Takeshi Moon Case Patent applicant name Date of amendment order for Ricoh Co., Ltd. 58 (Voluntary) (Attachment) (1) Specification The scope of the claims is summarized as follows. ``2. Claims: A photoelectric conversion element having a light-transmitting front electrode, a photoactive layer, and a back electrode, wherein the photoactive layer contains a small amount of a phenylenediamine compound represented by the following general formula. A photoelectric conversion element characterized by the general formula. However, in the above general formula, RI, R2, R3%
R4 is hydrogen, a substituted or unsubstituted aryl group, and R
1 and R2 and R3 and R4 may form a ring. ” (2) Page 5, lines 9-8 from the bottom, “Replace or...”
・Delete "alkyl group". (3) Page 12, lines 1 and 2, "Unsubstituted or . . . alkyl group," is deleted. (4) The descriptions on page 13, lines 1-2 and lines 8-11 are deleted. (5) ``Correction'' on page 15, line 4 of the specification shall be corrected to ``complementary color.'' (6) Similarly, "additive" in the following section should be corrected to "additive." 2 lines below the chemical formula on the top of page 18, 4th line from the bottom on page 19, 8th line from the bottom on page 20, 3rd line from the bottom on page 21, 3rd line on page 25, 7th line from the bottom, (7) Similarly, "sample containing similar additives" in the following section should be corrected to "similar sample." Page 20, last line, page 22, line 9, page 23, line 1, 5th line from the bottom, page 24, line 3 from "Example 7" (8), also page 21 "Example 1" in the third line from the bottom is corrected to "Example 3". (9) Same, second line from the bottom, correct r600J to r580J. Similarly, the ending line r 1.45J is corrected to r 1.55J.

Claims (1)

【特許請求の範囲】  透光性フロント電極、光活性層および背面電極を有す
る光電変換素子において、前記光活性層が少なくとも、
下記一般式で示されるフェニレンジアミン化合物を含有
していることを特徴とする光電変換素子。 一般式 ▲数式、化学式、表等があります▼ ただし、上記一般式における、R_1、R_2、R_3
、R_4は水素、置換または無置換のアルキル基、置換
または無置換のアリール基であり、R_1とR_2およ
びR_3とR_4とは環を形成していてもよい。
[Scope of Claims] A photoelectric conversion element having a translucent front electrode, a photoactive layer, and a back electrode, wherein the photoactive layer at least comprises:
A photoelectric conversion element characterized by containing a phenylenediamine compound represented by the following general formula. General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, in the above general formula, R_1, R_2, R_3
, R_4 is hydrogen, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group, and R_1 and R_2 and R_3 and R_4 may form a ring.
JP62312021A 1987-12-11 1987-12-11 Photoelectric converter Pending JPH01154571A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62312021A JPH01154571A (en) 1987-12-11 1987-12-11 Photoelectric converter
US07/450,288 US4992109A (en) 1987-12-11 1989-12-13 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312021A JPH01154571A (en) 1987-12-11 1987-12-11 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH01154571A true JPH01154571A (en) 1989-06-16

Family

ID=18024262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312021A Pending JPH01154571A (en) 1987-12-11 1987-12-11 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH01154571A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224353A (en) * 1988-03-03 1989-09-07 Bando Chem Ind Ltd Novel aromatic amine compound and photoelectric transfer element and electrochromic display element using said compound
JPH0391269A (en) * 1989-09-02 1991-04-16 Daicel Chem Ind Ltd Organic photoelectric converting element
US5508136A (en) * 1993-02-10 1996-04-16 Yasuhiko Shirota Trisarylaminobenzene derivatives, compounds for organic EL element, and organic EL element
JPWO2002001667A1 (en) * 2000-06-29 2004-01-08 日本化薬株式会社 Dye-sensitized photoelectric conversion element
JP2006508538A (en) * 2002-11-29 2006-03-09 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic component and method of manufacturing the same
JP2010157750A (en) * 1996-08-27 2010-07-15 Sumitomo Chemical Co Ltd Heat-resistant organic electroluminescent device
WO2011138902A1 (en) * 2010-05-07 2011-11-10 住友化学株式会社 Organic photoelectric conversion element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785821A (en) * 1980-11-17 1982-05-28 Nippon Telegr & Teleph Corp <Ntt> Production of high-molecular semiconductive film
JPS6015642A (en) * 1983-07-07 1985-01-26 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
JPS61252671A (en) * 1986-04-08 1986-11-10 Ricoh Co Ltd Photoelectric conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785821A (en) * 1980-11-17 1982-05-28 Nippon Telegr & Teleph Corp <Ntt> Production of high-molecular semiconductive film
JPS6015642A (en) * 1983-07-07 1985-01-26 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body
JPS61252671A (en) * 1986-04-08 1986-11-10 Ricoh Co Ltd Photoelectric conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224353A (en) * 1988-03-03 1989-09-07 Bando Chem Ind Ltd Novel aromatic amine compound and photoelectric transfer element and electrochromic display element using said compound
JPH0391269A (en) * 1989-09-02 1991-04-16 Daicel Chem Ind Ltd Organic photoelectric converting element
US5508136A (en) * 1993-02-10 1996-04-16 Yasuhiko Shirota Trisarylaminobenzene derivatives, compounds for organic EL element, and organic EL element
JP2010157750A (en) * 1996-08-27 2010-07-15 Sumitomo Chemical Co Ltd Heat-resistant organic electroluminescent device
JPWO2002001667A1 (en) * 2000-06-29 2004-01-08 日本化薬株式会社 Dye-sensitized photoelectric conversion element
JP2006508538A (en) * 2002-11-29 2006-03-09 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic component and method of manufacturing the same
WO2011138902A1 (en) * 2010-05-07 2011-11-10 住友化学株式会社 Organic photoelectric conversion element

Similar Documents

Publication Publication Date Title
US4281053A (en) Multilayer organic photovoltaic elements
US4164431A (en) Multilayer organic photovoltaic elements
US4175982A (en) Photovoltaic cell
US4175981A (en) Photovoltaic cell comprising metal-free phthalocyanine
US6153824A (en) Photo-semiconductive electrode and photo-electic cell using the same
CA1085947A (en) Multilayer organic photovoltaic elements
US4992109A (en) Photoelectric conversion element
JPH01154571A (en) Photoelectric converter
JPH01208873A (en) Photoelectric converter
JP3269247B2 (en) Organic solar cell and method of manufacturing the same
JP2002222970A (en) Photoelectric converter and its manufacturing method
JPH03120763A (en) Photo-electric transducer
JPH01165177A (en) Photoelectric converter
JP3288472B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH01154572A (en) Photoelectric converter
JPH01168070A (en) Photoelectric conversion device
JPH01215069A (en) Photoelectric conversion element
JPH01215070A (en) Organic solar battery
JPH01154573A (en) Photoelectric converter
JPH0198266A (en) Photoelectric converter element
JPH01166575A (en) Photoelectric converter
JPH05275728A (en) Organic photovoltaic element
JP2756711B2 (en) Photoelectric conversion power generation element
JP2516750B2 (en) Photoelectric conversion element
JPH02162775A (en) Photoelectric conversion element