JPH01153292A - Overrun detector for flexible arm robot - Google Patents

Overrun detector for flexible arm robot

Info

Publication number
JPH01153292A
JPH01153292A JP62310808A JP31080887A JPH01153292A JP H01153292 A JPH01153292 A JP H01153292A JP 62310808 A JP62310808 A JP 62310808A JP 31080887 A JP31080887 A JP 31080887A JP H01153292 A JPH01153292 A JP H01153292A
Authority
JP
Japan
Prior art keywords
flexible arm
stroke
signal
overrun
position signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62310808A
Other languages
Japanese (ja)
Inventor
Takashi Shirae
白栄 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62310808A priority Critical patent/JPH01153292A/en
Publication of JPH01153292A publication Critical patent/JPH01153292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

PURPOSE: To enable the second flexible arm to oscillate without interfering with obstruction in response to the position of the first flexible arm by providing a means for outputting an overrun detecting signal when the oscillating direction and a stroke of the second flexible arm become set values, based on the oscillating direction and a stroke of the first flexible arm. CONSTITUTION: Linear potentiometers (the first detecting means) 101 to 104 for detecting the oscillating direction and a stroke of the first flexible arm A1 are provided, and linear potentiometers 105 to 108 (the second detecting means) for detecting the oscillating direction and a stroke of the second flexible arm A2 are provided. Based on the detected signals of the first detecting means (101 to 104 ), when the oscillating direction and the stroke of the second flexible arm become set values, the second detecting means (105 to 108 ) outputs an overrun detecting signal from a control circuit to regulate the movable range of the second flexible arm A2 . As a result, when a flexible arm robot is installed adjacent to an obstruction, the second flexible arm A2 can oscillate at a position which does not interfere with the obstruction, in response to the position of the first flexible arm A1 .

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、可撓腕ロボットが予じめ定めた可動範囲を越
えて揺動したことを検出するオーバーラン検出装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overrun detection device that detects when a flexible arm robot swings beyond a predetermined movable range.

[従来の技術〕 特公昭59−21756号公報に示すような可撓腕が知
られている。
[Prior Art] A flexible arm as shown in Japanese Patent Publication No. 59-21756 is known.

すなわち、第4図に示すように、凸面状に弯曲した上下
の接触面1を有する関節部材2を、その接触面相互が接
触するように多数順次配設すると共に、最先端の関節部
材2′に連結した四本の可撓性索条、例えばワイヤー3
を各関節部材2を貫通して基台4内に取付けた4本のシ
リンダー5に連結し、この4本のシリンダー5における
対を成す2本のシリンダー5を伸長、縮少することで各
関節部材2を任意方向に揺動して任意方向に屈曲できる
ようにした可撓腕である。
That is, as shown in FIG. 4, a large number of joint members 2 having convexly curved upper and lower contact surfaces 1 are arranged one after another so that the contact surfaces contact each other, and the most advanced joint member 2' four flexible cords, e.g. wire 3 connected to
are connected to four cylinders 5 installed in the base 4 through each joint member 2, and each joint is This is a flexible arm in which the member 2 can be bent in any direction by swinging in any direction.

このような可撓腕を第5図に示すように2つ組み合せた
可撓腕ロボットにおいては、第1の可撓腕A1と第2の
可撓腕A2を単独に360度の範囲で揺動できるから、
第2の可撓腕A2の先端に装着した道具、例えば塗装用
スプレィ6を任意方向に移動できる。
In a flexible arm robot that combines two such flexible arms as shown in FIG. Because I can,
A tool attached to the tip of the second flexible arm A2, such as a paint sprayer 6, can be moved in any direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かかる可撓腕ロボットであると、例えば第6図に示すよ
うに障害物Bと隣接して設置した場合には第1の可撓腕
A1を第6図(a)に示すように垂直姿勢より左側に揺
動すると障害物Bと干渉することがあると共に、第6図
(b)に示すように第1の可撓腕A、を右側の90度揺
動した状態では第2の可撓腕A2を360度の範囲で揺
動できるが、第6図(a)に示すように第1の可撓腕A
、を垂直姿勢とすると第2の可撓腕A2を垂直姿勢より
左側に揺動すると障害物と干渉してしまう。
For example, when such a flexible arm robot is installed adjacent to an obstacle B as shown in FIG. 6, the first flexible arm A1 is moved from a vertical position as shown in FIG. 6(a). When the first flexible arm A is swung to the left, it may interfere with the obstacle B, and when the first flexible arm A is swung 90 degrees to the right, the second flexible arm A2 can be swung within a range of 360 degrees, but as shown in FIG. 6(a), the first flexible arm A
, is in a vertical position, and if the second flexible arm A2 is swung to the left of the vertical position, it will interfere with an obstacle.

そこで、本発明は設置場所や揺動姿勢などに基づいて予
じめ可動範囲を設定し、その可動範囲を越えて揺動した
ことを検出できるようにした可撓腕ロボットのオーバー
ラン検出装置を提供することを目的とする。
Therefore, the present invention provides an overrun detection device for a flexible arm robot, which allows a movable range to be set in advance based on the installation location, rocking posture, etc., and detects when the robot swings beyond the movable range. The purpose is to provide.

〔問題点を解決するための手段及び作用〕任意方向に揺
動する第1の可撓腕A、の先端に任意方向に揺動する第
2の可撓腕A2を取付けた可撓腕ロボットにおいて、前
記第1の可撓腕A1の揺動方向とストロークを検出する
第1の手段と、第2の可撓腕A2の揺動方向とストロー
クを検出する第2の手段と、前記第1の手段の検出信号
に基づいて第2の手段の検出信号が設定値となった時に
オーバーラン検出信号を出力する手段を設けて、第1の
可撓腕A、の揺動方向、ストロークに基づいて第2の可
撓腕A2の可動範囲を規定でき、障害物と隣接して設置
した場合゛に第1の可動腕A1の姿勢に応じて第2の可
撓腕A2を障害物と干渉しないように揺動できるように
したもの。
[Means and actions for solving the problem] In a flexible arm robot in which a second flexible arm A2 that swings in any direction is attached to the tip of a first flexible arm A that swings in any direction. , a first means for detecting the swing direction and stroke of the first flexible arm A1, a second means for detecting the swing direction and stroke of the second flexible arm A2, and the first means for detecting the swing direction and stroke of the second flexible arm A2. means for outputting an overrun detection signal when the detection signal of the second means reaches a set value based on the detection signal of the first means; The movable range of the second flexible arm A2 can be defined, and when installed adjacent to an obstacle, the second flexible arm A2 can be adjusted so as not to interfere with the obstacle according to the posture of the first movable arm A1. It is made to be able to swing.

〔実 施 例〕〔Example〕

第1図は可撓腕ロボットの概略斜視図であり、第1の可
撓腕A1の先端に第2の可撓腕A2が取付けられ、各ワ
イヤー3のストロークを検出するストロークセンサ、例
えばリニアポテンショメータ10がそれぞれ設けである
FIG. 1 is a schematic perspective view of a flexible arm robot, in which a second flexible arm A2 is attached to the tip of the first flexible arm A1, and a stroke sensor, such as a linear potentiometer, is used to detect the stroke of each wire 3. 10 are provided respectively.

前記第1の可撓腕A、の第1シリンダ51と第3シリン
ダ53は直線X1上に位置し、第2シリンダ52と第4
シリンダ54は直線X1と直交する直線X2上に位置し
、第2可撓腕A2の第5シリンダ55と第7シリンダ5
7は直線Y1上に位置し、第6シリンダ56と第8シリ
ンダ58は直線Y、と直交する直線Y2上に位置し、各
シリンダ5のストロークを同一とすると第1、第2の可
撓腕A1 + A 2は垂直姿勢となり、直線X 1 
+ x2、直線Y1.Y2上に位置する2つのシリンダ
5のストロークを異ならせるとその直線方向に揺動する
ようにしである。
The first cylinder 51 and the third cylinder 53 of the first flexible arm A are located on the straight line X1, and the second cylinder 52 and the fourth cylinder
The cylinder 54 is located on the straight line X2 orthogonal to the straight line X1, and the fifth cylinder 55 and the seventh cylinder 5 of the second flexible arm A2
7 is located on the straight line Y1, the sixth cylinder 56 and the eighth cylinder 58 are located on the straight line Y2 perpendicular to the straight line Y, and if the stroke of each cylinder 5 is the same, the first and second flexible arms A1 + A2 becomes a vertical posture, and the straight line
+ x2, straight line Y1. If the strokes of the two cylinders 5 located on Y2 are made different, they will swing in the linear direction.

なお、説明の都合上各シリンダーと対応したリニアポテ
ンショメータを第1〜第8リニアポテンシヨメータ10
.〜108とする。
For convenience of explanation, the linear potentiometers corresponding to each cylinder are referred to as the first to eighth linear potentiometers 10.
.. ~108.

第2図は回路図であり、第1リニアポテンショメータ1
0.の出力信号が直線X、力方向位置信号、つまり1軸
位置信号v1となっていると共に、第2リニアポテンシ
ヨメータ102の出力信号が直線X2方向の位置信号、
つまり2軸位置信号V2となり、前記1軸位置信号v1
は合成軸の角度を設定する第1トリマポテンシヨ11の
一側11aに入力され、その他側11bには角度範囲切
換スイッチ12で2軸位置信号v2が直接入力されたり
、反転バッファー13で反転された2軸位置信号V2が
入力され、その第1トリマポテンシヨ11の出力信号が
合成軸位置信号Vxとなる。
FIG. 2 is a circuit diagram, in which the first linear potentiometer 1
0. The output signal of the second linear potentiometer 102 is the position signal in the direction of the straight line
In other words, the 2-axis position signal V2 becomes the 1-axis position signal v1.
is input to one side 11a of the first trimmer potentiometer 11 that sets the angle of the composite axis, and the two-axis position signal v2 is directly input to the other side 11b by the angle range changeover switch 12, or the two-axis position signal v2 is inverted by the inversion buffer 13. The shaft position signal V2 is input, and the output signal of the first trimmer potentiometer 11 becomes the composite shaft position signal Vx.

つまり、合成軸位置信号Vxは下記の(1)式で表わさ
れる。
That is, the composite axis position signal Vx is expressed by the following equation (1).

Vx−(1−α)Vl +aV2  −・−(1)αは
第1トリマポテンシB11の可変端子の位置を表わし、 0≦α≦1 である。
Vx-(1-α)Vl +aV2-.-(1)α represents the position of the variable terminal of the first trimmer potential B11, and satisfies 0≦α≦1.

合成軸の角度θは角度範囲切換スイッチ12が第1位置
121の時には90’Xα、第2位置122の時には一
90°Xαとなる。
The angle θ of the composite axis is 90'Xα when the angle range changeover switch 12 is in the first position 121, and -90°Xα when it is in the second position 122.

例えば、第3図において合成軸2.の角度θを45度と
すると、α−0,5となり、(1)式より合成軸位置信
号Vxは(1−0,5)V。
For example, in FIG. 3, composite axis 2. When the angle θ is 45 degrees, α-0,5 is obtained, and from equation (1), the composite axis position signal Vx is (1-0,5)V.

十〇、5V2となる。10, 5V2.

また、1軸位置信号V1と2軸位置信号v2がマイナス
になった時、つまり第1、第2リニアポテンショメータ
10..102の出力信号がマイナスとなった時には合
成軸はZ、′となってマイナス方向となると共に、合成
軸の角度θをマイナスとすると合成軸は第3図で22と
なり、この時1軸位置信号V、と2軸位置信号V2がマ
イナスとなると合成軸は第3図で22′となるので、3
60度の範囲で合成軸方向の位置を検出できる。
Also, when the first axis position signal V1 and the second axis position signal v2 become negative, that is, when the first and second linear potentiometers 10. .. When the output signal of 102 becomes negative, the composite axis becomes Z,' and moves in the negative direction.If the angle θ of the composite axis is made negative, the composite axis becomes 22 in Fig. 3, and at this time, the 1st axis position signal When V and the two-axis position signal V2 become negative, the composite axis becomes 22' in Fig. 3, so 3
The position in the composite axis direction can be detected within a range of 60 degrees.

そして、合成軸位置信号Vxは第1、第2コンパレータ
14.15に送られてプラス側リミット設定器16のプ
ラス側リミット、マイナス側リミット設定器17のマイ
ナス側リミットと比較され、リミットを越えた時にオー
バーラン信号を出力する。
The composite axis position signal Vx is then sent to the first and second comparators 14.15 and compared with the plus side limit of the plus side limit setter 16 and the minus side limit of the minus side limit setter 17. outputs an overrun signal.

例えば、第6図(a)で第1の可撓腕A、の垂直姿勢よ
りも障害物B側をプラス(+)とすれば、合成軸位置信
号Vxがプラス側リミット設定器16のプラス側リミッ
トをゼロと設定し、合成軸位置信号Vxがゼロ以上とな
ると第1コンパレータ14よりオーバーラン信号を出力
するようにする。つまり、第3図において合成軸が21
′、22′となった時にオーバーラン信号を出力して第
1の可撓腕A1が障害物Bに干渉しないようにする。
For example, in FIG. 6(a), if the obstacle B side is set as plus (+) with respect to the vertical posture of the first flexible arm A, the composite axis position signal Vx is on the plus side of the plus side limit setter 16. The limit is set to zero, and when the composite axis position signal Vx becomes zero or more, the first comparator 14 outputs an overrun signal. In other words, in Figure 3, the composite axis is 21
', 22', an overrun signal is output to prevent the first flexible arm A1 from interfering with the obstacle B.

なお、第2図において角度範囲スイッチ12の第2位置
122に反転バッファー13で2軸の逆電位信号を入力
して1軸位置信号V1と減算するようにしたが、第4リ
ニアポテンシヨメータ104は第2リニアポテンシヨメ
ータ102と逆相に移動するので、第4リニアポテンシ
ヨメータ104の信号を入力するようにしても良い。
In FIG. 2, a two-axis reverse potential signal is input to the second position 122 of the angle range switch 12 using the inversion buffer 13 and subtracted from the one-axis position signal V1, but the fourth linear potentiometer 104 moves in the opposite phase to that of the second linear potentiometer 102, so the signal from the fourth linear potentiometer 104 may be input.

第2の可撓腕A2についても前述と同様に、第5リニア
ポテンシヨメータ105の出力信号を第3軸位置信号v
3、第6リニアポテンシヨメータ106の出力信号を第
4軸位置信号V4として第2トリマポテンシヨ20の一
側20a1他側20bに入力して加算−減算を行なって
合成軸位置信号vYとする。なお、この場合も第3軸位
置信号V3は角度範囲切換スイッチ21で直接入力され
たり、反転バッファ22で反転して入力されたりするよ
うにしてあって、第2の可撓腕A2についても360度
の範囲で合成軸位置信号VYが検出できるようにしであ
る。
Regarding the second flexible arm A2, similarly to the above, the output signal of the fifth linear potentiometer 105 is converted into the third axis position signal v.
3. The output signal of the sixth linear potentiometer 106 is input as the fourth axis position signal V4 to one side 20a and the other side 20b of the second trimmer potentiometer 20, and addition and subtraction are performed to obtain a composite axis position signal vY. In this case as well, the third axis position signal V3 is inputted directly to the angle range changeover switch 21, or inverted and inputted to the inversion buffer 22. This allows the composite axis position signal VY to be detected within a range of degrees.

前記合成軸位置信号Vxと合成軸位置信号V、はバッフ
ァ23.24と第1、第2抵抗25゜26を経て加算さ
れ、第3抵抗27を備えたバッファ28で第3、第4コ
ンパレータ29.80に送られてプラス側リミット設定
器31、マイナス側リミット設定器32のプラス側リミ
ット、マイナス側リミットと比較されてオーバーラン信
号を出力するようにしてあり、第1の可撓腕A1の姿勢
により第2の可撓腕A2がオーバーランとなる揺動範囲
を設定できるようにしである。
The composite axis position signal Vx and the composite axis position signal V are added via buffers 23 and 24 and first and second resistors 25. .80 and is compared with the plus side limit and minus side limit of the plus side limit setter 31 and the minus side limit setter 32, and an overrun signal is output. The swing range in which the second flexible arm A2 overruns can be set depending on the posture.

例えば、第1抵抗25と第2抵抗26の抵抗値R1とR
2を同一で、第3抵抗27の抵抗R3を第1抵抗26の
抵抗値R1の1/2とすると共に、プラス側リミット設
定器31をゼロ(v)にセットする。
For example, the resistance values R1 and R of the first resistor 25 and the second resistor 26 are
2 are the same, the resistance R3 of the third resistor 27 is set to 1/2 of the resistance value R1 of the first resistor 26, and the plus side limit setter 31 is set to zero (v).

この状態で第1の可撓腕A1が第6図(a)に示すよう
に垂直姿勢であると、合成軸位置信号Vx−ゼロ(v)
となり、第2の可撓腕A2の合成軸位置信号vYがプラ
スであると両者の加算した信号Vx十Vyがプラスとな
るから、プラス側リミットより大きくなって第3コンパ
レータ29よりオーバーラン信号が出力され、第6図(
a)の状態で第2の可撓腕A2がプラス側に揺動するこ
とを防止する。
In this state, if the first flexible arm A1 is in a vertical posture as shown in FIG. 6(a), the composite axis position signal Vx - zero (v)
Therefore, if the composite axis position signal vY of the second flexible arm A2 is positive, the sum of the two signals Vx + Vy becomes positive, so it becomes larger than the positive limit and the overrun signal is output from the third comparator 29. The output is shown in Figure 6 (
The second flexible arm A2 is prevented from swinging to the positive side in the state of a).

また、第6図(b)に示すように第1の可撓腕A、がマ
イナス側に揺動するとその合成軸位置信号Vxはマイナ
ス(v)となり、第2の可撓腕A2はVy +Vx (
マイナス)〉ゼo (v)になるまでプラス側に揺動で
きる。つまり、第1の可撓腕A1がマイナス側に揺動し
た角度だけ第2の可撓腕A2がプラス側に揺動してもオ
ーバーラン信号を出力しないようになる。
Further, as shown in FIG. 6(b), when the first flexible arm A swings in the negative direction, its composite axis position signal Vx becomes negative (v), and the second flexible arm A2 becomes Vy +Vx. (
It can swing to the plus side until it reaches (minus)〉zeo (v). In other words, even if the second flexible arm A2 swings to the plus side by the angle that the first flexible arm A1 swings to the minus side, no overrun signal is output.

なお、第1、第2、第3抵抗25,26.27の抵抗R
1+ R2、R3は可撓腕の長さ、関節位置等によって
任意にセットする。
Note that the resistance R of the first, second, and third resistors 25, 26, and 27
1+ R2 and R3 are arbitrarily set depending on the length of the flexible arm, joint position, etc.

加算用の第2抵抗26への入力信号を反転するための切
換スイッチ33及び反転バッファ34によって■Y倍信
号反転できる様にしであるため、軸X + + X 2
に対する軸Y1.Y2の任意の角度でオーバーラン検出
が可能である。
The changeover switch 33 for inverting the input signal to the second resistor 26 for addition and the inversion buffer 34 enable the signal to be inverted by a factor of Y, so that the axis X + + X 2
axis Y1. Overrun detection is possible at any angle of Y2.

つまり、第1可撓腕A1の軸X、と第2可撓腕A2の軸
Y1が45度ずれていると、合成軸がプラス(+)とマ
イナス(−)の領域にくることがあり、そのままでは加
算できないので一方を反転させる必要がある。
In other words, if the axis X of the first flexible arm A1 and the axis Y1 of the second flexible arm A2 are shifted by 45 degrees, the composite axis may fall in the plus (+) and minus (-) regions. Since they cannot be added as they are, it is necessary to invert one of them.

〔発明の効果〕〔Effect of the invention〕

第1の可撓腕A、の揺動方向、ストロークに基づいて第
2の可撓腕A2の可動範囲を規定でき、障害物と隣接し
て設置した場合に第1の可動腕A1の姿勢に応じて第2
の可撓腕A2を障害物と干渉しないように揺動できる。
The movable range of the second flexible arm A2 can be defined based on the swing direction and stroke of the first flexible arm A, and when installed adjacent to an obstacle, the posture of the first flexible arm A1 can be adjusted. 2nd accordingly
The flexible arm A2 can be swung without interfering with obstacles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施例を示し、第1図は可撓
腕ロボットの概略斜視図、第2図は回路図、第3図は揺
動方向の説明図、第4図は可撓腕の斜視図、第5図は可
撓腕ロボットの斜視図、第6図(a)、(b)は動作説
明図である。 A1は第1の可撓腕、A2は第2の可撓腕。 出願人  株式会社 小 松 製 作 所代理人  弁
理士  米 原 正 章
1 to 3 show embodiments of the present invention, FIG. 1 is a schematic perspective view of a flexible arm robot, FIG. 2 is a circuit diagram, FIG. 3 is an explanatory diagram of the swing direction, and FIG. 4 5 is a perspective view of the flexible arm, FIG. 5 is a perspective view of the flexible arm robot, and FIGS. 6(a) and 6(b) are explanatory views of the operation. A1 is a first flexible arm, and A2 is a second flexible arm. Applicant Komatsu Manufacturing Co., Ltd. Representative Patent Attorney Masaaki Yonehara

Claims (1)

【特許請求の範囲】[Claims] 任意方向に揺動する第1の可撓腕A_1の先端に任意方
向に揺動する第2の可撓腕A_2を取付けた可撓腕ロボ
ットにおいて、前記第1の可撓腕A_1の揺動方向とス
トロークを検出する第1の手段と、第2の可撓腕A_2
の揺動方向とストロークを検出する第2の手段と、前記
第1の手段の検出信号に基づいて第2の手段の検出信号
が設定値となった時にオーバーラン検出信号を出力する
手段を設けたことを特徴とする可撓腕ロボットのオーバ
ーラン検出装置。
In a flexible arm robot in which a second flexible arm A_2 that swings in any direction is attached to the tip of a first flexible arm A_1 that swings in any direction, the swing direction of the first flexible arm A_1 is and a first means for detecting a stroke, and a second flexible arm A_2.
and a means for outputting an overrun detection signal when the detection signal of the second means reaches a set value based on the detection signal of the first means. An overrun detection device for a flexible arm robot.
JP62310808A 1987-12-10 1987-12-10 Overrun detector for flexible arm robot Pending JPH01153292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310808A JPH01153292A (en) 1987-12-10 1987-12-10 Overrun detector for flexible arm robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310808A JPH01153292A (en) 1987-12-10 1987-12-10 Overrun detector for flexible arm robot

Publications (1)

Publication Number Publication Date
JPH01153292A true JPH01153292A (en) 1989-06-15

Family

ID=18009671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310808A Pending JPH01153292A (en) 1987-12-10 1987-12-10 Overrun detector for flexible arm robot

Country Status (1)

Country Link
JP (1) JPH01153292A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136827A1 (en) * 2005-06-21 2006-12-28 Oliver Crispin Robotics Limited Robotic arm comprising a plurality of articulated elements and means for determining the shape of the arm
US8827894B2 (en) 2000-04-03 2014-09-09 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
CN105690378A (en) * 2016-03-22 2016-06-22 中国民航大学 Compact multi-joint-section snake arm driving mechanism easy to expand
US9427282B2 (en) 2000-04-03 2016-08-30 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US9808140B2 (en) 2000-04-03 2017-11-07 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9427282B2 (en) 2000-04-03 2016-08-30 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8827894B2 (en) 2000-04-03 2014-09-09 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8834354B2 (en) 2000-04-03 2014-09-16 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US9808140B2 (en) 2000-04-03 2017-11-07 Intuitive Surgical Operations, Inc. Steerable segmented endoscope and method of insertion
US10105036B2 (en) 2000-04-03 2018-10-23 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US10327625B2 (en) 2000-04-03 2019-06-25 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US10736490B2 (en) 2000-04-03 2020-08-11 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US10893794B2 (en) 2000-04-03 2021-01-19 Intuitive Surgical Operations, Inc. Steerable endoscope and improved method of insertion
US11026564B2 (en) 2000-04-03 2021-06-08 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US8126591B2 (en) 2005-06-21 2012-02-28 Oliver Crispin Robotics Limited Robotic arms
WO2006136827A1 (en) * 2005-06-21 2006-12-28 Oliver Crispin Robotics Limited Robotic arm comprising a plurality of articulated elements and means for determining the shape of the arm
CN105690378A (en) * 2016-03-22 2016-06-22 中国民航大学 Compact multi-joint-section snake arm driving mechanism easy to expand

Similar Documents

Publication Publication Date Title
CN106625666B (en) The control method and device of redundant mechanical arm
US20090071282A1 (en) Joint Structure of Robot
CN109676606B (en) Method for calculating arm angle range of mechanical arm, mechanical arm and robot
JPH04181405A (en) Coordinate system setting system for robot
CN102615389A (en) Arc welding robot oscillating electric arc tracking system and method based on DSP (Digital Signal Processor)
JPH01153292A (en) Overrun detector for flexible arm robot
KR900700244A (en) Robot posture control method
DE69402036D1 (en) Industrial robots
CN114012730A (en) SCARA robot body calibration and parameter identification method
CN111055264A (en) Robot and first arm member
CN108247636B (en) Parallel robot closed-loop feedback control method, system and storage medium
CN1672881A (en) On-line robot hand and eye calibrating method based on motion selection
JPH0588721A (en) Controller for articulated robot
AU2001282767A1 (en) An angular position measuring equipment in robotics, where it determines the angle of the joints
Rai et al. An IoT based wireless robotic-hand actuation system for mimicking human hand movement
JPH10267603A (en) Position and attitude detector
JPH05220681A (en) Robot and its control method
JP7352267B1 (en) Articulated robot, control method for an articulated robot, robot system, and article manufacturing method
JPS60225207A (en) Joystick
RU2054349C1 (en) Device for manipulator programmed control
JPH05177563A (en) Control method for master slave manipulator
JPH02212085A (en) Decision of attitude of manipulator
JP2914719B2 (en) Industrial robot
CN108068108A (en) Concertina type motion planning and robot control method is swung in plane
Yang et al. Robot-self-learning visual servoing algorithm using neural networks