JPH01152384A - Radio wave speedometer - Google Patents

Radio wave speedometer

Info

Publication number
JPH01152384A
JPH01152384A JP62311523A JP31152387A JPH01152384A JP H01152384 A JPH01152384 A JP H01152384A JP 62311523 A JP62311523 A JP 62311523A JP 31152387 A JP31152387 A JP 31152387A JP H01152384 A JPH01152384 A JP H01152384A
Authority
JP
Japan
Prior art keywords
data
radio wave
equation
latitude
receiving point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62311523A
Other languages
Japanese (ja)
Other versions
JPH0547792B2 (en
Inventor
Fusakichi Ono
小野 房吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIJO HOANCHIYOU CHOKAN
Original Assignee
KAIJO HOANCHIYOU CHOKAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIJO HOANCHIYOU CHOKAN filed Critical KAIJO HOANCHIYOU CHOKAN
Priority to JP62311523A priority Critical patent/JPH01152384A/en
Publication of JPH01152384A publication Critical patent/JPH01152384A/en
Publication of JPH0547792B2 publication Critical patent/JPH0547792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by forming an equation of observation wherein the value, which is obtained by adding N differences indicated on every N data of the data obtained by continuously measuring the time difference of an arrival radio wave to a reference pulse at a definite time interval, is set as data. CONSTITUTION:The azimuth of a radio wave emitting station looked from a receiving point is calculated. At first, when the geodetic longitude and latitude of the radio wave emitting station are set to lambda1, PHI1 and those of the receiving point are set to lambda2, PHI2, the cosine of the angle distance X between both points is represented by formulae I-III and an azimuth Z is represented by formulae IV, IV' from said formulae I-III. An equation for resolving the data concerned into latitude and longitude components becomes formula V using said azimuth Z. The time difference data of the receiver 2 of loran C and the geodetic longitude and latitude calculated therefrom are outputted. A microcomputer calculates a speed using the formula V.

Description

【発明の詳細な説明】 この発明は、速度変化に伴う測定媒体の変化量の測定に
特別の工夫を行って速度測定精度を上げることとした電
波速度計に間する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radio wave velocity meter in which special measures are taken to measure the amount of change in a measurement medium due to a change in speed to improve speed measurement accuracy.

ロラン、デツカ、オメガ等は船舶が受信し、自船の位置
を求める無線航行援助システムであるがこの電波を受信
して時間差又は位相差を測定し、このデータを一旦測地
位置に変換後、求めた朗々の位置から速度を求める方法
が従来の速度測定方法であるが、この発明では、測定デ
ータを一旦測地位置に変換するという回りくどいことを
せず時間差測定データから直接船速に変換する。またデ
ータから速度成分検出に特別の工夫を行っている。
Roland, Detsuka, Omega, etc. are radio navigation aid systems that are received by ships and used to determine their own position. They receive these radio waves, measure the time difference or phase difference, convert this data into a geodetic position, and then calculate the position. The conventional speed measurement method is to calculate the speed from a geodetic position, but in this invention, the time difference measurement data is directly converted to the ship speed without the roundabout process of converting the measured data to a geodetic position. Special measures have also been taken to detect velocity components from the data.

このため、データの測地位置変換に必要な複雑な計算手
続きの過程で生ずる精度低下が解消すると共にデータの
変化分だけを扱うので、扱う有効桁数少なくてよく、計
算速度、精度の向上が可能となる。
This eliminates the loss of accuracy that occurs during the complicated calculation procedure required for geodetic position conversion of data, and since only the changes in data are handled, the number of significant digits to be handled is reduced, making it possible to improve calculation speed and accuracy. Become.

測定データ: 無線航行援助システムの電波を受信し、受信点の基準パ
ルスに対して、到来時間差を主従局全部について一定時
間毎に連続測定する。
Measurement data: Receive radio waves from the radio navigation aid system, and continuously measure arrival time differences for all master and slave stations at regular intervals with respect to the reference pulse at the receiving point.

こうして測定されるa、b、c・・・ゆ各周毎のデータ
をそれぞれa + 、gt 、 6 m ” 、 b、
 、 bz 、 @@ ’ 、(l 、(16# II
とし次の隔差 (an++−at )+(an+t−az)、・”(a
n+1−ai)(bn++−b+)+(bn+z−bz
)s”(bn÷1−bi)(Cn÷+−C+)、(Cn
+2−Cz)、”(Cn+1−Ci)を計算する。
The data for each lap of a, b, c... are thus measured as a + , gt , 6 m'', b, respectively.
, bz , @@ ' , (l , (16# II
Then, the next interval difference (an++-at)+(an+t-az),・”(a
n+1-ai) (bn++-b+)+(bn+z-bz
)s” (bn÷1-bi) (Cn÷+-C+), (Cn
+2-Cz),"(Cn+1-Ci).

ここで、この計算値は受信点が送信局に対して視線方向
に移動しているときに生じる変化分てあるから移動して
いなければO1′となる性質のものである。さらに次式
で隔差の和を計算する。
Here, this calculated value includes the change that occurs when the receiving point moves in the line-of-sight direction with respect to the transmitting station, so it has the property of being O1' if the receiving point does not move. Furthermore, calculate the sum of the differences using the following formula.

Da=(an++−aI)+(an+z−at)+”・
+(an+*−ar)   (D1=1〜n 同様な方法です、c各局についてもD b + D c
を求める。こうして求められるDa、Db、Dcは、受
信点が送信局に対して相対的に移動することによって生
ずる測定位相変化のnXnに相当する。このことを更に
具体的な数値について説明する。
Da=(an++-aI)+(an+z-at)+”・
+(an+*-ar) (D1=1~n Same method, D b + D c for each station c
seek. Da, Db, and Dc thus obtained correspond to nXn of the measured phase change caused by the movement of the receiving point relative to the transmitting station. This will be explained using more specific numerical values.

今、全く同じ繰りかへしのパルス列を作る2つのパルス
ジェネレータA、Bがあるとする。そこでA、Bの位相
差を電波を介してBジェネレータの点で測定すると両者
が相対運動をしていないときその値は一定であり、Aが
Bに対して視線方向に等速で遠ざかるとき一定の増加を
示してその方向の速度成分が検出できる。つまり電波は
1マイクロ秒で300m進むから、受信点が秒速300
mで遠ざかれば18mの測定値は1マイクロ秒づつ増加
することになる。この単位時間毎の増分が速度成分であ
る。
Now, suppose that there are two pulse generators A and B that generate exactly the same repeating pulse train. Therefore, when the phase difference between A and B is measured at the B generator point via radio waves, the value is constant when the two are not in relative motion, and constant when A moves away from B at a constant speed in the line of sight direction. , and the velocity component in that direction can be detected. In other words, radio waves travel 300 meters in 1 microsecond, so the receiving point travels 300 meters per second.
If you move away by m, the measured value of 18 m will increase by 1 microsecond. This increment per unit time is the velocity component.

そこで18毎に測定した測定値の数列を1.2,34.
5・・φ◆04とし、これについて0)式を計算してみ
る。
Therefore, the numerical sequence of measured values measured every 18 is 1.2, 34.
5... Let φ◆04 and calculate the formula 0) for this.

(1)式のn=3とすればal =l 、an++=4
となることは上の数列から明らかである。第1項(括弧
内)は数列第2行の3個置きの差で第1行のとおり3で
ある。同様に第2項も3である。従って、1=n=3と
いうことは、この3個の和で当然9である。又、n=4
とすると(+)式の各項は数列第3行のとおり4となり
和は16となる。このように(+)式によれば速度に対
応する位相変化の測定値がnXn倍に拡大して測定され
ることが分かる。こうして測定される速度成分は、測定
単位をμS(?イタ0秒)、電波伝播速度なしくm/μ
S)、測定時間間隔をt秒、速度成分をV (knnク
ツ) 、 (+)式で計算された測定量をDとしたとき V i= (D ・v X3600) /((n−t)
LX 1852)  (2)(1:当該局に対応) となるから、単位速度変化に対する測定量の拡大は分解
能の向上を意味する。次に、こうして得られたデータは
、受信点からその局の方向にとった速度成分であるから
、これを通常の速度表現形式(測地座標系上で北から東
回りにとった方位と速度kn)に変換する方法について
説明する。
If n=3 in equation (1), al=l, an++=4
It is clear from the above sequence that . The first term (in parentheses) is the difference between every third column in the second row of the sequence, and is 3, as in the first row. Similarly, the second term is also 3. Therefore, 1=n=3 means that the sum of these three is naturally 9. Also, n=4
Then, each term in the (+) equation is 4, as shown in the third row of the numerical sequence, and the sum is 16. As described above, it can be seen that according to the equation (+), the measured value of the phase change corresponding to the speed is magnified by nXn times. The velocity component measured in this way has a measurement unit of μS (?Ita 0 seconds), and the radio wave propagation velocity is m/μ.
S), where the measurement time interval is t seconds, the velocity component is V (knn shoes), and the measured quantity calculated by formula (+) is D, then Vi = (D ・v X3600) / ((nt)
LX 1852) (2) (1: Corresponding to the station in question) Therefore, expanding the measured amount for a unit speed change means improving resolution. Next, since the data obtained in this way is a velocity component taken in the direction of the station from the receiving point, it can be expressed in the usual velocity expression format (azimuth and velocity kn taken from north to east on the geodetic coordinate system). ).

観測方程式の作成: 利用した各電波発射間及び受信点の測地経緯度より、受
信点から見た電波発射間の方位を次式で計算する。電波
発射間の測地経緯度をλl+φ1.受信点の測地経緯度
をλよ、φ2とすれば、両点間の角距離χの余弦は cosχ=sinφ(sinφL+ cosφl CO8φz cos(入1−λz)  (
3)sinχ=7          (4)θ=co
s”((sinφ、−5inφ、cosχ)/(sin
z cosφ、))  (5)これから方位Zは S団(λじ入l)≧0のとき Z=θ    (6)s
in(λI−λ、)〈0のとき Z=2rt−θ (6
)′この方位を使って、当該データを緯度経度方向成分
に分解する方程式は く第1図参照)Va=Δφcos
 Z a÷Δλ5inZa+Δtvb=ΔφcosZb
+Δ入 5inZ b÷Δt(7)Vi=ΔφcosZ
i+Δλ5inZ i+Δt(1は各局に対応) ただし Δφ:緯度方向速度成分 Δλ:経度方向速度成分 Δt:基準パルスの位相ドリフト となる。これは1局のデータについて1つの方程式が対
応している。これを解いて未知数が決定できれば船速か
求まる。この場合方程式に含まれる未知数はΔφ、Δλ
、Δtの3つであるから、互いに方向の違った3つの局
のデータがあれば未知数の解が得られる。
Creation of observation equation: From the geodetic latitude and latitude of each radio wave emission and the receiving point used, calculate the direction between the radio wave emission as seen from the receiving point using the following formula. The geodetic latitude and latitude between radio wave emission is λl+φ1. If the geodetic latitude and latitude of the receiving point are λ and φ2, then the cosine of the angular distance χ between the two points is cosχ=sinφ(sinφL+ cosφl CO8φz cos(in1−λz) (
3) sinχ=7 (4) θ=co
s”((sinφ, -5inφ, cosχ)/(sin
z cosφ, )) (5) From now on, the direction Z will be S group (λ included l) ≧ 0, Z = θ (6) s
When in(λI−λ,)〈0, Z=2rt−θ (6
)' Using this direction, the equation for decomposing the data into latitude and longitude components is as follows: (See Figure 1) Va = Δφcos
Z a÷Δλ5inZa+Δtvb=ΔφcosZb
+Δ input 5inZ b÷Δt(7)Vi=ΔφcosZ
i+Δλ5inZ i+Δt (1 corresponds to each station) where Δφ: velocity component in the latitude direction Δλ: velocity component in the longitudinal direction Δt: phase drift of the reference pulse. One equation corresponds to one station's data. If we can solve this and determine the unknown, we can find the ship's speed. In this case, the unknowns included in the equation are Δφ, Δλ
, Δt, a solution to the unknown can be obtained if there is data from three stations with different directions.

(3)〜(5)式の計算で地球の楕円体補正を無視して
いるが電波受信点に対して、電波発射間が十分遠ければ
(一般には十分遠い)送受信点の相対位置の多少の違い
は精度に殆ど影響しない。従って方位の計算精度は通常
4桁もあれば十分である。
Although the earth's ellipsoid correction is ignored in the calculations of equations (3) to (5), if the distance between the radio wave emission and the radio wave receiving point is sufficiently far (in general, it is far enough), the relative position of the transmitting and receiving points will change somewhat. The difference has little effect on accuracy. Therefore, it is usually sufficient to have a calculation accuracy of four digits.

従って、連続したデータがある場合この計算は毎回行う
必要はない。
Therefore, if there is continuous data, it is not necessary to perform this calculation every time.

方程式の解法: 前述のごとくこの方程式は、3つの未知数をもつので同
時に取得された互いに方向の異なる3局のデータがあれ
ば解けるが4局以上あればデータのばらつきによる精度
低下が少なくなり好結果が得られる。ここでは、こうし
た多数データがある場合の最小二乗法的解法について説
明する。
How to solve the equation: As mentioned above, this equation has three unknowns, so it can be solved if you have data from three stations acquired at the same time and in different directions, but if there are four or more stations, there will be less loss of accuracy due to data variations, resulting in better results. is obtained. Here, we will explain the least squares method when there is a large amount of data.

方程式の係数、定数を ai=cosZ i 、bi=
sinZ i 。
The coefficients and constants of the equation are ai=cosZ i , bi=
sinZ i.

ci=1. di= ’J iと置きこれらの1=a−
nまでの以下の積和[aiai]、[aibi][ai
ciコ、[aidi]、[bibi]+[bici]、
[bidiL[ciciL [:cidi]、を計算す
る。この計算値より正規方程式は となる。こうして正規方程式ができると、この解は係数
の行列式から全く機械的に計算できる。
ci=1. di= 'J i and these 1=a-
The following sum of products [aiai], [aibi] [ai
cico, [aidi], [bibi] + [bici],
Calculate [bidiL[ciciL[:cidi]. From this calculated value, the normal equation becomes. Once a normal equation is created in this way, its solution can be calculated completely mechanically from the determinant of the coefficients.

こうして、各局の時間差測定データが緯度経度方向の速
度成分に変換できる。これから求める速度の絶対値V及
び進行方向Zは v=、/r噌仄Tτ丙       (13)θ= c
os””(Δφ/v)          (+4)北
から東回わりにとった移動方向を2とするとΔλ≧0の
とき Z=θ        (15)Δλ〈0のとき
 Z=2π−θ    (15)’Δtは、受信点基準
パルスの利用電波発射システム基準に対する位相変化で
ある。このΔtの導入で基準発信器のドリフト誤差が分
離する。
In this way, the time difference measurement data of each station can be converted into velocity components in the latitude and longitude directions. The absolute value V of the speed and the direction of travel Z to be obtained from this are v=, /r噌组Tτ丙 (13) θ= c
os””(Δφ/v) (+4) If the direction of movement taken from north to east is 2, when Δλ≧0, Z=θ (15) When Δλ<0, Z=2π−θ (15)'Δt is the phase change of the receiving point reference pulse with respect to the utilized radio wave emission system reference. The introduction of this Δt separates the drift error of the reference oscillator.

ところで、これまでの説明では受信点の基準パルスに対
して受信波の位相を測定したデータについて述べた。し
かし、発明の方式では従来の双曲線航法方式受信機で取
得した時間差又は位相差データでもそのまま解ける。そ
の理由は(7)式でΔtを導入しているからである。こ
の値はどのような値でも取り得るから、この説明の受信
点の基準パルスは主局電波到来時に同期してもよい。こ
れは言い換えれば基準パルスを主局電波到来時に置き換
えたのと同等であることを意味する。そこでこの場合は
主局対応データDmを:0”とした次の方程式を作り(
7)の連立方程式に加えて解く。
By the way, in the explanation so far, data obtained by measuring the phase of the received wave with respect to the reference pulse at the reception point has been described. However, in the method of the invention, the problem can be solved directly using time difference or phase difference data obtained with a conventional hyperbolic navigation receiver. The reason is that Δt is introduced in equation (7). Since this value can take any value, the reference pulse at the receiving point in this explanation may be synchronized with the arrival of the main station radio wave. In other words, this means that it is equivalent to replacing the reference pulse when the main station radio wave arrives. Therefore, in this case, create the following equation with the main station corresponding data Dm as :0'' (
Solve in addition to the simultaneous equations in 7).

0=Δφcoszm+Δλsinzm+Δt   (1
6)実施例: 本方式の実用化には、電波を受信して時間差又は位相差
を測定する頭の部分から設計してもよいが、この部分は
既に高性能な市販品があるので、これを利用すれば最も
手軽である。第2図にこうした一部市販品を使って設計
した実施例のブロック図を示した。1は受信アンテナ、
2はロランC受信機で、時間差データとこれから計算し
た測地経緯度を出力している。3は2のデータを受は本
発明の(+)式以下(16)式までの演算を行う電子計
算機、4は測定結果の収録又は表示器である。
0=Δφcoszm+Δλsinzm+Δt (1
6) Practical example: To put this method into practical use, it is possible to design the head part that receives radio waves and measures the time difference or phase difference, but since there is already a high-performance commercial product for this part, we cannot use this part. It is easiest to use . FIG. 2 shows a block diagram of an embodiment designed using some of these commercially available products. 1 is the receiving antenna,
2 is the Loran C receiver, which outputs time difference data and geodetic latitude and latitude calculated from this data. 3 is an electronic computer which receives the data of 2 and performs calculations from formula (+) to formula (16) of the present invention; and 4 is a recording or display device for measurement results.

応用例1: (1)式でal +al+・・・a5 に参照点(λ。Application example 1: In equation (1), al + al + ... a5 is the reference point (λ.

、φ0)における測定値(定数)を用いれば(10)、
(11)式で求まるΔλ、Δφは参照点に対する緯経度
偏差を与えるから、そのまま参照点に対する高精度な相
対測位装置(参照点付近峡域)として利用できる。
, φ0), (10),
Since Δλ and Δφ determined by the equation (11) give latitude and longitude deviations with respect to the reference point, it can be used as is as a highly accurate relative positioning device with respect to the reference point (isthmus area near the reference point).

この場合求点(λχ、φχ)の測地位置は入χ =λ。In this case, the geodetic position of the sought point (λχ, φχ) is input χ = λ.

 +Δ入 φ8 =φ。+Δφ 応用例2: (12)式で求めたΔtは、言い換えれば受信点の参照
基準パルス作成の基準となった標準発信器周波数の利用
電波発射システムの標準発信器周波数に対する偏差であ
る。従って、この発明はそのまま移動状態でも測定でき
る高精度な周波数安定度測定装置として利用できる。こ
の場合の周波数偏差Δfは、(2)式に於ける単位換算
定数、及び測定単位がμSであることを考慮して Δf=Δtバv X3600XIO6/1852) (
Hz) (18)となる、固定点に於けるΔfは方程式
を解くまでもなく(2)式の単位換算を行わず単にΔf
 = D / (nt)”/ 10’       (
H2) (19)である。この方法による周波数測定は
単一局ではなくシステムの平均周波数に対して測定され
ること。測定時間の2乗に比例して精度が向上すること
が最大の特徴である。
+Δ input φ8 = φ. +Δφ Application example 2: In other words, Δt obtained by equation (12) is the deviation of the standard oscillator frequency used as the standard for creating the reference pulse at the receiving point from the standard oscillator frequency of the radio wave emission system. Therefore, the present invention can be used as is as a highly accurate frequency stability measuring device that can measure even in a moving state. The frequency deviation Δf in this case is calculated by considering the unit conversion constant in equation (2) and the measurement unit being μS, and calculating the frequency deviation Δf=Δt(vX3600XIO6/1852) (
Hz) (18), Δf at the fixed point is simply Δf without solving the equation or converting the unit in equation (2).
= D / (nt)" / 10' (
H2) (19). Frequency measurements made with this method are measured relative to the average frequency of the system, not a single station. The most important feature is that the accuracy improves in proportion to the square of the measurement time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電波発射局aの受信データに対する観測方程
式の図解。第2図はl実施例である。 以上
Figure 1 is an illustration of the observation equation for received data from radio wave emitting station a. FIG. 2 shows an embodiment. that's all

Claims (1)

【特許請求の範囲】[Claims] 「到来電波の基準パルスに対する時間差を、一定時間間
隔で連続的に測定したデータの指定したN個置きの差を
N個加算した値をデータとする観測方程式を作り、これ
を解くことによって速度を求めることとした隔差積算型
の電波速度計」
``Create an observation equation whose data is the sum of every N specified differences of the data continuously measured at a fixed time interval for the time difference of the incoming radio wave with respect to the reference pulse, and solve this equation to calculate the speed. What we were looking for was a differential integration type radio wave speed meter.”
JP62311523A 1987-12-10 1987-12-10 Radio wave speedometer Granted JPH01152384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311523A JPH01152384A (en) 1987-12-10 1987-12-10 Radio wave speedometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311523A JPH01152384A (en) 1987-12-10 1987-12-10 Radio wave speedometer

Publications (2)

Publication Number Publication Date
JPH01152384A true JPH01152384A (en) 1989-06-14
JPH0547792B2 JPH0547792B2 (en) 1993-07-19

Family

ID=18018262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311523A Granted JPH01152384A (en) 1987-12-10 1987-12-10 Radio wave speedometer

Country Status (1)

Country Link
JP (1) JPH01152384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181988A (en) * 2012-03-02 2013-09-12 U-Blox Ag Positioning using local wave-propagation model

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181988A (en) * 2012-03-02 2013-09-12 U-Blox Ag Positioning using local wave-propagation model

Also Published As

Publication number Publication date
JPH0547792B2 (en) 1993-07-19

Similar Documents

Publication Publication Date Title
US8711037B2 (en) Precision geolocation of moving or fixed transmitters using multiple observers
US7286085B2 (en) Precision geolocation system and method using a long baseline interferometer antenna system
US3795911A (en) Method and apparatus for automatically determining position-motion state of a moving object
US4845502A (en) Direction finding method and apparatus
CN109001675B (en) Positioning method for measuring distance difference based on phase difference
JPH09502515A (en) System and method for accurate position determination
US3691560A (en) Method and apparatus for geometrical determination
GB1424588A (en) Apparatus for determining the position of a vehicle
WO2019072394A1 (en) Phase-comparison of multi-frequency transmissions for assisting the determination of position or time
BR112014018410B1 (en) RADIO COMMUNICATION SYSTEM
SE7702745L (en) RADIO INTERFEROMETER SYSTEM
JPH08304092A (en) Method and system for detecting position of moving body
US2611127A (en) Continuous wave navigation system
JPH01152384A (en) Radio wave speedometer
US3967277A (en) Radio navigation system
US3328565A (en) Navigation and position plotting system
Berkowitz et al. Information derivable from monopulse radar measurements of two unresolved targets
US3111665A (en) Sequenced spatial coordinate determining system
US3337872A (en) Radio navigation system
Lédeczi et al. A novel RF ranging method
Stockton et al. Acoustic position measurement, an overview
Hensley A combined methodology for SAR interferometric and stereometric error modeling
Mendoza A method of determining the velocity of radio waves over land on frequencies near 100 kc/s
JP2002535662A (en) Interferometric radar measurement method
JPH028666B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term