JPH01149032A - Method and device for optical pulse generation - Google Patents

Method and device for optical pulse generation

Info

Publication number
JPH01149032A
JPH01149032A JP30770387A JP30770387A JPH01149032A JP H01149032 A JPH01149032 A JP H01149032A JP 30770387 A JP30770387 A JP 30770387A JP 30770387 A JP30770387 A JP 30770387A JP H01149032 A JPH01149032 A JP H01149032A
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
optical pulse
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30770387A
Other languages
Japanese (ja)
Inventor
Kenichi Kitayama
研一 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30770387A priority Critical patent/JPH01149032A/en
Publication of JPH01149032A publication Critical patent/JPH01149032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam

Abstract

PURPOSE:To always efficiently generate a short optical pulse with a desired repeat frequency by forming the optical pulse from the fluctuation of the intensity of a high output continuous oscillation laser light at the time of making this laser light incident on an optical fiber and continuously varying the repeat frequency of the optical pulse. CONSTITUTION:The device is provided with a high output continuous oscillation laser 2 having an intensity fluctuation, an incident light source for incidence of a weak light 5 coinciding with the wavelength of a side band, a birefringence optical fiber 12 which induces modulation instability, a multiplexer 3 which multiplexes the laser light 2 and the incident light 5 to make the optical pulse incident, and a photodetector 6 which detects an optical pulse 7 in the exit end of the optical fiber. When the high output continuous oscillation laser light 2 is made incident on the optical fiber, the optical pulse is generated from the intensity fluctuation of the laser light by self-phase modulation due to the optical Kerr effect of the optical fiber and negative dispersion of the optical fiber and the repeat frequency of the optical pulse is continuously varied. Thus, a phase matching condition is always satisfied for the wavelength of the incident light and the optical pulse is generated with an arbitrary repeat frequency.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は繰り返し周波数がサブTHzと極めて高く、か
つ、繰り返し周波数を広い周波数帯において任意に設定
でき、パルス幅がピコオーダの短光パルスを発生させる
方法とその装置に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention generates short optical pulses with an extremely high repetition frequency of sub-THZ, which can be arbitrarily set in a wide frequency band, and whose pulse width is on the order of pico. The present invention relates to a method and an apparatus for doing so.

〔従来の技術〕[Conventional technology]

パルス幅の狭い、いわゆる短光パルスの発生技術として
は、レーザにモードロックをかけて位相同期を取る方法
、半導体レーザに直接変調する方法等が広く用いられて
おり、前者の方法によって色素レーザを用いて数10フ
ェムト秒(10−”秒)程度の短光パルスが得られてい
る。しかしながらパルスの繰り返し周波数は、現状では
半導体レーザを直接変調して得られる20GHzが限界
であった。
Widely used techniques for generating so-called short optical pulses with a narrow pulse width include a method of mode-locking a laser to obtain phase synchronization, and a method of directly modulating a semiconductor laser. Short optical pulses of several tens of femtoseconds (10-'' seconds) have been obtained using this method. However, the current limit to the pulse repetition frequency is 20 GHz, which can be obtained by directly modulating a semiconductor laser.

次に変調不安定性を利用した高繰り返し周波数、短光パ
ルスの発生方法について説明する。
Next, a method for generating high repetition frequency, short optical pulses using modulation instability will be explained.

第6図(a)に示すような比較的高強度の光パルスが光
ファイバ中を伝搬する時、光ファイバの材料の持つ非線
形光学効果の一種である光カー効果によって同図(b)
に示すように光パルスの立ち上がり部分で周波数が低く
なり、立ち下がり部分で周波数が高くなる、いわゆるチ
ャーピングを受け、この光パルスが色分散が負となる異
常分散媒質を通過すると周波数の高いパル支の立ち下が
り部分が立ち上がりの部分に追いつき、その結果パルス
が同図(C)に示されるように時間軸上で圧縮されるこ
とが知られている。したがって強度にゆらぎがある高出
力の連続発振レーザ光が光ファイバ中を伝搬する時には
次第にゆらぎが成長し短光パルスとなる。この場合のパ
ルスの繰り返し周波数は、第7図に示されるように、光
の周波数軸上での入射レーザ光の周波数に対する側波帯
の周波数となり、光ファイバの非線形光学効果の一種で
ある誘導3波混合(誘R4光子混合)の位相整合条件を
満足する周波数として決定される。なお、この場合の3
波とは入射レーザ光、側波帯に発生するストークス光、
アンチストークス光であり、それぞれの波の周波数をf
P、fs+  rAsとし、波長をλ2.λ3.λ、、
とすると、繰り返し周波数Δfとそれに対応するレーザ
光波長からの波長間隔Δλとの関係は次の(1)式で与
えられる。なお、次式においてCは真空中の光速を表す
When a relatively high-intensity light pulse as shown in Figure 6(a) propagates through an optical fiber, the optical Kerr effect, which is a type of nonlinear optical effect of the material of the optical fiber, causes the optical pulse to appear in Figure 6(b).
As shown in the figure, the frequency of the optical pulse becomes low at the rising edge and high at the falling edge, which is called chirping, and when this optical pulse passes through an anomalous dispersion medium with negative chromatic dispersion, it becomes a high-frequency pulse. It is known that the falling part of the support catches up with the rising part, and as a result, the pulse is compressed on the time axis as shown in FIG. Therefore, when a high-power continuous wave laser beam with fluctuations in intensity propagates through an optical fiber, the fluctuations gradually grow and become short optical pulses. In this case, the pulse repetition frequency is a sideband frequency with respect to the frequency of the incident laser beam on the optical frequency axis, as shown in FIG. It is determined as a frequency that satisfies the phase matching condition of wave mixing (induced R4 photon mixing). In addition, in this case, 3
Waves include incident laser light, Stokes light generated in sidebands,
It is anti-Stokes light, and the frequency of each wave is f
P, fs+ rAs, and the wavelength is λ2. λ3. λ,,
Then, the relationship between the repetition frequency Δf and the corresponding wavelength interval Δλ from the laser light wavelength is given by the following equation (1). Note that in the following equation, C represents the speed of light in vacuum.

Δf=fA、−f、=f、−f。Δf=fA, -f, =f, -f.

=C(1/λ□−1/λF) =C(1/λP−1/λS) Δλ=(λ、・λAs/C)Δf =(λ、・λ3/C)Δf ・・・ (1)また、従来
の方法ではストークス光の周波数に等しい微弱な光を光
ファイバに注入し、誘導3波混合の位相整合条件を満足
させることによって光パルスの形成を促進させる方法が
取られている。
=C(1/λ□-1/λF) =C(1/λP-1/λS) Δλ=(λ,・λAs/C)Δf =(λ,・λ3/C) Δf... (1) Furthermore, in the conventional method, weak light equal to the frequency of Stokes light is injected into an optical fiber, and the formation of optical pulses is promoted by satisfying the phase matching condition of stimulated three-wave mixing.

第8図は約1−の光ファイバを用い、レーザ光波長1.
318am、注入光1.400.umの場合の実験結果
である。同図よりパルスの時間間隔Tが3psであるこ
とから繰り返し周波数Δfが340GHzの短光パルス
が得られていることが分かる。
In FIG. 8, an optical fiber with a wavelength of approximately 1- is used, and a laser beam with a wavelength of 1.
318am, injection light 1.400. This is an experimental result in the case of um. It can be seen from the figure that since the pulse time interval T is 3 ps, short optical pulses with a repetition frequency Δf of 340 GHz are obtained.

第9図はその光パルス発生装置であり、光出力連続発振
レーザ光1.レンズ22合波器3.光ファイバ4.注入
光5.受光器6から構成され、7は発生した光パルスで
ある。
FIG. 9 shows the optical pulse generator, and the optical output continuous wave laser beam 1. lens 22 multiplexer 3. Optical fiber 4. Injected light 5. It consists of a light receiver 6, and 7 is a generated light pulse.

誘導3波混合の位相整合条件は次の式(2)に示すよう
に光ファイバの材料分散、導波路分散、複屈折及び入射
レーザ強度に依存する各位相項に、、に、、に、、に、
の和が零となるとき成立する。ただし、Ktは位相不整
合量の総和であり、Δνはストークス光、アンチストー
クス光の入射レーザ光の周波数からのシフト量Δfを光
速Cで規格化した規格化周波数差である。
The phase matching condition for guided three-wave mixing is as shown in the following equation (2), where each phase term depends on the material dispersion, waveguide dispersion, birefringence, and incident laser intensity of the optical fiber. To,
It holds true when the sum of is zero. However, Kt is the total amount of phase mismatch, and Δν is a normalized frequency difference obtained by normalizing the shift amount Δf of the Stokes light and anti-Stokes light from the frequency of the incident laser light by the speed of light C.

KL(Δν)=に、(Δν)十Kw(Δν)十に3(Δ
ν)十K11 Δν=Δf/C・・・ (2) 〔発明が解決しようとする問題点〕 しかしながら、従来は与えられたレーザ光および注入光
の波長に対して(2)式の各位相項を何等かの方法で制
御してKtを零とする方法がとられていなかったので、
レーザ光と混合される注入光の波長が上記位相整合条件
を満足しない場合には、光パルスの発生効率は当然劣化
した。第10図はKt=0の時の効率を1とした時の位
相不整合量Ktに対する効率の理論値である。効率が0
.5となるKtは0.12cm−’であり、第8図の実
験結果にこれを当てはめると注入光の波長が1.400
μmから’1.4nmずれたことに対応する。このこと
から注入光の波長の僅かなずれによって、発生する光パ
ルスの効率が著しく減少することが理論的にも明らかで
ある。
KL (Δν) = (Δν) 10 Kw (Δν) 10 to 3 (Δ
ν) 10K11 Δν=Δf/C... (2) [Problem to be solved by the invention] However, in the past, each phase term in equation (2) was calculated for a given wavelength of laser light and injection light. Since there was no way to control Kt in some way to make it zero,
When the wavelength of the injected light mixed with the laser light does not satisfy the above phase matching condition, the optical pulse generation efficiency naturally deteriorates. FIG. 10 shows theoretical values of efficiency with respect to the amount of phase mismatch Kt, assuming that the efficiency when Kt=0 is 1. Efficiency is 0
.. 5, Kt is 0.12 cm-', and applying this to the experimental results shown in Figure 8, the wavelength of the injected light is 1.400 cm-'.
This corresponds to a deviation of 1.4 nm from μm. From this, it is theoretically clear that a slight shift in the wavelength of the injected light significantly reduces the efficiency of the generated optical pulse.

このため、実際には注入光の波長を掃引して発生する光
パルスの効率が最大となる波長を選択する必要があり、
繰り返し周波数を任意に設定することができないという
問題があった。
Therefore, it is actually necessary to select the wavelength that maximizes the efficiency of the generated optical pulse by sweeping the wavelength of the injected light.
There was a problem in that the repetition frequency could not be set arbitrarily.

つまり、従来は繰り返し周波数は実質的には固定された
状態であり、特定の繰り返し周波数に対しては上記位相
整合条件が満たされているものの、その他の所望の繰り
返し周波数に対しては注入光の波長に対して必ずしも位
相整合条件が満たされていなかったため、光パルスを発
生できなかったり、発生する光パルスの変調度が十分で
はなく短光パルスが得られなかったのが実情であった。
In other words, conventionally, the repetition frequency is essentially fixed, and although the above phase matching condition is satisfied for a specific repetition frequency, the injection light The actual situation was that optical pulses could not be generated because the phase matching condition was not necessarily satisfied for the wavelength, and short optical pulses could not be obtained because the degree of modulation of the generated optical pulses was insufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解消するためになされたもので、
光ファイバ中で生じる非線形光学現象の一種である変調
不安定性による強度ゆらぎのある高出力連続発振レーザ
光を光ファイバに入射させたとき、光ファイバの光カー
効果によって生じる自己位相変調と光ファイバの負の分
散とによってレーザ光の強度ゆらぎから光パルスを形成
し、光パルスの繰り返し周波数が連続的に可変されるよ
うにしたものであり、また、強度ゆらぎのある高出力連
続発振レーザと、側波帯の波長に一致した微弱光を注入
する注入用光源と、変調不安定性を誘起する複屈折光フ
ァイバと、レーザ光と注入光とを合波して光パルスを入
射する合波器と、光ファイバ出射端において光パルスを
検出する受光器とから構成したものである。
The present invention was made to solve the above problems, and
When a high-power continuous wave laser beam with intensity fluctuation due to modulation instability, which is a type of nonlinear optical phenomenon that occurs in an optical fiber, is input into an optical fiber, self-phase modulation caused by the optical Kerr effect of the optical fiber and A light pulse is formed from the intensity fluctuation of the laser beam by negative dispersion, and the repetition frequency of the light pulse is continuously varied. An injection light source that injects weak light that matches the wavelength of the waveband, a birefringent optical fiber that induces modulation instability, and a multiplexer that combines the laser beam and the injection light and inputs an optical pulse. It consists of a light receiver that detects light pulses at the output end of the optical fiber.

〔作 用〕[For production]

位相不整合量の複屈折に依存する成分は可変される。 The birefringence-dependent component of the amount of phase mismatch is varied.

〔実施例〕〔Example〕

以下に本発明の具体的な実施例について図面を参照して
説明する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

まず、パルスの繰り返し周波数を連続的に可変とするた
め、(2)式の位相項の値をアナログ的に変化させる方
法について説明する。
First, a method of changing the value of the phase term in equation (2) in an analog manner in order to continuously vary the pulse repetition frequency will be described.

(2)式の位相項のうちに、は光ファイバ材料とレーザ
光源の波長に対して固定であり、K8も導波路構造に依
存する項であるため不変であり、位相項に7はレーザ光
強度に依存するがその変化量は極めて小さく実質は半固
定であると考えられる。したがってここでは複屈折に依
存する項K。
Among the phase terms in equation (2), is fixed with respect to the wavelength of the optical fiber material and the laser light source, and K8 is also a term that depends on the waveguide structure, so it remains unchanged, and 7 in the phase term is fixed with respect to the wavelength of the optical fiber material and laser light source. Although it depends on the strength, the amount of change is extremely small and the substance is considered to be semi-fixed. Therefore here the term K depends on the birefringence.

に着目し、応力付与型複屈折ファイバを用いた例につい
て述べる。複屈折ファイバはファイバ内の残留応力によ
ってコアに引っ張りあるいは圧縮応力が印加され、ファ
イバ断面内の直交する2方向に屈折率差、即ち複屈折が
生じているものである。
Focusing on this, we will discuss an example using a stress-applied birefringent fiber. A birefringent fiber is one in which tensile or compressive stress is applied to the core due to residual stress within the fiber, and a difference in refractive index, that is, birefringence, occurs in two orthogonal directions within the fiber cross section.

したがって外部から応力を印加することによってこの複
屈折を変化できることが実験的にも確認されている。
Therefore, it has been experimentally confirmed that this birefringence can be changed by applying stress from the outside.

第2図は各種の応力印加方法を示しており、(a)は平
板上にファイバを置き平板で加圧する方法、(b)はフ
ァイバを曲げる方法、(C)はファイバを恒温槽に入れ
加熱する方法である。
Figure 2 shows various stress application methods; (a) is a method in which the fiber is placed on a flat plate and pressure is applied with the flat plate, (b) is a method in which the fiber is bent, and (C) is a method in which the fiber is placed in a thermostatic oven and heated. This is the way to do it.

第3図は第2図(a)および(b)の方法による複屈折
の変化分く応力を印加しない場合の値との差)δB、の
計算値であり、横軸はx、y軸方向の印加応力WX、W
、および曲げ直径2Rの逆数である。なおx、  y軸
はそれぞれ複屈折光ファイバの結晶主軸の長軸、短軸で
ある。ここでは例として複屈折ファイバを用いているが
、通常のファイバにおいても応力を外部から印加した場
合は同様に複屈折を生じる。
Figure 3 shows the calculated value of δB (difference from the value when no stress is applied, which accounts for the change in birefringence by the method shown in Figures 2 (a) and (b)), and the horizontal axis is the x- and y-axis directions. The applied stress WX, W
, and the reciprocal of the bending diameter 2R. Note that the x and y axes are the long axis and short axis of the crystal principal axis of the birefringent optical fiber, respectively. Although a birefringent fiber is used here as an example, birefringence similarly occurs in ordinary fibers when stress is applied from the outside.

位相整合をとるためには光ファイバの結晶軸とレーザ光
の偏光面との関係を規定する必要がある。
In order to achieve phase matching, it is necessary to define the relationship between the crystal axis of the optical fiber and the polarization plane of the laser beam.

以下に述べる2つの場合は、それぞれレーザ光の偏光面
を複屈折ファイバの結晶主軸の長軸(x軸)あるいは短
軸(y軸)のいずれか一方に沿って入射させた場合と、
長軸および短軸の両軸に分けて入射する場合である。
In the two cases described below, the polarization plane of the laser beam is incident along either the long axis (x-axis) or the short axis (y-axis) of the crystal principal axis of the birefringent fiber, and
This is a case where the light is incident on both the long axis and the short axis separately.

第4図は光ファイバの基本導波モードであるLpH1の
分布曲線を示す。同図(a)に示されるように縦軸は規
格化伝搬定数b1横軸は規格化周波数■である。複屈折
ファイバでは第2図の(b)。
FIG. 4 shows a distribution curve of LpH1, which is the fundamental waveguide mode of the optical fiber. As shown in FIG. 5A, the vertical axis represents the normalized propagation constant b, and the horizontal axis represents the normalized frequency ■. For a birefringent fiber, it is shown in Fig. 2(b).

(C)の拡大図に示すようにx、y軸に偏光した2つの
基本モードであるLPo+、LP□モードの縮退が解け
ている。(b)図はレーザ光、ストークス光となる注入
光、アンチストークス光の偏光方向をそれぞれy、x、
x軸に一致させた場合である、このとき(2)式〇に、
は次式で与えられる。
As shown in the enlarged view of (C), the degeneracy of the two fundamental modes, LPo+ and LP□ modes polarized along the x and y axes, has been resolved. (b) The figure shows the polarization directions of the laser beam, the injection light that becomes Stokes light, and the anti-Stokes light as y, x, respectively.
In this case, in equation (2),
is given by the following equation.

K1−4πB、/λ、   ・・・ (3)なお、これ
ら3波の偏光方向をx、yt  y軸に設定しても後に
説明するように位相整合条件は満たすことができる。ま
た注入光はストークス光あるいはアンチストークス光の
いずれの波長に合わせても良く、位相整合条件が満たさ
れれば他方の光は誘導放出によって生じ偏光方向も自動
的に定まる。
K1-4πB, /λ, ... (3) Note that even if the polarization directions of these three waves are set to the x, yt, and y axes, the phase matching condition can be satisfied as will be explained later. Further, the injected light may be matched to the wavelength of either Stokes light or anti-Stokes light, and if the phase matching condition is satisfied, the other light will be generated by stimulated emission and the polarization direction will be automatically determined.

第4図(C)は、レーザ光をX偏光とy偏光とに分けて
入射させ、ストークス光となる注入光。
FIG. 4(C) shows injection light that becomes Stokes light by dividing laser light into X-polarized light and y-polarized light.

アンチストークス光の偏光方向をそれぞれy、y軸に一
致させた場合である。なお、ストークス光とアンチスト
ークス光との偏光面をそれぞれX。
This is a case where the polarization directions of the anti-Stokes light are made to coincide with the y- and y-axes, respectively. Note that the polarization planes of Stokes light and anti-Stokes light are respectively X.

y軸に一致させた場合も位相整合条件を満たすことがで
きる。このとき(2)式のに、は次式で与えられる。
The phase matching condition can also be satisfied when it is made to coincide with the y-axis. In this case, in equation (2) is given by the following equation.

K、−2πB、Δν    ・・・ (4)第5図には
(2)式中のに、と−(Kw +KI)をストークス光
およびアンチストークス光とレーザ光波長の規格化周波
数差Δνの関係を示している。ただし、レーザ光強度に
依存する項に7は他の項に比べて小さいので無視する。
K, -2πB, Δν ... (4) Figure 5 shows the relationship between the and -(Kw +KI) in equation (2) and the normalized frequency difference Δν between Stokes light, anti-Stokes light, and laser light wavelength. It shows. However, the term 7 that depends on the laser light intensity is ignored as it is smaller than the other terms.

同図(a)。Same figure (a).

(b)はそれぞれ第4図(b)、  (C)の場合に対
応している。上記応力印加方法によってに、が図中の実
線の矢印で示すように変化し、それにつれて両曲線の交
点として与えられる位相整合条件を満足するΔνが変化
することがわかる。
(b) corresponds to the cases in FIGS. 4(b) and (C), respectively. It can be seen that depending on the stress application method described above, Δv changes as shown by the solid arrow in the figure, and Δν that satisfies the phase matching condition given as the intersection of both curves changes accordingly.

実験的には(a)の方法でW=0.5kg/amが実現
されており、このときδBs#2X10−5である。(
b)、  (c)の方法においてもR=0゜5cmでδ
B1″;2X10−’が達成されている。この変化分か
ら第5図の方法でΔνの可変範囲を見積もると、レーザ
光波長が1.3μm近傍では数100100O’程度と
考えられる。これを光パルスの繰り返し周波数に変換す
ると可変範囲は数10〜数1007Hzと極めて広いこ
とが分かる。
Experimentally, W=0.5 kg/am has been achieved using the method (a), and in this case, δBs#2X10-5. (
Also in the methods b) and (c), δ at R = 0°5 cm
B1'';2X10-' is achieved. If the variable range of Δν is estimated from this change using the method shown in Figure 5, it is considered to be about several 100,100 O' when the laser light wavelength is around 1.3 μm. When converted to the repetition frequency, it can be seen that the variable range is extremely wide, from several tens to several thousand Hz.

第1図は本光パルス発生方法を実現するための光パルス
発生装置であり、光出力連続発振レーザ光1.レンズ2
9合波器3.注入光5.受光器6゜ハーフミラ−8,ミ
ラー9.偏光板10.λ/2板11.複屈折ファイバ1
2.応力付加装置13から構成され、7は発生した光パ
ルスである。レーザ光はハーフミラ−8で分波され、偏
光板10で偏光面を調整した後、合波器3で注入光と合
波され光ファイバに入力される。
FIG. 1 shows an optical pulse generator for realizing the present optical pulse generation method, and shows an optical output continuous wave laser beam 1. lens 2
9 multiplexer 3. Injected light 5. Receiver 6° half mirror 8, mirror 9. Polarizing plate 10. λ/2 plate 11. Birefringent fiber 1
2. It consists of a stress applying device 13, and 7 is a generated optical pulse. The laser beam is split by a half mirror 8, the plane of polarization is adjusted by a polarizing plate 10, and then combined with the injection light by a multiplexer 3 and input into an optical fiber.

このように本発明は光パルス発生法においてパルスの繰
り返し周波数を連続的に可変とするため、(2)式の位
相項の値をアナログ的に変化させ、これによってKt(
Δν)=0となるΔν、すなわち発生する光パルスの繰
り返し周波数Δf  (=C・Δν)を連続的に変化さ
せることを可能にした。つまり本発明によれば、所望の
繰り返し周波数Δfに対応した周波数f、−(Δλ/C
)・fl(波長ではλ8=λ、+C(Δλ/λ、′)の
微弱な光を注入して短光パルスを発生させようとする場
合には、ファイバに応力を印加し複屈折を変えていくと
位相整合がある応力値において満たすことができ、常に
注入光の波長に対して位相整合条件を満足させることに
よって、光パルスを任意の繰り返し周波数で発生させる
ことが可能である。
In this way, in order to continuously vary the pulse repetition frequency in the optical pulse generation method, the present invention changes the value of the phase term in equation (2) in an analog manner, and thereby Kt(
This makes it possible to continuously change Δν such that Δν)=0, that is, the repetition frequency Δf (=C·Δν) of the generated optical pulse. In other words, according to the present invention, the frequency f corresponding to the desired repetition frequency Δf, -(Δλ/C
)・fl (wavelength: λ8=λ, +C(Δλ/λ,') When trying to generate a short optical pulse by injecting weak light, stress is applied to the fiber to change the birefringence. As a result, phase matching can be satisfied at a certain stress value, and by always satisfying the phase matching condition for the wavelength of the injected light, it is possible to generate optical pulses at an arbitrary repetition frequency.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、光ファイバ中で生じる非
線形光学現象の一種である変調不安定性による強度ゆら
ぎのある高出力連続発振レーザ光を光ファイバに入射さ
せたとき、光ファイバの光カー効果によって生じる自己
位相変調と光ファイバの負の分散とによってレーザ光の
強度ゆらぎから光パルスを形成し、光パルスの繰り返し
周波数が連続的に可変されるようにしたことにより、ま
た、強度ゆらぎのある高出力連続発振レーザと、側波帯
の波長に一致した微弱光を注入する注入用光源と、変調
不安定性を誘起する複屈折光ファイバと、レーザ光と注
入光とを合波して光パルスを入射する合波器と、光ファ
イバ出射端において光パルスを検出する受光器とから構
成したことにより、変調不安定性を用いた高繰り返し周
波数および短光パルス発生法の欠点とされていた半固定
繰り返し周波数は、位相不整合量の複屈折に依存する成
分が可変されるため、広い周波数帯にわたって連続的に
可変され、また、所望の繰り返し周波数で常に効率良く
短光パルスを発生させることができるという効果を有す
る。
As explained above, the present invention provides an optical Kerr effect in an optical fiber when a high-power continuous wave laser beam with intensity fluctuations due to modulation instability, which is a type of nonlinear optical phenomenon that occurs in an optical fiber, is incident on the optical fiber. An optical pulse is formed from the intensity fluctuation of the laser beam by the self-phase modulation caused by the self-phase modulation and the negative dispersion of the optical fiber, and the repetition frequency of the optical pulse is continuously varied. A high-output continuous wave laser, an injection light source that injects weak light that matches the wavelength of the sideband, a birefringent optical fiber that induces modulation instability, and a light pulse that combines the laser light and the injection light. The structure consists of a multiplexer that inputs the optical pulse, and a receiver that detects the optical pulse at the output end of the optical fiber, thereby eliminating the semi-fixed state that was considered to be a drawback of high repetition frequency and short optical pulse generation methods that use modulation instability. The repetition frequency can be varied continuously over a wide frequency band because the birefringence-dependent component of the amount of phase mismatch is varied, and short optical pulses can always be efficiently generated at the desired repetition frequency. It has this effect.

したがって、従来よりも1000倍程度速い超高速光通
信用の光源、超高速の波形解析に利用する光サンプリン
グ用光源等の分野での応用が考えられる。
Therefore, applications are conceivable in fields such as light sources for ultra-high-speed optical communications that are about 1000 times faster than conventional ones, and light sources for optical sampling used in ultra-high-speed waveform analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を表す光パルス発生装
置、第2図(a)、  (b)、  (c)は応力付加
方法を説明するための斜視図、第3図は複屈折の変化分
と印加応力2曲げ半径との関係を表すグラフ、第4図(
a)、  (b)、  (c)は光ファイバの基本モー
ドの分散曲線およびレーザ光。 ストークス光、アンチストークス光のモード関係を表す
グラフ、第5図(a)、  (b)は位相量−(Ki 
+ K%1 ) 、Klmと規格化周波数差との関係を
表すグラフ、第6図(a)、(b)、  (e)は光パ
ルスのチャーピングと異常分散とによるパルスの圧縮を
説明するためのグラフ、第7図(a)。 (b)は誘導3波混合のレーザ光とストークス光および
アンチストークス光の周波数・波長の関係を表すタイミ
ング図9発生するパルスを表すタイミング図、第8図は
従来の位相不安定性を用いた光パルス発生の実験結果を
示す波形図、第9図は従来の位相不安定性を用いた光パ
ルス発生装置を表す構成図、第10図は発生効率と位相
不整合量の関係を表すグラフである。 ■・・・光出力連続発振レーザ光、2・・・レンズ、3
・・・合波器、5・・・注入光、6・・・受光器、7・
・・発生した光パルス、8・・・ハーフミラ−19・・
・ミラー、10・・・偏光板、11・・・λ/2板、1
2・・・複屈折ファイバ、13・・・応力付加装置。 特許出願人 日本電信電話株式会社 代 理 人 山川数構(ばか1名) 第1図 ら 第3図 1/2R(cmll) 第2図 第4図 (a) (b)          (c) ■■ 第5図 (a) nFk4ctfl=IfLET、ΔV(cm−1)(b
) 第6図 薩(psec) 時lv!(psec) 時間(psec) 第7図 第8図
FIG. 1 is an optical pulse generator showing the configuration of an embodiment of the present invention, FIGS. 2(a), (b), and (c) are perspective views for explaining the stress applying method, and FIG. A graph showing the relationship between the change in refraction and the applied stress 2 bending radius, Figure 4 (
a), (b), and (c) are the dispersion curve of the fundamental mode of the optical fiber and the laser beam. Graphs showing the mode relationship between Stokes light and anti-Stokes light, Figures 5(a) and 5(b) are the phase amount - (Ki
+ K%1), graphs showing the relationship between Klm and normalized frequency difference, Figures 6(a), (b), and (e) explain pulse compression due to optical pulse chirping and anomalous dispersion. Graph for Figure 7(a). (b) is a timing diagram showing the frequency/wavelength relationship between stimulated three-wave mixing laser light, Stokes light, and anti-Stokes light. 9A timing diagram showing the generated pulses. Figure 8 is a timing diagram showing the pulses generated. FIG. 9 is a waveform diagram showing experimental results of pulse generation, FIG. 9 is a block diagram showing a conventional optical pulse generator using phase instability, and FIG. 10 is a graph showing the relationship between generation efficiency and phase mismatch amount. ■... Optical output continuous wave laser beam, 2... Lens, 3
... Multiplexer, 5... Injected light, 6... Light receiver, 7.
...Generated light pulse, 8... Half mirror 19...
・Mirror, 10...Polarizing plate, 11...λ/2 plate, 1
2... Birefringent fiber, 13... Stress applying device. Patent applicant: Nippon Telegraph and Telephone Corporation Agent: Kazuka Yamakawa (one idiot) Figure 1 to Figure 3 1/2R (cmll) Figure 2 Figure 4 (a) (b) (c) ■■ 5th Figure (a) nFk4ctfl=IfLET, ΔV (cm-1) (b
) Figure 6 Satsuma (psec) Time lv! (psec) Time (psec) Figure 7 Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバ中で生じる非線形光学現象の一種であ
る変調不安定性による強度ゆらぎのある高出力連続発振
レーザ光を光ファイバに入射させたとき、光ファイバの
光カー効果によって生じる自己位相変調と光ファイバの
負の分散とによってレーザ光の強度ゆらぎから光パルス
を形成する光パルス発生方法において、発生させる光パ
ルスの繰り返し周波数を連続的に可変させることを特徴
とする光パルス発生方法。
(1) When a high-power continuous wave laser beam with intensity fluctuations due to modulation instability, which is a type of nonlinear optical phenomenon that occurs in an optical fiber, is input into an optical fiber, self-phase modulation occurs due to the optical Kerr effect of the optical fiber. An optical pulse generation method that forms optical pulses from intensity fluctuations of a laser beam using negative dispersion of an optical fiber, the method comprising continuously varying the repetition frequency of the generated optical pulses.
(2)光パルスの繰り返し周波数は、光ファイバの複屈
折を外部から応力を印加することによって変化させ、発
生させるべき光パルスの繰り返し周波数に対応するレー
ザ波長に関する側波帯の波長に一致したストークス光と
アンチストークス光と前記レーザ光との間の誘導3波混
合に対する位相整合条件を常に満足させることによって
連続的に可変される特許請求の範囲第1項記載の光パル
ス発生方法。
(2) The repetition frequency of the optical pulse is changed by applying stress from the outside to the birefringence of the optical fiber, and the Stokes' sideband wavelength corresponds to the laser wavelength corresponding to the repetition frequency of the optical pulse to be generated. 2. The optical pulse generation method according to claim 1, wherein the optical pulse generation method is continuously varied by always satisfying a phase matching condition for stimulated three-wave mixing between light, anti-Stokes light, and the laser light.
(3)強度ゆらぎのある高出力連続発振レーザと、パル
スの発生を促進するために光パルスの繰り返し周波数に
対応する側波帯の波長に一致した微弱光を注入する注入
用光源と、前記変調不安定性を誘起する複屈折光ファイ
バと、レーザ光と注入光とを合波して光パルスを入射す
る合波器と、光ファイバ出射端において光パルスを検出
する受光器とからなる光パルス発生装置。
(3) a high-output continuous wave laser with intensity fluctuation; an injection light source that injects weak light that matches the sideband wavelength corresponding to the repetition frequency of the optical pulse to promote pulse generation; and the modulation. Optical pulse generation consists of a birefringent optical fiber that induces instability, a multiplexer that combines laser light and injected light to input optical pulses, and a light receiver that detects optical pulses at the output end of the optical fiber. Device.
JP30770387A 1987-12-07 1987-12-07 Method and device for optical pulse generation Pending JPH01149032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30770387A JPH01149032A (en) 1987-12-07 1987-12-07 Method and device for optical pulse generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30770387A JPH01149032A (en) 1987-12-07 1987-12-07 Method and device for optical pulse generation

Publications (1)

Publication Number Publication Date
JPH01149032A true JPH01149032A (en) 1989-06-12

Family

ID=17972217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30770387A Pending JPH01149032A (en) 1987-12-07 1987-12-07 Method and device for optical pulse generation

Country Status (1)

Country Link
JP (1) JPH01149032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580432B2 (en) 1994-04-01 2009-08-25 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580432B2 (en) 1994-04-01 2009-08-25 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US8265105B2 (en) 1994-04-01 2012-09-11 Imra America, Inc. Scanning temporal ultrafast delay and methods and apparatuses therefor
US8630321B2 (en) 1994-04-01 2014-01-14 Imra America, Inc. Scanning temporal ultrafast delay and methods and apparatuses therefor

Similar Documents

Publication Publication Date Title
US5999548A (en) White optical pulse source and applications
US6532323B2 (en) Acousto-optic filter
US4958910A (en) Radiation pulse generation
US6253002B1 (en) Acousto-optic filter
US10615566B2 (en) Mode-locked and wavelength tunable optical frequency comb generation through dynamic control of microresonators
ITMI930325A1 (en) FIBER OPTIC LASER GENERATOR WITH ACTIVE MODAL CHAIN
WO2007111367A1 (en) Optical pulse string generator
US7352504B2 (en) Optical fourier transform device and method
Sefler Frequency comb generation by four-wave mixing and the role of fiber dispersion
US6343165B1 (en) Optical add drop multiplexer
US6535665B1 (en) Acousto-optic devices utilizing longitudinal acoustic waves
US9684223B2 (en) High efficiency fiber optical parametric oscillator
US6357913B1 (en) Add/drop acousto-optic filter
US7245805B2 (en) Method and apparatus for producing a multiple optical channel source from a supercontinuum generator for WDM communication
US5136599A (en) Apparatus and method for increasing the bandwidth of a laser beam
JPH01149032A (en) Method and device for optical pulse generation
US6246811B1 (en) Irreversible optical device utilizing optical frequency shift
DE60317968T2 (en) Optical modulation / multiplexing device
US7697196B2 (en) Tuneable optical amplifier or optical parametric oscillator
Li et al. System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals
Vampouille et al. Optical frequency intermodulation between two picosecond laser pulses
JPH0795174B2 (en) Optical pulse waveform control method
Timmerkamp et al. Optical Parametric Oscillator Based on Tantalum Pentoxide Waveguides
Yuan et al. Investigation on quadrupling triangular-shaped pulses generator with flexible repetition rate tunability
Zhao et al. Self-Oscillating Broadband Optical Frequency Comb Generation Using an EML-Based Optoelectronic Oscillator and a Recirculating Frequency Shifter