JPH01133817A - Non-ferrous metal can conveyer - Google Patents

Non-ferrous metal can conveyer

Info

Publication number
JPH01133817A
JPH01133817A JP28974987A JP28974987A JPH01133817A JP H01133817 A JPH01133817 A JP H01133817A JP 28974987 A JP28974987 A JP 28974987A JP 28974987 A JP28974987 A JP 28974987A JP H01133817 A JPH01133817 A JP H01133817A
Authority
JP
Japan
Prior art keywords
linear
ferrous metal
magnetic field
thrust
conveying path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28974987A
Other languages
Japanese (ja)
Inventor
Hiroharu Waratani
藁谷 弘治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP28974987A priority Critical patent/JPH01133817A/en
Publication of JPH01133817A publication Critical patent/JPH01133817A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To surely convey an aluminum can along a conveying path in a high speed by a linear induction motor further facilitated in its arrangement constitution by providing the linear induction motor and a guide to be arranged in both sides of the conveying path, in the case of a rolling conveyer for the aluminum can or the like. CONSTITUTION:An aluminum can 20 is placed falling down sideways on a conveying path plate 11. Thus the can 20 places its both end surfaces 21, 22 in parallel with an advancing magnetic field generating surface of linear induction motors 30, 40. Here the linear motors 30, 40 are excited further equalizing direction and intensity of a generated advancing magnetic field. In this way, the can 20 is rolled in a direction of the advancing magnetic field further conveyed being guided by a guide 13. By this constitution, the can be conveyed in a high speed with no dislocation from a conveying path. While the linear motor enables its arrangement constitution to be easily obtained.

Description

【発明の詳細な説明】 奮粟上夏肘且分用 本発明はアルミ缶等の非鉄金属缶をリニアインダクショ
ンモータによって搬送させる非鉄金属缶搬送装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-ferrous metal can conveying device for conveying non-ferrous metal cans such as aluminum cans by a linear induction motor.

従来叫伎斂 従来アルミ缶等の非鉄金属缶をリニアインダクションモ
ータ(以下リニアモータという)を用いて搬送させる非
鉄金属缶搬送装置としては、第16図に示すように非鉄
金属缶を搬送路表面に直立させ搬送面上を滑走させなが
ら搬送させるものがある。
Conventionally, as shown in Fig. 16, a non-ferrous metal can conveying device that conveys non-ferrous metal cans such as aluminum cans using a linear induction motor (hereinafter referred to as a linear motor) has There is one that is conveyed while standing upright and sliding on the conveying surface.

即ちリニアモータ30を搬送路10の下方に設け、リニ
アモータ30の進行磁界発生面上に走行路板11を搬送
路全長に配設し、この走行路板11上に非鉄金属缶20
(以下単に缶という)を直立載置させるものである。そ
してリニアモータ30を励磁することにより缶に発生す
る渦電流と進行磁界との作用によって缶20に推力が働
き、缶20は磁界の進行方向(図示矢印方向)に搬送路
表面を滑走し搬送されるものである。
That is, the linear motor 30 is provided below the conveyance path 10, the traveling road plate 11 is arranged along the entire length of the conveying path on the traveling magnetic field generating surface of the linear motor 30, and the non-ferrous metal cans 20 are placed on this traveling road plate 11.
(hereinafter simply referred to as a can) is placed upright. When the linear motor 30 is excited, a thrust is exerted on the can 20 by the action of the eddy current generated in the can and the traveling magnetic field, and the can 20 slides on the conveying path surface in the advancing direction of the magnetic field (in the direction of the arrow in the figure) and is conveyed. It is something that

また第17図に示すように、缶20をリニアモータ30
の上に横倒して載置し缶20を回転させながらころがり
搬送させるものがある。
Further, as shown in FIG. 17, the can 20 is moved by a linear motor 30.
There is a type of can 20 that is placed sideways on top of a can and conveyed by rolling while rotating the can 20.

しかして、前記の各方式はいずれも片側式リニアモータ
の進行磁界発生面と搬送路表面とが平行となるようにリ
ニアモータが配設されたものである。これに対し片側式
リニアモータの進行磁界発生面と搬送路表面とが直交す
るようにリニアモータを配設し、高速搬送化を図ったも
のもある。
In each of the above systems, the linear motor is arranged so that the traveling magnetic field generating surface of the single-sided linear motor is parallel to the conveying path surface. On the other hand, some linear motors are arranged so that the traveling magnetic field generating surface of the single-sided linear motor is perpendicular to the surface of the conveyance path, thereby achieving high-speed conveyance.

B < ゛ しよ°と る  占 しかしながら、前記の第16図に示す缶直立搬送方式の
ものに於いては、缶20の底面が走行路板11上を滑走
するため、走行路板11と缶2oの底面21との摩擦に
よって傷が発生したり、また缶2oが転倒する懸念があ
る。これを防止するため走行路板11を特殊な構成とす
る必要があり、走行路板11の加工費が嵩むことになる
However, in the case of the can upright conveyance system shown in FIG. There is a fear that scratches may occur due to friction with the bottom surface 21 of the can 2o, and that the can 2o may fall over. In order to prevent this, it is necessary to make the running road plate 11 a special configuration, which increases the processing cost of the running road plate 11.

また第17図に示すころがり搬送方式に於いては、第1
6図において説明したように、缶2oは推力をうけてリ
ニアモータ30の磁界の進行方向図示矢印へ方向に回転
しながら搬送される。しかしながら−方、缶20に働く
推力は缶20が走行路板11に接するところが最大とな
るので缶20は進行方向と逆方向きくできないことにな
る。
In addition, in the rolling conveyance system shown in FIG.
As explained with reference to FIG. 6, the can 2o is conveyed while being rotated in the direction of the arrow shown in the figure in the traveling direction of the magnetic field of the linear motor 30 under the thrust force. However, since the thrust force acting on the can 20 is maximum at the point where the can 20 contacts the traveling road board 11, the can 20 cannot move in the opposite direction to the traveling direction.

また前記ころがり搬送方式で、リニアモータ30を缶の
上部に設けたものに於ては、リニアモータ30の配設構
成上その構成が複雑となる。
Further, in the case of the rolling conveyance method in which the linear motor 30 is provided on the upper part of the can, the arrangement of the linear motor 30 becomes complicated.

さらに片側式リニアモータ30の進行磁界発生面と搬送
路表面とが直交するようにした搬送装置においては、缶
20の底面図21とりニアモータの進行磁界発生面とが
平行になるように搬送路表面上に缶20が載置されころ
がり搬送するものであるが、リニアモータ30の推力発
生面に垂直に発生する反発力fを受けて、缶のころがり
搬送方向Xからずれ進行方向がX′となることがある(
第4図参照)。このため缶20の底面21とガイドとの
摩擦によって缶を円滑にころがり搬送させることができ
ず、また缶20の端部に傷が発生することにもなる。
Furthermore, in a conveying device in which the traveling magnetic field generating surface of the single-sided linear motor 30 and the conveying path surface are perpendicular to each other, the conveying path surface is arranged so that the traveling magnetic field generating surface of the linear motor is parallel to the bottom view 21 of the can 20. The can 20 is placed on top and is conveyed by rolling, but due to the repulsive force f generated perpendicularly to the thrust generating surface of the linear motor 30, the can deviates from the rolling conveyance direction X and the traveling direction becomes X'. Sometimes(
(See Figure 4). Therefore, due to friction between the bottom surface 21 of the can 20 and the guide, the can cannot be smoothly rolled and conveyed, and the ends of the can 20 are also damaged.

本発明は以上の点に鑑みてなされたもので、缶のころが
り回転方向が進行方向からずれることなく、缶を高速に
搬送させるとともに、リニアモータの配置構成を容易に
した非鉄金属缶搬送装置を提供することを目的としてい
る。
The present invention has been made in view of the above points, and provides a non-ferrous metal can conveying device that allows cans to be conveyed at high speed without the rolling direction of the can being deviated from the traveling direction, and that facilitates the arrangement and configuration of linear motors. is intended to provide.

p     るための 非鉄金属缶を搬送させる非鉄金属缶搬送装置であって、
前記非鉄金属缶搬送装置は、搬送路と、搬送路の搬送方
向に添わせて設けたりニアモータと、且つ送受波器リニ
アモータの進行磁界発生面が搬送路表面と直交するとと
もに、リニアモータの進行磁界発生面が互いに対向する
ようにリニアモータを設けたことを特徴としている。
A non-ferrous metal can conveying device for conveying non-ferrous metal cans for
The non-ferrous metal can transport device includes a transport path, a near motor, and a transducer linear motor whose traveling magnetic field generating surface is orthogonal to the surface of the transport path, and which is provided along the transport direction of the transport path. It is characterized in that the linear motors are provided so that their magnetic field generating surfaces face each other.

搬送路上面に載置された非鉄金属缶の両端底面は、搬送
路に設けたりニアモータの発生する進行磁界の作用によ
って同じ大きさの推力をうけ、非鉄金属缶は回転しなが
ら進行方向からずれることなく搬送路上を移動し、搬送
される。
Both end and bottom surfaces of a non-ferrous metal can placed on the surface of the conveyance path receive the same amount of thrust due to the action of a traveling magnetic field provided on the conveyance path or generated by a near motor, and the non-ferrous metal can rotates and deviates from the direction of travel. It moves along the conveyance path and is conveyed.

また、缶の両端面の形状や面積の相違により発生する推
力が異なる場合には、一方又は双方のりニアモータを制
御し、缶の両端面に発生する推力をバランスさせること
によって、缶は進行方向からずれることなく搬送される
In addition, if the thrust generated by the difference in the shape or area of both end faces of the can is different, by controlling one or both linear motors and balancing the thrust generated at both end faces of the can, the can can be moved from the direction of travel. Conveyed without shifting.

爽胤附 以下本発明に係る非鉄金属缶搬送装置(以下本発明装置
という。)の実施例につき図面を参照しつつ説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a non-ferrous metal can conveying device according to the present invention (hereinafter referred to as the device of the present invention) will be described with reference to the drawings.

第1図は本発明装置の一実施例を示す模式的説明図であ
る。なお従来技術と同一構成のものは同一符号で示して
いる。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the apparatus of the present invention. Note that components having the same configuration as those of the prior art are indicated by the same reference numerals.

図に於いて10は非金属材料又は合成樹脂材よりなる搬
送路で、搬送路10の上面を走行路板11としている。
In the figure, reference numeral 10 denotes a conveyance path made of a non-metallic material or a synthetic resin material, and the upper surface of the conveyance path 10 is used as a running road plate 11.

20はアルミニウム等の非鉄金属缶で、走行路板11上
に横倒して載置される。
Reference numeral 20 is a non-ferrous metal can such as aluminum, which is placed horizontally on the running road board 11.

30.40はリニアモータで、固定子鉄心31.41と
これに巻回された励磁コイル32.42とによって形成
され、缶20とともにリニアモータがそれぞれ構成され
るものである。リニアモータ30は搬送路10の一側方
に搬送方向に添わせて複数個配設され、フレーム(図示
省略)によって固設されている。
Reference numerals 30 and 40 denote linear motors, which are formed by stator cores 31 and 41 and excitation coils 32 and 42 wound around the stator cores, and together with the can 20, each linear motor is constructed. A plurality of linear motors 30 are arranged on one side of the conveyance path 10 along the conveyance direction, and are fixed by a frame (not shown).

そして固定子鉄心31の歯面が走行路板11上に載置し
た缶20の底面21と平行になるように設けられ、リニ
アモータ30の進行磁界発生面が走行路板11の表面と
直交するようにされている。
The tooth surface of the stator core 31 is provided so as to be parallel to the bottom surface 21 of the can 20 placed on the running road plate 11, and the traveling magnetic field generating surface of the linear motor 30 is perpendicular to the surface of the running road plate 11. It is like that.

一方のりニアモータ40は搬送路10の他側方に搬送方
向に添わせて複数個配設され、フレーム(図示省略)に
よって固設されている。そして前記リニアモータ30と
同様に、固定鉄心41の歯面が搬送路板11上に載置し
た缶20の上面22と平行になるように設けられ、リニ
アモータ40の進行磁界発生面が走行路板11の表面と
直交するようになされている。そして、リニアモータ3
0とリニアモータ40のそれぞれの進行磁界発生面が互
いに対向するようになされている。さらに前記リニアモ
ータ30及び40の搬送路10の長手方向配設状態を第
2図に示す。
A plurality of linear motors 40 are disposed on the other side of the conveyance path 10 along the conveyance direction, and are fixed by a frame (not shown). Similarly to the linear motor 30, the tooth surface of the fixed iron core 41 is provided so as to be parallel to the upper surface 22 of the can 20 placed on the transport path plate 11, and the traveling magnetic field generating surface of the linear motor 40 is aligned with the traveling path. It is arranged perpendicular to the surface of the plate 11. And linear motor 3
The traveling magnetic field generating surfaces of the linear motor 40 and the linear motor 40 are arranged to face each other. Further, FIG. 2 shows how the linear motors 30 and 40 are arranged in the longitudinal direction of the conveyance path 10.

それぞれの相隣るモータ端部33.34及び43.44
が搬送路10の長手方向同一位置においてずれるように
、それぞれのモータ継目35.45を定め、リニアモー
タ30.40をそれぞれ搬送路10長手方向に添わせて
配設される。
Respective adjacent motor ends 33.34 and 43.44
The respective motor joints 35, 45 are defined such that the motors are offset at the same longitudinal position of the conveying path 10, and the linear motors 30, 40 are respectively disposed along the conveying path 10 in the longitudinal direction.

また、搬送路板11の両側には、搬送路10の全長にわ
たって非磁性金属材又は合成樹脂材よりなる板状体のガ
イド12.13が立設されている。このガイド12は缶
20の底面21とリニアモータ30との空隙を、またガ
イド13は缶20の上面22との空隙をそれぞれ一定に
保持させるとともに、缶20がころがり搬送されてる時
に搬送路板11から外れないようにされている。
Further, on both sides of the conveyance path plate 11, plate-shaped guides 12 and 13 made of a non-magnetic metal material or a synthetic resin material are erected over the entire length of the conveyance path 10. The guide 12 maintains a constant gap between the bottom surface 21 of the can 20 and the linear motor 30, and the guide 13 maintains a constant gap between the top surface 22 of the can 20. It is made to stay in place.

次に、本発明装置の動作について説明する。Next, the operation of the device of the present invention will be explained.

搬送路板11上に缶20を横倒しして載置すると、缶2
0は第1図に示すように、その両端面21.22がリニ
アモータ30.40の進行磁界発生面とそれぞれ平行と
なる。両リニアモータ30.40を励磁し、かつそれぞ
れ発生する進行磁界の方向及び強さが同一になるように
すると、缶20は進行磁界の方向にころがり搬送される
。第3図は缶20の受ける各部の推力を示す説明図で、
以下図を参照しつつ説明する。
When the can 20 is placed sideways on the conveyance path board 11, the can 2
0, as shown in FIG. 1, both end surfaces 21 and 22 thereof are parallel to the traveling magnetic field generating surfaces of the linear motors 30 and 40, respectively. When both linear motors 30, 40 are energized and the directions and strengths of the respective traveling magnetic fields generated are the same, the can 20 is rolled and conveyed in the direction of the traveling magnetic field. FIG. 3 is an explanatory diagram showing the thrust of each part of the can 20,
This will be explained below with reference to the figures.

図に於いて缶20の底面21及び上面22が走行路板1
1に接する点をA及びC1底面21及び上面22と同一
面で点A及びCの缶軸線に対する対称点をB及びDとす
る。リニアモータ30及び40によってA、B、C,D
各点に於いては同じ大きさの推力F1が同方向に働くの
で、A点及び0点に於いて缶20と走行路板11面との
摩擦力Frがなければ、缶20は回転せず進行磁界の方
向に滑走する。しかし実際には前記摩擦力Frが生じる
ので、A点及び0点で缶20を前進させる力F1゛はF
lo = F l−Frとなる。即ち缶20に働く推力
はB点、D点ではF、、A点、0点ではFl”であり、
F、 >F、° となる故、B点、D点の推力FIによ
る回転モーメントは、A点、0点の推力F、+ による
回転モーメントよりも大となり、缶20は進行方向に走
行路板11上を図示矢印R方向に回転しながら図示矢印
X方向に移動する。
In the figure, the bottom surface 21 and top surface 22 of the can 20 are the running road plate 1.
1, A and C1 are on the same plane as the bottom surface 21 and the top surface 22, and the symmetrical points of points A and C with respect to the can axis are B and D. A, B, C, D by linear motors 30 and 40
Since the same magnitude of thrust F1 acts in the same direction at each point, if there is no frictional force Fr between the can 20 and the surface of the running road plate 11 at points A and 0, the can 20 will not rotate. Gliding in the direction of the traveling magnetic field. However, in reality, since the frictional force Fr is generated, the force F1' that moves the can 20 forward at point A and point 0 is F
lo=F l-Fr. That is, the thrust acting on the can 20 is F at point B and D, Fl'' at point A and 0,
Since F, > F, °, the rotational moment due to the thrust FI at points B and D is larger than the rotational moment due to the thrust F, + at points A and 0, and the can 20 moves toward the road plate in the traveling direction. 11 in the direction of the arrow X in the figure while rotating in the direction of the arrow R in the figure.

しかして、缶20は搬送路10の片側のりニアモータ3
0によって缶20の底面21に反発力fを受け、これに
より缶20は第4図において実線で示すころがり搬送方
向Xが破線に示す進行方向X′にずれるようになる。
Therefore, the can 20 is moved by the linear motor 3 on one side of the conveyance path 10.
0, a repulsive force f is applied to the bottom surface 21 of the can 20, causing the can 20 to shift from the rolling conveyance direction X shown by the solid line in FIG. 4 to the traveling direction X' shown by the broken line.

一方側のりニアモータ40も前記と同様に作用し、缶2
0の上面はりニアモータ40により反発力f ′を受け
る。
The linear motor 40 on one side also operates in the same manner as described above, and the can 2
The upper surface beam receives a repulsive force f' by the near motor 40.

しかしながら、本発明装置においては、第5図に示すよ
うに片側式リニアモータ30及び40が同時に同じ磁界
の強さとなるように励磁制御されているので、前記反発
力f=f’となって、互いに相殺され、缶20に働くモ
ータによる反発力はなくなる。従って、缶20は進行方
向からずれることなくころがり搬送されることになる。
However, in the device of the present invention, as shown in FIG. 5, the excitation of the single-sided linear motors 30 and 40 is controlled so that they have the same magnetic field strength at the same time, so the repulsive force f=f'. They cancel each other out, and the repulsive force exerted on the can 20 by the motor disappears. Therefore, the can 20 is rolled and conveyed without being deviated from the direction of travel.

また第2図に示すように、各リニアモータ30.40の
継目35.45の位置をずらせて設けであるので、缶2
0が一方のりニアモータ30の端部33.34にあって
推力が得られることになる。従って、缶20が進行路板
11上のいかなる位置であっても、缶20は双方又は一
方のりニアモータから推力を受けることになり、缶20
を確実に搬送させることができる。
Furthermore, as shown in FIG.
0 is at the end 33,34 of one linear motor 30 to provide thrust. Therefore, no matter where the can 20 is on the traveling road plate 11, the can 20 will receive thrust from both or one of the linear motors, and the can 20 will receive thrust from both or one of the linear motors.
can be transported reliably.

第6図は本発明装置の制御ブロック図である。FIG. 6 is a control block diagram of the apparatus of the present invention.

リニアモータ30及び40は共通の電源51から動力盤
52を介し給電される。電圧調整器53はリニアモータ
30の推力調整を行うもので、次のような動作をするも
のである。第5図において缶リニアモータ30.40の
発生推力が同一である場合、缶20の両端の推力を受け
る面21.22の面積が缶の形状等によって異なると、
各面21.22の受ける推力が異なり、従って前記した
反発力fSf’も異なることになる。従って、両反発力
f、、F2は相殺されず、缶20の回転方向が搬送路l
Oからずれることになる。
The linear motors 30 and 40 are powered from a common power source 51 via a power panel 52. The voltage regulator 53 adjusts the thrust of the linear motor 30, and operates as follows. In FIG. 5, when the thrust generated by the can linear motors 30 and 40 is the same, if the areas of the thrust-receiving surfaces 21 and 22 at both ends of the can 20 differ depending on the shape of the can, etc.
The thrust forces received by each surface 21, 22 are different, and therefore the repulsive force fSf' described above is also different. Therefore, both repulsive forces f, , F2 are not canceled out, and the rotation direction of the can 20 is
It will deviate from O.

このように両端面の面積がことなる缶を搬送させる場合
においては、両端面の受ける推力が一致するようにリニ
アモータ30の発生推力を電圧調整器53により制御さ
せ、缶20の円滑なころがり搬送を行うものである。
When conveying cans with different end surfaces in this way, the thrust generated by the linear motor 30 is controlled by the voltage regulator 53 so that the thrusts received by both end surfaces are the same, thereby ensuring smooth rolling conveyance of the can 20. This is what we do.

第7図〜第11図は本発明装置の異なった実施例を示す
ものである。
7 to 11 show different embodiments of the device of the present invention.

第7図は第1図に示すガイド12.13を缶20の両端
部下方に設け、搬送路10の表面構成物たる走行路板1
1と一体にしたもので、ガイド12.13の構成が簡単
となる。
FIG. 7 shows guides 12 and 13 shown in FIG.
1, the configuration of the guides 12 and 13 becomes simple.

第8図はりニアモータ30及び40をモールド成形仕上
げとし、各リニアモータの対向する側面をガイドと兼用
させたものである。本実施例においてはガイド12.1
3が不要となる。また、缶20の両端面とりニアモータ
との対向面とは僅少の空隙gを設けて配設することがで
きるので設置手間が特に簡単となる。
FIG. 8 shows a configuration in which the linear motors 30 and 40 are finished by molding, and the opposing sides of each linear motor also serve as guides. In this example, guide 12.1
3 becomes unnecessary. In addition, since the can 20 can be disposed with a small gap g between the surface facing the near motor and the can 20 having chamfered ends, the installation effort is particularly simple.

第9図は第6図における電圧調整器53と同じ電圧調整
器54をリニアモータ40側にも設け、両リニアモータ
30.40の推力調整が同時に行えるようにしたもので
、缶20の搬送速度を両者異値が自在に変更させること
ができる。
In FIG. 9, a voltage regulator 54, which is the same as the voltage regulator 53 in FIG. Both different values can be freely changed.

それゆえ、両端の形状面積が異なった缶の搬送制御に適
している。
Therefore, it is suitable for controlling the conveyance of cans with different shapes and areas at both ends.

第10図は1個の電圧調整器55で、リニアモータ30
及び40の推力調整をとを同時にかつ同値で自在に変更
させることができる。
FIG. 10 shows one voltage regulator 55 and a linear motor 30.
It is possible to freely change the thrust force adjustment of and 40 at the same time and with the same value.

それゆえ両端の形状、面積が同一の缶の搬送制御に遺し
ている。
Therefore, it is necessary to control the conveyance of cans with the same shape and area at both ends.

第11図は第10図に示す電圧調整器55を省略したも
ので、缶の搬送速度調整を必要とせず、また両端の形状
及び面積が同一の缶の搬送制御に適している。
11 omits the voltage regulator 55 shown in FIG. 10, and does not require adjustment of the conveyance speed of cans, and is suitable for controlling the conveyance of cans having the same shape and area at both ends.

なお前記説明において、非鉄金属缶は1個のみを図示し
たが、複数個の缶を連続して並べ、ころがり搬送させる
ことも可能である。また搬送路表面及びガイドは摩擦抵
抗が小さく、リニアモータからの加熱に耐えるものであ
ればよく、合成樹脂又はステンレススチール等の非磁性
体であってもよい。
Although only one non-ferrous metal can is illustrated in the above description, it is also possible to arrange a plurality of cans in succession and transport them by rolling. Further, the surface of the conveyance path and the guide may be made of a non-magnetic material such as synthetic resin or stainless steel as long as it has low frictional resistance and can withstand heat from the linear motor.

さらに電圧調整器としては誘導電圧制御方式のほかイン
バータにより電圧、周波数を同時に変えることも可能で
ある。
Furthermore, as a voltage regulator, in addition to the induction voltage control method, it is also possible to change the voltage and frequency simultaneously using an inverter.

第12図は搬送路10の両側方にリニアモータ30及び
40を配設したもので、アルミニウム等の非鉄金属缶2
0を走行路板11上に垂直に立てて載置し搬送する実施
例を示すもので、第1図に示す実施例においては非鉄金
属缶20を走行路板11上に横倒しにして載置し搬送す
るがミ第14図で示す実施例においては非鉄金属缶20
を走行路板11上に垂直に立てて載置し搬送するように
したものであって、それ以外の構成は同様である。
FIG. 12 shows a configuration in which linear motors 30 and 40 are arranged on both sides of a conveyance path 10.
This shows an embodiment in which a non-ferrous metal can 20 is placed vertically on the running road board 11 and transported.In the embodiment shown in FIG. In the embodiment shown in FIG. 14, a non-ferrous metal can 20 is transported.
The vehicle is placed vertically on the traveling road board 11 and transported, and the other configurations are the same.

この場合、缶20には第13図に示す如く、両端面にリ
ニアモータの発生する推力F、及びF2が働くので、リ
ニアモータ30及び40の発生する推力の大きさFl及
びF2を同じ大きさとすれば、缶20は回転せず進行磁
界の方向、すなわち進行方向である図示矢印X方向にず
れることなく搬送されることになる。
In this case, as shown in FIG. 13, thrust forces F and F2 generated by the linear motors act on both end faces of the can 20, so the thrust forces Fl and F2 generated by the linear motors 30 and 40 are set to have the same magnitude. Then, the can 20 will be transported without rotating and without shifting in the direction of the traveling magnetic field, that is, the direction of arrow X in the figure, which is the traveling direction.

第14図及び第15図は、リニアモータ30及び40を
搬送路10を挟んで上下に互いに面が向き合うように配
設し、アルミニウム等の非鉄金属缶20をリニアモータ
30及び40の缶では走行路板11上に垂直に立てて載
置し搬送する場合の実施例を示すものである。
14 and 15, linear motors 30 and 40 are disposed vertically with their surfaces facing each other across a conveyance path 10, and a non-ferrous metal can 20 such as aluminum is moved by the linear motors 30 and 40. This shows an embodiment in which the device is placed vertically on a road plate 11 and transported.

缶20と上面に設けたりニアモータ30との間にはは缶
20の搬送が円滑にできるよう所定の空隙gを設けるも
のとする。
A predetermined gap g is provided between the can 20 and the upper surface or the near motor 30 so that the can 20 can be transported smoothly.

この場合は缶20の底面及び上面にリニアモータの発生
する推力F、及びF2が働くので、リニアモータ30及
び40の発生する推力の大きさF+及びF2を同じ大き
さとすれば、缶20は進行磁界の方向、すなわち進行方
向である図示矢印X方向にずれることなく搬送されるこ
とになる。このとき、缶20はリニアモータ30及び4
0により底面及び上面に反発力f 1′及びf2′を受
けるが、この反発力rl ′及び12′は同じ大きさと
なり互いに相殺され缶20に働くリニアモータによる反
発力はなくなる。従って、缶20は進行方向からずれる
ことなく搬送されることになる。
In this case, the thrust forces F and F2 generated by the linear motors act on the bottom and top surfaces of the can 20, so if the magnitudes of the thrust forces F+ and F2 generated by the linear motors 30 and 40 are the same, the can 20 will move forward. It is conveyed without shifting in the direction of the magnetic field, that is, in the direction of arrow X in the figure, which is the traveling direction. At this time, the can 20 is moved by the linear motors 30 and 4.
0, the bottom and top surfaces are subjected to repulsive forces f1' and f2', but these repulsive forces rl' and 12' have the same magnitude and cancel each other out, so that the repulsive force exerted on the can 20 by the linear motor disappears. Therefore, the can 20 is transported without being deviated from the direction of travel.

また、新20の底面と上面の形状及び面積が異なる場合
は第9図に示す方法と同様に上下に配設するリニアモー
タ30及び40の発生磁界を制御することにより、缶2
0の底面と上面の受ける推力を同一とし、缶20を傾斜
することなく安定して搬送させることができる。
In addition, if the bottom and top surfaces of the new 20 have different shapes and areas, the can 2
Since the thrust force received by the bottom and top surfaces of the can 20 is the same, the can 20 can be stably transported without tilting.

鉦l叫洟策 本発明によるときは、リニアモータの進行磁界発生面と
搬送路表面とか直交するようにリニアモータを設けであ
るので、非鉄金属缶を高速でころがり搬送させることが
できる。また、搬送路に沿って設けたりニアモータの磁
界発生面が対向するようにしであるので、缶の両端面に
推力を与えることができる。それゆえ、缶の端面の形状
、面積に応じて、リニアモータを制御することにより缶
両端面の推力を一致させ、缶のころがり回転方向が進行
方向からずれることがなく円滑な回転が得られる。従っ
て、缶の両端面の形状、面積によって本発明装置の適用
範囲が限定されることがない。
According to the present invention, since the linear motor is installed so that the traveling magnetic field generation surface of the linear motor is orthogonal to the conveying path surface, the nonferrous metal can can be rolled and conveyed at high speed. Further, since the magnetic field generation surfaces of the near motors are provided along the conveyance path and are arranged to face each other, thrust can be applied to both end surfaces of the can. Therefore, by controlling the linear motor according to the shape and area of the end face of the can, the thrust forces on both end faces of the can are matched, and smooth rotation can be obtained without the rolling direction of the can deviating from the direction of travel. Therefore, the scope of application of the device of the present invention is not limited by the shape and area of both end faces of the can.

また、モータの配置構成も容易にすることができる。Furthermore, the arrangement and configuration of the motor can be made easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第17図よりなり、第1図〜第15図は本発明
に係る図面で、第16図〜第17図は従来の技術を示す
図面である。 第1図は模式的斜視説明図、第2図はりニアモータの配
設状況を示す説明図、第3図は缶の受ける推力を示す説
明図、第4図は片側のりニアモータの缶に働く反発力を
、第5図は両側のりニアモータの缶に働く反発力をそれ
ぞれ示す説明図である。 第6図〜第15図は本発明装置の異なった実施例を示す
図面であって、第6図は制御ブロック図、第7図及び第
8図は本発明装置の他の実施例を示す模式的断面図、第
9図〜第11図は他の実施例の制御ブロック図、第12
図は本発明装置の他の実施例を示す模式的断面図、第1
3図は第12図で示す実施例の缶の受ける推力を示す説
明図、第14図は本発明装置の他の実施例を示す正面図
、第15図は第14図の側面である。 第16図は従来技術の正面説明図、第17図は缶の受け
る推力を示す説明図である。 10・・・搬送路 11・・・走行路板 12.13・・・ガイド 20・・・非鉄金属缶 30・・・リニアインダクションモータ40・・・リニ
アインダクションモータ特許出願人  日立機電工業株
式会社
1 to 17, FIGS. 1 to 15 are drawings related to the present invention, and FIGS. 16 to 17 are drawings showing the conventional technology. Fig. 1 is a schematic perspective view, Fig. 2 is an explanatory drawing showing the arrangement of the beam near motor, Fig. 3 is an explanatory drawing showing the thrust force received by the can, and Fig. 4 is the repulsive force exerted on the can by the beam near motor on one side. FIG. 5 is an explanatory diagram showing the repulsive forces acting on the cans of the linear motors on both sides. 6 to 15 are drawings showing different embodiments of the device of the present invention, in which FIG. 6 is a control block diagram, and FIGS. 7 and 8 are schematic diagrams showing other embodiments of the device of the present invention. FIG. 9 to FIG. 11 are control block diagrams of other embodiments, and FIG.
The figure is a schematic sectional view showing another embodiment of the device of the present invention.
3 is an explanatory view showing the thrust force received by the can of the embodiment shown in FIG. 12, FIG. 14 is a front view showing another embodiment of the apparatus of the present invention, and FIG. 15 is a side view of FIG. 14. FIG. 16 is an explanatory front view of the prior art, and FIG. 17 is an explanatory diagram showing the thrust force received by the can. 10...Conveyance path 11...Traveling road plate 12.13...Guide 20...Non-ferrous metal can 30...Linear induction motor 40...Linear induction motor Patent applicant Hitachi Kiden Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)非鉄金属缶をころがり搬送させる非鉄金属缶搬送
装置であって、前記非鉄金属缶搬送装置は、搬送路と搬
送路の両側方に搬送方向に添わせて設けたリニアインダ
クションモータと、前記搬送路の両側方に搬送方向に添
わせて設けたガイドを具備したことを特徴とする非鉄金
属缶搬送装置。
(1) A non-ferrous metal can conveying device that rolls and conveys non-ferrous metal cans, the non-ferrous metal can conveying device comprising a conveying path, linear induction motors provided on both sides of the conveying path along the conveying direction, and the A non-ferrous metal can conveying device characterized by comprising guides provided on both sides of a conveying path along the conveying direction.
(2)非鉄金属缶を搬送させる非鉄金属缶搬送装置であ
って、前記非鉄金属缶搬送装置は、搬送路と、搬送路の
搬送方向に沿って上面及び下面に設けたリニアインダク
ションモータとを具備したことを特徴とする非鉄金属缶
搬送装置。
(2) A non-ferrous metal can transport device for transporting non-ferrous metal cans, the non-ferrous metal can transport device comprising a transport path and linear induction motors provided on the upper and lower surfaces along the transport direction of the transport path. A non-ferrous metal can conveying device characterized by:
JP28974987A 1987-11-17 1987-11-17 Non-ferrous metal can conveyer Pending JPH01133817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28974987A JPH01133817A (en) 1987-11-17 1987-11-17 Non-ferrous metal can conveyer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28974987A JPH01133817A (en) 1987-11-17 1987-11-17 Non-ferrous metal can conveyer

Publications (1)

Publication Number Publication Date
JPH01133817A true JPH01133817A (en) 1989-05-25

Family

ID=17747262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28974987A Pending JPH01133817A (en) 1987-11-17 1987-11-17 Non-ferrous metal can conveyer

Country Status (1)

Country Link
JP (1) JPH01133817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346623B2 (en) 2014-05-08 2016-05-24 Laitram, L.L.C. Touchless guide device for a conveyor
US10457497B1 (en) 2018-04-13 2019-10-29 Laitram, L.L.C. Electromagnetic conveyor system
US11053084B2 (en) 2017-10-17 2021-07-06 Laitram, L.L.C. LIM can mover
US11208274B2 (en) 2018-04-13 2021-12-28 Laitram, L.L.C. Electromagnetic conveyor system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346623B2 (en) 2014-05-08 2016-05-24 Laitram, L.L.C. Touchless guide device for a conveyor
EP3140229A4 (en) * 2014-05-08 2018-01-10 Laitram, L.L.C. Touchless guide device for a conveyor
EP3578482A1 (en) * 2014-05-08 2019-12-11 Laitram, L.L.C. Touchless guide device for a conveyor
US11053084B2 (en) 2017-10-17 2021-07-06 Laitram, L.L.C. LIM can mover
US10457497B1 (en) 2018-04-13 2019-10-29 Laitram, L.L.C. Electromagnetic conveyor system
US11208274B2 (en) 2018-04-13 2021-12-28 Laitram, L.L.C. Electromagnetic conveyor system

Similar Documents

Publication Publication Date Title
US3824516A (en) Electromagnetic material handling system utilizing offset pole spacing
JPS60204250A (en) Conveying apparatus
US4704568A (en) Linear induction motor transport system
US4953470A (en) Attraction type magnetic levitation vehicle system
JPH01133817A (en) Non-ferrous metal can conveyer
US5163546A (en) Ac magnetic floating conveyor and operation method thereof
JPH02206306A (en) Linear motor type conveyor apparatus
US4922142A (en) Method and apparatus for controlling the carriage of a linear motor
JP2607455B2 (en) Electromagnetic propulsion device
JP2602810B2 (en) Floating transfer device
JPH0757042B2 (en) Floating carrier
JPS63198570A (en) Conveyor for metal can
JPH05236610A (en) Magnetic levitation conveyor
JPH037002A (en) Carrier driven by linear motor
JP2563912B2 (en) Floating carrier
RU2184063C2 (en) Electromagnetic sheet filter
JPH0197160A (en) Nonferrous metal vessel carrier device
JPS58148125A (en) Multifunction conveyor using linear stepping motor
JPS61221502A (en) Traveling device
JPS6012420A (en) Conveyor drive apparatus
JPH03124623A (en) Diverging device of carrying path in carrying device
JPS6181106A (en) Noncontact support conveying apparatus
JPS6096171A (en) Carrier drive device
JPS61136818A (en) Magnetic levitating apparatus
JPS61225401A (en) Conveyor apparatus