JPH01131031A - Production of glass transfer body - Google Patents

Production of glass transfer body

Info

Publication number
JPH01131031A
JPH01131031A JP28864487A JP28864487A JPH01131031A JP H01131031 A JPH01131031 A JP H01131031A JP 28864487 A JP28864487 A JP 28864487A JP 28864487 A JP28864487 A JP 28864487A JP H01131031 A JPH01131031 A JP H01131031A
Authority
JP
Japan
Prior art keywords
glass
coating film
sol
adhesive
transfer body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28864487A
Other languages
Japanese (ja)
Inventor
Shoichi Uchiyama
正一 内山
Osamu Yokoyama
修 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP28864487A priority Critical patent/JPH01131031A/en
Publication of JPH01131031A publication Critical patent/JPH01131031A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Abstract

PURPOSE:To obtain a glass transfer body with excellent mass productivity, by bonding a substrate through an adhesive onto a sol coating film containing a glass-forming fine oxide particles formed on a matrix and then separating the matrix and sol coating film. CONSTITUTION:(A) A mold 1 having a desired shape is prepared. (B) A sol coating film 2 containing dispersed glass-forming fine oxide particles is formed on the mold 1 by using a dip coating method, etc. (c) The resultant coating film is heated, etc., and sufficiently cured and then a layer 3 of an adhesive is provided on the coating film 2 by a spray coating method, etc. (d) A substrate 4 is subsequently placed on the layer 3 of the adhesive to carry out curing treatment of the adhesive. (e) Both are separated from the interface between the matrix 1 and the coating film 2 when the curing is completed. If an inorganic adhesive is used and glass densifying treatment (g) of the sol coating film 2 is not carried out, the glass densifying treatment (h) can be performed to afford the aimed glass transfer body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラスの表面に凹凸パターンを形成したガラ
ス転写体の製造方法に関し、特に光情報処理、光通信分
野で使用される、光集積回路、グンーティング、ホログ
ラフィック素子、グループ付き光デイスク基板の製造方
法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a glass transfer body having a concavo-convex pattern formed on the surface of the glass, and particularly relates to a method for producing a glass transfer body having a concavo-convex pattern formed on the surface of the glass, and in particular, an optical integrated device used in the fields of optical information processing and optical communication. The present invention relates to a method for manufacturing circuits, Gunting, holographic elements, and optical disk substrates with groups.

〔従来の技術〕[Conventional technology]

従来、この種の表面に微細パターンを存するガラス体の
製造方法としては、ガラス基板上にフォトレジスト膜を
塗布した後、紫外光を用いたフォトリングラフィ技術に
より、パターンを形成していた。しかし、このような紫
外光を用いたフォトリングラフィ技術では、作製できる
パターンの細かさはたかだか1μm程度のものである。
Conventionally, as a manufacturing method of this type of glass body having a fine pattern on its surface, a photoresist film is applied on a glass substrate, and then a pattern is formed by photolithography technology using ultraviolet light. However, with such photolithography technology using ultraviolet light, the fineness of patterns that can be produced is about 1 μm at most.

例えば、光ディスクに要求される凹凸パターン、光導波
路素子の集光グレーティングの凹凸パターンなどでは、
パターン幅として0.5μm前後の微細さが要求され、
紫外光を用いたフォトリングラフィ技術では対応できな
い。そこで、このような微細なパターンに対応するため
に、電子ビームや、レーザービーム描画による方法が提
案されている。これらの方法の欠点としては、描画に多
大な時間を要し、スループットが極めて悪いことがあげ
られる。従って、このような微細パターンを有する製品
では、ガラス製品は、レプリカ技術の進んだ樹脂製品に
比すと極めて高価となってしまう。このような欠点を解
決するために、ゾル−ゲル法を利用したガラスのレプリ
カ技術が提案されている。(特開昭62−102445
)〔発明が解決しようとする問題点〕 この方法を第4図に沿って説明する。基板17上に有機
金属化合物を含む溶液の可塑性塗布膜16を形成する。
For example, the uneven pattern required for optical discs, the uneven pattern for condensing gratings of optical waveguide elements, etc.
A fine pattern width of around 0.5 μm is required,
Photophosphorography technology using ultraviolet light cannot handle this problem. Therefore, in order to handle such fine patterns, methods using electron beam or laser beam drawing have been proposed. The disadvantages of these methods are that drawing takes a lot of time and the throughput is extremely low. Therefore, glass products having such fine patterns are extremely expensive compared to resin products with advanced replica technology. In order to solve these drawbacks, a glass replica technology using a sol-gel method has been proposed. (Unexamined Japanese Patent Publication No. 62-102445
) [Problems to be Solved by the Invention] This method will be explained with reference to FIG. A plastic coating film 16 of a solution containing an organometallic compound is formed on a substrate 17 .

(第4図(a))塗布膜16が可塑性を存する間に所望
の形状を存するプレス型18を塗布膜16に押しつける
。(第4図(b))塗布膜1Gが硬化した時点で、プレ
ス型18を!11離し焼成することにより表面に微細な
パターンを存する、ガラス体を量産性良く得ることがで
きる(第4図(C))。しかし当方法には、次にあげる
ような欠点がある。
(FIG. 4(a)) A press die 18 having a desired shape is pressed onto the coating film 16 while the coating film 16 remains plastic. (Fig. 4(b)) When the coating film 1G is cured, press the press mold 18! By firing at 11 times apart, a glass body having a fine pattern on its surface can be obtained with good mass productivity (FIG. 4(C)). However, this method has the following drawbacks.

(i)  プレス型18の凹部には空気が存在するため
に、塗布膜16にプレス型18の形状を忠実に転写する
ことができない。また、有機金属化合物を含む溶液は水
、アルコールなどの蒸気圧の高い物質から成っており、
空気抜きのための真空引きは困難である。
(i) Since air exists in the concave portion of the press mold 18, the shape of the press mold 18 cannot be faithfully transferred to the coating film 16. In addition, solutions containing organometallic compounds consist of substances with high vapor pressure such as water and alcohol.
It is difficult to draw a vacuum to remove air.

(if )  プレス型18を塗布膜16番ご押しつけ
るには基板17とプレス型18の平行度を極めて精度良
く制御しなければならない。そのため、装置が高価なも
のとなってしまう。
(if) In order to press the press mold 18 against the coating film No. 16, the parallelism between the substrate 17 and the press mold 18 must be controlled with extremely high precision. Therefore, the device becomes expensive.

(iii )  塗布膜16の硬度は、経時的に変化す
るために、プレス型18を押しつけるタイミングが微妙
であり、高度に制御されたプロセスを必要とされる。本
発明は上述の点に鑑みなされたものであり、その目的と
するところは、所望の型の形状を忠実に転写したガラス
転写体を、高価な装置を使用することなく、極めて量産
性良く製造する方法を提供することにある。
(iii) Since the hardness of the coating film 16 changes over time, the timing of pressing the press mold 18 is delicate, and a highly controlled process is required. The present invention has been made in view of the above points, and its purpose is to manufacture a glass transfer body that faithfully transfers the shape of a desired mold with high mass productivity without using expensive equipment. The goal is to provide a way to do so.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のガラス転写体の製造方法は、所望の形状を有す
る母型上に、ガラス形成酸化物微粒子が分散したゾル塗
布膜を形成する第一の工程、前記ゾル塗布膜上に接着剤
を塗布する第二の工程、前記接着剤上に基板をのせて接
着する第三の工程、前記母型と前記ゾル塗布膜との界面
から両者を分離する第四の工程の以上四つの工程から成
ることを特徴とする。
The method for manufacturing a glass transfer body of the present invention includes a first step of forming a sol coating film in which glass-forming oxide fine particles are dispersed on a matrix having a desired shape, and applying an adhesive on the sol coating film. a second step of placing a substrate on the adhesive and adhering it; and a fourth step of separating the mother mold and the sol coating film from the interface thereof. It is characterized by

〔イ乍用〕[For use]

本発明の作用を第一図に沿って説明する。所望の形状を
育する型1を用意しくA)、その型1上にデイツプコー
ティング、スピンコーティング、スプレーコーティング
などの方法を使ってガラス形成酸化物微粒子が分散した
ゾル塗布膜2を形成する(B)。このガラス形成酸化物
微粒子が分散したゾルは、一種もしくは二種以上の金属
アルコキシドを加水分解した溶液を主成分とする。この
加水分解溶液単位で使用しても良いが、例えば、膜厚を
制御するための手法、ガラス形成酸化物微粉末の添加、
シランカップリング剤の添加、界面活性剤の添加、高分
子樹脂の添加なども重要な手法である。また、このガラ
ス転写体を光導波路デバイスとして使用することを考え
た場合、ゾル塗布膜から形成されるガラス薄膜の精密な
屈折率制御が要求され、ゾル作製時の材料の組み合わせ
、例えば、金属アルコキシドの組み合わせが重要である
。金属アルコキシドとしては、Si (OR)4、Ti
 (OR)4、Zr (OR)4、Ge (OR)4、
Na(OR)、B(OR)3、等が考えられるが、これ
らに限定されるものではない。
The operation of the present invention will be explained with reference to FIG. A) Prepare a mold 1 that grows a desired shape, and form a sol coating film 2 in which glass-forming oxide fine particles are dispersed on the mold 1 using a method such as dip coating, spin coating, or spray coating. B). The sol in which the glass-forming oxide fine particles are dispersed has as its main component a solution obtained by hydrolyzing one or more metal alkoxides. Although this hydrolyzed solution may be used in units, for example, methods for controlling the film thickness, addition of glass-forming oxide fine powder, etc.
Addition of silane coupling agents, surfactants, polymer resins, etc. are also important methods. In addition, when considering the use of this glass transfer body as an optical waveguide device, precise control of the refractive index of the glass thin film formed from the sol coating film is required. The combination of these is important. As metal alkoxides, Si (OR)4, Ti
(OR)4, Zr (OR)4, Ge (OR)4,
Possible examples include Na(OR), B(OR)3, etc., but are not limited to these.

このようにして塗布されたゾル塗布膜2は、型1の凹部
に空気などの影響を受けずに、確実に入り込むことがで
きる。従って、このゾル塗布膜が、硬化後に型1から離
型することができれば、型1の形状を忠実に転写した、
ガラス転写体を得ることができる。また、型1上に塗布
膜2を形成すれば、その時点で、形状転写プロセスも終
了しまっており、転写工程の省略および、膜の硬度制御
などのような高度のプロセスの省略をはかることができ
る。次に塗布膜の剥離工程を説明する。
The sol coating film 2 applied in this manner can reliably enter the recessed portion of the mold 1 without being affected by air or the like. Therefore, if this sol coating film can be released from the mold 1 after curing, the shape of the mold 1 has been faithfully transferred.
A glass transfer body can be obtained. Furthermore, once the coating film 2 is formed on the mold 1, the shape transfer process has already been completed, making it possible to omit the transfer process and other advanced processes such as controlling the hardness of the film. can. Next, the process of peeling off the coating film will be explained.

塗布膜を加熱するなどして、充分に硬化させた後、ディ
ッピング、スピンコーティング、スプレーコーティング
などの手法を用いて、塗布膜2上に接着剤の層3を設け
る(c)。ここで使用する接着剤としては種々のものが
考えられるが、大別すると高分子樹脂系接着剤と、無機
接着剤が考えられる。接着剤の種類は、その目的に応じ
て選択されるべき(例えば屈折率、膜厚制御性など)で
あり限定されるものではない。ただし、高分子樹脂系接
着剤を用いる場合には、接着剤の耐熱比の問題からゾル
塗布膜2を剥離工程の前段階で、焼成しガラス緻密化し
ておく必要がある(g)。
After the coating film is sufficiently cured by heating, etc., an adhesive layer 3 is provided on the coating film 2 using a technique such as dipping, spin coating, or spray coating (c). Various types of adhesives can be used here, but they can be broadly classified into polymeric resin adhesives and inorganic adhesives. The type of adhesive should be selected depending on the purpose (for example, refractive index, film thickness controllability, etc.) and is not limited. However, when using a polymeric resin adhesive, it is necessary to bake the sol coating film 2 to make the glass dense before the peeling process due to the heat resistance ratio of the adhesive (g).

無機接着剤を用いた場所でも同様の工程を経ることがで
きるのはいうまでもない。次に接着剤の層3の上に基板
4を載せ接着剤の硬化処理を行ない(d)、硬化が終了
した時点で、母型1と塗布膜2の界面から両者を分離す
る(e)。無機接着剤を用い、ゾル塗布膜2のガラス緻
密化処理(g)を行なっていない場合は、ガラス緻密処
理(h)を行ない、ガラス転写体を得ることができる(
f)。
Needless to say, the same process can be carried out in places where inorganic adhesives are used. Next, the substrate 4 is placed on the adhesive layer 3 and the adhesive is cured (d), and when the curing is completed, the matrix 1 and the coating film 2 are separated from the interface (e). If the glass densification treatment (g) of the sol coating film 2 is not performed using an inorganic adhesive, a glass transfer body can be obtained by performing the glass densification treatment (h) (
f).

〔実施例−1〕 電子ビーム露光により、第2図(a)に示すような集光
グレーティングカブラ形状を有するマスター6を作製し
た。次に5i(Oet)、  208g1Ge(Oet
)451g5Ht0 150g1HCf!、 0.1g
を混合加水分解し、SiQ 、  G e O*微粒子
の分散した第1のゾルを得た。また、Si (OF!t
)aのみを加水分解したのみのS’IO!微粒子の分散
した第2のゾルを得た。マスター6をスピンコーター上
に基台として設置し、そこに、第1のゾルをスピンコー
ティングした。第1のゾルが充分に乾燥したところで第
1のゾル層7の上に第2のゾルをスピンコードした。第
2のゾルが充分に乾燥したところで、第2のゾル層8上
に無機接着剤(商品名アロンセラミック 東亜合成化学
製)をスピンコードシ、接着剤層9の上に、ガラス基板
10をのせた。その後150°C1hrの硬化処理をし
マスター6と第1のゾル層7の界面を分離した。この工
程により得られた、ガラス基板上の多孔質層を500°
Cで焼結することにより、グレーティングカプラー11
を得た。このグレーティングカプラーの断面構造を(b
)に示す。ここで第1のゾル層7は光導波路(n = 
1.4 a ) 、第2のゾル層8はバッファ層(n=
1.46)の役割を果たしている。
[Example 1] A master 6 having a condensing grating fog shape as shown in FIG. 2(a) was manufactured by electron beam exposure. Next, 5i (Oet), 208g1Ge (Oet
)451g5Ht0 150g1HCf! , 0.1g
were mixed and hydrolyzed to obtain a first sol in which SiQ and G e O* fine particles were dispersed. Also, Si (OF!t
) S'IO which only hydrolyzes a! A second sol in which fine particles were dispersed was obtained. Master 6 was placed on a spin coater as a base, and the first sol was spin coated thereon. After the first sol was sufficiently dried, a second sol was spin-coded onto the first sol layer 7. When the second sol is sufficiently dried, an inorganic adhesive (trade name: Aron Ceramic, manufactured by Toagosei Chemical Co., Ltd.) is applied on the second sol layer 8 by spin coating, and a glass substrate 10 is placed on the adhesive layer 9. Ta. Thereafter, a curing treatment was performed at 150°C for 1 hour to separate the interface between the master 6 and the first sol layer 7. The porous layer on the glass substrate obtained through this process was heated at 500°.
By sintering with C, the grating coupler 11
I got it. The cross-sectional structure of this grating coupler is (b
). Here, the first sol layer 7 is an optical waveguide (n =
1.4a), the second sol layer 8 is a buffer layer (n=
1.46).

このグレーティングカプラの端面に半導体レーザ12を
端面結合し導波光13を励振したところ、空気側への出
射光の集光を確認した(c)。
When a semiconductor laser 12 was end face coupled to the end face of this grating coupler and guided light 13 was excited, it was confirmed that the emitted light was condensed toward the air side (c).

〔実施例−2〕 ホログラフィ−により、ホログラフィックグレーティン
グを作製し、その溝形状をイオンエツチングによりブレ
ーズ化し、第3図(a)に示す断面形状を存するホログ
ラフィックグレーティングマスター14を得た。次にS
i(Oet)4=208gと、H20= 150 g 
1HCρ=0.2gを混合撹拌し、加水分解反応を生ぜ
しめ、SiO2微粒子の分散した均質なゾルを得た。ス
ピンコーティングを用いてホログラフィックグレーティ
ングマスター上にゾル層を形成し、ゾル層が充分に硬化
した時点で500” Cまで加熱焼成してゾル層をガラ
ス緻密化した。次にガラス層上にスピンコーティングに
より、樹脂接着層を形成しその上にガラス基板をのせた
。樹脂接着層が充分に硬化した時点で、マスターとガラ
ス層の界面から両者を分離し、第3図(b)に示す断面
形状ををするホログラフィックグレーティング15を得
た。このグレーティングの+1次光の回折効率はλ=7
80nmにおいて78%であった。
[Example 2] A holographic grating was produced by holography, and its groove shape was blazed by ion etching to obtain a holographic grating master 14 having the cross-sectional shape shown in FIG. 3(a). Next, S
i(Oet)4=208g and H20=150g
1HCρ=0.2g was mixed and stirred to cause a hydrolysis reaction, and a homogeneous sol in which SiO2 fine particles were dispersed was obtained. A sol layer was formed on the holographic grating master using spin coating, and when the sol layer was sufficiently hardened, the sol layer was heated and baked to 500"C to make the sol layer glass densified. Next, spin coating was performed on the glass layer. A resin adhesive layer was formed and a glass substrate was placed on it.When the resin adhesive layer was sufficiently cured, the master and glass layer were separated from each other at the interface, and the cross-sectional shape shown in Figure 3(b) was obtained. A holographic grating 15 was obtained that has the following characteristics.The diffraction efficiency of the +1st order light of this grating is
It was 78% at 80 nm.

〔実施例−3〕 レーザーカッティングマシーンを用いて、グループ付き
ディスク用のマスターを作製した。このマスターのグル
ープの深さは、塗布するゾル膜の乾燥、焼成に伴う厚さ
方向の収縮を見込んで、通常のグループ深さより課目に
作製しである。次にS i  (OF!t)、=208
gとH,O=150g1HCρ=0.2gを混合撹拌し
、加水分解反応を生ぜしめS i O2微粒子の分散し
た均質なゾルを得た。このゾルに、前述のマスターをデ
ィッピングしゾル層を形成した。ゾル層が充分に硬化後
、5nO@Cまで加熱焼成しゾル層をガラス緻密化した
。次にスピンコーティングによりガラス層上に無機接着
剤を塗布し、その上にガラス基板をのせて150°C1
hrの硬化処理を行なった。その後、マスターとガラス
層の界面から両者を分離し、グループ付きガラスディス
クを得ることができた。
[Example 3] A master for a disc with groups was produced using a laser cutting machine. The depth of the master group is made to be larger than the normal group depth, taking into account shrinkage in the thickness direction due to drying and baking of the sol film to be applied. Then S i (OF!t), = 208
g and H,O=150 g1HCρ=0.2 g were mixed and stirred to cause a hydrolysis reaction and obtain a homogeneous sol in which SiO2 fine particles were dispersed. The aforementioned master was dipped into this sol to form a sol layer. After the sol layer was sufficiently hardened, it was heated and fired to 5nO@C to make the sol layer densified into glass. Next, apply an inorganic adhesive on the glass layer by spin coating, place a glass substrate on top of it, and heat it at 150°C.
A hardening process was performed for hr. Thereafter, the master and the glass layer were separated from the interface to obtain a grouped glass disk.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、所望の形状を有する
母型上にガラス形成酸化物微粒子が分散したゾル塗布膜
を形成し、その塗布膜を接着剤を用いて基板上に移し取
るという極めて簡単な工程で、簡便な装置を用いるだけ
で、転写性に極めて優れた、ガラス転写体を得ることが
できる。このガラス転写体はグレーティング、光ディス
ク、先導波路素子等の光学素子作製上、応用範囲の広い
技術であることは本実施例で述べたが、これらの実施例
にのみ限定されるものではないことはいうまでもない。
As described above, according to the present invention, a sol coating film in which glass-forming oxide fine particles are dispersed is formed on a matrix having a desired shape, and the coating film is transferred onto a substrate using an adhesive. A glass transfer body with extremely excellent transferability can be obtained by using an extremely simple process and a simple device. As described in this example, this glass transfer material is a technology with a wide range of applications in the production of optical elements such as gratings, optical disks, and guiding waveguide elements, but it is not limited to these examples. Needless to say.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図、第2図及び第3図
は本発明の詳細な説明する図、第4図は従来の技術を説
明する図である。 1・・・所望の形状を有する型 2・・・ゾル塗布膜 3・・・接着剤の層 4・・・基板 5・・・焼成炉 6・・・グレーティングカプラ形状を育するマスター 7・・・第1のゾル層 8・・・第2のゾル層 9・・・接着剤層 10・・・ガラス基板 11・・・グレーティングカブラ 12・・・半導体レーザ 13・・・導波光 14・・・ホログラフィックグレーティングマスター 15・・・ホログラフィックグレーティング16・・・
可塑性塗布膜 17・・・基板 18・・・プレス型 以  上 出願人 セイコーエプソン株式会社 C立Th1 (A) (BJ (グ) (C) 第2図 /4 ((A’) 第3図 (幻 (b) 第4図
FIG. 1 is a diagram explaining the present invention in detail, FIGS. 2 and 3 are diagrams explaining the present invention in detail, and FIG. 4 is a diagram explaining the conventional technique. 1... Mold having a desired shape 2... Sol coating film 3... Adhesive layer 4... Substrate 5... Firing furnace 6... Master 7 for growing the grating coupler shape... - First sol layer 8... Second sol layer 9... Adhesive layer 10... Glass substrate 11... Grating cover 12... Semiconductor laser 13... Waveguide light 14... Holographic grating master 15... Holographic grating 16...
Plastic coating film 17...Substrate 18...Press type or above Applicant Seiko Epson Co., Ltd. Vision (b) Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)所望の形状を有する母型上に、ガラス形成酸化物
微粒子が分散したゾル塗布膜を形成する第一の工程、前
記ゾル塗布膜上に接着剤を塗布する第二の工程、前記接
着剤上に基板をのせて接着する第三の工程、前記母型と
前記ゾル塗布膜との界面から両者を分離する第四の工程
の以上四つの工程から成ることを特徴とするガラス転写
体の製造方法。
(1) A first step of forming a sol coating film in which glass-forming oxide fine particles are dispersed on a matrix having a desired shape, a second step of applying an adhesive onto the sol coating film, and the adhesion. A glass transfer body characterized by comprising the above four steps: a third step of placing a substrate on the agent and adhering it, and a fourth step of separating the mother mold and the sol coating film from the interface thereof. Production method.
(2)前記ゾル塗布膜を、前記第一の工程の直後もしく
は前記第四の工程の直後に加熱焼成してガラス緻密化す
ることを特徴とする特許請求の範囲、第1項記載のガラ
ス転写体の製造方法。
(2) The glass transfer according to claim 1, characterized in that the sol coating film is heated and baked immediately after the first step or immediately after the fourth step to make the glass densified. How the body is manufactured.
(3)前記ガラス形成酸化物微粒子が分散したゾルは一
種もしくは二種以上の金属アルコキシドの加水分解溶液
を主成分とすることを特徴とする特許請求の範囲第1項
記載のガラス転写体の製造方法。
(3) Production of a glass transfer body according to claim 1, wherein the sol in which the glass-forming oxide fine particles are dispersed has a hydrolyzed solution of one or more metal alkoxides as a main component. Method.
JP28864487A 1987-11-16 1987-11-16 Production of glass transfer body Pending JPH01131031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28864487A JPH01131031A (en) 1987-11-16 1987-11-16 Production of glass transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28864487A JPH01131031A (en) 1987-11-16 1987-11-16 Production of glass transfer body

Publications (1)

Publication Number Publication Date
JPH01131031A true JPH01131031A (en) 1989-05-23

Family

ID=17732830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28864487A Pending JPH01131031A (en) 1987-11-16 1987-11-16 Production of glass transfer body

Country Status (1)

Country Link
JP (1) JPH01131031A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244008A (en) * 1989-03-16 1990-09-28 Omron Tateisi Electron Co Optical circuit and production of the optical circuit
JPH05273427A (en) * 1991-09-18 1993-10-22 Carl Zeiss:Fa Optical waveguide having substantially flat substrate and treatment for its manufacture
EP0867921A2 (en) * 1997-03-26 1998-09-30 Canon Kabushiki Kaisha Substrate and production method thereof
JP2001154049A (en) * 1999-11-24 2001-06-08 Toppan Printing Co Ltd Method for manufacturing optical wiring layer, and method for manufacturing opto-electric wiring substrate
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244008A (en) * 1989-03-16 1990-09-28 Omron Tateisi Electron Co Optical circuit and production of the optical circuit
JPH05273427A (en) * 1991-09-18 1993-10-22 Carl Zeiss:Fa Optical waveguide having substantially flat substrate and treatment for its manufacture
EP0867921A2 (en) * 1997-03-26 1998-09-30 Canon Kabushiki Kaisha Substrate and production method thereof
EP0867921A3 (en) * 1997-03-26 1999-03-17 Canon Kabushiki Kaisha Substrate and production method thereof
JP2001154049A (en) * 1999-11-24 2001-06-08 Toppan Printing Co Ltd Method for manufacturing optical wiring layer, and method for manufacturing opto-electric wiring substrate
JP4507315B2 (en) * 1999-11-24 2010-07-21 凸版印刷株式会社 Manufacturing method of optical / electrical wiring board
JP2008006639A (en) * 2006-06-28 2008-01-17 Toppan Printing Co Ltd Imprinting mold and its manufacturing method

Similar Documents

Publication Publication Date Title
KR100624414B1 (en) Manufacturing Method of Diffractive Lens Array and UV Dispenser
US4810547A (en) Substrate with fine grooves and method for manufacturing the same
JPH07140336A (en) Optical waveguide
US20090267245A1 (en) Transmission Type Optical Element
JPH01131031A (en) Production of glass transfer body
JPS62102445A (en) Production of optical disk substrate
NL8303905A (en) METHOD FOR MANUFACTURING A GEODETIC COMPONENT AND INTEGRATED OPTICAL DEVICE CONTAINING THIS COMPONENT
JP2002192500A (en) Manufacturing method for article having micro surface structure
JPH04219349A (en) Production of optical element
JPH06114334A (en) Method for forming very fine recessed and projected pattern on base
JP3415183B2 (en) Manufacturing method of optical element assembly and optical element assembly
JPS62225273A (en) Production of grooved substrate
JPH07239407A (en) Replica diffraction grating
JP2679454B2 (en) Resin stamper manufacturing method and pattern transfer method using the resin stamper
JP2004230471A (en) Ceramic fine pattern forming method
KR100455088B1 (en) Production method of lightwave guide
JPS63153746A (en) Production of grooved substrate
JPS6172202A (en) Production of curved surface diffraction grating
JPS62203101A (en) Manufacture of optical element with fine pattern on surface and die used therefor
JPH0462644B2 (en)
JPH02283638A (en) Production of substrate with very fine pattern
JPH07146405A (en) Replica diffraction grating
JPH01119545A (en) Production of grooved substrate
JP3089700B2 (en) Method for manufacturing substrate with fine pattern
JP4554835B2 (en) Mold for glass and method for producing glass molded product