JPH01115344A - Apparatus for detecting state of driver - Google Patents

Apparatus for detecting state of driver

Info

Publication number
JPH01115344A
JPH01115344A JP62274412A JP27441287A JPH01115344A JP H01115344 A JPH01115344 A JP H01115344A JP 62274412 A JP62274412 A JP 62274412A JP 27441287 A JP27441287 A JP 27441287A JP H01115344 A JPH01115344 A JP H01115344A
Authority
JP
Japan
Prior art keywords
driver
state
signal
sensor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62274412A
Other languages
Japanese (ja)
Other versions
JPH0669444B2 (en
Inventor
Hiroshi Tabata
洋 田畑
Masaaki Katsumata
勝亦 正晃
Tsutomu Suzuki
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62274412A priority Critical patent/JPH0669444B2/en
Publication of JPH01115344A publication Critical patent/JPH01115344A/en
Publication of JPH0669444B2 publication Critical patent/JPH0669444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To indirectly know the state of the body without directly bringing a sensor into contact with the body by receiving the reflected wave of the microwave emitted toward the breast of a driver and checking the respiratory state detected from the cycle or peak value of the receiving signal. CONSTITUTION:When a microwave of 10GHz is allowed to irradiate the breast of a driver 2 from a sensor 3, the microwave transmits through the clothing of the driver to reach the surface of his breast and is reflected to be again received by the sensor 3. The receiving wave is processed by a detection signal operating means 4 to obtain the waveform signal corresponding to the displacement quantity of the breast. The data such as the respiratory cycle, positive peak value and negative peak value of the driver at a normal time are preliminarily stored in a CPU 11 and compared with the respiratory cycle and the positive and negative peak values inputted from a zero cross cycle counter 5 and an A/D converter 10 and judged. When a rapid respiratory cycle or the like is judged, that is, it is judged that the driver is in a fatigue state, an alarm is emitted from an alarm circuit 14.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両乗員、特に車両の運転者の身体状態を検
出するのに好適な車両乗員の状態検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vehicle occupant condition detection device suitable for detecting the physical condition of a vehicle occupant, particularly a vehicle driver.

(従来の技術) 従来、車両の安全運転のために、運転者の身体の状態を
把握する手段として、居眠り運転状態等による異常なス
テアリングの操作パターンを記憶させてあき、実際の操
舵角変化を上記パターンと対比させて、一致もしくは類
似したときに居眠り等の異常状態と判別して警報を発す
るようにした運転者の異常状態検出装置が提案されてい
る。
(Prior art) Conventionally, in order to drive a vehicle safely, as a means of grasping the physical condition of the driver, abnormal steering operation patterns caused by drowsy driving etc. are memorized and the actual steering angle changes are recorded. An abnormal state detection device for a driver has been proposed, which compares the above patterns and, when they match or are similar, determines that the pattern is an abnormal state such as dozing off, and issues an alarm.

更に、運転者のステアリングホイールに握り圧検出素子
を設けておき、握り圧低下が所定時間経過したときに、
運転者に警報を発するようにした装置も提案されている
Furthermore, a grip pressure detection element is provided on the driver's steering wheel, and when the grip pressure decreases after a predetermined period of time,
A device that issues a warning to the driver has also been proposed.

また、運転者の親指等に心拍状態を検出する指尖圧検出
計を装着して、心拍状態から運転者の身体の状態を把握
し警告を発するようにすることがでさる装置も提案され
ている(特開昭60−76428号公報)。
Additionally, a device has been proposed in which a fingertip pressure detector that detects the heartbeat condition is attached to the driver's thumb or the like, and the driver's physical condition can be determined from the heartbeat condition and a warning can be issued. (Japanese Unexamined Patent Publication No. 60-76428).

(発明が解決しようとする問題点) ところで、上記従来技術のように直接的に身体の状態を
測定する場合においては、検出素子を直接身体に取付け
なければならないという不便と、検出素子を身体に取付
けるという精神的な圧迫感ないし違和感のため、正確な
呼吸数、または心拍数が測定できないという不都合があ
った。
(Problems to be Solved by the Invention) However, when directly measuring the state of the body as in the prior art described above, there is the inconvenience of having to attach the detection element directly to the body, and the problem of attaching the detection element to the body. Due to the psychological pressure or discomfort of attaching the device, there is an inconvenience in that accurate respiration rate or heart rate cannot be measured.

更に、ステアリング操作状態を検出して運転者の状態を
把握する方式においては、居眠りによるステアリング操
作のパターンは複雑、かつ多種多様でおり、必ずしも記
憶手段に予め設定したパターンと一致するとは限らず、
検出精度が余り良くないという問題点がおった。
Furthermore, in the method of detecting the steering operation state to understand the driver's condition, the patterns of steering operation due to drowsiness are complex and diverse, and do not necessarily match the patterns preset in the storage means.
There was a problem that the detection accuracy was not very good.

また、ステアリングホイールの握り圧の検出による運転
者の状態の把握の仕方においては、特に直線路線の高速
運転や渋滞運転時は、自ずとステアリングの握り圧が変
ってくるため正確な運転者の状態を把握できず、更に人
によってステアリングホイールの握り方が千差万別でお
るため、適切な運転者の状態を把握できないという欠点
があった。
In addition, when it comes to grasping the driver's condition by detecting the grip pressure on the steering wheel, the grip pressure on the steering wheel naturally changes, especially when driving at high speeds on straight routes or when driving in traffic jams, so it is difficult to accurately determine the driver's condition. Furthermore, since the way the driver grips the steering wheel varies greatly depending on the person, there is a drawback that the driver's condition cannot be properly determined.

更に、指尖圧検出針を装着する装置においては、運転者
に違和感を与えるという不都合と、このため運転者がこ
の検出計を取り外してしにえば、全く検出できないとい
う問題点を有していた。
Furthermore, devices equipped with fingertip pressure detection needles have the disadvantage that they give the driver a sense of discomfort, and if the driver removes the sensor, no detection is possible. .

(発明の目的) 本発明は、上記問題点を解決すべくなされたらので必っ
て、その目的とするところは、身体にセンサを直接接触
さUることなく、間接的に身体の状態を検知することが
できる車両乗員の状態検出装置を(足イ共することにお
る。
(Object of the Invention) The present invention was made to solve the above problems, and its purpose is to indirectly detect the state of the body without directly contacting the body with a sensor. A device for detecting the condition of vehicle occupants that can detect

(問題点を解決するための手段) 本発明は、上記問題点を解決するために、車両乗員の胸
部もしくは腹部に照射されたマイクロ波の反射波を受信
するマイクロ波送受信センサと、該マイクロ波送受信セ
ンサが受信した検波信号から胸部もしくは腹部の変位状
態を表わす信号を演算する変位但演咋手段と、 該変位量演算手段で演算された信号の周期、振幅または
所定期間における前記演算された信号の最大値または最
小値の少なくとも1つの値を検出する変位状態検出手段
と、 該変位状態検出手段で検出された値に基づく値と予め定
められた値を比較する呼吸状態比較手段と、 からなることを特徴とするものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a microwave transmitting/receiving sensor that receives reflected waves of microwaves irradiated to the chest or abdomen of a vehicle occupant, and displacement calculating means for calculating a signal representing the displacement state of the chest or abdomen from the detection signal received by the transmitting/receiving sensor; and the period and amplitude of the signal calculated by the displacement calculating means, or the calculated signal in a predetermined period. displacement state detection means for detecting at least one of the maximum value or minimum value of the displacement state detection means; and breathing state comparison means for comparing a value based on the value detected by the displacement state detection means with a predetermined value. It is characterized by this.

(作用) 本発明は、上記の構成により、車両乗員、特に運転者の
胸部に向けて発射したマイクロ波の反射波を受信して胸
部の変位状態を表わす信号を検知し、εの信号の周期ま
たはピーク値から検知される呼吸状態に基づき身体状態
を検出する。
(Function) With the above configuration, the present invention receives reflected waves of microwaves emitted toward the chest of a vehicle occupant, particularly the driver, detects a signal representing the displacement state of the chest, and detects a signal with a period of ε. Alternatively, the physical condition is detected based on the respiratory condition detected from the peak value.

(実施例) 以下、本発明に係る一実施例として、車両運転者の身体
の異常状態を検出する実施例を図面に基づいて説明する
(Embodiment) Hereinafter, as an embodiment of the present invention, an embodiment for detecting an abnormal state of the body of a vehicle driver will be described based on the drawings.

なお、図面に基づく説明の前に、本発明の理解を容易に
するために、運転者の身体の状態と呼吸状態、更にステ
アリングの操舵角の関係を説明する。
Before explaining based on the drawings, in order to facilitate understanding of the present invention, the relationship between the driver's physical condition, respiratory condition, and steering angle will be explained.

まず、運転者が市街地等を走行中に車線変更。First, a driver changes lanes while driving in an urban area.

右左折するようなときは、運転者は緊張状態にあるので
居眠りすることはないでおろうとする前提から、操舵角
が大きいときは居眠り状態でないとし、運転者が居眠り
状態になるときは、操舵角か所定値より小さいときであ
り、また呼吸の周期は脳細胞が安静になるため、酸素の
必要量が減り正常時よりも遅くなり、いわゆる呼吸のゆ
らぎが遅くなる傾向を示し、更に呼吸の振幅に基づいた
後述する処理した変位量信号の吸気の最大値(正ピーク
値)と呼気の最大値(負ピーク値)は、正常時に対し正
ピーク値は小さくなるが負ピーク値は大きくなる傾向に
おる。
When making a right or left turn, the driver is in a nervous state and will not doze off. Therefore, if the steering angle is large, it is assumed that the driver is not dozing off. When the angle is smaller than a predetermined value, and the respiratory cycle is at rest as brain cells are at rest, the amount of oxygen required decreases and becomes slower than normal, so-called breathing fluctuations tend to slow down, and the breathing cycle also slows down. The maximum value of inspiration (positive peak value) and the maximum value of expiration (negative peak value) of the processed displacement signal based on the amplitude (described later) tend to be smaller than normal, but the negative peak value is larger. I'm in the middle of the day.

また、運転者が疲労状態になると、自律性が増すため呼
吸の周期に規則性が出てくる傾向を示し、呼吸の振幅は
浅くなる傾向におるため、正、負ピーク値は正常時に対
して小さくなる。
Additionally, when a driver becomes fatigued, their breathing cycle tends to become more regular as their autonomy increases, and the amplitude of their breathing tends to become shallower, so the positive and negative peak values are lower than normal. becomes smaller.

更に、運転者が極度の緊張状態必るいは心臓系の異常状
態のときは、呼吸の振幅が小さくなったリ(呼吸が浅く
なる)、また呼吸の周期が速くなったり、遅くなったり
して呼吸の周期が乱れ、その傾向は一定でなく乱れる状
態を示すようになる。
Furthermore, when a driver is under extreme stress or has an abnormal heart condition, the amplitude of their breathing may become smaller (breathing becomes shallower), and their breathing cycle may become faster or slower. The breathing cycle becomes disrupted, and its tendency becomes irregular rather than constant.

したがって、上記の傾向を的確に検知できれば、運転者
の身体状態を正確に把握でき、異常状態がわかれば運転
者ないし同乗者に適切な措置を講じることができる。
Therefore, if the above-mentioned tendency can be detected accurately, the driver's physical condition can be accurately grasped, and if an abnormal condition is known, appropriate measures can be taken for the driver or fellow passenger.

さて、第1図は本発明の第1の実施例の構成を示すブロ
ック図であって、1は車両運転シートであり、このシー
ト1に運転者2が座っている。
Now, FIG. 1 is a block diagram showing the configuration of a first embodiment of the present invention, and 1 is a vehicle driver's seat, on which a driver 2 is seated.

3は、マイクロ波送受信センサとしてのマイクロ波ドツ
プラレーダセンサ(以下「センサ」という)で必って、
運転者2の胸部に10Gt−12帯域のマイクロ波を照
割するとともに、その反射波を受信できるようになって
いる。
3 is a microwave Doppler radar sensor (hereinafter referred to as "sensor") as a microwave transmitting/receiving sensor.
It is possible to transmit microwaves in the 10Gt-12 band onto the chest of the driver 2 and to receive the reflected waves.

4は、センサ3か受信した信号を演算する検波信号演算
手段であって、呼吸及び血管の動きによる胸部表皮面の
変位に応じた変位量を演算するものでおる。すなわち、
センサ3から発射されたマイクロ波が呼吸または心臓の
動きに伴う血管の収縮、膨張により、センサと身体まで
の距離が変化する弓を演算するものである。
Reference numeral 4 denotes a detection signal calculation means for calculating the signal received by the sensor 3, which calculates the amount of displacement corresponding to the displacement of the chest epidermis due to breathing and movement of blood vessels. That is,
Microwaves emitted from the sensor 3 calculate an arch in which the distance between the sensor and the body changes due to contraction and expansion of blood vessels associated with breathing or heart movement.

図中5はぜ口・クロスディテクタで市って、反射波が基
準線と交差する点を検出し、この交差点位置間とM準周
波数発振器7からの基準周波数との対比、すなわら交差
点位置間に基準周波数が何回発振されたかによりゼロ・
クロス周期カウンタ6で呼吸の周期が検出される。
In the figure, the gap/cross detector 5 detects the point where the reflected wave intersects the reference line, and the comparison between this intersection position and the reference frequency from the M quasi-frequency oscillator 7, that is, the intersection position Depending on how many times the reference frequency is oscillated during the
A cross period counter 6 detects the period of respiration.

8及び9は呼吸の振幅を検出するための手段であって、
正ピークホールド回路及び負ピークホールド回路からな
り、それぞれの最大値の信号を所定時間保持するように
なっているとともに、これら信号はアナログ−デジタル
(A/D>変換器9を介してマイクロコンピュータ(C
PU)11に送られる。
8 and 9 are means for detecting the amplitude of respiration,
It consists of a positive peak hold circuit and a negative peak hold circuit, and is designed to hold each maximum value signal for a predetermined time, and these signals are sent to a microcomputer (via an analog-to-digital (A/D) C
PU) 11.

図中15は、ステアリングホイールで必って、この操舵
角は操舵角センサ12で検出され、この検出信号は、走
行中の操舵角と予め定めた所定値とを比較する操舵比較
回路13に送られた後、所定値以下の操舵角のときに出
力信号が上記CPU11に入力される。
Reference numeral 15 in the figure indicates a steering wheel, and this steering angle is necessarily detected by a steering angle sensor 12, and this detection signal is sent to a steering comparison circuit 13 that compares the steering angle during driving with a predetermined value. After that, an output signal is input to the CPU 11 when the steering angle is less than a predetermined value.

CPU11は、内蔵するシステムROMにより駆動され
るとともに、運転者の正常時、すなわちエンジン始動直
後等のリラックスした状態のときくここでは操舵角が所
定値以下のときとしている。
The CPU 11 is driven by a built-in system ROM, and the steering angle is below a predetermined value when the driver is in a normal state, that is, when the driver is in a relaxed state such as immediately after starting the engine.

)の呼吸の正、負ピーク値及び周期をRAMに予め記憶
されていて、更に運転中の操舵角が所定値以下のときの
ゼロ・クロス周期カウンタ6から入力された呼吸周期と
A/D変換器10から入力された正、負ピーク値とを比
較演算するようになっている。
), the positive and negative peak values and periods of respiration are pre-stored in RAM, and the respiration period and A/D conversion input from the zero-cross period counter 6 when the steering angle during driving is below a predetermined value. The positive and negative peak values inputted from the device 10 are compared and calculated.

なお、図中14は比較演算の結果に基づいてCPu11
が運転者の異常状【尿を検知したときにその旨を警告す
るための警報回路である。
In addition, 14 in the figure is based on the result of the comparison operation.
This is an alarm circuit that alerts the driver when urine is detected.

第2図には、検波信号演算手段4の詳細ブロック図か示
しである。すなわち、この検波信号演算手段4は、2位
相変位検出方式を採用したものであって、20a及び2
0bは、π/2位相差を有する10GI−fz帯の2種
類のマイクロ波を発生させるマイクロ波発振器21aと
ホーンアンテナ21bとの導波路上に所定間隔保って設
けられた検波器でおる。これら検波器20a、20bで
検波した信号は、それぞれバイパスフィルタ22,23
により、身体の背景の静止物体の反射波による直流成分
を除去した後、第1及び第2の絶対値回路24.25に
入力させるとともに、3相発振回路26のsinωtの
基準発振周波数により作動する第」の乗算回路27及び
3相発振回路26のCO3ωtの基準発振周波数より作
動する第2の乗算回路28に入力される。
FIG. 2 shows a detailed block diagram of the detected signal calculation means 4. As shown in FIG. That is, this detection signal calculation means 4 adopts a two-phase displacement detection method, and has two phases 20a and 20a.
0b is a detector provided at a predetermined interval on the waveguide between the microwave oscillator 21a and the horn antenna 21b, which generate two types of microwaves in the 10GI-fz band having a phase difference of π/2. The signals detected by these detectors 20a and 20b are sent to bypass filters 22 and 23, respectively.
After removing the direct current component due to the reflected wave from a stationary object in the background of the body, it is input to the first and second absolute value circuits 24 and 25, and is operated at the reference oscillation frequency of sinωt of the three-phase oscillation circuit 26. The signal is inputted to a second multiplier circuit 28 which operates from the reference oscillation frequency of CO3ωt of the third multiplier circuit 27 and the three-phase oscillation circuit 26.

また、バイパスフィルタ22.23の出力信号は、第3
の乗算回路29により乗算された接、3相発振回路26
からのsinωtと一5inωtの基準発振周波数を切
替える発振信号切苔器30を介した後、上記第1の絶対
値回路24の出力信号と第3の乗算回路31で乗算され
る。
Furthermore, the output signals of the bypass filters 22 and 23 are
A three-phase oscillation circuit 26 multiplied by a multiplier circuit 29
After passing through an oscillation signal cutter 30 that switches the reference oscillation frequency between sinωt and -5inωt, the signal is multiplied by the output signal of the first absolute value circuit 24 and a third multiplier circuit 31.

更に、第2の絶対値回路25の出力信号は、3相発振回
路26のCOSωtの基準発振周波数により作動する第
4の乗算回路32を介した1卦、上記第3の乗算回路3
1の出力信号を第1の加算回路33で加算処理する。
Further, the output signal of the second absolute value circuit 25 is transmitted to the third multiplication circuit 3 through a fourth multiplication circuit 32 which operates based on the reference oscillation frequency of COSωt of the three-phase oscillation circuit 26.
1 output signal is subjected to addition processing in a first addition circuit 33.

一方、第1の乗算回路27と第2の乗算回路28との出
力信号は第2の加算回路34ぞ加算された後、サンプル
・ホールド回路35に送られる。
On the other hand, the output signals of the first multiplier circuit 27 and the second multiplier circuit 28 are added to the second adder circuit 34, and then sent to the sample-and-hold circuit 35.

ここでは、上記絶対値回路24.25と乗算回路27.
28.29,31.32と3相発振回路26、発振信号
切替回路30とにより、センサ3から胸部までの正弦波
等による関数により決定される距離を求めるための近似
式計算を2系統に分けて行なっている。また加算回路3
3.34により2つの位相の違う信号を合成している。
Here, the absolute value circuits 24.25 and the multiplication circuits 27.
28, 29, 31, and 32, the three-phase oscillation circuit 26, and the oscillation signal switching circuit 30 divide the approximation calculation into two systems for determining the distance from the sensor 3 to the chest determined by a function such as a sine wave. is being carried out. Also, addition circuit 3
3.34, two signals with different phases are synthesized.

上記第1の加算回路33の出力信号は波形整形回路36
.フェーズド・ロックド・ループ回路37及び遅延回路
38により、上記の第2の加算回路34の出力信号と同
期になるようにffi理されて、サンプル・ホールド回
路35に送られる。
The output signal of the first addition circuit 33 is transmitted to the waveform shaping circuit 36.
.. The signal is subjected to ffi processing by the phased locked loop circuit 37 and the delay circuit 38 so as to be synchronized with the output signal of the second adder circuit 34, and is sent to the sample and hold circuit 35.

サンプル・ホールド回路35では同期検波された波形を
取り出し、これを後述の呼吸周期検出及び呼吸深度検出
のための手段に送るようになっている。
The sample-and-hold circuit 35 extracts the synchronously detected waveform and sends it to means for detecting the breathing cycle and depth of breathing, which will be described later.

第3図は、上記検波演算手段4における検波状態を示す
もので、同図(a)は、検波器20aが受信した信号を
処理して得られた波形を示し、同図(b)は、π/2位
相差のおる信号を検波器2obで受信して処理した信号
を示している。
FIG. 3 shows the state of detection in the detection calculation means 4, in which (a) shows the waveform obtained by processing the signal received by the detector 20a, and (b) shows the waveform obtained by processing the signal received by the detector 20a. This shows a signal obtained by receiving and processing a signal with a phase difference of π/2 by the detector 2ob.

上記の(a)、(b>の波形を合成することにより、同
図(C)の左側部分の波形が得られる。
By combining the waveforms in (a) and (b>) above, the waveform on the left side of the figure (C) is obtained.

すなわら、2位相変位方式によると、1相のみのマイク
ロ波を照射したときに検波器特有の感度特性により生ず
る基準位置近くの低感度領域を生ずることなく、変位量
を検出することができ、例えば同図(C)の波形の上に
現れたヒゲ状で示される心臓の鼓動に伴う血管の動きの
変位量も精度よく検出することができる。なお、同図(
C)の右側の部分は、呼吸を意識的に止めたときの波形
を示すものであって、このときにおいても、血管の動き
、すなわち心拍状態を明瞭に検出することができる。
In other words, according to the two-phase displacement method, the amount of displacement can be detected without creating a low sensitivity region near the reference position that occurs due to the sensitivity characteristics peculiar to the detector when only one phase of microwave is irradiated. For example, it is also possible to accurately detect the amount of displacement in the movement of blood vessels associated with the beating of the heart, which is shown by the whiskers appearing on the waveform in FIG. In addition, the same figure (
The right part of C) shows the waveform when breathing is intentionally stopped, and even at this time, the movement of blood vessels, that is, the heartbeat state can be clearly detected.

上記構成からなる本実施例において、センサ3から運転
者2の胸部に向けて10GHz帯のマイクロ波を照射す
ると、マイクロ波は運転者の被服を透過し、胸部表面に
達して反射し、再びセンサ3により受信される。
In this embodiment having the above configuration, when microwaves in the 10 GHz band are irradiated from the sensor 3 toward the chest of the driver 2, the microwaves pass through the driver's clothing, reach the surface of the chest, and are reflected, and the microwaves are emitted again to the sensor. Received by 3.

受信波は検波演算回路4により処理され、胸部の変位量
に応じた波形信号が得られる。
The received wave is processed by the detection calculation circuit 4, and a waveform signal corresponding to the amount of displacement of the chest is obtained.

検波演算回路4からの波形信号は、ゼロ・クロス・ディ
テクタ5において、正常時の正、負ピーク間のほぼ中間
に設定される基準位置との交点が求められ、その交点位
置間からゼロ・クロス周期カウンタ6により、呼吸周期
が検出される。また、検波信号演算回路4からの検波信
号は、正ピークホールド回路8及び負ピークホールド回
路9において検出され、A/D変換器10を介してCP
U11に入力され正ピーク値と負ピーク値が検出される
In the zero cross detector 5, the waveform signal from the detection calculation circuit 4 finds the intersection point with a reference position set approximately halfway between the positive and negative peaks during normal operation, and the zero cross point is detected from between the intersection points. A period counter 6 detects the breathing period. Further, the detection signal from the detection signal calculation circuit 4 is detected in a positive peak hold circuit 8 and a negative peak hold circuit 9, and is sent to the CP via an A/D converter 10.
The positive peak value and negative peak value are input to U11 and detected.

CPUIIには、予め運転者の正常時、例えばエンジン
始動直後のリラックスした状態の呼吸周期及び正ピーク
値、負ピーク値のデータが記憶されているので、これと
上記ゼロ・クロス・周期カウンタ5及びA/D変換51
0から入力された呼吸周期と正、負ピーク値を比較判断
し、例えば呼吸周期が正常時よりも大きくなったり、お
るいは正常時と比べて正ピーク値は小さくなり、負ピー
ク値は大きくなる傾向を示したら、運転者が居眠り状態
にあると判定し、警報回路14から運転者ないし同乗者
に警報を発するようにする。
The CPU II stores in advance the breathing cycle, positive peak value, and negative peak value data of the driver in a normal state, for example, in a relaxed state immediately after starting the engine. A/D conversion 51
Compare and judge the breathing cycle input from 0 with the positive and negative peak values, for example, if the breathing cycle is larger than normal, or if the positive peak value is smaller and the negative peak value is larger than normal. If this tendency is shown, it is determined that the driver is dozing, and the alarm circuit 14 issues an alarm to the driver or fellow passenger.

一方、呼吸周期が速くなったり、あるいは正。On the other hand, the breathing cycle becomes faster or positive.

負ピーク値が小さくなったときは、運転者が疲労状態に
あると判断し、警報回路14から警告を発するようにす
る。
When the negative peak value becomes small, it is determined that the driver is in a fatigued state, and the alarm circuit 14 issues a warning.

また正負ピーク値が小さくなったり(呼吸が浅くなった
り)呼吸の周期が速くなったりdくなったりして呼吸の
周期が乱れ、その傾向が一定でなく乱れる状態になった
ときは、運転者が極度の緊張状態おるいは心臓系の異常
状態におると判断し、警報回路から警報を発するように
する。なお、このような状態が数秒で正常レベルに戻る
傾向を示ゼば問題ないので警報は発しないようにする。
In addition, when the positive and negative peak values become smaller (breathing becomes shallower) or the breathing cycle becomes faster or shorter, the breathing cycle is disrupted, and when the tendency is not constant and becomes disrupted, the driver It is determined that the patient is in a state of extreme stress or an abnormal state of the heart system, and an alarm is issued from the alarm circuit. Note that if such a state shows a tendency to return to a normal level within a few seconds, there is no problem, so no alarm should be issued.

したがって、本実施例によれば運転者の身体の呼吸状態
を装置を直接接触させず間接的に呼吸の周期や正負ピー
ク1直により検出し、その状態が正常時と比較判断され
て異常状態か否かを判断し、異常状態のときはその旨が
警告される。
Therefore, according to this embodiment, the respiratory state of the driver's body is detected indirectly by the respiratory cycle and positive/negative peaks without direct contact with the device, and the detected state is compared with the normal state to determine whether it is an abnormal state. If there is an abnormal condition, a warning will be given to that effect.

第4図は本発明の第2の実施例を示すものであって、前
述の第1の実施例と相違する点は、検波演算回路4の出
力をローパスフィルタ16を介した後、上述した第1の
実施例に示した処理が行なわれることにより、呼吸のみ
による変位の周期や正負ピーク値が検出されるとともに
、バイパスフィルタ17を介して前記した検波演算回路
14の出力信号は、ゼロ・クロス・ディテクタ5′で基
準位置との交点を検出し、この交点を基準周波数発撮器
7″から入力される基準周波数との比較によりゼロ・ク
ロス周期カウンタ6−により心拍変位量の周期を検出す
る。
FIG. 4 shows a second embodiment of the present invention, which differs from the first embodiment described above in that the output of the detection calculation circuit 4 is passed through the low-pass filter 16 and then By performing the processing shown in the embodiment 1, the period of displacement due to breathing alone and the positive and negative peak values are detected, and the output signal of the above-mentioned detection calculation circuit 14 is passed through the bypass filter 17 at the zero cross point.・The detector 5' detects the intersection with the reference position, and by comparing this intersection with the reference frequency input from the reference frequency generator 7'', the zero-cross period counter 6- detects the period of the heartbeat displacement amount. .

この心拍変位量の周期の検出は、検波演算回路4の出力
波形のうち、大きな波がバイパスフィルタにより除去さ
れ、急激な波、すなわち高周波の波のみが検出される。
In detecting the period of the heartbeat displacement, large waves are removed by the bypass filter from the output waveform of the detection calculation circuit 4, and only rapid waves, that is, high-frequency waves are detected.

すなわち呼吸による胸部の大きな変化は除去され、血管
の動きでおる心臓の動きによる心拍を検出することがで
きる。つまり、第3図(C)のヒゲ状の信号のみを取り
出すことかできる。
That is, large changes in the chest caused by breathing are removed, and heartbeats caused by the movement of the heart caused by the movement of blood vessels can be detected. In other words, only the whisker-shaped signal in FIG. 3(C) can be extracted.

すなわち、極度の緊張状態や心臓系の異常時は、呼吸の
周期が速くなるので心拍周期ら速くなり心拍数も多くな
る。そして、正常時の所定時間内の心拍数と比較するこ
とで異常状態か否かを判断し警報を行なうことができる
That is, in a state of extreme stress or when the heart system is abnormal, the respiratory cycle becomes faster, the heartbeat cycle becomes faster, and the heart rate increases. Then, by comparing the heart rate within a predetermined period of time under normal conditions, it is possible to determine whether or not there is an abnormal state and issue an alarm.

従って、第2の実施例では第1の実施例の構成に更に心
拍状態を検出する構成を有しているため、予めCPUに
運転者の正常時の呼吸の周期、正負ピーク値及び心拍数
や周期を記憶してあくことにより、運転者の呼吸状態や
心拍状態を比較判断して異常か否かを判断できるので、
より安全性の優れた運転者の身体状態を検出することが
できる。
Therefore, since the second embodiment has a configuration for detecting the heartbeat state in addition to the configuration of the first embodiment, the CPU has in advance stored the driver's normal breathing cycle, positive and negative peak values, and heart rate. By memorizing the cycle, it is possible to compare and judge the driver's breathing and heartbeat conditions to determine whether or not there is an abnormality.
The physical condition of the driver can be detected with greater safety.

特に極度の緊張状態や心臓系の異常の場合は、呼吸の周
期、振幅による判断と心拍数や心拍変位の周期による判
断とにより二重の安全策を講することができる。
Particularly in the case of extreme stress or cardiac abnormalities, a double safety measure can be taken by making judgments based on the breathing cycle and amplitude and judgments based on the heart rate and heart rate displacement period.

なお、上述の第1.第2実施例では正常時に対する正負
ピーク値の大小に基づいて身体状態を検出しているが、
正常時の振幅を記憶しておき正負ピーク値の差の偏位を
見て疲労状態かどうかを検出するようにしてもよい。ま
た、正常時の正負ピーク間の基準位置を記憶しておき正
負ピーク値の半分の位置の変化を児て居眠り状態か否か
を検出するようにしてもよい。
In addition, the above-mentioned 1. In the second embodiment, the physical condition is detected based on the magnitude of the positive and negative peak values with respect to the normal state.
The normal amplitude may be stored and the deviation of the difference between positive and negative peak values may be observed to detect whether or not the person is in a fatigued state. Alternatively, a reference position between positive and negative peaks during normal times may be stored, and a change in position that is half of the positive and negative peak values may be used to detect whether or not the person is in a dozing state.

(発明の効果) 本発明は、以上のように構成したので、重両束0、特に
運転者の身体に直接センサを取付けることがないので、
被検出者に無用な違和感ないし圧迫感を与えることがな
く、正確な呼吸状態を検出することにより身体状態が検
出できる。
(Effects of the Invention) Since the present invention is configured as described above, there is no heavy load, especially since there is no need to attach a sensor directly to the driver's body.
The body condition can be detected by accurately detecting the breathing condition without giving unnecessary discomfort or pressure to the person to be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1及び第2図は本発明の第1の実施例を示すものであ
って、第1図は本発明の構成を示すブロック図、第2図
はマイクロ波送受信センサ信号演篩手段の構成を示すブ
ロック図、第3図はマイクロ波送受信センサの信号演算
手段の検波波形図及び第4図は本発明の第2の実施例を
示すブロック図でおる。 2・・・運転者(身体) 3・・・マイクロ波ドツプラレーダセンサ(マイクロ波
送受信センサ) 4・・・検波信号演算手段 5・・・U口・クロス・ディテクタ 6・・・ゼロ・クロス周期カウンタ 7・・・基準周波数発振器 8・・・正ピークホールド回路 9・・・負ピークホールド回路゛ 10・・・アナログ−デジタル変換器(A/D変換器)
11・・・マイクロコンピュータ(CPU)14・・・
警報回路 特許出願人  日産自動虫株式会社 鈴  木    務 代理人 弁理士  和 1)成 則
1 and 2 show a first embodiment of the present invention, FIG. 1 is a block diagram showing the configuration of the present invention, and FIG. 2 shows the configuration of the microwave transmitting/receiving sensor signal screening means. FIG. 3 is a detection waveform diagram of the signal calculation means of the microwave transmitting/receiving sensor, and FIG. 4 is a block diagram showing a second embodiment of the present invention. 2... Driver (body) 3... Microwave Doppler radar sensor (microwave transmission/reception sensor) 4... Detection signal calculation means 5... U-port cross detector 6... Zero cross Period counter 7...Reference frequency oscillator 8...Positive peak hold circuit 9...Negative peak hold circuit 10...Analog-digital converter (A/D converter)
11... Microcomputer (CPU) 14...
Alarm circuit patent applicant Suzuki, Nissan Automushi Co., Ltd. Representative Patent attorney Kazu 1) Seinori

Claims (1)

【特許請求の範囲】[Claims] (1)車両乗員の胸部もしくは腹部に照射されたマイク
ロ波の反射波を受信するマイクロ波送受信センサと、 該マイクロ波送受信センサが受信した検波信号から胸部
もしくは腹部の変位状態を表わす信号を演算する変位量
演算手段と、 該変位量演算手段で演算された信号の周期、振幅または
所定期間における前記演算された信号の最大値または最
小値の少なくとも1つの値を検出する変位状態検出手段
と、 該変位状態検出手段で検出された値に基づく値と予め定
められた値を比較する呼吸状態比較手段と、 からなることを特徴とする車両乗員の状態検出装置。
(1) A microwave transmitting/receiving sensor that receives reflected waves of microwaves irradiated to the chest or abdomen of a vehicle occupant, and a signal representing the displacement state of the chest or abdomen is calculated from the detection signal received by the microwave transmitting/receiving sensor. displacement amount calculation means; displacement state detection means for detecting at least one value of the period and amplitude of the signal calculated by the displacement amount calculation means, or the maximum value or minimum value of the calculated signal in a predetermined period; A vehicle occupant condition detection device comprising: breathing condition comparison means for comparing a value based on the value detected by the displacement condition detection means with a predetermined value.
JP62274412A 1987-10-29 1987-10-29 Vehicle occupant condition detection device Expired - Lifetime JPH0669444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274412A JPH0669444B2 (en) 1987-10-29 1987-10-29 Vehicle occupant condition detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274412A JPH0669444B2 (en) 1987-10-29 1987-10-29 Vehicle occupant condition detection device

Publications (2)

Publication Number Publication Date
JPH01115344A true JPH01115344A (en) 1989-05-08
JPH0669444B2 JPH0669444B2 (en) 1994-09-07

Family

ID=17541308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274412A Expired - Lifetime JPH0669444B2 (en) 1987-10-29 1987-10-29 Vehicle occupant condition detection device

Country Status (1)

Country Link
JP (1) JPH0669444B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115461A (en) * 1991-10-29 1993-05-14 Satoru Ota Doze detecting device
JPH09501120A (en) * 1993-03-31 1997-02-04 オートモーティブ・テクノロジーズ・インターナショナル・インク Position / speed sensor for passengers in the vehicle
JP2006055501A (en) * 2004-08-23 2006-03-02 Denso Corp Apparatus and method for detecting sleepiness
JP2006087850A (en) * 2004-09-21 2006-04-06 Charm & Mark Kk Sleep state detecting device and system, and control device and system of air conditioner, lighting equipment, acoustic equipment and the like starting by detecting sleep state
JP2006304963A (en) * 2005-04-27 2006-11-09 Tau Giken:Kk Noncontact diagnostic device
JP2007015549A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Air conditioner and air conditioning control method for vehicle
JP2007195615A (en) * 2006-01-24 2007-08-09 Toyota Motor Corp System and device for vigilance estimation
JP2008253538A (en) * 2007-04-05 2008-10-23 Tokyo Metropolitan Univ Noncontact mental stress diagnostic system
JP2009213881A (en) * 2008-02-20 2009-09-24 Ind Technol Res Inst Pulsed ultra-wideband sensor and the method thereof
JP2010012018A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Human body condition determining apparatus and human body condition determining method
JP2011519656A (en) * 2008-05-09 2011-07-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Non-contact respiratory monitoring of patients
JP2011527588A (en) * 2008-07-11 2011-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Automatic transmission output adjustment for Doppler radar
JP2012249884A (en) * 2011-06-03 2012-12-20 Tokyo Metropolitan Univ Non-contact stress evaluation system, non-contact stress evaluation method, and program for the same
JP2013541371A (en) * 2010-09-22 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for monitoring a subject's respiratory activity
JP2014008070A (en) * 2012-06-27 2014-01-20 Nissan Motor Co Ltd Stress state estimation device and stress state estimation method
EP2700353A1 (en) 2012-08-22 2014-02-26 Fujitsu Limited Heart rate estimating apparatus and method
JP2015027550A (en) * 2006-11-01 2015-02-12 レスメッド センサー テクノロジーズ リミテッド Apparatus and system for monitoring cardiorespiratory parameter and nonvolatile recording medium
WO2017033430A1 (en) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 Signal detection device and signal detection method
EP3202311A1 (en) 2016-02-02 2017-08-09 Fujitsu Limited Sensor information processing apparatus
EP3207864A1 (en) 2016-02-17 2017-08-23 Fujitsu Limited Sensor information processing apparatus
EP3210528A1 (en) 2016-02-25 2017-08-30 Fujitsu Limited Sensor information processing apparatus
RU2631629C2 (en) * 2016-02-16 2017-09-25 Александр Анатольевич Лебеденко Device for bronchopulmonary system diseases diagnosis
JP2018029762A (en) * 2016-08-24 2018-03-01 オムロンオートモーティブエレクトロニクス株式会社 Biological information detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103300869A (en) * 2013-05-29 2013-09-18 哈尔滨工业大学 Real-time monitoring system for fatigue of automobile driver based on human respiration signal

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115461A (en) * 1991-10-29 1993-05-14 Satoru Ota Doze detecting device
JPH09501120A (en) * 1993-03-31 1997-02-04 オートモーティブ・テクノロジーズ・インターナショナル・インク Position / speed sensor for passengers in the vehicle
JP2006055501A (en) * 2004-08-23 2006-03-02 Denso Corp Apparatus and method for detecting sleepiness
JP2006087850A (en) * 2004-09-21 2006-04-06 Charm & Mark Kk Sleep state detecting device and system, and control device and system of air conditioner, lighting equipment, acoustic equipment and the like starting by detecting sleep state
JP2006304963A (en) * 2005-04-27 2006-11-09 Tau Giken:Kk Noncontact diagnostic device
JP4613718B2 (en) * 2005-07-07 2011-01-19 日産自動車株式会社 Vehicle air conditioner and vehicle air conditioning control method
JP2007015549A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Air conditioner and air conditioning control method for vehicle
JP2007195615A (en) * 2006-01-24 2007-08-09 Toyota Motor Corp System and device for vigilance estimation
US10893811B2 (en) 2006-11-01 2021-01-19 Resmed Sensor Technologies Limited System and method for monitoring cardiorespiratory parameters
JP2015027550A (en) * 2006-11-01 2015-02-12 レスメッド センサー テクノロジーズ リミテッド Apparatus and system for monitoring cardiorespiratory parameter and nonvolatile recording medium
JP2008253538A (en) * 2007-04-05 2008-10-23 Tokyo Metropolitan Univ Noncontact mental stress diagnostic system
JP2009213881A (en) * 2008-02-20 2009-09-24 Ind Technol Res Inst Pulsed ultra-wideband sensor and the method thereof
JP2011519656A (en) * 2008-05-09 2011-07-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Non-contact respiratory monitoring of patients
JP2010012018A (en) * 2008-07-03 2010-01-21 Nissan Motor Co Ltd Human body condition determining apparatus and human body condition determining method
JP2011527588A (en) * 2008-07-11 2011-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Automatic transmission output adjustment for Doppler radar
JP2013541371A (en) * 2010-09-22 2013-11-14 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for monitoring a subject's respiratory activity
US9883821B2 (en) 2010-09-22 2018-02-06 Koninklijke Philips N.V. Method and apparatus for monitoring the respiration activity of a subject
JP2012249884A (en) * 2011-06-03 2012-12-20 Tokyo Metropolitan Univ Non-contact stress evaluation system, non-contact stress evaluation method, and program for the same
JP2014008070A (en) * 2012-06-27 2014-01-20 Nissan Motor Co Ltd Stress state estimation device and stress state estimation method
EP2700353A1 (en) 2012-08-22 2014-02-26 Fujitsu Limited Heart rate estimating apparatus and method
US9782087B2 (en) 2012-08-22 2017-10-10 Fujitsu Limited Heart rate estimating apparatus and method
US10426408B2 (en) 2015-08-26 2019-10-01 Panasonic Initellectual Property Management Co., Ltd. Signal detection device and signal detection method
WO2017033430A1 (en) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 Signal detection device and signal detection method
EP3202311A1 (en) 2016-02-02 2017-08-09 Fujitsu Limited Sensor information processing apparatus
US10667758B2 (en) 2016-02-02 2020-06-02 Fujitsu Limited Sensor information processing apparatus
RU2631629C2 (en) * 2016-02-16 2017-09-25 Александр Анатольевич Лебеденко Device for bronchopulmonary system diseases diagnosis
EP3207864A1 (en) 2016-02-17 2017-08-23 Fujitsu Limited Sensor information processing apparatus
EP3210528A1 (en) 2016-02-25 2017-08-30 Fujitsu Limited Sensor information processing apparatus
JP2018029762A (en) * 2016-08-24 2018-03-01 オムロンオートモーティブエレクトロニクス株式会社 Biological information detection device

Also Published As

Publication number Publication date
JPH0669444B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPH01115344A (en) Apparatus for detecting state of driver
JP6803679B2 (en) Buckle and in-vehicle system
US7397382B2 (en) Drowsiness detecting apparatus and method
JP2010120493A (en) Biological signal detection device
US8870782B2 (en) Pulse wave analyzer and blood pressure estimator using the same
US8979761B2 (en) Sleepiness assessment apparatus
JP2006510880A (en) Method of sensing the body of a living organism or its position and / or movement with laser assistance
US9186079B2 (en) System for measuring a peak frequency of a signal for analyzing condition of a subject
JP6597490B2 (en) Radio wave type biosensor
US20120165622A1 (en) Method and system for measuring physiological parameters
JP2010142456A (en) Heartbeat detecting apparatus
KR102523994B1 (en) Apparatus for judgment of drinking using vital sign and method thereof
JPH06251273A (en) Driver's state deciding device
JPH10146321A (en) Driver monitoring device
JPH0759757A (en) Physical condition detector
JP7057216B2 (en) Biological detector
CN117064349B (en) Gesture control method and system for linkage of millimeter wave radar and intelligent bed
Will et al. Intelligent signal processing routine for instantaneous heart rate detection using a Six-Port microwave interferometer
Bounyong et al. Monitoring of a driver's heart rate using a microwave sensor and template-matching algorithm
JP2009082655A (en) Physiological information detection device, physiological information computing unit and physiological information detection method
JP6597491B2 (en) Radio wave type biosensor
JP2000014653A (en) Driver electrocardiographic signal measuring device
JPH0542129A (en) Waking degree deciding device
JP2943295B2 (en) Judging method for awakening degree
JPH04183439A (en) Device for detecting dozing of driver