JPH01111848A - Tube stock for use in stabilizer - Google Patents

Tube stock for use in stabilizer

Info

Publication number
JPH01111848A
JPH01111848A JP26992087A JP26992087A JPH01111848A JP H01111848 A JPH01111848 A JP H01111848A JP 26992087 A JP26992087 A JP 26992087A JP 26992087 A JP26992087 A JP 26992087A JP H01111848 A JPH01111848 A JP H01111848A
Authority
JP
Japan
Prior art keywords
pipe
bent
steel
wall thickness
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26992087A
Other languages
Japanese (ja)
Inventor
Hirohisa Ohama
大浜 煕久
Kenichi Shinoda
研一 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP26992087A priority Critical patent/JPH01111848A/en
Publication of JPH01111848A publication Critical patent/JPH01111848A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/13Torsion spring
    • B60G2202/135Stabiliser bar and/or tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/12Mounting of springs or dampers
    • B60G2204/122Mounting of torsion springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/45Stops limiting travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/012Hollow or tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping

Abstract

PURPOSE:To manufacture a tubular stabilizer with high reliability by regulating a difference in wall thickness in a bent part and a temp. in a temp. rise by means of electrification, respectively, at the time of bending a tube stock in which composition and shape are specified. CONSTITUTION:A steel plate having a composition consisting of, by weight, 0.10-0.35% C, <=0.35% Si, 0.30-1.20% Mn, 0.10-0.60% Cr, Ti in an amount 4-10 times the total content of inevitably contained N and O, 0.0005-0.009% B, and the balance Fe with inevitable impurities is subjected to butt seam welding, by which a tube stock which has 12-65mmphi outside diameter and arbitrary length and in which the ratio of wall thickness to outside diameter is regulated to 6-25% is formed. In this tube stock, [(the maximum wall thickness in a bent part)-(the minimum wall thickness in a bent part)]/(wall thickness before bending) is regulated to <=18.0% when this tube stock is bent orthogonally at a bending moment in which inside diameter is practically 4 times the outside diameter, and further, the temp. in the bent tube is regulated so that it is not raised up to >=1110 deg.C when the bent tube is electrified from one end to the other end and resistance heating is applied so that the temp. in the straight run of the tube is practically uniformized to 950 deg.C. By using this tube stock, the tubular stabilizer having high reliability can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、自動車の走行安定性付与部材としてのパイプ
状のスタビライザーに用いられる。所望のスタビライザ
ー形状に加工される前のパイプ素管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is used for a pipe-shaped stabilizer as a member for imparting running stability to an automobile. This invention relates to a raw pipe before being processed into a desired stabilizer shape.

〔従来の技術] 周知のように1通常の自動車には車輌に対する車体の懸
架機構部にスタビライザー(anti−roll−ba
r とも呼ばれる)が取付けられる。これは、自動車の
旋回時に車体の過度の傾斜を防ぎ9乗心地や車体の安定
性を向上させる部品であり、自動車の懸架a fjlの
重要な部品の一つとなっている。
[Prior Art] As is well known, a normal automobile is equipped with a stabilizer (anti-roll-bar) in the suspension mechanism of the vehicle body.
r) is attached. This is a component that prevents excessive tilting of the vehicle body when the vehicle turns, improving ride comfort and stability of the vehicle body, and is one of the important components of the vehicle suspension afjl.

第1図に従来のスタビライザーの代表的な形状と取付は
関係を示した8図示のようにスタビライザー1は、相対
する左右の二つの車輪2と3の懸架部に両端が支持され
るロンド状の曲がった部材である。スタビライザー1の
中央部ではゴムブツシュまたはゴムクツシロン4を介し
てこの中央部分(a)がその軸回りに回転可能な状態に
して車体に取付けられる。これによって、車体が傾斜す
るとスタビライザーlの中央部(a)がトーシゴンバー
として作用し9両端の腕部(ト))を介して傾斜に抵抗
するモーメントが懸架アーム5および6に伝達され。
Figure 1 shows the relationship between the typical shape and installation of a conventional stabilizer. It is a curved member. At the center of the stabilizer 1, the center portion (a) is attached to the vehicle body via a rubber bush or rubber bushing 4 so that the center portion (a) can rotate around its axis. As a result, when the vehicle body tilts, the center portion (a) of the stabilizer 1 acts as a torsion bar, and a moment for resisting the tilt is transmitted to the suspension arms 5 and 6 via the arm portions (g) at both ends of the stabilizer 9.

復元力として働り、シたがって、スタビライザーは左右
両輪が同時に上下する場合には、ばね作用は供しない。
Acting as a restoring force, the stabilizer therefore does not provide a spring action when both the left and right wheels move up and down at the same time.

従来のスタビライザーは棒鋼(丸棒)を所望形状に曲げ
成形したものが普通であった。しかし。
Conventional stabilizers have generally been made by bending a steel bar (round bar) into a desired shape. but.

最近になって車輌を出来るだけ軽量化するという観点か
ら、この中実の棒鋼素材に変えて中空のパイプ素材を使
用することが行われるようになってきた。
Recently, from the perspective of reducing the weight of vehicles as much as possible, hollow pipe materials have been used instead of solid steel bars.

特公昭61−45688号公報において1本発明者らは
パイプ状のスタビライザーを製造するのに好適な鋼の製
造法を提案した。該公報に開示した鋼の製造法の骨子は
In Japanese Patent Publication No. 61-45688, the present inventors proposed a method of manufacturing steel suitable for manufacturing a pipe-shaped stabilizer. What is the outline of the steel manufacturing method disclosed in the publication?

C:0.35%以下、  S i : 0.20%以下
、Mn:0゜30〜1.20%、Cr:0.60%以下
、  P : 0.020%以下、  S :0.02
0%以下、 sat、 A l : 0.10%以下。
C: 0.35% or less, Si: 0.20% or less, Mn: 0°30 to 1.20%, Cr: 0.60% or less, P: 0.020% or less, S: 0.02
0% or less, sat, Al: 0.10% or less.

N + O: 200ppm以下、Trs鋼中の(N+
O)の4〜10倍、  B : 0.0005〜0.0
09%、残部はFeおよび不可避的不純物よりなる鋼で
あって、且つD+(in)= ((0,4C+0.06
)  x(0,73++1)x(3,33Mn+1)X
(2,16Cr+IN X((1+1.5(0,9−C
)1 に従う理想臨界直径(Dl)が1.0(in)以上とな
るように鋼中のC,Si、MnおよびCrの含有量を調
整し、さらに。
N + O: 200 ppm or less, (N +
O) 4 to 10 times, B: 0.0005 to 0.0
09%, the remainder is steel consisting of Fe and unavoidable impurities, and D+(in)=((0,4C+0.06
) x(0,73++1)x(3,33Mn+1)X
(2,16Cr+IN X((1+1.5(0,9-C
) Adjust the contents of C, Si, Mn and Cr in the steel so that the ideal critical diameter (Dl) according to 1 is 1.0 (in) or more, and further.

Ceq、 (χ)= C十Mn/6 + S i/24
+ Cr15の式に従う炭素当量が0.48%以下とな
るように鋼中のC,Mn、SiおよびC「の含有量を調
整した鋼のスラブを製造してこれを熱間圧延し、この熱
間圧延時に巻取温度を570〜690°Cの温度に制御
して巻取ることからなる中空状スタビライザー用電縫鋼
管用鋼の製造法、である。
Ceq, (χ) = C0Mn/6 + S i/24
A slab of steel with the content of C, Mn, Si, and C in the steel adjusted so that the carbon equivalent according to the formula + Cr15 is 0.48% or less is manufactured, and this is hot rolled. This is a method for manufacturing a steel for an electric resistance welded steel pipe for a hollow stabilizer, which comprises controlling the winding temperature to 570 to 690° C. during rolling.

この製造法によって得られた鋼板は、健全な溶接部をも
つ電縫鋼管に製造でき、この電縫鋼管素材をスタビライ
ザーとして必要な形状に加工したのちに焼入れ処理した
さいに充分な焼入れ硬さが得られる。したがって、従来
の中実の丸棒に代えてパイプ状のスタビライザーを製造
するための鋼として有用な綱である。
The steel plate obtained by this manufacturing method can be manufactured into ERW steel pipes with sound welds, and when this ERW steel pipe material is processed into the shape required as a stabilizer and then quenched, it has sufficient quenching hardness. can get. Therefore, it is a useful steel for manufacturing pipe-shaped stabilizers in place of conventional solid round bars.

〔発明が解決しようとする問題点〕 本発明者らは、該特公昭61−45688号公報の鋼の
製造法を提案して以来も、−層信幀性の高いパイプ状の
スタビライザーを得ることを目的としてさらに研究を重
ねて来た。スタビライザーは繰り返し応力を無数回にわ
たって受ける車体の懸架機構の一部であり、スタビライ
ザーとして充分に機能することのほかに1人命に係わる
ことから破損しないという安全性に対する信頬が第一義
に確保されねばならないからである。その研究過程にお
いて、パイプからなるスタビライザーの場合には。
[Problems to be Solved by the Invention] Ever since the present inventors proposed the method for manufacturing steel disclosed in Japanese Patent Publication No. 61-45688, the present inventors have continued to strive to obtain a pipe-shaped stabilizer with high layer reliability. Further research has been carried out for this purpose. The stabilizer is a part of the suspension mechanism of the car body that is subjected to repeated stress countless times, and in addition to functioning adequately as a stabilizer, it is also important to ensure safety that it will not break because the life of a single person is at stake. Because it has to be done. In the research process, in the case of a stabilizer made of pipes.

中実丸棒からなる旧来のスタビライザーには見られない
厄介な事象が伴うことを知った。
I learned that traditional stabilizers made of solid round bars come with troublesome phenomena that are not seen.

その一つは、パイプ素管を曲げ加工したさいに現れる曲
げ部の肉厚の変化である。第1図に見られるように、ス
タビライザーはその中央部(a)を挟んだ両側に、中央
部とは軸の方向が異なるように曲げ加工部を介して腕部
ら)が必ず存在する。つまり、パイプ素管からスタビラ
イザーとして必要な形状とするには曲げ加工部が必ず存
在することになる。このパイプの曲げ加工のさいに9曲
げの内側部と外側部ではパイプの肉厚が変化することは
避けられない。パイプを曲げる場合に曲げの内側では圧
縮応力が加わり9曲げの外側では引張応力が加わること
から1曲げの内側部では元の肉厚より厚くなり2反対に
5曲げの外側部では元の肉厚より薄くなるという現象と
なって現れるからである。自動車に装着されたスタビラ
イザーは車輪の上下に応じてこの曲げ加工部に特に応力
が集中することになる。したがって1 この曲げ部にお
ける肉厚差が、走行中におけるスタビライザー破損を引
き起こす原因ともなりかねないという問題がパイプ状ス
タビライザーでは付随する。
One of these is the change in wall thickness of the bent portion that occurs when the raw pipe is bent. As can be seen in FIG. 1, the stabilizer always has arm portions (arm portions) on both sides of the center portion (a) via bent portions so that the direction of the axis is different from that of the center portion. In other words, there must be a bending section in order to shape the pipe into the shape required for the stabilizer. During bending of this pipe, it is inevitable that the wall thickness of the pipe changes between the inner and outer parts of the nine bends. When bending a pipe, compressive stress is applied on the inside of bend 9 and tensile stress is applied on the outside of bend 9, so the wall thickness is thicker on the inside of bend 1 than the original thickness, and on the contrary, the wall thickness on the outside of bend 5 is the same as the original thickness. This is because it appears as a phenomenon of becoming thinner. In a stabilizer installed in an automobile, stress is particularly concentrated at the bent portion depending on the vertical position of the wheel. Therefore, the pipe-shaped stabilizer is accompanied by the problem that the difference in wall thickness at the bent portion may cause damage to the stabilizer during driving.

その二は、焼入れ処理のさいにパイプの曲げ加工部の一
部がオーバーヒートするという問題である。スタビライ
ザーとして必要なばね特性を付与するには、最終スタビ
ライザー形状に加工された鋼パイプを焼入れ焼戻し処理
することが必要であり(加工前に焼入れ処理すると鋼が
硬化して加工が困難になる)、そのさいの焼入れ処理の
ための加熱は生産性と温度調整が容易な周知の電気抵抗
加熱手段が採用される。この通電による電気抵抗加熱の
さいにパイプの曲げ加工部の一部が直管部分よりも過剰
に加熱されてしまうのである。この過剰加熱が生ずると
その部分のオーステナイトの結晶粒が局部的に増大し1
曲げ部分での局部的な強度低下に基づいて疲労破壊の原
因ともなりかねないという点である。
The second problem is that a portion of the bent portion of the pipe overheats during the quenching process. In order to impart the spring characteristics necessary for a stabilizer, it is necessary to quench and temper the steel pipe processed into the final stabilizer shape (quenching before processing hardens the steel and makes processing difficult). For heating for the quenching treatment, a well-known electric resistance heating means that is easy to produce and adjust the temperature is used. During electrical resistance heating caused by this current application, a portion of the bent portion of the pipe is heated more than the straight portion. When this excessive heating occurs, the austenite grains in that area locally increase.
The problem is that it may cause fatigue failure due to localized strength reduction at the bent portion.

したがって1本発明の目的とするところは、パイプ状ス
タビライザーを作る場合に付随する前述のようなスタビ
ライザーの安全性阻害因子を除去することにある。
Therefore, one object of the present invention is to eliminate the above-mentioned factors that impair the safety of the stabilizer that are associated with the production of a pipe-shaped stabilizer.

〔問題点を解決する手段〕[Means to solve problems]

パイプ状スタビライザーにおける二つの問題を先の特公
昭61−45688号公報で提案した成分組成の範囲内
の鋼板から製造された電縫鋼管を対象として解決しよう
とする場合に1次の要件(a)および(b)の要件、さ
らに好ましくは(C)および(切の要件をも合わせて満
足させればよいことが判明した。
When trying to solve the two problems in pipe-shaped stabilizers by targeting electric resistance welded steel pipes manufactured from steel plates within the range of composition proposed in the previous Japanese Patent Publication No. 61-45688, the first requirement (a) is met. It has been found that the requirements of (b) and (b), more preferably, the requirements (C) and (off) may be satisfied together.

(a)、線管を内側半径が実質上外径の4倍となるよう
な曲率で90’曲げを行ったときに。
(a) When the wire tube is bent 90' at a curvature such that the inner radius is substantially four times the outer diameter.

曲げ前の肉厚 の式で算出される肉厚差(χ)が18.0%以下となる
こと。
The wall thickness difference (χ) calculated using the wall thickness formula before bending shall be 18.0% or less.

(b)、線管を内側半径が実質上外径の4倍となるよう
な曲率で90’曲げを行った状態で (この曲げ部以外
は直管)、パイプの一端から他端に通電してパイプ直管
部の温度が実質上均一に950°Cとなるように抵抗加
熱したときに該曲げ部の温度が1110°C以上には発
熱しないこと。
(b), with the wire tube bent 90' at a curvature such that the inner radius is essentially four times the outer diameter (the tube is straight except for this bend), electricity is applied from one end of the pipe to the other. When resistance heating is performed so that the temperature of the straight portion of the pipe is substantially uniformly 950°C, the temperature of the bent portion does not exceed 1110°C.

(C)、線管を内側半径が実質上外径の4倍となるよう
な曲率で900曲げを行った状態で(この曲げ部以外は
直管)、パイプの一端から他端に通電してパイプ直管部
の温度が実質上均一に950℃となるように抵抗加熱し
たときに該曲げ部のオーステナイト結晶粒が、結晶粒度
番号6番に対応する粒度よりも大きなオーステナイト結
晶粒とはならないこと。
(C), with the wire tube bent 900 degrees with a curvature so that the inner radius is essentially four times the outer diameter (the tube is straight except for this bend), electricity is applied from one end of the pipe to the other. When resistance heating is performed so that the temperature of the straight part of the pipe is substantially uniform at 950°C, the austenite crystal grains in the bent part do not become larger austenite crystal grains than the grain size corresponding to grain size number 6. .

(d)、線管はL2以上の加工硬化指数(n値)をもつ
こと、である。
(d) The wire tube has a work hardening index (n value) of L2 or more.

なお、かような要件は、使用する電縫鋼管の素管として
、外径12〜65m+mφ、肉厚/外径の比率6〜25
%、長さが任意である管を対象とした場合のことである
These requirements are that the outer diameter of the electric resistance welded steel pipe used is 12 to 65 m + mφ, and the wall thickness/outer diameter ratio is 6 to 25.
%, this applies to pipes of arbitrary length.

従って本発明によれば1重量%において、0.IO〜0
.35%(7)C,0,35%以下(7) S i、 
0.30〜1.20%のM n 、 0 、10〜0 
、60%のCr、  R中に不可避的に含有されてくる
N%と0%の総量に対して4〜10倍の割合で含有させ
たT t、 0.0005〜0.009%(7)Bそし
て残部がFeおよび不可避的不純物からなる鋼板を電縫
溶接することによって製造された。自動車の走行安定性
付与部材としてのパイプ状のスタビライザーを製造する
のに使用される。所望のスタビライザー形状に成形加工
される前のパイプ素管であって。
According to the invention, therefore, at 1% by weight, 0. IO~0
.. 35% (7) C, 0, 35% or less (7) S i,
0.30-1.20% Mn, 0, 10-0
, 60% Cr, Tt contained at a rate of 4 to 10 times the total amount of N% and 0% inevitably contained in R, 0.0005 to 0.009% (7) It was manufactured by electric resistance welding a steel plate B and the remainder consisting of Fe and unavoidable impurities. It is used to manufacture pipe-shaped stabilizers as members for providing driving stability for automobiles. A raw pipe before being molded into a desired stabilizer shape.

外径が12〜65mmφ、肉厚/外径の比率が6〜25
%、長さが任意の管であり。
Outer diameter is 12~65mmφ, wall thickness/outer diameter ratio is 6~25
%, for any length of tube.

これを内側半径が実質上外径の4倍となるような曲率で
90’曲げを行ったときに。
When this is bent 90' with a curvature such that the inner radius is essentially four times the outer diameter.

の式で算出される肉厚差(χ)が18.0%以下となる
管であり。
It is a pipe whose wall thickness difference (χ) calculated by the formula is 18.0% or less.

内側半径が実質上外径の4倍となるような曲率で90°
曲げを行った状態で(この曲げ部以外は直管)、パイプ
の一端から他端に通電してパイプ直管部の温度が実質上
均一に950”Cとなるように抵抗加熱したときに該曲
げ部の温度が1110’C以上には発熱しない管である
。スタビライザーに用いられるバイブ素管を提供するも
のである。そして、好ましくは、該バイブ素管は、これ
を内側半径が実質上外径の4倍となるような曲率で90
°曲げを行った状態で(この曲げ部以外は直管)、パイ
プの一端から他端に通電してパイプ直管部の温度が実質
上均一に950°Cとなるように抵抗加熱したときに該
曲げ部のオーステナイト結晶粒が、結晶粒度番号6番に
対応する粒度よりも大きなオーステナイト結晶粒とはな
らない管であり、また、0.2以上の加工硬化指数(n
値)をもつ管である。
90° with a curvature such that the inner radius is essentially four times the outer diameter
When the pipe is bent (the pipe is straight except for this bent part) and electrical current is applied from one end of the pipe to the other end to heat the pipe resistance so that the temperature of the straight part of the pipe is substantially uniform at 950"C. This is a tube that does not generate heat when the temperature of the bent part exceeds 1110'C.This provides a vibrator tube used in a stabilizer.The vibrator tube preferably has an inner radius that is substantially outside the outer radius. 90 with a curvature that is 4 times the diameter
° When the pipe is bent (the pipe is straight except for this bent part) and electrical current is applied from one end of the pipe to the other end, resistance heating is applied so that the temperature of the straight part of the pipe is substantially uniform at 950°C. It is a pipe in which the austenite crystal grains in the bent portion do not become austenite crystal grains larger than the grain size corresponding to grain size number 6, and the work hardening index (n
value).

〔発明の詳述〕[Details of the invention]

特公昭61−45688号公報に提案した鋼の成分組成
の範囲においても、また該公報で提案した製造条件の範
囲においも、その鋼からなる電縫鋼管は前記の要件(a
)〜(切を満たさない場合があり、この場合には安全性
が確保されたパイプ状スタビライザーを得ることには問
題がある。
Even within the range of the steel composition proposed in Japanese Patent Publication No. 61-45688, as well as within the range of manufacturing conditions proposed in the publication, ERW steel pipes made of that steel meet the above requirements (a).
) to (in some cases, the condition is not satisfied, and in this case, there is a problem in obtaining a pipe-shaped stabilizer that ensures safety.

先ずこれを2本発明者らが行った試験例をもとに具体的
に説明する。
First, this will be specifically explained based on two test examples conducted by the present inventors.

試験例1 第1表に示した化学成分を有する鋼を溶製し。Test example 1 Steel having the chemical composition shown in Table 1 was melted.

熱間圧延にて2.6a+mの板厚に圧延した。第1表の
B、CおよびDの鋼はいずれも特公昭61−45688
号公報に記載の鋼である。該圧延に際して、第2表に示
したように熱延仕上温度を843〜870°Cの範囲1
熱延巻取温度を568〜680″Cの範囲内で調整して
熱延組機の異なる8本の熱延コイルを製造した。これら
の帯鋼を酸洗し、スリットしたあと。
It was hot rolled to a plate thickness of 2.6a+m. Steels B, C, and D in Table 1 are all made by Tokuko Sho 61-45688.
This is the steel described in the publication. During the rolling, the hot rolling finishing temperature was set in the range 1 of 843 to 870°C as shown in Table 2.
Eight hot-rolled coils were manufactured using different hot-rolling and assembling machines by adjusting the hot-rolling coiling temperature within the range of 568 to 680''C. After pickling and slitting these strip steels.

いずれの鋼板からも高周波溶接による造管機によって肉
厚(t) = 2.6a+m、  外径(D) −22
,2ms+φ、肉厚/外径の比率くむ/D X 100
) = 11.7%の電縫鋼管を製造した。なお電縫溶
接後の溶接部に対していずれも約650°Cの温度で再
加熱処理を施した。
Both steel plates were made using a pipe making machine using high frequency welding to obtain wall thickness (t) = 2.6a+m, outer diameter (D) -22
,2ms+φ, wall thickness/outer diameter ratio kum/D x 100
) = 11.7% ERW steel pipe was manufactured. The welded parts after electric resistance welding were all reheated at a temperature of about 650°C.

得られた各パイプを90°曲げ加工した。第2図にその
曲げ部のパイプ軸に沿う断面の状態を、そして第3図に
は第2図のx−x’線(450線)断面(パイプ軸と直
交する曲げ部の45°断面)の状態を示した。第3図中
の(財)は溶接部を示す、900曲げ加工は2曲げ部の
内側(in)における外面rの曲率半径が当初の外径D
(実際には22.6mm)の4倍となるように行った。
Each of the obtained pipes was bent by 90°. Figure 2 shows the state of the cross section along the pipe axis of the bent part, and Figure 3 shows the cross section taken along line xx' (450 line) in Figure 2 (45° cross section of the bent part perpendicular to the pipe axis). The condition was shown. In Fig. 3, (goods) indicates a welded part.In the case of 900 bending, the radius of curvature of the outer surface r at the inside (in) of the bent part is the initial outer diameter D.
(actually 22.6 mm).

いずれのパイプの場合にも。In case of any pipe.

曲げ部の内側(in)の肉厚は当初のパイプ肉Fttよ
りも厚くなり1曲げ部の外側(out)の肉厚はtより
も薄くなった。各パイプを曲げ部の45°断面で切断し
、第3図の各位置;〜viにおける厚みを測定した。そ
の測定値の一例を第4図に示した。第4図の測定値は、
第2表の試験魔2のパイプについてのものである。そし
て、各測定値のうちの最大値と最小値の差を当初の厚み
tで割った百分率をもって、肉厚差(χ)を算出した。
The wall thickness on the inside (in) of the bent part became thicker than the original pipe wall Ftt, and the wall thickness on the outside (out) of one bent part became thinner than t. Each pipe was cut at a 45° cross section of the bent portion, and the thickness at each position; ~vi in FIG. 3 was measured. An example of the measured values is shown in FIG. The measured values in Figure 4 are:
This is about the pipe of Test Demon 2 in Table 2. Then, the wall thickness difference (χ) was calculated as a percentage of the difference between the maximum value and the minimum value of each measured value divided by the initial thickness t.

試験Nα2のパイプは肉厚差(χ)−19,1%と算出
された。同様にして各パイプの全てについて肉厚差(χ
)を測定して第2表に示す結果を得た。
The pipe of test Nα2 was calculated to have a wall thickness difference (χ) of -19.1%. Similarly, the wall thickness difference (χ
) were measured and the results shown in Table 2 were obtained.

第2表の結果は1wJの成分組成の相違と、そして、た
とえ成分組成が同じであっても鋼の組繊の相違によって
、肉厚差(χ)に大きな変化をもたらすことを示してい
る。特に同じ綱Bを使用した試験磁2および3.同じ鋼
りを使用した試験Nα5〜7においても、熱延の条件が
異なると肉厚差(χ)に大きな変動を起こすという興味
深い事実が見られる。
The results in Table 2 show that a difference in the composition of 1 wJ and, even if the composition is the same, a difference in the fiber composition of the steel brings about a large change in the wall thickness difference (χ). In particular, test magnets 2 and 3 using the same rope B. Even in tests Nα5 to Nα7 using the same steel, an interesting fact can be seen that when the hot rolling conditions differ, the wall thickness difference (χ) varies greatly.

一方、同じ鋼りからなる90°曲げ加工のパイプに5.
 Nf16およびNα7についてこれを950°Cに2
0分間雰囲気炉で加熱したあと水中に焼入れし、350
℃に30分間の焼戻し処理したあと、疲労試験機によっ
て各積大きさの繰り返し応力を付与し、破断に到るまで
の破断繰り返し試験を行った。その結果を第5図に示し
た。第5図の結果から、肉厚差(χ)が18%以下の階
6と徹7のパイプは40kg/−m”の応力を百万回以
上の繰り返し回数で受けても破断に到ることはないが、
18%より大きな肉厚差(χ)をもつ胤5のパイプは4
0kg/+c++”の応力を10万回程度の回数で受け
ても破断する可能性があることがわかる。
On the other hand, a pipe made of the same steel and bent at 90° is shown in 5.
2 to 950°C for Nf16 and Nα7.
After heating in an atmosphere furnace for 0 minutes, quenching in water,
After tempering at ℃ for 30 minutes, repeated stress of each product size was applied using a fatigue testing machine, and a repeated rupture test was performed until rupture occurred. The results are shown in FIG. From the results shown in Figure 5, the pipes on floors 6 and 7 with a wall thickness difference (χ) of 18% or less will break even if they are subjected to a stress of 40 kg/-m'' over a million times. There isn't, but
Seed 5 pipes with a wall thickness difference (χ) greater than 18% are 4
It can be seen that there is a possibility of rupture even if a stress of 0 kg/+c++ is applied approximately 100,000 times.

なお、試験隘1と試験阻8のパイプはいずれも肉厚差(
χ)が18%を超えている。これは鋼の成分組成にその
原因があり、このような鋼では熱延条件を制御しても肉
厚差(χ)を18%以下にすることは困難であり、パイ
プ状スタビライザーの製造にはもともと適しないと言え
る。
In addition, both the pipes of test wall 1 and test wall 8 have a wall thickness difference (
χ) exceeds 18%. The cause of this is the chemical composition of the steel, and with such steel it is difficult to reduce the wall thickness difference (χ) to 18% or less even if hot rolling conditions are controlled. It can be said that it is not suitable in the first place.

また、第2表には各パイプを作った熱延鋼板の加工硬化
指数(n値)も併せて示したが、肉厚差が18%以下と
なるパイプはその素材鋼のn値が0.2以上で与ること
がわかる。
Table 2 also shows the work hardening index (n value) of the hot rolled steel sheet from which each pipe was made, and for pipes with a wall thickness difference of 18% or less, the n value of the material steel is 0. You can see that it is given by 2 or more.

試験例2 前記の試験例1で製造した8本のパイプをいずれも試験
例1と同様の90°曲げ加工を2ケ所で施し、第6図に
示すような形状の曲げパイプ11とした。そして2曲げ
加工部12と13よりも端部側に通電端子14と15を
取付け、これらを電a!16に接続して端子14と15
の間のパイプに通電して抵抗加熱する試験を行った。通
電条件は曲げ加工部12.13以外の直管部が950°
Cに維持される条件に設定した。
Test Example 2 All of the eight pipes manufactured in Test Example 1 were subjected to the same 90° bending process as in Test Example 1 at two locations to form bent pipes 11 having a shape as shown in FIG. Then, energizing terminals 14 and 15 are attached to the end portions of the two bent parts 12 and 13, and these terminals are connected to the a! 16 and connect terminals 14 and 15
A test was conducted in which the pipe between the two was electrically heated and resistively heated. The energization condition is 950° for straight pipe parts other than bent parts 12 and 13.
The conditions were set to maintain C.

そして、直管部が950°Cに維持されているときの曲
げ加工部12と13の曲げ内側部(第2図の(in)で
示す側)の表面温度を測定した。その結果を第3表に示
した。
Then, the surface temperature of the bent inner parts (the side indicated by (in) in FIG. 2) of the bent parts 12 and 13 was measured while the straight pipe part was maintained at 950°C. The results are shown in Table 3.

第3表の結果に見られるように、同じ形状寸法のパイプ
素管を使用し且つ直管部の温度は同しであるにも係わら
ず、各パイプの曲げ部内側の温度はそれぞれ相違してい
る。これは曲げ加工部の肉厚差がそれぞれのパイプで違
っていることに原因があると考えることができる。
As can be seen from the results in Table 3, even though raw pipes of the same shape and size are used and the temperature of the straight pipe part is the same, the temperature inside the bent part of each pipe is different. There is. This can be considered to be caused by the difference in wall thickness of each pipe at the bent portion.

また、直管部が950°Cに維持される抵抗加熱を1分
間行ったあと水中に焼入し、350°Cに30分間保持
する焼戻し処理をいずれの曲げ加工バイブについも行っ
た。そして、加熱温度が最高となった曲げ部内側から試
片を採取し、各試片を顕微鏡観察することによって結晶
粒度を調べた。その結果(JIS規格によるオーステナ
イト結晶粒度番号)も第3表に併記した0曲げ加工部に
おいて過剰加熱を受けたものほど結晶粒は大きくなって
いる。
In addition, each bending vibrator was subjected to resistance heating in which the straight pipe part was maintained at 950°C for 1 minute, then quenched in water, and tempered by holding it at 350°C for 30 minutes. Then, specimens were taken from the inside of the bent portion where the heating temperature reached the highest, and each specimen was observed under a microscope to examine the crystal grain size. As a result (austenite grain size number according to JIS standard), the grains become larger in the 0-bending portion which is also shown in Table 3 and is subjected to excessive heating.

なお当然のことながら結晶粒度番号が大きいものほど結
晶粒は小さいものである。
Note that, as a matter of course, the larger the grain size number, the smaller the crystal grains.

第7図は、この試験によって焼入れ焼戻し処理した各パ
イプのうち、 N115,6.7のものについての曲げ
加工部の疲労破壊試験の結果を示したものである。第7
図の結果に見られるように、同じ綱りからなる素材パイ
プでもオーステナイト結晶粒が大きくなった阻5のもの
は同じ繰り返し応力でも疲労破壊する回数が短かく、ス
タビライザーとしての安全性に問題があることがわかる
FIG. 7 shows the results of a fatigue fracture test on the bent portion of N115, 6.7 pipes that were quenched and tempered in this test. 7th
As can be seen from the results in the figure, even though the material pipe is made of the same rope, the one with larger austenite crystal grains has a shorter number of fatigue failures even under the same repeated stress, which poses a safety problem as a stabilizer. I understand that.

また、第3表には0曲げ加工および焼入れ焼戻し前のパ
イプについてへん平試験を行った結果も併記した。この
へん平試験は、第8図に図解的に示すように、平板17
と18の間に挟み(溶接部Wを平板間の中央に位置させ
る)、平板間に応力を加えてパイプを潰し1割れが発生
した時点での平板間の距離Hをもって評価指数とし、パ
イプ外径りに対する相対割合で表示した。このへん平試
験結果においても、同じB111ではNα3のパイプが
、また同じDではNα6と7のパイプが良好な成績を示
している。したがって、これらの良成績を示したパイプ
は管端の圧着加工ができるものである。
Table 3 also lists the results of flattening tests performed on the pipes before zero bending and quenching and tempering. This flattening test is carried out on a flat plate 17 as shown diagrammatically in FIG.
and 18 (with the welded part W located in the center between the plates), stress is applied between the plates to crush the pipe, and the distance H between the plates at the time when 1 crack occurs is used as an evaluation index. It is expressed as a relative proportion to the diameter. The flat test results also show that the Nα3 pipe of the same B111, and the Nα6 and 7 pipes of the same D, show good results. Therefore, these pipes that showed good results can be crimped at the ends.

試験例3 第4表に示した化学成分を有する鋼を溶製し。Test example 3 Steel having the chemical composition shown in Table 4 was melted.

熱間圧延にて3.5■の板厚に圧延した。第4表のGお
よびHの鋼は特公昭61−45688号公報に記載の綱
である。該圧延に際して、第5表に示したように熱延仕
上温度を850〜873°Cの範囲、熱延巻取温度を4
70〜620°Cの範囲内で調整して熱延組織の異なる
6本の熱延コイルを製造した。これらの帯鋼を酸洗し、
スリットしたあと、いずれの鋼板からも高周波溶接によ
る造管機によって肉厚(1)=3.5+*s、  外径
(D) −25,4mmφ、肉厚/外径の比率(t/D
 X 100) −13,8%の電縫鋼管を製造した。
It was hot rolled to a plate thickness of 3.5 cm. Steels G and H in Table 4 are the steels described in Japanese Patent Publication No. 61-45688. During this rolling, as shown in Table 5, the hot rolling finishing temperature was set in the range of 850 to 873°C, and the hot rolling winding temperature was set at 4°C.
Six hot-rolled coils with different hot-rolled structures were manufactured by adjusting the temperature within the range of 70 to 620°C. These steel strips are pickled and
After slitting, both steel plates were machined using high-frequency welding to produce wall thickness (1) = 3.5+*s, outer diameter (D) -25.4 mmφ, wall thickness/outer diameter ratio (t/D
X 100) -13.8% electric resistance welded steel pipe was manufactured.

なお電縫溶接後の溶接部に対していずれも約650°C
の温度で再加熱処理を施した。
In addition, the temperature for the welded part after electric resistance welding is approximately 650°C.
Reheating treatment was performed at a temperature of .

得られた各パイプを曲げ加工することなく950°Cに
保持されたソルトバス中で20分間加熱し、水中に焼入
れたあと、ソルトバス中で350℃に30分間の焼戻し
処理したあと、引張強さの試験に供した。その結果を第
5表に示した。鋼GおよびWaHからなる素材パイプは
熱処゛理によってスタビライザーにとって必要な引張強
さ100kgf/mm”を確保できることがわかる。
Each of the resulting pipes was heated for 20 minutes in a salt bath maintained at 950°C without bending, quenched in water, and then tempered in a salt bath at 350°C for 30 minutes to determine its tensile strength. It was subjected to a test. The results are shown in Table 5. It can be seen that the material pipe made of steel G and WaH can secure a tensile strength of 100 kgf/mm, which is necessary for the stabilizer, by heat treatment.

また、ソルトバス中での焼入加熱温度を850°Cと1
000℃として各パイプを水焼入れし、その時の硬さ(
H*c)と結晶粒度を調べた。その結果も第5表に示し
たが、850°C加熱でも、同じ鋼Hからなるパイプの
うちNα12と13ではHっc45の硬さが得られるが
、同じH鋼でも随14のパイプとGfiの阻11のパイ
プは硬さが劣っている。結晶粒度についてはいずれもパ
イプ素材は結晶粒度番号8以上となり、十分に微細な結
晶粒が得られている。
In addition, the quenching heating temperature in the salt bath was set to 850°C.
Each pipe was water quenched at 000℃, and the hardness at that time (
H*c) and grain size were investigated. The results are also shown in Table 5, and even when heated to 850°C, among the pipes made of the same steel H, Nα12 and 13 have a hardness of Hc45, but even with the same H steel, the hardness of the 14th pipe and Gfi The pipe of No. 11 is inferior in hardness. Regarding the crystal grain size, the pipe materials had a crystal grain size number of 8 or more in all cases, and sufficiently fine crystal grains were obtained.

なお、第5表には、熱処理に供する前のパイプの組織(
実際には鋼板の組織)を金属顕微鏡で調べた結果も併記
した。この結果から本試験において良好な硬さが得られ
たパイプは、パーライト面積率が高いものに対応してお
り、焼入れ加熱温度は低くても十分に焼きが入ることが
わかる。
In addition, Table 5 shows the structure of the pipe before being subjected to heat treatment (
The results of examining the actual structure of the steel plate using a metallurgical microscope are also included. From this result, it can be seen that the pipes that had good hardness in this test corresponded to those with a high pearlite area ratio, and that the pipes were sufficiently hardened even at a low hardening heating temperature.

以上の試験例1.2および3は9特公昭61−4568
8号公報で提案した鋼を使用した場合でも、既述の(a
)の要件と■)の要件、さらには(C)、 (d)の要
件を充足することがスタビライザーの安全性を確保する
うえで重lであることを立証している。
The above test examples 1.2 and 3 are 9th Special Publication No. 61-4568.
Even when using the steel proposed in Publication No. 8, the above-mentioned (a)
It has been proven that satisfying the requirements in ) and ■), as well as the requirements in (C) and (d), is important in ensuring the safety of the stabilizer.

本発明のスタビライザー用のパイプ素管において、パイ
プ素材の鋼の化学成分値を重量%において、0.10〜
0.35%のC,0,35%以下のS i、 0.30
〜1.20%のM n 、 0 、10〜0 、60%
のCr、  鋼中に不可避的に含有されてくるN%と0
%の総量に対して4〜10倍の割合で含有させたT i
、 0.0005〜0.009%のBの範囲に規定する
が1本発明は該公報に提案した鋼を対象としてなされた
ものであるから。
In the raw pipe for the stabilizer of the present invention, the chemical composition value of the steel of the pipe material is from 0.10 to 0.10 in weight%.
0.35% C, 0.35% Si, 0.30
~1.20% Mn, 0, 10~0, 60%
Cr, N% and 0, which are inevitably contained in steel.
Ti contained at a rate of 4 to 10 times the total amount of %
, B is defined in the range of 0.0005 to 0.009%, but the present invention was made for the steel proposed in the publication.

各成分範囲の上限下限の限定理由は該公報に記載した理
由と実質的に同じ部分もあるが、さらに以下に述べる理
由から該範囲に限定することが必要である。
Although some of the reasons for limiting the upper and lower limits of each component range are substantially the same as those described in the publication, it is necessary to further limit the ranges to the above ranges for the reasons described below.

すなわち、Cは、 o、io%未満ではスタビライザー
の特性として必要な熱処理後の引張強さ100kgf/
mm”以上が得られ難くなるし、 0.35%を超える
と素材鋼板の強度が高くなりすぎて造管時のロール成形
が困難になると共に電縫鋼管溶接ビード部の硬さが高く
なつてパイプの曲げ加工性やへん手性が低下する。St
については鋼製造時の脱酸のために必要であるが、過度
に添加すると鋼の硬さが増大し、造管時およびスタビラ
イザーへの加工時の加工性を劣化させるので0.35%
以下に限定する。
In other words, if C is less than o,io%, the tensile strength after heat treatment, which is necessary as a stabilizer characteristic, is 100 kgf/
If it exceeds 0.35%, the strength of the material steel plate becomes too high, making roll forming during pipe manufacturing difficult, and the hardness of the welded bead of the ERW steel pipe increases. Bending workability and bendability of the pipe deteriorate.St
0.35% is necessary for deoxidation during steel manufacturing, but adding too much increases the hardness of the steel and deteriorates workability during pipe making and processing into stabilizers.
Limited to the following.

Mnは、パイプの焼入れ性を向上させるが、あまり増大
すると熱延板の組織がバンブノドストラフチャーを生成
しやすくなり、靭性が低下すると共に高強度化によって
造管時のロール成形が困難となり、さらに溶接ビード部
の硬さが過度に高くなってスタビライザーへの曲げ加工
性を劣化させるので1.20%以下にする必要がある。
Mn improves the hardenability of pipes, but if it increases too much, the structure of the hot-rolled sheet tends to form bump knot stractures, which reduces toughness and makes roll forming during pipe manufacturing difficult due to high strength. Furthermore, since the hardness of the weld bead becomes excessively high and deteriorates the bending workability into a stabilizer, it is necessary to keep the hardness at 1.20% or less.

Crは材料の延性を損なうことなく焼入性を向上せしめ
る元素であり、電縫鋼管の加工性を確保してかつ焼入後
に高強度を得るに゛は好ましい元素の1つである。
Cr is an element that improves hardenability without impairing the ductility of the material, and is one of the preferred elements to ensure workability of the electric resistance welded steel pipe and to obtain high strength after hardening.

しかしCr量が0.6%を越えて添加されると造管時の
溶接部にペネトレーターが発生しやすくなりスタビライ
ザーに加工時の曲げ性を劣下させるのでその上限を0.
6%に限定するが、  Cr1lが0.1%未満では焼
入性改善効果が認められないのでその下限を0.10%
に限定する。Tiは鋼の脱酸、脱窒のために添加し、B
添加による焼入性を安定かつ効果的に行なうために有効
に作用する。一方。
However, if the amount of Cr added exceeds 0.6%, penetrators are likely to occur in the welded part during pipe making and the bending properties of the stabilizer during processing will deteriorate, so the upper limit should be set at 0.6%.
However, if Cr1l is less than 0.1%, no hardenability improvement effect is observed, so the lower limit is set to 0.10%.
limited to. Ti is added to deoxidize and denitrify steel, and B
It works effectively to stably and effectively improve hardenability by addition. on the other hand.

小径電縫鋼管は溶接時の加熱により管全体が100°C
以上の温度に上昇した状態でパイプ外径を公差内に成形
し真円真直にするための定径機を通されるが、そのさい
に加工歪を受ける。このため−船の電縫鋼管は固溶窒素
による歪時効硬化現象により延性の大きな低下が見られ
る。これに対しTiにより脱窒した鋼は歪時効硬化によ
る延性の低下が抑えられ伸びが良くn値の大きい加工性
の良好な電縫鋼管が製造できる。しかし鋼中のN量と0
量の合計量に対して4倍未満のTi添加量では充分な焼
入性確保と歪時効硬化による延性低下が防止できず、ま
た、10倍を越える量を添加してもその効果は飽和し、
かえってTiCの生成による析出硬化のため熱延材の強
度が高くなるなどの電縫鋼管の加工性を劣下させること
になる。このような理由からTiの添加範囲を鋼中Nと
○量の合計に対して4〜10倍とすることが必要である
。Bは微量の添加で鋼材の焼入性を大幅に向上せしめる
が、その添加量がo、ooos%未満では焼入性に効果
がなく、また0、009%を越えると焼入性の効果は減
少する傾向にあるので0.0005〜0.009%の範
囲とする。溶鋼をCa処理することによって圧延方向に
伸びた球状の介在物を球状の介在物に変えることができ
、圧延方向に対し直角方向の延性、靭性が大幅に向上し
、このため電縫鋼管の偏平特性の改善が図られる。した
がって鋼の溶製時にCa処理することは好ましいことで
ある。このCa処理された鋼の不純物中には球状の介在
物が存在することになる。しかし、鋼中のCa1lが2
00ppmを越えると介在物量が多くなりその改善効果
が見られなくなるので、Calは200pp+s以下に
限定するのがよい。
Small-diameter ERW steel pipes are heated to 100°C during welding.
With the temperature raised above, the pipe is passed through a sizing machine to form the outer diameter within tolerances and to make it perfectly round and straight, but it is subjected to processing distortion during this process. For this reason, the ductility of electrical resistance welded steel pipes for ships is significantly reduced due to the strain age hardening phenomenon caused by solid solution nitrogen. On the other hand, steel denitrified with Ti suppresses the decrease in ductility due to strain age hardening, and can produce electrical resistance welded steel pipes with good elongation, a large n value, and good workability. However, the amount of N in steel and 0
If the amount of Ti added is less than 4 times the total amount, it will not be possible to ensure sufficient hardenability and prevent the decrease in ductility due to strain age hardening, and if the amount is more than 10 times the amount, the effect will be saturated. ,
On the contrary, the processability of the electric resistance welded steel pipe deteriorates, such as increasing the strength of the hot-rolled material due to precipitation hardening due to the formation of TiC. For these reasons, it is necessary to make the addition range of Ti 4 to 10 times the total amount of N and O in the steel. Adding a small amount of B can greatly improve the hardenability of steel materials, but if the amount added is less than 0.000%, it has no effect on hardenability, and if it exceeds 0.009%, it has no effect on hardenability. Since it tends to decrease, it is set in the range of 0.0005 to 0.009%. By treating molten steel with Ca, the spherical inclusions extending in the rolling direction can be changed to spherical inclusions, and the ductility and toughness in the direction perpendicular to the rolling direction are significantly improved. The characteristics are improved. Therefore, it is preferable to perform Ca treatment during melting of steel. Spherical inclusions are present in the impurities of this Ca-treated steel. However, Ca1l in steel is 2
If it exceeds 00 ppm, the amount of inclusions will increase and the improvement effect will not be seen, so it is preferable to limit Cal to 200 pp+s or less.

本発明のパイプ素管は1以上のように各成分を調整した
鋼板素材を電縫溶接によって外径(D)が12〜65鋼
曙φの範囲、肉I¥(1)と外径(D)の比率t/Dが
6〜25%の範囲の管に造管したものである。外径が1
2mm未満、 t/Dが6%未満では小径管となりすぎ
てスタビライザーの特性を満足する強度が得られず、ま
た外径> 65a+m、 t/D > 25%では厚内
大径管となりすぎて曲げ加工が困難になるうえ1両管端
を封じたスタビライザーに加工したあとの焼入処理時に
は冷却水が管の内面側に直接触れないのでかような厚肉
大径管では管の全体にわたって完全なマルテンサイト組
織を得ることが困難となり。
The raw pipe of the present invention is made by electric resistance welding of steel sheet materials with each component adjusted as described above, and has an outer diameter (D) in the range of 12 to 65 steel Akebono φ, a wall I ¥ (1) and an outer diameter (D ) with a ratio t/D in the range of 6 to 25%. Outer diameter is 1
If the diameter is less than 2 mm and t/D is less than 6%, the pipe will become too small and the strength that satisfies the stabilizer properties will not be obtained.If the outer diameter is > 65a+m and t/D is > 25%, the pipe will become too thick and have a large diameter, making it difficult to bend. In addition to making processing difficult, cooling water does not come into direct contact with the inner surface of the tube during the quenching process after it is processed into a stabilizer with both tube ends sealed. It becomes difficult to obtain a martensitic structure.

焼もどし後の疲労特性が劣下することになる。−方、外
径が121φ未満で、 t/Dが25%を超えるような
小径厚肉電縫鋼管ではロール成形が困難で造管が困難で
ある。また外径が65IIIlφを超え、 t/Dが6
%未満の薄肉大径電縫鋼管ではスタビライザーの特性を
満足する強度が得られなくなる。
The fatigue properties after tempering will deteriorate. On the other hand, it is difficult to roll form a small-diameter, thick-walled electric resistance welded steel pipe with an outer diameter of less than 121φ and a t/D of more than 25%, making it difficult to form the pipe. Also, the outer diameter exceeds 65IIIlφ and t/D is 6
Thin-walled, large-diameter ERW steel pipes with a thickness of less than % will not have the strength to satisfy the stabilizer characteristics.

このような鋼成分と寸法範囲をもつパイプ素管において
、内側半径−4XDとなるように90°曲げ加工したと
きの既述の弐に従う肉厚差(χ)が18%以下となると
いう要件を充足したものだけをスタビライザー用に用い
ることが先述の試験例で実証したように本発明の目的を
達成するうえで重要である。実装されるスタビライザー
の曲げ加工された形状は車種に応じて様々であるが、内
側半径=4XDとなるように90’曲げ加工する試験を
行って肉厚差(χ)が18%以下となる素管であれば。
For a pipe material having such a steel composition and size range, the requirement is that the wall thickness difference (χ) according to the above-mentioned 2 when bent 90 degrees so that the inner radius is -4XD is 18% or less. As demonstrated in the above test example, it is important to use only those that satisfy the requirements for the stabilizer in order to achieve the object of the present invention. The bent shape of the stabilizer to be mounted varies depending on the vehicle model, but we conducted a 90' bending test so that the inner radius = 4XD and found a material with a wall thickness difference (χ) of 18% or less. If it's a tube.

その素管を実装用の所望のスタビライザー形状に加工し
て使用すればよい0通常のスタビライザーでは最大で9
0°曲げである場合が多り、90°以上の曲げを施すこ
とは余程特殊な場合を除いて殆んどないからである。
All you need to do is process the raw tube into the desired stabilizer shape for mounting.
This is because the bend is often 0°, and bending of 90° or more is rarely performed except in very special cases.

また直接通電加熱によって曲げ加工したパイプを焼入れ
加熱温度に加熱するさいに、内側半径=4XDとなるよ
うに90°曲げ加工し、直管部の温度が950°Cに維
持された状態で曲げ部内側の温度が1110°Cを超え
ないものだけをスタビライザー用に使用することが本発
明の目的を達成するうえで重要となるが、この加熱試験
によって該温度差が160℃未満となったパイプだけを
実装用のスタビライザーに使用すればよい。
In addition, when heating a pipe bent by direct current heating to the quenching heating temperature, the bent part is bent by 90° so that the inner radius = 4XD, and the temperature of the straight pipe part is maintained at 950°C. In order to achieve the purpose of the present invention, it is important to use only pipes with an inner temperature that does not exceed 1110°C as stabilizers, but only pipes with a temperature difference of less than 160°C as a result of this heating test should be used. can be used as a stabilizer for mounting.

曲げ部における該肉厚差(χ)と温度差が、前記の鋼成
分の範囲並びに寸法の範囲において成分値と寸法が相違
した場合に、様々に変化することはある意味では避けら
れないことであるが、鋼板の製造過程において成る程度
は本発明で規定する要件に出来るだけ充足するような鋼
板を製造することは可能である。それは前記成分範囲に
おいて特定の成分値と鋼板の組織との関連を熱延巻取温
度を変数として正確に把握することである。好ましい鋼
板m織としては一つには前記の試験例3に示すようにパ
ーライト面積率が50%を超えるような組織があり、こ
のような組織が得られるように熱延巻取温度とすること
である。本発明者らの実験によると前記の組成成分範囲
において巻取温度を600℃近辺よりも低くするとパー
ライト面積率が50%を超えるような組織となりやすく
、この場合には、焼入時の加熱時に炭化物がオーステナ
イト中に溶は易くなり、焼入温度が低くても高い焼入硬
さが得られるので、オーステナイト結晶粒の増大を阻止
することになる。
In a sense, it is unavoidable that the wall thickness difference (χ) and temperature difference in the bent part will change in various ways when the component values and dimensions differ in the steel composition range and size range mentioned above. However, it is possible to manufacture a steel sheet that satisfies the requirements defined by the present invention as much as possible during the manufacturing process of the steel sheet. This is to accurately understand the relationship between specific component values and the structure of the steel sheet within the above component range using the hot rolling coiling temperature as a variable. One of the preferable m-weave steel sheets is a structure in which the pearlite area ratio exceeds 50% as shown in Test Example 3 above, and the hot-rolling and winding temperature should be set so as to obtain such a structure. It is. According to experiments conducted by the present inventors, when the coiling temperature is lower than around 600°C in the above composition range, a structure with a pearlite area ratio of more than 50% tends to be formed, and in this case, during heating during quenching, Carbides are easily dissolved into austenite, and high quenching hardness can be obtained even at low quenching temperatures, thereby preventing the austenite crystal grains from increasing.

他の一つの好ましい鋼板組織はフェライト+パーライト
の組織であり、鋼板のn値が0.2以下となるようなフ
ェライト+パーライトの組織に熱延巻取温度の制御によ
って調整するのである。n値が0.2以上であれば前記
の試験例1に示すように肉厚差は18%以下となり易い
からである。本発明者らの試験によるとこのような組繊
は熱延巻取温度を600°C近辺よりも高くすることが
好ましいことが判明した。このように熱延巻取温度は6
00°Cより低くすることが好ましい場合と600″C
より高く制御することが好ましい場合とがあるが、前記
の成分組成の範囲において、成る特定の成分が選定され
たならばどの巻取温度が該肉厚差の要件と温度差の要件
を共に充足するには最も好ましいかという関係を予め把
握しておけばよい。
Another preferable steel sheet structure is a ferrite+pearlite structure, which is adjusted by controlling the hot rolling winding temperature to a ferrite+pearlite structure such that the n value of the steel sheet is 0.2 or less. This is because if the n value is 0.2 or more, the wall thickness difference is likely to be 18% or less as shown in Test Example 1 above. According to tests conducted by the present inventors, it has been found that it is preferable for such a composite fiber to have a hot rolling winding temperature higher than around 600°C. In this way, the hot rolling winding temperature is 6
Preferably lower than 00°C and 600″C
There are cases where it is preferable to control the temperature higher than the above, but if a specific component is selected within the above range of component composition, which winding temperature satisfies both the wall thickness difference requirement and the temperature difference requirement. It is only necessary to understand in advance which relationship is most preferable.

いずれにしても1本発明は肉厚差と温度差の既述の要件
(a)と(b)を充足することがスタビライザーに使用
する管には重要であることを始めて明らかにしたもので
あり、このような要件を充足しやすい鋼は該成分組成の
範囲において鋼板の製造条件を適切に調整することによ
って成る適度の予測値をもって製造することが可能であ
る。
In any case, the present invention is the first to clarify that it is important for pipes used in stabilizers to satisfy the above-mentioned requirements (a) and (b) regarding wall thickness difference and temperature difference. Steel that easily satisfies these requirements can be manufactured with moderate predicted values by appropriately adjusting the manufacturing conditions of the steel sheet within the range of the composition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスタビライザーの形状と取付は関係を示
す斜視回、第2図はパイプ状スタビライザーの曲げ部の
軸方向の断面図、第3図はパイプ状スタビライザーの曲
げ部の軸を横切る方向の断面図、第4図は曲げ部の肉厚
の変化を示す図、第5図は曲げ部をもつパイプ素管の繰
り返し応力と破断繰り返し回数との関係図、第6図は曲
げ部をもつパイプを通電加熱試験に供した場合の機器の
取付は関係図、第7図は第5図と同様の供試材が異なっ
た焼入れ処理の場合の繰り返し応力と破断繰り返し回数
との関係図、第8図はパイプ素管のへん平試験の状態を
示す略断面図である。 1・・スタビライザー、  2・・車輪。 in・・パイプの曲げ部内側。 out・・パイプの曲げ部外側。
Figure 1 is a perspective view showing the relationship between the shape and installation of a conventional stabilizer, Figure 2 is an axial cross-sectional view of the bent part of the pipe-shaped stabilizer, and Figure 3 is a direction transverse to the axis of the bent part of the pipe-shaped stabilizer. Fig. 4 is a diagram showing the change in wall thickness at the bent part, Fig. 5 is a diagram showing the relationship between the repeated stress and the number of repeated fractures of a pipe with a bent part, and Fig. 6 is a diagram showing the relationship between the repeated stress and the number of times of rupture of a pipe with a bent part. Figure 7 is a diagram showing the relationship between the installation of equipment when a pipe is subjected to an electrical heating test. FIG. 8 is a schematic cross-sectional view showing the condition of a flat pipe test. 1. Stabilizer, 2. Wheels. in... Inside the bent part of the pipe. out...Outside of the bent part of the pipe.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%において、0.10〜0.35%のC、0
.35%以下のSi、0.30〜1.20%のMn、0
.10〜0.60%のCr、鋼中に不可避的に含有され
てくるN%とO%の総量に対して4〜10倍の割合で含
有させたTi、0.0005〜0.009%のB、そし
て残部がFeおよび不可避的不純物からなる鋼板を電縫
溶接することによって製造された、自動車の走行安定性
付与部材としてのパイプ状のスタビライザーを製造する
のに使用される、所望のスタビライザー形状に成形加工
される前のパイプ素管であって、外径が12〜65mm
φ、肉厚/外径の比率が6〜25%、長さが任意の管で
あり、 これを内側半径が実質上外径の4倍となるような曲率で
90゜曲げを行ったときに、 {(曲げ部の最大肉厚−曲げ部の最小肉厚)/曲げ前の
肉厚}×100の式で算出される肉厚差(%)が18.
0%以下となる管であり、 内側半径が実質上外径の4倍となるような曲率で90゜
曲げを行った状態で(この曲げ部以外は直管)、パイプ
の一端から他端に通電してパイプ直管部の温度が実質上
均一に950℃となるように抵抗加熱したときに該曲げ
部の温度が1110℃以上には発熱しない管である、ス
タビライザーに用いられるパイプ素管。
(1) In weight%, 0.10 to 0.35% C, 0
.. 35% or less Si, 0.30-1.20% Mn, 0
.. 10 to 0.60% Cr, Ti contained at a rate of 4 to 10 times the total amount of N% and O% inevitably contained in steel, and 0.0005 to 0.009% Desired stabilizer shape used to manufacture a pipe-shaped stabilizer as a member for imparting driving stability to an automobile, manufactured by electric resistance welding of steel plates B and the remainder consisting of Fe and unavoidable impurities. A raw pipe with an outer diameter of 12 to 65 mm before being molded into
φ, the wall thickness/outer diameter ratio is 6 to 25%, and the length is arbitrary, and when this is bent by 90 degrees with a curvature such that the inner radius is essentially 4 times the outer diameter, , The wall thickness difference (%) calculated by the formula {(maximum wall thickness of bent portion - minimum wall thickness of bent portion)/thickness before bending}×100 is 18.
0% or less, and the pipe is bent 90 degrees with a curvature that makes the inner radius substantially four times the outer diameter (the pipe is straight except for this bend), and the pipe is bent from one end to the other. A raw pipe for use in a stabilizer, which is a pipe that does not generate heat to a temperature of 1110° C. or higher at a bent portion when it is resistively heated to a substantially uniform temperature of 950° C. in a straight portion of the pipe when energized.
(2)パイプ素管は、これを内側半径が実質上外径の4
倍となるような曲率で90゜曲げを行った状態で(この
曲げ部以外は直管)、パイプの一端から他端に通電して
パイプ直管部の温度が実質上均一に950℃となるよう
に抵抗加熱したときに該曲げ部のオーステナイト結晶粒
が、結晶粒度番号6番に対応する粒度よりも大きなオー
ステナイト結晶粒とはならない管である特許請求の範囲
第1項記載のスタビライザーに用いられるパイプ素管。
(2) The raw pipe has an inner radius that is substantially the same as the outer diameter.
With the pipe bent at 90 degrees with a curvature that doubles (the pipe is straight except for this bend), electricity is applied from one end of the pipe to the other, and the temperature of the straight part of the pipe becomes substantially uniform at 950°C. The stabilizer according to claim 1 is a tube in which the austenite crystal grains in the bent portion do not become austenite crystal grains larger than the grain size corresponding to grain size number 6 when resistively heated as described above. Pipe material.
(3)パイプ素管は0.2以上の加工硬化指数(n値)
をもつ管である特許請求の範囲第1項または第2項に記
載のスタビライザーに用いられるパイプ素管。
(3) Work hardening index (n value) of raw pipe is 0.2 or more
A pipe material used in a stabilizer according to claim 1 or 2, which is a pipe having:
(4)素材鋼は溶製時にCa処理された鋼であり、鋼板
中の不純物中には球状の介在物が存在する特許請求の範
囲第1項、第2項または第3項記載のスタビライザーに
用いられるパイプ素管。
(4) The stabilizer according to claim 1, 2, or 3, wherein the steel material is Ca-treated steel during melting, and spherical inclusions are present among the impurities in the steel plate. The raw pipe used.
JP26992087A 1987-10-26 1987-10-26 Tube stock for use in stabilizer Pending JPH01111848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26992087A JPH01111848A (en) 1987-10-26 1987-10-26 Tube stock for use in stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26992087A JPH01111848A (en) 1987-10-26 1987-10-26 Tube stock for use in stabilizer

Publications (1)

Publication Number Publication Date
JPH01111848A true JPH01111848A (en) 1989-04-28

Family

ID=17479056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26992087A Pending JPH01111848A (en) 1987-10-26 1987-10-26 Tube stock for use in stabilizer

Country Status (1)

Country Link
JP (1) JPH01111848A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095156A (en) * 2006-10-13 2008-04-24 Nisshin Steel Co Ltd Method for manufacturing hollow stabilizer with excellent delayed fracture resistance
JP2008255397A (en) * 2007-04-03 2008-10-23 Nisshin Steel Co Ltd Method for producing electric resistance welded tube for hollow stabilizer
JP2009235499A (en) * 2008-03-27 2009-10-15 Nisshin Steel Co Ltd Method for manufacturing hollow stabilizer
US7896983B2 (en) 2001-03-08 2011-03-01 Nhk Spring Co., Ltd. Hollow stabilizer and method of manufacturing the same
JP2011189892A (en) * 2010-03-16 2011-09-29 Chuo Spring Co Ltd Method of manufacturing stabilizer for automobile
US20130118649A1 (en) * 2010-03-23 2013-05-16 Chuo Hatsujo Kabushiki Kaisha Method for manufacturing spring
JP2014151905A (en) * 2013-02-08 2014-08-25 Benteler Automobiltechnik Gmbh Method for producing motor vehicle stabilizer
EP2891566A4 (en) * 2012-08-28 2016-04-06 Nhk Spring Co Ltd Method for manufacturing stabilizer, and heating device
WO2016152671A1 (en) * 2015-03-24 2016-09-29 日本発條株式会社 Method for producing hollow stabilizer
JP2016179765A (en) * 2015-03-24 2016-10-13 日本発條株式会社 Hollow stabilizer
CN106457955A (en) * 2014-04-24 2017-02-22 日本发条株式会社 Hollow stabilizer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635751A (en) * 1979-08-30 1981-04-08 Kobe Steel Ltd Hot rolled steel strip for low alloy steam welded steel pipe with superior flattening performance
JPS58123858A (en) * 1982-01-16 1983-07-23 Nisshin Steel Co Ltd Steel for electric welded steel pipe for hollow stabilizer
JPS59222529A (en) * 1983-06-01 1984-12-14 Nippon Steel Corp Manufacture of driving shaft using electric welded steel pipe
JPS60215719A (en) * 1984-04-07 1985-10-29 Nippon Steel Corp Manufacture of electric welded steel pipe for front fork of bicycle
JPS60243248A (en) * 1984-05-14 1985-12-03 Nisshin Steel Co Ltd Electric welded thick wall steel tube
JPS6145688A (en) * 1984-08-08 1986-03-05 Sharp Corp Reproducing device of video disk
JPS61207548A (en) * 1985-03-13 1986-09-13 Nisshin Steel Co Ltd High strength electric welded steel pipe having satisfactory expandability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5635751A (en) * 1979-08-30 1981-04-08 Kobe Steel Ltd Hot rolled steel strip for low alloy steam welded steel pipe with superior flattening performance
JPS58123858A (en) * 1982-01-16 1983-07-23 Nisshin Steel Co Ltd Steel for electric welded steel pipe for hollow stabilizer
JPS59222529A (en) * 1983-06-01 1984-12-14 Nippon Steel Corp Manufacture of driving shaft using electric welded steel pipe
JPS60215719A (en) * 1984-04-07 1985-10-29 Nippon Steel Corp Manufacture of electric welded steel pipe for front fork of bicycle
JPS60243248A (en) * 1984-05-14 1985-12-03 Nisshin Steel Co Ltd Electric welded thick wall steel tube
JPS6145688A (en) * 1984-08-08 1986-03-05 Sharp Corp Reproducing device of video disk
JPS61207548A (en) * 1985-03-13 1986-09-13 Nisshin Steel Co Ltd High strength electric welded steel pipe having satisfactory expandability

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896983B2 (en) 2001-03-08 2011-03-01 Nhk Spring Co., Ltd. Hollow stabilizer and method of manufacturing the same
JP2008095156A (en) * 2006-10-13 2008-04-24 Nisshin Steel Co Ltd Method for manufacturing hollow stabilizer with excellent delayed fracture resistance
JP2008255397A (en) * 2007-04-03 2008-10-23 Nisshin Steel Co Ltd Method for producing electric resistance welded tube for hollow stabilizer
JP2009235499A (en) * 2008-03-27 2009-10-15 Nisshin Steel Co Ltd Method for manufacturing hollow stabilizer
JP2011189892A (en) * 2010-03-16 2011-09-29 Chuo Spring Co Ltd Method of manufacturing stabilizer for automobile
US20130118649A1 (en) * 2010-03-23 2013-05-16 Chuo Hatsujo Kabushiki Kaisha Method for manufacturing spring
EP2891566A4 (en) * 2012-08-28 2016-04-06 Nhk Spring Co Ltd Method for manufacturing stabilizer, and heating device
JP2014151905A (en) * 2013-02-08 2014-08-25 Benteler Automobiltechnik Gmbh Method for producing motor vehicle stabilizer
EP3135513A4 (en) * 2014-04-24 2018-01-03 Nhk Spring Co., Ltd. Hollow stabilizer
CN106457955A (en) * 2014-04-24 2017-02-22 日本发条株式会社 Hollow stabilizer
US9969238B2 (en) 2014-04-24 2018-05-15 Nhk Spring Co., Ltd Hollow stabilizer
JP2016179764A (en) * 2015-03-24 2016-10-13 日本発條株式会社 Manufacturing method of hollow stabilizer
JP2016179765A (en) * 2015-03-24 2016-10-13 日本発條株式会社 Hollow stabilizer
WO2016152671A1 (en) * 2015-03-24 2016-09-29 日本発條株式会社 Method for producing hollow stabilizer
US10415110B2 (en) 2015-03-24 2019-09-17 Nhk Spring Co., Ltd. Method for producing hollow stabilizer
US10442269B2 (en) 2015-03-24 2019-10-15 Nhk Spring Co., Ltd. Hollow stabilizer

Similar Documents

Publication Publication Date Title
JP5463715B2 (en) Manufacturing method of high strength welded steel pipe for automobile structural members
JP4443910B2 (en) Steel materials for automobile structural members and manufacturing method thereof
US20150176101A1 (en) Hollow stabilizer, and steel pipe for hollow stabilizers and method of producing the same
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
JPWO2002070767A1 (en) ERW welded steel tube for hollow stabilizer
JP5391656B2 (en) High tensile welded steel pipe for automobile parts and manufacturing method thereof
JP4910694B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JPH01111848A (en) Tube stock for use in stabilizer
JP4066915B2 (en) Manufacturing method of hollow stabilizer with excellent fatigue resistance
JP4859240B2 (en) Manufacturing method of ERW steel pipe for hollow stabilizer
JP5125601B2 (en) High tensile welded steel pipe for automobile structural members and method for manufacturing the same
JPS6145688B2 (en)
JP3731103B2 (en) High-strength ERW steel pipe excellent in hydraulic bulge formability and manufacturing method thereof
JP2546070B2 (en) High-strength electric resistance welded steel pipe for vehicle door impact bar and manufacturing method thereof
CZ287708B6 (en) Tube for producing stabilizer, stabilizer made of such tube and process for producing thereof
JPH02197525A (en) Manufacture of high strength resistance welded tube for automobile use hardly causing softening in heat affected zone
JP4055920B2 (en) Manufacturing method of high strength steel pipe for hollow stabilizer with excellent fatigue durability
JP2007107032A (en) Method for producing steel pipe for hollow stabilizer, and producing method for producing hollow stabilizer
KR0146788B1 (en) Method for manufacturing stabilizers
EP0494448A1 (en) Method for manufacturing electric-resistance-welded steel pipe with high strength
KR0128139B1 (en) Method of manufacturing a hollow stabilizer
KR0146799B1 (en) Method for manufacturing stabilizer
KR102492994B1 (en) Steel sheet and steel pipe having uniforme tensile properties and excellent transverse crack resistance onto welded part and method for manufacturing thereof
JPS59232223A (en) Spring member
EP3730634B1 (en) Hot-rolled steel sheet having excellent durability and method for manufacturing same