JPH01111494A - Continuously connected type intermittent air water lifting cylinder - Google Patents

Continuously connected type intermittent air water lifting cylinder

Info

Publication number
JPH01111494A
JPH01111494A JP62268838A JP26883887A JPH01111494A JP H01111494 A JPH01111494 A JP H01111494A JP 62268838 A JP62268838 A JP 62268838A JP 26883887 A JP26883887 A JP 26883887A JP H01111494 A JPH01111494 A JP H01111494A
Authority
JP
Japan
Prior art keywords
air
water
air reservoir
reverse
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268838A
Other languages
Japanese (ja)
Inventor
Tamotsu Hagi
萩 保
Sadaaki Saito
斎藤 定明
Yutaka Ishimaru
豊 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pfaudler Co Ltd
Original Assignee
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pfaudler Co Ltd filed Critical Shinko Pfaudler Co Ltd
Priority to JP62268838A priority Critical patent/JPH01111494A/en
Publication of JPH01111494A publication Critical patent/JPH01111494A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • B01F23/232311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit the conduits being vertical draft pipes with a lower intake end and an upper exit end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/3203Gas driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32015Flow driven

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To increase the water lift circulation volume of an water area with small volume of compressed air and power consumption by connecting continuously a plurality of intermittent air lifting cylinders arranged at the same height in air storages attached to reverse syphon starting sections and making differences in the height of reverse syphon starting sections of respective air storages. CONSTITUTION:Foam messes 9 are discharged from respective air storage 2A and 2B into corresponding water lifting cylinder sections 1A and 1B by the reverse syphon action in intermittent air water lifting cylinders A and B at intervals and retaining time difference. Together with said discharge of foam masses, flows of small foam groups rising separately from respective water lifting cylinders 1A and 1B are risen continuously at small time intervals, deviating respective positions to a certain extent. As a result, entrained flow generated by said small foam groups are not offset but energized and grown to increase the circulation mixing effect of the water area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダム、貯水池等の大量の水が停滞気味に貯溜
されている水域の水質の改善のため、循環および酸素供
給を図る間けっ空気揚水筒の改良に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is a method for improving water quality in water bodies such as dams and reservoirs where a large amount of water is stored in a stagnant manner by improving circulation and oxygen supply. Concerning improvements to air pumping cylinders.

(従来技術) ダム、貯水池、港湾等のように水温躍層ができ下層が酸
欠状態となって死水化する傾向のある水域には、水に酸
素を供給するとともに、上層、下層の水を強制的に循環
混合して均温化、均質化し、水域状況の改善を図るため
に有効な装置として逆サイフオン式間けつ空気揚水筒が
用いられている。
(Prior technology) In water bodies such as dams, reservoirs, and ports, where a thermocline occurs and the lower layer tends to become dead due to lack of oxygen, it is necessary to supply oxygen to the water and drain the water in the upper and lower layers. An inverted siphon-type intermittent air pumping tube is used as an effective device to improve water conditions by forcibly circulating and mixing to equalize and homogenize the temperature.

間けつ空気揚水筒は各種あるが、原理的には均等で、水
域の水底上に設置され、揚水筒部の下部に逆サイフオン
発起部付空気溜室が付属し、連続供給される空気が空気
溜室に蓄積され水位レベルが逆サイフオン発起部の規定
高さより下がると逆サイフオン作用が働いて蓄積空気が
一挙に連通管部を通じて揚水筒部内に放出され気泡塊と
なって上昇する作動を間けつ的に繰返す。
There are various types of intermittent air pumping tubes, but in principle they are all the same. They are installed on the bottom of a body of water, and an air reservoir chamber with a reverse siphon starter is attached to the bottom of the pumping tube. When the water level accumulates in the storage chamber and falls below the specified height of the reverse siphon starting part, the reverse siphon action works and the accumulated air is released all at once into the water pumping cylinder through the communication pipe, forming a mass of air bubbles and rising. Repeat.

上昇する気泡塊はピストン作用によって行程相当量の水
を強制的に揚水筒部内に吸引して揚水する。
The rising air bubbles forcefully draw an amount of water corresponding to the stroke into the water pumping cylinder section by the action of the piston and pump the water.

しか1単位の間けつ空気揚水筒で揚水循環量を増加させ
るには次の諸問題がある。
However, there are the following problems in increasing the amount of pumped water circulation with one unit of pumping air pumping cylinder.

(a)  多量の空気を供給して、逆サイフオン作用に
よって空気溜室から揚水筒部に間けつ的に放出される空
気放出の頻度を増加させる場合には、1つの気泡塊が揚
水筒部内を上昇中かあるいは揚水筒部を離れた直後に次
の気泡塊が揚水筒部内に放出されるようになり、この場
合は行程容積が気泡塊容積で減少し揚水筒部内を通過す
る水の量は殆ど増加しなくなる。
(a) When a large amount of air is supplied to increase the frequency of air being released intermittently from the air reservoir to the pumping cylinder due to reverse siphon action, a single mass of air bubbles may move inside the pumping cylinder. During the ascent or immediately after leaving the pumping tube, the next bubble mass will be released into the pumping tube, and in this case, the stroke volume will decrease by the bubble mass volume, and the amount of water passing through the pumping tube will be It will hardly increase.

(b)揚水筒部の直径を大きくする場合、揚水筒部内で
大径の単一気泡塊を形成する必要があるために、揚水筒
部の断面積の増加に対して必要空気量は3ノ2乗の割合
で増加し、効率、経済性が低下する。
(b) When increasing the diameter of the pumping tube, it is necessary to form a large-diameter single bubble mass within the pumping tube, so the amount of air required for the increase in the cross-sectional area of the pumping tube is 3 no. It increases at the rate of the square, and efficiency and economy decrease.

(C1揚水筒部の直径をさらに大にした場合、直径が4
0〜50cmを越えると、揚水筒部内で気泡塊が1塊に
保たれ難くなり分塊するので、気泡塊によるピストン作
用が著しく低下する。
(If the diameter of the C1 pumping cylinder part is made larger, the diameter will be 4
If it exceeds 0 to 50 cm, it becomes difficult for the air bubbles to be kept in one lump within the water pumping cylinder, and the air bubbles will bloom, resulting in a significant reduction in the piston action of the air bubbles.

これらの問題があるため、単一の間けつ揚水筒で大量の
水を揚水循環量を増大することに限界があり、この限界
を打破するため複数の小口径間けつ揚水筒部を集束一体
化したバンドル型の装置が提案されている。(例えば実
開昭60−176300号参照)。
Due to these problems, there is a limit to increasing the amount of pumping and circulation of a large amount of water with a single intermittent pumping tube.To overcome this limit, multiple small-diameter pumping tube sections are integrated into one A bundle type device has been proposed. (For example, see Utility Model Application No. 60-176300).

(発明が解決しようとする問題点) 前記の従来技術の小口径間けつ揚水筒の多数集束型の装
置は必要空気量の点では大口径の同断面積単一間けつ空
気揚水筒より有利であるが、循環流誘起効果の点で次の
問題がある。すなわち間けつ空気揚水筒による揚水循環
量は、揚水筒部内を通過して上昇する水の量よりも、揚
水筒部から離れて浮上する気泡塊が次々に小気泡に分裂
し分散した小気泡群となって上昇する過程で周囲の水を
同伴して連行流を誘起するが、前記従来技術の複数小口
径揚水筒集束型の装置ではこの小気泡群上昇過程は大口
径単一揚水筒の場合と同様に一個所に集中した小気泡群
となって上昇し、また各小口径揚水筒からの気泡塊が同
時に放出されるのでこの小気泡集団の流、れが断続的と
なるので、連行流が有効に生かされない。
(Problems to be Solved by the Invention) The above-mentioned prior art multiple convergence type device of small-diameter spacer pumps is advantageous in terms of the amount of air required over a large-diameter, single-spacer air pump with the same cross-sectional area. However, there are the following problems in terms of the circulation flow induction effect. In other words, the amount of water pumped and circulated by the intermittent air pumping tube is larger than the amount of water that passes through the pumping tube and rises. In the process of rising, the surrounding water is brought along and an entrainment flow is induced. However, in the prior art multiple small-diameter pumping tube convergence type device, this small bubble group rising process is different from that in the case of a large-diameter single pumping tube. Similarly, they rise as a group of small bubbles concentrated in one place, and the air bubbles from each small diameter water pump are released at the same time, so the flow of this group of small bubbles becomes intermittent, resulting in an entrained flow. is not utilized effectively.

本発明は、間けつ空気揚水筒において浮上小気泡群が同
伴する連行流が揚水筒内を通る流れより多く2〜3倍程
度になり得ること、小気泡群の分散上昇の角度範囲が約
17°であることに着目して、従来技術の前記問題点に
解決を与えることを目的としてなされたものである。
The present invention is characterized in that in an intermittent air pumping tube, the entrained flow accompanied by a group of floating small bubbles can be about 2 to 3 times larger than the flow passing through the pumping tube, and that the angular range of dispersion and rise of the group of small bubbles is about 17 The present invention was made with the aim of solving the above-mentioned problems of the prior art.

(問題点を解決するための手段) 前記目的達成のため、本発明においては、複数の比較的
小口径の揚水筒が互に隔離され平行してならぶ状態とな
るよう各揚水筒下部の空気溜室において一体化連設し、
さらに各空気溜室の逆すイフオン発起高さに差等を設け
て小気泡群発性時間差が生ずるようにする。
(Means for Solving the Problem) In order to achieve the above object, in the present invention, an air reservoir is provided at the bottom of each water pump so that a plurality of water pumps having a relatively small diameter are separated from each other and lined up in parallel. integrated and connected in the room,
Furthermore, differences are provided in the heights at which the air bubbles are generated in the respective air reservoir chambers, so that a difference in time between the occurrence of small bubble clusters is generated.

すなわち本発明の連設型間けつ空気揚水筒は、具体的に
は、水域中において、複数の間けつ空気揚水筒をそれら
の下部に付属する逆サイフオン発起部付空気溜室におい
て同一高さにならべて連設し、空気溜室ごとの逆サイフ
オン発起部の高さに差を設けて構成したことを特徴とす
る。
That is, the continuous type intermittent air pumping tube of the present invention specifically allows a plurality of intermittent air pumping tubes to be placed at the same height in an air reservoir chamber with a reverse siphon starter attached to their lower part in a body of water. The invention is characterized in that the reverse siphon starting parts are arranged side by side, and the heights of the reverse siphon starting parts are different for each air reservoir chamber.

(作 用) 本発明装置によると、間隔をおいて間けつ空気揚水筒に
おいて逆サイフオン作用によって各空気溜室から対応揚
水筒部内に放出される気泡塊が時間差を保って放出され
ることにより、各揚水筒部から離れて上昇する小気泡群
の流れが位置的に若干ずれて小時間間隔で続発して上昇
するので、小気泡群によって誘起される連行流が相殺さ
れずに却って助勢助長されるようになり、連行流量が筒
内流に較べて概して多いことと相伴って、水域の循環混
合効果を向上させることができる。
(Function) According to the device of the present invention, the air bubbles released from each air reservoir chamber into the corresponding pumping cylinder section at intervals through the reverse siphon action in the intermittent air pumping cylinder are released while maintaining a time difference. Since the flow of small bubbles rising away from each pumping cylinder section is slightly shifted in position and rises one after another at short time intervals, the entrainment flow induced by the small bubbles is not canceled out but is rather encouraged. Since the entrained flow rate is generally larger than the in-cylinder flow, the circulation mixing effect of the water area can be improved.

(実施例) 以下、本発明を添付図を参照し実施例に即して具体的に
説明する。第1図は、理解を容易にするため間けつ空気
揚水筒数を最小の2とした場合の最も筒車化した原理的
実施例を示す。以下の説明においては、複数の間けつ空
気揚水筒とその付属部分についてはそれぞれの数字記号
に添記号A、BさらにC,D以下を付して区別すること
とする。
(Examples) Hereinafter, the present invention will be specifically described based on examples with reference to the accompanying drawings. FIG. 1 shows a theoretical embodiment in which the number of intermittent air pumping cylinders is set to the minimum of 2 for ease of understanding, and which is the most hourly wheel type. In the following description, a plurality of intermittent air pumping cylinders and their attached parts will be distinguished by adding suffixes A, B, C, and D to the respective numerical symbols.

第1図において、2つの間けつ空気揚水筒(A)および
(B)は、その比較的小口径の揚水筒部(IA)および
(IB)が互に隔離され平行に並ぶようそれらの下部に
付属する空気溜室(2A)および(2B)を同一高さに
ならべて一体に連設して構成される。その全体は、例え
ば連設空気溜(2)の下端で水域内の水底上にアンカに
より係留され上部のフロート作用で水中直立姿勢に保持
される。
In FIG. 1, two interposed air cylinders (A) and (B) are arranged at their lower parts so that their relatively small diameter cylinder parts (IA) and (IB) are isolated from each other and lined up parallel to each other. It is constructed by arranging the attached air chambers (2A) and (2B) at the same height and integrally connecting them. The entire structure is moored by an anchor on the bottom of a body of water, for example, at the lower end of the connected air reservoir (2), and is held in an upright position underwater by the action of a float on the upper part.

連設空気溜(2)内の中央には、池外から給気ホース(
3)を経由して圧力空気が供給される密閉の空気分配室
(4)があり、それに設けた上下多段の空気分配オリフ
ィス孔(5A)および(5B)を経由して各空気溜室(
2A)および(2B)にそれぞれ圧力空気が供給される
At the center of the continuous air reservoir (2), there is an air supply hose (
There is a sealed air distribution chamber (4) to which pressurized air is supplied via (3), and air is supplied to each air reservoir chamber (4) via upper and lower multistage air distribution orifice holes (5A) and (5B) provided therein.
Pressurized air is supplied to each of 2A) and 2B.

間けつ空気揚水筒(A)と(B)とは、後述の空気放出
管の高さの差以外には構成が均等であるから、その1つ
(八)を代表させて構造を詳しく説明する。揚水筒部(
IA)の下部に付属する空気溜室(2A)には逆サイフ
オン発起部が内蔵され、その空気放出管(6A)の上端
が揚水筒部(1Δ)の下端に開口し、空気放出管(6A
)のまわりには、下底を閉鎖し上端が空気溜室の天井近
くに位置する円筒(7A)を設けて囲って逆サイフオン
発起部が構成される。空気放出管の下端開口の高さが逆
すイフオン発起高さとなる。
Since the intermittent air pumping tubes (A) and (B) have the same structure except for the difference in the height of the air discharge tube, which will be described later, the structure will be explained in detail using one of them (8) as a representative. . Pumping cylinder part (
The air reservoir chamber (2A) attached to the lower part of IA) has a built-in reverse siphon starting part, and the upper end of its air discharge pipe (6A) opens at the lower end of the water pumping cylinder part (1Δ), and the air discharge pipe (6A)
) is surrounded by a cylinder (7A) whose lower bottom is closed and whose upper end is located near the ceiling of the air reservoir chamber to form a reverse siphon starting part. The height of the opening at the lower end of the air discharge pipe becomes the reverse ifon starting height.

間けつ空気揚水筒(B)の逆サイフオン発起部の構成は
均等であるが内筒(7B)内において空気放出管(6B
)は下端開口の高さが空気放出管(6A)のそれと数鶴
程度の僅少の蓋高(d)を隔てるよう設定される。(8
A) (8B)は揚水筒部(IA) (IB)への水域
の水の吸引口である。
The structure of the reverse siphon starting part of the intermittent air pumping tube (B) is the same, but the air discharge tube (6B) is
) is set so that the height of the lower end opening is separated from that of the air discharge pipe (6A) by a slight lid height (d) of several cranes. (8
A) (8B) is a suction port for the water in the water area to the water pumping cylinder (IA) (IB).

この実施例の装置は次のように作動する。ホース(3)
を通じて分配室(4)に圧力空気が供給されると、その
圧力により分配室(4)内の水位が低下し、圧力空気が
空気分配オリフィス孔(5A) (5B)を通して空気
溜室(2A) (2B)に均等に分配供給される。各空
気溜室(2A) (2B)では供給空気が蓄積されるに
従ってほぼ一様に水位が降下するが、空気溜(2A)内
で空気放出管(6A)の下端開口の高さより水位が下る
と逆サイフオン作用が発起され空気溜室(2A)の蓄積
空気が短時間で揚水筒部(IA)内に放出され揚水筒部
(1八)内を気泡塊(9)となって上昇しそのピストン
作用によって外部の水を吸引口(8A)から吸引して揚
水する。空気放出管(6A) (6B)の下端開口の高
さ差、すなわち逆すイフオン発起高さの差により間けつ
空気揚水筒(A)の揚水作用が時間的に優先して起こる
The device of this embodiment operates as follows. Hose (3)
When pressurized air is supplied to the distribution chamber (4) through, the water level in the distribution chamber (4) decreases due to the pressure, and the pressurized air passes through the air distribution orifice holes (5A) (5B) to the air reservoir chamber (2A). (2B) is evenly distributed and supplied. In each air reservoir (2A) (2B), the water level drops almost uniformly as the supplied air accumulates, but in the air reservoir (2A) the water level drops below the height of the lower end opening of the air discharge pipe (6A). The reverse siphon action is triggered, and the accumulated air in the air reservoir chamber (2A) is released into the water pumping cylinder (IA) in a short time and rises inside the water pumping cylinder (18) as a mass of air bubbles (9). External water is sucked through the suction port (8A) by piston action and pumped up. Due to the difference in height between the lower end openings of the air discharge pipes (6A) and (6B), that is, the difference in the height of the inverted IFON, the pumping action of the intermittent air pump (A) takes place with priority in terms of time.

その後空気溜室(2B)内の水位が空気放出管(6B)
の下端以下に下降すると空気溜室(2B)の逆サイフオ
ン作用が働いて揚水筒部(IB)内に蓄積空気が一気に
放出され、その間けつ空気揚水がなされる。
After that, the water level in the air storage chamber (2B) will rise to the air release pipe (6B).
When it descends below the lower end of the air chamber (2B), the reverse siphon action of the air reservoir chamber (2B) is activated, and the air accumulated in the water pumping cylinder (IB) is released all at once, and the air is pumped up at once.

第2図に示す実施例は、並列間けつ空気揚水筒の数を多
く、例えば図示のように4としたものを示し、前実施例
と均等の各部は同一符号によりあるいは添記号を変えて
示し、説明の重複を省略する。
The embodiment shown in FIG. 2 has a large number of parallel intermittent air pumping tubes, for example four as shown in the figure, and parts equivalent to those in the previous embodiment are indicated by the same reference numerals or with different suffixes. , omitting repeated explanations.

その4つの揚水筒部(IA) (IB) (IC) (
10)は下部の1つの連設空気溜(2)に定間隔で取付
けられ、空気溜(2)は仕切壁αΦにより各間けつ空気
揚水筒に対応する4つの空気溜室(2A) (2B) 
(2C) (2D)に区画されている。各空気溜室への
圧力空気の供給は、前実施例の空気分配室(4)に代わ
り、下方の1本の空気供給管aυの各ノズル0乃におけ
る分配によりなされる。各空気溜室の空気放出管(6^
) (6B) (6G) (6D)には下端開口の高さ
差、すなわち逆すイフオン発起高さの差を設けである。
Its four pumping cylinder parts (IA) (IB) (IC) (
10) are attached at regular intervals to one continuous air reservoir (2) at the bottom, and the air reservoir (2) is divided into four air reservoir chambers (2A) (2B) corresponding to each intermittent air pumping cylinder by a partition wall αΦ. )
It is divided into (2C) and (2D). Pressurized air is supplied to each air reservoir chamber by distribution at each nozzle 0 to one lower air supply pipe aυ instead of the air distribution chamber (4) of the previous embodiment. Air release pipe of each air storage chamber (6^
) (6B) (6G) (6D) are provided with a difference in the height of the lower end opening, that is, a difference in the height of the inverted ifon.

そして各空気溜室を区画する仕切り壁Qlには逆サイフ
オン発起部より高い位置に小径の空気連通オリフィスα
■を設けであるi この実施例では、空気供給開始当初はノズル(2)から
の空気供給量に応じて各空気溜室の水位が個別に降下す
ることになる。しかし各空気溜室の水位が空気連通オリ
フィスαJより低い位置まで降下すると各空気溜室がオ
リフィスα■を通じて連通し、各空気溜室の水位が同一
圧力下の同一水位となって降下する。そして空気溜室(
2A)の空気放出管(6A)の下端開口が最も高い位置
にあるので、先ず空気溜室(2八)で逆サイフオンが発
起し、空気溜室(2A)の蓄積空気が揚水筒部(IA)
に放出される。その際、僅かの空気が空気溜室(2B)
から(2A)に吸出されるが、空気溜室(IA)が水で
満たされると、その間のオリフィスQ31の通過抵抗が
増加するので空気溜室(2B)の水位が急上昇するよう
なことはない。むしろ、空気放出管(6A) (6B)
の高さ差が僅かであっても、空気が一時的に空気溜室(
2B)から(2A)に吸引されることによって画室のサ
イフオン発起の時間差が太き(なり、このことは多数の
間けつ空気揚水筒の逆サイフオンの順序発起に有利であ
る。空気溜室(2A)のサイフオン発起後は、(2B)
以降の各空気溜室の水位は同一水位を保って降下するが
、次に高位置の空気放出管(6B)のサイフオン発起高
さまで降下すると空気溜室(2B)の逆サイフオン作用
が発起される。同様にして以降の空気溜室(2C) (
2D)のサイフオン作用が順次に起こる。
The partition wall Ql that partitions each air reservoir chamber has a small diameter air communication orifice α located higher than the reverse siphon starting part.
In this embodiment, at the beginning of air supply, the water level in each air reservoir chamber falls individually depending on the amount of air supplied from the nozzle (2). However, when the water level in each air reservoir chamber drops to a position lower than the air communication orifice αJ, each air reservoir chamber communicates through the orifice α■, and the water level in each air reservoir chamber becomes the same water level under the same pressure and falls. And the air chamber (
Since the lower end opening of the air discharge pipe (6A) of the air reservoir (2A) is at the highest position, a reverse siphon occurs first in the air reservoir chamber (28), and the accumulated air in the air reservoir chamber (2A) is released into the water pumping tube section (IA). )
is released. At that time, a small amount of air enters the air reservoir chamber (2B)
(2A), but when the air reservoir chamber (IA) is filled with water, the passage resistance of the orifice Q31 between them increases, so the water level in the air reservoir chamber (2B) will not rise suddenly. . Rather, the air discharge pipe (6A) (6B)
Even if there is a slight difference in height between the air chambers (
By suctioning from (2B) to (2A), the time difference between the onset of siphons in the compartments becomes wide (this is advantageous for the sequential onset of reverse siphons in a large number of interstitial air pumping tubes. ) After the activation of the siphon, (2B)
Subsequently, the water level in each air reservoir chamber keeps the same level and falls, but when it falls to the siphon initiation height of the air discharge pipe (6B) at the next higher position, the reverse siphon action of the air reservoir chamber (2B) is initiated. . Similarly, the following air reservoir chambers (2C) (
2D) siphon action occurs sequentially.

第3図に示す実施例は、第2図実施例とほぼ均等である
が、各空気溜室(2A) (2B) (2C) (2D
)への空気の分配に関し、第2図の空気連通オリフィス
α勇に代え、各空気溜室(2A) (2B) (2C)
 (2D)内の逆すイフオン発起高さより高い位置でそ
れぞれ下端が開口する一連の空気連通管Q41を設け、
それらの下端開口に第4図に示すようなフロート弁(1
5A) (15B) (15C) (150)を設けた
ものである。
The embodiment shown in FIG. 3 is almost equivalent to the embodiment shown in FIG.
), each air reservoir chamber (2A) (2B) (2C) is used instead of the air communication orifice α in Figure 2.
(2D) A series of air communication pipes Q41 each having a lower end open at a position higher than the height of the inverted IFON firing height are provided,
A float valve (1
5A) (15B) (15C) (150).

この実施例では、各空気溜室(2A) (2B) (2
C) (2D)に空気供給管αυの各ノズル@から供給
された空気が蓄積され、その水位が空気連通管α優の開
口より低下すると各室の水位が一致することは第2図実
施例と同様であるが、先ず逆サイフオン発起部高さが最
も高い空気溜室(2A)から逆サイフオンが発起して蓄
積空気が揚水筒部(1八)に放出されると、空気溜室(
2A)に流入した水によりフロート弁(15A)のフロ
ートが上昇して閉弁するので、他の空気溜室からの空気
が流入しない。
In this example, each air reservoir chamber (2A) (2B) (2
C) The air supplied from each nozzle @ of the air supply pipe αυ is accumulated in (2D), and when the water level falls below the opening of the air communication pipe α, the water levels in each chamber match, as shown in the example in Fig. 2. However, when the reverse siphon starts from the air reservoir chamber (2A) where the height of the reverse siphon starting part is highest and the accumulated air is discharged to the pumping cylinder part (18), the air reservoir chamber (2A)
2A) causes the float of the float valve (15A) to rise and close, so air from other air storage chambers does not flow in.

続いて順次時間差を隔てて空気溜室(2B) (2C)
 (2D)の逆サイフオン作用が発起され蓄積空気が放
出される毎にフロート弁(15B) (15C) (1
50)が閉弁する。その後の空気供給により水位が空気
連通管α旬の開口より下にくるまでは空気溜室間では連
通が遮断され空気が移動しないので、逆サイフオンの時
間差作動が一層確実となる。
Subsequently, the air reservoir chambers (2B) (2C) are opened at different time intervals.
Each time the reverse siphon action of (2D) is triggered and the accumulated air is released, the float valve (15B) (15C) (1
50) closes. Communication between the air reservoir chambers is cut off and air does not move until the water level drops below the opening of the air communication pipe α due to the subsequent air supply, so that the time difference operation of the reverse siphon becomes more reliable.

複数の間けつ空気揚水筒の連設は直列に限られず、第5
図に示すように円周列に連設して各揚水筒部から上昇す
る小気泡群が誘起する連行流をメリーコーラランド式に
巡回移動位置で小時間差を保って起こさせることができ
る。その中心に空気分配室(4゛)を配することができ
る。
The serial installation of multiple intermittent air pumping tubes is not limited to series, and the fifth
As shown in the figure, an entrained flow induced by a group of small bubbles arranged in a circumferential row and rising from each pumping cylinder part can be caused to occur in a Mary Coraland style at a circulating movement position with a small time difference. In its center an air distribution chamber (4') can be arranged.

また間けつ空気揚水筒の連設は1列に限られず、多列、
例えば第4図に示すように2列として多数の揚水筒部(
IA)〜(IH)並びに空気溜室(2A)〜(2H)を
配置することができ、列間に空気分配室(4”)を配置
すればよく、給気ホースを多数とする必要はない。
Also, the arrangement of intermittent air pumping cylinders is not limited to one row, but multiple rows,
For example, as shown in Fig. 4, a large number of pumping cylinder parts (
IA) to (IH) and air storage chambers (2A) to (2H) can be arranged, and it is only necessary to arrange an air distribution chamber (4") between the rows, and there is no need to use a large number of air supply hoses. .

(発明の効果) 本発明の装置では、連設した複数の間けつ空気揚水筒か
ら時間差をおいて気泡塊が放出されるので、揚水筒から
離れて上昇する小気泡群の流れがより連続化して連行流
を増加させる効果があり、水域の揚水循環量を少ない圧
力空気、消費動力を以て増加させることができる。
(Effects of the Invention) In the device of the present invention, air bubbles are released at different times from a plurality of intermittent air pumps that are connected in a row, so that the flow of small bubbles rising away from the pumps becomes more continuous. This has the effect of increasing the entrained flow, and the amount of pumped water circulating in the water body can be increased with less pressure air and less power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の連設型間けつ空気揚水筒の筒数2の場
合の原理的実施例の縦断側面図、第2図は本発明の他の
実施例の縦断側面図、第3図は本発明のさらに他の実施
例の縦断側面図、第4図はそのフロート弁の縦断側面図
、第5図は本発明の間けつ空気揚水筒の連設形式の1例
を示す平面図、第6図はその連設形式の他側を示す平面
図である。 (A) (B)・・・間けつ空気揚水筒、(IA) (
1B) (IC) (10)(IE) (IF) (I
G) (IH)・・・揚水筒部、(2)・・・連設空気
溜、(2A) (2B) (2G) (2D) (2B
) (2F) (2G) (2H)・・・空気溜室、(
3)・・・給気ホース、(4) (4’ ) (4″)
・・・空気分配室、(5A) (5B)・・・空気分配
オリフィス孔、(6A) (6B) (6C)(6D)
・・・空気放出管、(7A) (7B)・・・円筒、(
8A) (8B)・・・吸引口、(9)・・・気泡塊、
αω・・・仕切壁、αω・・・空気供給管、(2)・・
・ノズル、αト・・空気連通オリフィス、Q4) ・・
・空気連通管、(15A) (15B) (15C) 
(150) ・7 tff−ト弁、(d)・・・蓋高。
Fig. 1 is a longitudinal sectional side view of a principle embodiment of the continuous type intermittent air pumping cylinder of the present invention in the case of two cylinders, Fig. 2 is a longitudinal sectional side view of another embodiment of the invention, and Fig. 3 4 is a longitudinal sectional side view of still another embodiment of the present invention, FIG. 4 is a longitudinal sectional side view of the float valve, and FIG. 5 is a plan view showing one example of the serial arrangement of the intermittent air pumping tube of the present invention. FIG. 6 is a plan view showing the other side of the continuous arrangement. (A) (B) ... Intermittent air pumping tube, (IA) (
1B) (IC) (10) (IE) (IF) (I
G) (IH)... Lifting cylinder part, (2)... Continuous air reservoir, (2A) (2B) (2G) (2D) (2B
) (2F) (2G) (2H)...Air reservoir chamber, (
3)...Air supply hose, (4) (4') (4'')
... Air distribution chamber, (5A) (5B) ... Air distribution orifice hole, (6A) (6B) (6C) (6D)
... Air discharge pipe, (7A) (7B) ... Cylinder, (
8A) (8B)...Suction port, (9)...Bubble mass,
αω...Partition wall, αω...Air supply pipe, (2)...
・Nozzle, αto... Air communication orifice, Q4) ・・
・Air communication pipe, (15A) (15B) (15C)
(150) ・7 tff-to valve, (d)...lid height.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の間けつ空気揚水筒をそれらの下部に付属す
る逆サイフオン発起部付空気溜室において同一高さにな
らべて連設し、空気溜室ごとの逆サイフオン発起部の高
さに差を設けたことを特徴とする連設型間けつ空気揚水
筒。
(1) A plurality of intermittent air pumping cylinders are arranged in series at the same height in the air reservoir chambers with the reverse siphon starting section attached to their lower parts, and the height of the reverse siphon starting section is different for each air reservoir chamber. A continuous type interlocking air pumping tube characterized by being provided with.
(2)連設空気溜内を仕切壁により各空気溜室に区画し
、各空気溜室の逆サイフオン発起部の高さより高い位置
において仕切壁の両側空気溜室を連通する空気連通オリ
フィスを仕切壁に開設した特許請求の範囲第1項記載の
連設型間けつ空気揚水筒。
(2) The inside of the continuous air reservoir is divided into each air reservoir chamber by a partition wall, and an air communication orifice that communicates the air reservoir chambers on both sides of the partition wall is partitioned at a position higher than the height of the reverse siphon starting part of each air reservoir chamber. A continuous interlocking air pumping tube according to claim 1, which is installed in a wall.
(3)連設空気溜に対し、その各空気溜室に逆サイフオ
ン発起部の高さより高い位置で開口する空気連通管を設
け、各開口部に当該空気溜室の逆サイフオン発起により
閉止するフロート弁を付設した特許請求の範囲第1項記
載の連設型間けつ空気揚水筒。
(3) For the connected air reservoirs, each air reservoir chamber is provided with an air communication pipe that opens at a position higher than the height of the reverse siphon starting part, and each opening is provided with a float that closes when the reverse siphon of the air reservoir chamber is triggered. A continuous interlocking air water pump according to claim 1, which is provided with a valve.
JP62268838A 1987-10-23 1987-10-23 Continuously connected type intermittent air water lifting cylinder Pending JPH01111494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268838A JPH01111494A (en) 1987-10-23 1987-10-23 Continuously connected type intermittent air water lifting cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268838A JPH01111494A (en) 1987-10-23 1987-10-23 Continuously connected type intermittent air water lifting cylinder

Publications (1)

Publication Number Publication Date
JPH01111494A true JPH01111494A (en) 1989-04-28

Family

ID=17463967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268838A Pending JPH01111494A (en) 1987-10-23 1987-10-23 Continuously connected type intermittent air water lifting cylinder

Country Status (1)

Country Link
JP (1) JPH01111494A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028341A1 (en) * 2009-09-03 2011-03-10 Zenon Technology Partnership Gas sparger for a filtering membrane
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8876089B2 (en) 2011-09-15 2014-11-04 Zenon Technology Partnership Method and apparatus to keep an aerator full of air
WO2016064466A1 (en) * 2014-10-22 2016-04-28 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9364805B2 (en) 2010-10-15 2016-06-14 General Electric Company Integrated gas sparger for an immersed membrane
CN105964018A (en) * 2016-07-29 2016-09-28 饶平县施蓝水处理科技有限公司 Water treatment separating system
US9463419B2 (en) 2012-01-09 2016-10-11 General Electric Company Pulse aeration for immersed membranes
CN105999780A (en) * 2016-07-29 2016-10-12 饶平县施蓝水处理科技有限公司 Water treatment separating device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
JP2018103135A (en) * 2016-12-28 2018-07-05 株式会社クボタ Aeration device
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
JP2020089829A (en) * 2018-12-05 2020-06-11 三菱ケミカルアクア・ソリューションズ株式会社 Air diffuser and membrane separation active sludge device
JP2020089831A (en) * 2018-12-05 2020-06-11 三菱ケミカルアクア・ソリューションズ株式会社 Air diffuser and membrane separation active sludge device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
EP3388138A1 (en) * 2009-09-03 2018-10-17 Zenon Technology Partnership Gas sparger for a filtering membrane
US20160310905A1 (en) * 2009-09-03 2016-10-27 General Electric Company Gas sparger for an immersed membrane
WO2011028341A1 (en) * 2009-09-03 2011-03-10 Zenon Technology Partnership Gas sparger for a filtering membrane
US11219866B2 (en) * 2009-09-03 2022-01-11 Bl Technologies, Inc. Gas sparger for an immersed membrane
KR20170048612A (en) * 2009-09-03 2017-05-08 제논 테크놀로지 파트너쉽 Gas sparger for a filtering membrane
US9358505B2 (en) 2009-09-03 2016-06-07 General Electric Company Gas sparger for an immersed membrane
US10471393B2 (en) 2009-09-03 2019-11-12 Bl Technologies, Inc. Gas sparger for an immersed membrane
AU2010290022B2 (en) * 2009-09-03 2016-06-23 Zenon Technology Partnership Gas sparger for a filtering membrane
JP2013503738A (en) * 2009-09-03 2013-02-04 ゼノン・テクノロジーズ・パートナーシップ Gas sparger for filtration membrane
US9364805B2 (en) 2010-10-15 2016-06-14 General Electric Company Integrated gas sparger for an immersed membrane
US10173175B2 (en) 2010-10-15 2019-01-08 Bl Technologies, Inc. Integrated gas sparger for an immersed membrane
US8876089B2 (en) 2011-09-15 2014-11-04 Zenon Technology Partnership Method and apparatus to keep an aerator full of air
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9463419B2 (en) 2012-01-09 2016-10-11 General Electric Company Pulse aeration for immersed membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
WO2016064466A1 (en) * 2014-10-22 2016-04-28 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
EP4066926A1 (en) * 2014-10-22 2022-10-05 Koch Separation Solutions, Inc. Pulsed aeration system for submerged hollow fiber module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN105964018A (en) * 2016-07-29 2016-09-28 饶平县施蓝水处理科技有限公司 Water treatment separating system
CN105964018B (en) * 2016-07-29 2018-03-20 饶平县施蓝水处理科技有限公司 A kind of water process piece-rate system
CN105999780A (en) * 2016-07-29 2016-10-12 饶平县施蓝水处理科技有限公司 Water treatment separating device
JP2018103135A (en) * 2016-12-28 2018-07-05 株式会社クボタ Aeration device
JP2020089829A (en) * 2018-12-05 2020-06-11 三菱ケミカルアクア・ソリューションズ株式会社 Air diffuser and membrane separation active sludge device
JP2020089831A (en) * 2018-12-05 2020-06-11 三菱ケミカルアクア・ソリューションズ株式会社 Air diffuser and membrane separation active sludge device

Similar Documents

Publication Publication Date Title
JPH01111494A (en) Continuously connected type intermittent air water lifting cylinder
CN201252771Y (en) Northern pile fertilizer egg incubation device
NO20131308A1 (en) Sink-float structure
CN211497126U (en) High dissolved oxygen water generator
US4174192A (en) Tide operated pumps
JPS63315195A (en) Partial water purification method in continuous water area
CN213848268U (en) Industrial aquaculture microcirculation culture system
CN109987701A (en) Water process biochemistry pool and water treatment technology
KR101243342B1 (en) Korean cabbage salting tank
CN209527564U (en) Wall is interlayer wall type fish jar afterwards
JPH01164495A (en) Large-capacity intermittent-air water lifting cylinder device
JPH07103196A (en) Air type fixed displacement pump
CN111018145A (en) High dissolved oxygen water generator
CN112281990A (en) Secondary water supply system with ultrafiltration purification function and method
JPH07275884A (en) Large capacity deep water aeration device
JPH01164497A (en) Large-capacity intermittent-air water lifting cylinder device
JPH039839Y2 (en)
JPH01111493A (en) Air feeding process and device for a plurality of intermittent air water lifting cylinder
CN109502742B (en) Air-lift type backwashing device and method
JPH067796A (en) Water purifying apparatus
CN108935279A (en) A kind of Two-way Cycle negative pressure fish bowl system
JP2601456Y2 (en) Aqua air gun
CN2504224Y (en) Constant temp stoage appts. for living aquatic product
CN206417889U (en) The film case of immersion type membrane component
JP3879011B2 (en) Bubble dividing cylinder for intermittent air pumping apparatus and intermittent air pumping apparatus provided with bubble dividing cylinder