JPH01111404A - Hollow yarn-type membrane for blood plasma separation - Google Patents

Hollow yarn-type membrane for blood plasma separation

Info

Publication number
JPH01111404A
JPH01111404A JP26839787A JP26839787A JPH01111404A JP H01111404 A JPH01111404 A JP H01111404A JP 26839787 A JP26839787 A JP 26839787A JP 26839787 A JP26839787 A JP 26839787A JP H01111404 A JPH01111404 A JP H01111404A
Authority
JP
Japan
Prior art keywords
membrane
plasma separation
plasma
solvents
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26839787A
Other languages
Japanese (ja)
Inventor
Hitoshi Ono
仁 大野
Toshiyuki Yagi
敏幸 八木
Jitsuzo Takada
高田 実三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP26839787A priority Critical patent/JPH01111404A/en
Publication of JPH01111404A publication Critical patent/JPH01111404A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To attain a membrane for blood plasma separation with excellent suitability to living bodies and low complement activity, by selecting a vinyl chloride resin as a hollow yarn membrane with a defined inner diameter and thickness. CONSTITUTION:A dope comprising a plastisizer-free vinyl chloride resin dissolved in a ternary soln. contg. solvents and non-solvents and an inner soln. contg. solvents and non-solvents are sprayed through a double-tube nozzle, introduced into a coagulation bath, and spun by dry/wet process to give a hollow yarn. Then, thus prepd. yarn is washed, treated with glycerin, and dried to obtain a hollow yarn-type membrane for blood plasma separation with inner diameter 150-450mum and thickness at 100mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、血液から血漿を分離する膜に関し、さらに詳
細には血漿交換療法、正常人から血漿を採取する採漿等
の医療分野に利用される血漿分離膜に関するものである
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a membrane that separates plasma from blood, and more specifically, it is used in medical fields such as plasma exchange therapy and plasma sampling to collect plasma from normal people. The present invention relates to a plasma separation membrane that is used for plasma separation.

(従来の技術) 血液から血漿を膜で分離する血漿分離法は、劇症肝炎や
、慢性ryJ節リュすマチ、全身性エリスマトーデスや
膠原病等の難治惟疾患に対する治療用途を1指して開発
されたものであり、その様な技術としては特開昭56−
11065号公報や特開昭58−41883号公報等に
おいて既に明らかである。近年、この種の血漿浄化技術
の進歩に伴い血漿製剤の需要が飛躍的に高まり、これに
応えるため現在では、従来の全血の献血に代わるものと
して、血漿のみを採取する成分献血(採漿)が行われる
に至った。
(Prior art) The plasma separation method, which separates plasma from blood using a membrane, is used to treat intractable diseases such as fulminant hepatitis, chronic RYJ syndrome, systemic erythromatosus, and collagen disease. This technology was developed in Japanese Patent Application Laid-Open No. 1986-
This is already clear in JP-A No. 11065, JP-A-58-41883, and the like. In recent years, the demand for plasma preparations has increased dramatically due to advances in this type of plasma purification technology.In order to meet this demand, component blood donation (plasma collection), in which only plasma is collected, is currently being used as an alternative to conventional whole blood donation. ) has come to be carried out.

この様に現在では健常人からの採漿用途に迄血漿分離膜
が応用されるに至ったため、血漿採取法における安全性
はいやがうえにも高める必要が発生し、中でも血漿分離
膜法の中枢を占める血漿分#膜の生体適合性に対する期
待は非常に高い。
As described above, plasma separation membranes have now been applied to the point of collecting plasma from healthy people, so it has become necessary to further improve the safety of plasma collection methods. There are very high expectations regarding the biocompatibility of plasma membranes, which account for a large proportion of the human body.

これに対し、従来技術分野における生体適合性は人工腎
臓基準等にみられるように毒性等がみられないこと、機
能に欠陥がみられないことに対する要求が中心であった
。又、血漿分離膜においては、これに加え、血漿分離時
血球成分を損瘍しないことが生体適合性の重要要件とな
っていた。これらの要求は非常に重要なものであるがあ
くまでも最低限充たされなければならない事項であり、
現在の生体適合性に対する期待は、血漿分離膜に対する
生体の反応、生体と膜の相互作用に迄拡張されるに至っ
た。
In contrast, biocompatibility in the prior art field has centered on the requirement that there be no toxicity, etc., and no functional defects, as seen in artificial kidney standards. In addition to this, for plasma separation membranes, an important requirement for biocompatibility is not to damage blood cell components during plasma separation. Although these requirements are very important, they are only the minimum requirements that must be met.
Current expectations regarding biocompatibility have extended to the reaction of living organisms to plasma separation membranes and the interaction between living organisms and membranes.

生体が膜と接触するならば、生体は自己にとって異物で
ある膜を認識し、そこでは必ず何らかの相互作用に基づ
く反応が起こることは良く知られている。生体適合性が
良好とはこの異物認識反応の程度が軽微であることを意
味している。人工臓器が使用される際、とくに問題とな
る生体の反応は(1)凝固系と■免疫系に大別される。
It is well known that when a living body comes into contact with a membrane, the living body recognizes the membrane as a foreign substance, and a reaction based on some kind of interaction always occurs there. Good biocompatibility means that the degree of foreign body recognition reaction is slight. When artificial organs are used, the biological reactions that are particularly problematic can be roughly divided into (1) the coagulation system and (2) the immune system.

本発明の対象である血漿益離法においては、(1)の凝
固系は抗凝固剤の使用によりブロックされており、従っ
て血漿分離時に問題となる生体反応は、■の免疫系であ
る。血漿分離自体は短期の体外循環であるためその生体
適合性は、■の免疫系の中でも液性免疫(補体活性)を
対象とすることになる。
In the plasma separation method that is the object of the present invention, the coagulation system (1) is blocked by the use of an anticoagulant, and therefore, the biological reaction that becomes a problem during plasma separation is the immune system (2). Since plasma separation itself involves short-term extracorporeal circulation, its biocompatibility targets humoral immunity (complement activity) within the immune system (2).

(発明が解決しようとする問題点) 本発明は、従来迄の血液透析時や血漿分離時に、その影
響を問題視されていたところの補体活性化を低く抑える
ことにあり、本発明は血漿分離時に生体よりおこる補体
活性化を軽微に抑えた、より生体適合性に優れた血漿分
離を提供しようとするものである。
(Problems to be Solved by the Invention) The purpose of the present invention is to suppress complement activation, which has been considered a problem during conventional hemodialysis and plasma separation. The present invention aims to provide plasma separation with superior biocompatibility by minimizing complement activation caused by living organisms during separation.

(発明を解決するための手段) 一般に補体の活性化は、素材の化学構造に依存し、なか
でも化学構造上水酸基を多く存する。セルロースやポリ
ビニルアルコールでは著しく大キな活性化を示すことが
知られている。そのため現在では従来の膜の化学修飾に
よる方法等(例えばテキサス大R,C,Eberhat
らの長鎖アルキル基により修飾する方法Trans A
n+ Sac Artlf Intern Organ
s vol 29P242〜244 1983)が研究
されているが、これらの安定性に関しては、その新規性
が故に今後、さらに慎重な検討が行われるであろう。
(Means for Solving the Invention) Complement activation generally depends on the chemical structure of the material, and in particular, the chemical structure includes many hydroxyl groups. It is known that cellulose and polyvinyl alcohol exhibit significantly large activation. For this reason, conventional methods such as chemical modification of membranes are currently being used (for example, University of Texas R.C., Eberhat
Trans A
n+ Sac Artlf Intern Organ
s vol 29P242-244 1983), but due to their novelty, more careful consideration will be given to their stability in the future.

これに対し、本研究者らは供血者の安全性を最大限確保
するため化学構造上安定で且つ血液Bag等の素材とし
て血液浄化技術に長い実績を有する塩化ビニル樹脂を選
定し、膜構造を改質することにより、その優れた血液適
合性を、損うことなしに補体活性化を抑制せしめる方法
について鋭意検討を行った。その結果生体の液性免疫反
応の主体である補体活性化反応は膜を形成する素材の特
性が、血漿が膜面を通過する際の接触面積と膜を血漿が
通過する際のhydrodynamicsを因子として
生体との接触時、すみやかに発生するものであり、従っ
て補体活性化の程度はこれらの3つを全て因子とするも
のであることを見出し、本発明の端を得た。
In order to ensure maximum safety for blood donors, the researchers selected vinyl chloride resin, which is chemically stable and has a long track record in blood purification technology as a material for blood bags, etc., and developed a membrane structure. We conducted extensive research into ways to suppress complement activation without impairing its excellent blood compatibility by modifying it. As a result, the complement activation reaction, which is the main body of the humoral immune response in living organisms, is determined by the characteristics of the material forming the membrane, the contact area when plasma passes through the membrane surface, and the hydrodynamics when plasma passes through the membrane. It has been found that complement activation occurs immediately upon contact with a living body, and that the degree of complement activation is determined by all three factors, leading to the present invention.

即ち、本発明は塩化ビニル樹脂からなる中空糸膜であっ
て、内径が150〜450μm1膜厚が100μm以下
である生体適合性に優れた血漿分離膜である。
That is, the present invention is a hollow fiber membrane made of vinyl chloride resin, which has an inner diameter of 150 to 450 μm and a membrane thickness of 100 μm or less, and is a plasma separation membrane with excellent biocompatibility.

本発明者らは、素材に関しては、疎水性高分子であって
、しかも安定な塩化ビニル樹脂を選定したが、ここで素
材の特性は素材が膜に加工されることによる生体との接
触面積増大に鑑み、無可塑塩化ビニルを特に用いた点が
本発明の第1のポイントである。
As for the material, the present inventors selected vinyl chloride resin, which is a hydrophobic polymer and is stable. In view of this, the first point of the present invention is that unplasticized vinyl chloride is particularly used.

即ち、従来迄に一般に医療用としても広く用いられてい
た可塑剤入りの塩化ビニル樹脂、塩化コンパウンドにあ
っては、それが膜に成形された際には、膜面から人体に
悪影響を与える可塑剤が溶出することもさることながら
、補体の活性化の程度も著しいものであることを見出し
たためである。
In other words, when vinyl chloride resins and chloride compounds containing plasticizers, which have been widely used for medical purposes up until now, are molded into membranes, plasticity that has an adverse effect on the human body is generated from the membrane surface. This is because we found that not only the agent elutes, but also the degree of complement activation is significant.

従って、本発明は無可塑塩化ビニル樹脂を原料としてな
るものであるが、次いでこれが膜に成形された際の膜厚
は、血漿との接触面積を低く抑えるためできる限り低く
抑えることが必要であることを見出した。
Therefore, although the present invention uses unplasticized vinyl chloride resin as a raw material, when this is then formed into a membrane, the thickness of the membrane must be kept as low as possible in order to keep the contact area with blood plasma low. I discovered that.

即ち、膜厚が100μmを超えた場合には、補体が活性
化することは抑えるのは著しく困難になるためである。
That is, if the film thickness exceeds 100 μm, it becomes extremely difficult to suppress complement activation.

しかしながら、血漿分離膜は、その構造上、約平均0.
05〜0.5μm程度の孔半径を有する非常にporo
usなものであるため、膜自体は構造上の局新約な乱れ
を持ちやすく、又、実際上強度的にも弱く、そのため血
漿分離膜の膜度は機械的な特性からはできる限り厚い方
が望ましく、従って現実的には本発明による血漿分離膜
の膜厚は30〜100μmである必要がある。
However, due to its structure, plasma separation membranes have an average of about 0.
Very poro with pore radius around 0.05~0.5μm
Since the membrane itself is made of US, it tends to have structural disturbances and is actually weak in terms of strength. Therefore, from the viewpoint of mechanical properties, the membrane thickness of the plasma separation membrane should be as thick as possible. Desirably, therefore, realistically, the plasma separation membrane according to the present invention needs to have a thickness of 30 to 100 μm.

又、本発明の最も大きなポイントは、膜面の生体適合性
を膜血漿分離のhydrodynamics (動水力
学)よりコントロールした点にある。
The most important point of the present invention is that the biocompatibility of the membrane surface is controlled by the hydrodynamics of membrane plasma separation.

即ち、血漿分離膜のhydrodyna■Icsとは、
血漿分離時、膜内を血漿が流れる際、血漿がいかにスム
ースに流れるかに関するものであり、膜構造を議論する
際に従来より用いられてきたtrorouslty f
actor(曲路率)を小さくすることによって達成さ
れるものである。補体の活性化機序について、本発明者
らは鋭意検討をつんだ結果、補体の活性化フローは、c
lassical Pathway等で広く知られるよ
うに、C1compv愉成時等においである程度の時間
が必要であり、血漿蛋白質の通過時に局所的な停滞がお
こった際にはじめて補体の活性化が積極的におこり得る
ことを見出したのである。
In other words, the plasma separation membrane hydrodyna Ics is
It relates to how smoothly plasma flows through a membrane during plasma separation, and has traditionally been used when discussing membrane structure.
This is achieved by reducing the actor (curvature rate). As a result of extensive research into the complement activation mechanism, the present inventors found that the complement activation flow is c.
As is widely known in the lassical pathway, a certain amount of time is required for C1compv to develop, and complement activation only occurs when local stagnation occurs during the passage of plasma proteins. I found out what I could get.

さらに、膜構造と血漿分離時のhydrodynami
cs即ち、補体活性化現象との間の検討を進めた結果、
我々が膜素材として選定した塩化ビニル樹脂においては
溶融法による製膜が一般的であるが、本発明においては
本発明の最も大きなPa1ntは塩化ビニル樹脂を溶媒
に溶解させ二重管ノズルより乾式紡糸又は湿式紡糸する
ことであり、該紡糸方法により製膜する際、中空糸膜の
芯液にも凝固性液体を用い、中空糸の内外より凝固させ
る結果、得られる連続空孔構造により良好な生体適合性
を得ることを見出し、新しい塩ビの製膜により本発明を
完成させるに至った。
Furthermore, membrane structure and hydrodynamics during plasma separation
As a result of further investigation between cs, that is, complement activation phenomenon,
The vinyl chloride resin we selected as the membrane material is generally formed by a melting method, but in the present invention, the largest Pa1nt of the present invention is to dissolve the vinyl chloride resin in a solvent and dry spin it using a double tube nozzle. Alternatively, wet spinning is used. When forming a membrane using this spinning method, a coagulating liquid is also used for the core liquid of the hollow fiber membrane, and as a result of coagulating from the inside and outside of the hollow fiber, the resulting continuous pore structure provides a good biological They found that compatibility was achieved and completed the present invention by forming a new PVC film.

即ち、最も好ましい膜は可塑剤を含まない塩化ビニル樹
脂を溶媒に溶解させ紡糸浴とし、これをか100μm以
下好ましくは30〜100μmの中空糸膜である。
That is, the most preferable membrane is a hollow fiber membrane of 100 .mu.m or less, preferably 30 to 100 .mu.m, prepared by dissolving a vinyl chloride resin containing no plasticizer in a solvent to prepare a spinning bath.

しかも、本発明により得られる膜構造は生体適合性とし
て補体活性面で優れるのみならず、血液適合性として、
血漿分離時に溶血が起こりにくい特性も有しているので
ある。
Moreover, the membrane structure obtained by the present invention not only has excellent biocompatibility in terms of complement activity, but also has excellent blood compatibility.
It also has the property of being less likely to cause hemolysis during plasma separation.

以下、実施例により本発明の効果について説明するが、
それに先立って本発明において実施した評価法とその詳
細について説明する。
Hereinafter, the effects of the present invention will be explained with reference to Examples.
Prior to that, the evaluation method implemented in the present invention and its details will be explained.

本発明により得られた中空糸は、通常のウレタン接若法
によりモジュール化を行い、長さ20c。
The hollow fiber obtained according to the present invention was made into a module by the usual urethane welding method and had a length of 20 cm.

を効膜面積0.2 /の血漿分離モジュールに成形した
was molded into a plasma separation module with an effective membrane area of 0.2/ml.

得られた血漿分離モジュールは、抗凝固剤としてACD
液を添加した牛血液を用い、牛血液を50 mff1/
minで供する条件で血漿離性能の評価方法を行った。
The obtained plasma separation module contains ACD as an anticoagulant.
Bovine blood was added to 50 mff1/
A method for evaluating plasma separation performance was performed under conditions of min.

評価方法は例えば人工臓器141902〜1910 1
985日赤、伴野丞計、池田博之らの報告にもみられる
りような一般的評価法である。最大血漿分離速度QP、
□、血漿蛋白質のふるい係数(Sieving Coe
fficient、 SCと略す) SCTotal 
Proteinについて実施した。
Evaluation methods include, for example, artificial organs 141902-1910 1
This is a general evaluation method as seen in reports by 985 Japanese Red Cross, Jokei Banno, Hiroyuki Ikeda, and others. Maximum plasma separation rate QP,
□, plasma protein sieving coefficient (Sieving Coe
(abbreviated as SC) SCTotal
It was conducted for protein.

尚、SCTotal Proteinとは分離血漿中の
総蛋白濃度 されるものである。
Incidentally, SCTotal Protein refers to the total protein concentration in separated plasma.

又、得られた血漿分離膜の生体適合性は、(I)補体活
性化面と■血液適合性(溶血)の両面で評価した。
The biocompatibility of the obtained plasma separation membrane was evaluated in terms of (I) complement activation and (2) blood compatibility (hemolysis).

(り  補体活性化面:中空糸膜100c113 (内
径換算の膜面積)を細断し、ゼラチンベロナール緩衝液
1mff1を加え、浸漬した後、ヒト全補体(Cord
ls If製)をIIIIt加え37℃で1時間CH3
0を測定し、補体活性化の程度を評価した。
(ri) Complement activation surface: Hollow fiber membrane 100c113 (membrane area in terms of inner diameter) was cut into small pieces, 1mff1 of gelatin veronal buffer solution was added, and after immersion, human total complement (Cord
ls If) was added to CH3 at 37℃ for 1 hour.
0 was measured to evaluate the degree of complement activation.

■ 溶血特性面:牛血液を用いた血漿分離性能評価にお
いて血漿中の遊離ヘモグロビン濃度をモニターすること
で、溶血を評価した。
■ Hemolysis characteristics: Hemolysis was evaluated by monitoring the free hemoglobin concentration in plasma in plasma separation performance evaluation using bovine blood.

(実施例) 実施例 1 無可塑塩化ビニル樹脂を溶媒、非溶媒の3元系に溶解さ
せ、Dopeとした後、内液として溶媒、非   □“
溶媒水の混合溶媒を用い、二重管ノズルより吐出し、 
llr gapを1 cmとった後、溶媒、非溶媒水よ
りなる凝固浴に導き、中空糸とした後、水洗を行い、次
いで膜構造保持剤としてグリセリン処理を行った後、乾
燥させ、中空糸型血漿分離膜を得た。又、その内径は3
00μm1膜厚は50μmであった。
(Example) Example 1 An unplasticized vinyl chloride resin is dissolved in a ternary system of a solvent and a non-solvent to make Dope, and then a solvent and a non-solvent are used as the internal liquid.
Using a mixed solvent of solvent and water, discharge it from a double tube nozzle,
After taking a 1 cm llr gap, the fibers were introduced into a coagulation bath consisting of a solvent and non-solvent water to form hollow fibers, washed with water, treated with glycerin as a membrane structure retaining agent, dried, and formed into hollow fibers. A plasma separation membrane was obtained. Also, its inner diameter is 3
00 μm1 film thickness was 50 μm.

この血漿分離膜を前述の方法でモジュール化し、評価し
た結果を表1に示す。
This plasma separation membrane was modularized by the method described above, and the results of evaluation are shown in Table 1.

表  −1 *  Trans Memblane Pressur
e (膜間圧力差)良好な結果が得られた。又、補体活
動化面でもが32CH50であったのに対し、該血漿分
離膜では29C)(50と大差なく良好な生体適合性を
示した。
Table-1 * Trans Membrane Pressur
e (Transmembrane pressure difference) Good results were obtained. In addition, in terms of complement activation, it was 32CH50, whereas the plasma separation membrane showed good biocompatibility with no significant difference from 29C)(50).

比較例 1 中空糸の内径はそのまま300μmで膜厚を150μm
とした他は、実施例1と全く同一の条件で製膜を行い、
やはり実施例と同一の方法で評価した結果を第2表に示
す。
Comparative example 1 The inner diameter of the hollow fiber is 300 μm and the film thickness is 150 μm.
The film was formed under the same conditions as in Example 1, except that
Table 2 shows the results of evaluation using the same method as in Examples.

表  −2 やはり良好な結果が得られた。この補体活性化し、生体
適合性は劣った。
Table 2 Again, good results were obtained. This complement activation resulted in poor biocompatibility.

比較例 2 ポリマーとして酢酸セルロース(CA)を用い、実施例
1と同様に製膜し、内径300μm1膜厚50μmの中
空糸型血漿分離膜を得、やはり実施例同様にして評価を
行った結果を第3表に示す。
Comparative Example 2 Using cellulose acetate (CA) as the polymer, a membrane was formed in the same manner as in Example 1 to obtain a hollow fiber plasma separation membrane with an inner diameter of 300 μm and a membrane thickness of 50 μm, and the results were evaluated in the same manner as in Example. It is shown in Table 3.

表  −3 やはり良好な結果が得られた。但し、補体活性化を示し
、生体適合性面で大きく劣った。
Table 3 Again, good results were obtained. However, it exhibited complement activation and was significantly inferior in terms of biocompatibility.

(発明の効果) 本発明による時、優れた血漿分離性能をもち、かつ補体
活性の少ない中空繊維型血漿分離膜を提供することがで
きる。
(Effects of the Invention) According to the present invention, a hollow fiber plasma separation membrane having excellent plasma separation performance and low complement activity can be provided.

特許出願人  東洋紡績株式会社Patent applicant: Toyobo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)塩化ビニル樹脂からなる中空糸膜であってその内
径が150〜450μm以下、膜厚が100μmである
生体適合性に優れた血漿分離膜。
(1) A plasma separation membrane with excellent biocompatibility, which is a hollow fiber membrane made of vinyl chloride resin and has an inner diameter of 150 to 450 μm or less and a membrane thickness of 100 μm.
(2)塩化ビニル樹脂からなる中空糸膜が乾湿式により
製膜されたことを特徴とする特許請求の範囲第1項に記
載された血漿分離膜。
(2) The plasma separation membrane according to claim 1, wherein the hollow fiber membrane made of vinyl chloride resin is formed by a dry-wet method.
JP26839787A 1987-10-24 1987-10-24 Hollow yarn-type membrane for blood plasma separation Pending JPH01111404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26839787A JPH01111404A (en) 1987-10-24 1987-10-24 Hollow yarn-type membrane for blood plasma separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26839787A JPH01111404A (en) 1987-10-24 1987-10-24 Hollow yarn-type membrane for blood plasma separation

Publications (1)

Publication Number Publication Date
JPH01111404A true JPH01111404A (en) 1989-04-28

Family

ID=17457907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26839787A Pending JPH01111404A (en) 1987-10-24 1987-10-24 Hollow yarn-type membrane for blood plasma separation

Country Status (1)

Country Link
JP (1) JPH01111404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038169A (en) * 1999-08-03 2001-02-13 Kuraray Co Ltd Blood plasma component separation membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193786A (en) * 1975-02-15 1976-08-17 Makurokagatano chukuseni
JPS5551816A (en) * 1978-10-12 1980-04-15 Nippon Zeon Co Ltd Production of hollow fiber of vinyl halide polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193786A (en) * 1975-02-15 1976-08-17 Makurokagatano chukuseni
JPS5551816A (en) * 1978-10-12 1980-04-15 Nippon Zeon Co Ltd Production of hollow fiber of vinyl halide polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038169A (en) * 1999-08-03 2001-02-13 Kuraray Co Ltd Blood plasma component separation membrane

Similar Documents

Publication Publication Date Title
US4906375A (en) Asymmetrical microporous hollow fiber for hemodialysis
US5496637A (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
EP0488095B1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
AU2008303785B2 (en) Hydrophilic membranes with a non-ionic surfactant
JPWO2002009857A1 (en) Modified hollow fiber membrane
JP3899128B2 (en) Apparatus and method for biospecific removal of heparin
JP3640737B2 (en) Polysulfone-based permselective hollow fiber membrane
JPH0966225A (en) Production of hollow fiber membrane, hollow fiber membrane and dialyser
JP3193819B2 (en) Artificial organ
JPH01111404A (en) Hollow yarn-type membrane for blood plasma separation
JP2000126286A (en) Blood treating device
JP2734571B2 (en) Hollow fiber type plasma separation membrane
EP0570232A2 (en) Microporous polysulfone supports suitable for removal of low density lipoprotein-cholesterol
JP2805873B2 (en) Hollow fiber type plasma separation membrane
JP4381073B2 (en) Blood purification membrane with excellent blood compatibility
Mujais et al. Membranes for extracorporeal therapy
Paul Polymer hollow fiber membranes for removal of toxic substances from blood
JP2855725B2 (en) Porous hollow fiber membrane for plasma separation
KR20050078748A (en) A blood compatible hollow fiber membrane, and a process of preparing for the same
JP3170817B2 (en) Hollow fiber membrane with improved dispersibility and method for producing the same
JPS5893708A (en) Acrylonitrile semipermeable membrane
JP4381022B2 (en) Hollow fiber blood purification membrane
JP2575487B2 (en) Blood treatment material and blood purifier
JPH0197472A (en) Multistage plasma separation method