JPH01106022A - Organic nonlinear optical material and production thereof - Google Patents

Organic nonlinear optical material and production thereof

Info

Publication number
JPH01106022A
JPH01106022A JP62264526A JP26452687A JPH01106022A JP H01106022 A JPH01106022 A JP H01106022A JP 62264526 A JP62264526 A JP 62264526A JP 26452687 A JP26452687 A JP 26452687A JP H01106022 A JPH01106022 A JP H01106022A
Authority
JP
Japan
Prior art keywords
nonlinear optical
gel
optical material
organic nonlinear
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62264526A
Other languages
Japanese (ja)
Inventor
Takashi Kurihara
隆 栗原
Toshikuni Kaino
戒能 俊邦
Shiro Matsumoto
松元 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62264526A priority Critical patent/JPH01106022A/en
Publication of JPH01106022A publication Critical patent/JPH01106022A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pyridine Compounds (AREA)

Abstract

PURPOSE:To chemically and physically stabilize the title material and to form the material which exhibits nonlinear optical response at a high speed with high efficiency by using a specific compd. as a raw material and subjecting this material to an ion exchange to hydrophobic anion in a gel. CONSTITUTION:The compd. having the structure expressed by the formula I is used as the raw material and is subjected to the ion exchange to the hydrophobic anion in the gel. In the formula, R, R' denote an alkyl group of <=18C and X<-> denotes hydrogen ion. The main characteristics of this production process lie in that the novel org. nonlinear optical material is synthesized by the ion exchange in the gel and that the good-quality crystal material is simultaneously obtd. The nonlinear optical constant is thereby increased and the response speed is increased as compared to an inorg. semiconductor such as gallium- arsenic.

Description

【発明の詳細な説明】 (発明の産業上利用分野) 本発明は有機非線形光学材料およびその製造方法、さら
に詳細には、光双安定素子などの非線形光学素子用素材
として有用な有機非線形光学材料およびそのIn方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field of the Invention) The present invention relates to an organic nonlinear optical material and a method for producing the same, and more particularly, to an organic nonlinear optical material useful as a material for a nonlinear optical element such as an optical bistable element. and its In method.

〔発明の従来技術および問題点] 三次の非線形光学材料は、光双安定現象を利用した光ス
インチ、光メモリへの応用が可能であるため、将来の光
素子の中心素材として、活発な研究開発が進められてい
る。中でも有機非線形光学材料は、■KDP・LiNb
0.などの無機強銹電体結晶に比べ、非線形光学定数が
大きい、■ガリウムー砒素などの無機゛11導体に比べ
応答速慶が速い、■高速応答・室温動作が確認され”ζ
いる塩化第一銅(CuCffi)では困難なμmオーダ
ーの薄膜化が容易なこと、など従来の材料では同時に満
たされることのなかった要求条件をすべて満足する可能
性を秘めており、活発な材料探索が進められている。
[Prior Art and Problems of the Invention] Third-order nonlinear optical materials can be applied to optical switches and optical memories that utilize the optical bistability phenomenon, and therefore active research and development is being conducted as core materials for future optical devices. It is progressing. Among the organic nonlinear optical materials, ■KDP/LiNb
0. It has a larger nonlinear optical constant than inorganic strong electric crystals such as gallium-arsenic, ■ has faster response speed than inorganic 11 conductors such as gallium-arsenic, and has been confirmed to have high-speed response and room temperature operation.
It has the potential to satisfy all the requirements that could not be met simultaneously with conventional materials, such as the ability to easily form thin films on the μm order, which is difficult to do with cuprous chloride (CuCffi), which is difficult to achieve with cuprous chloride (CuCffi). is in progress.

現在、三次の効果の大きい有機非線形光学材料として知
られているものは、ポリジアセチレン(特にPTS) 
・ポリアセチレンに代表されるπ共役高分子がほとんど
である。しかし、これらπ共役高分子系の光非線形性は
、価電子帯の自由電子の分極を根源としているため、無
機半導体と掘めて類似した欠点、すなわち狭いバンドギ
ャップに基づいた共鳴効果による応答速度の低下から逃
れられない。
Currently, polydiacetylene (especially PTS) is known as an organic nonlinear optical material with a large third-order effect.
・Most of them are π-conjugated polymers represented by polyacetylene. However, since the optical nonlinearity of these π-conjugated polymer systems is rooted in the polarization of free electrons in the valence band, they suffer from a drawback similar to that of inorganic semiconductors, namely, the response speed due to the resonance effect based on the narrow band gap. cannot escape from the decline.

一方、低分子化合物系では、DEANS : N。On the other hand, for low-molecular compound systems, DEANS: N.

N−ジエチル−4”−二ト1コスチルベン(小林、眼部
、インターナショナル・カンタlトエレクトロニクス・
コンファレンス・テクニカル・ダイジェスト、90ペー
ジ、TUNN2、(1987))や、DMS−PTS:
N、N−ジメチル−4−アミノ−N゛−メチル−4゛−
スチルバゾリウム−P−)ルエンスルホナート(検印、
中西、開田、加藤、第4回オプティックスとエレクトロ
ニクス有機材料に関するシンポジウム講演予稿集、9−
11、(1987))が、第三高調波発生効率において
π共役高分子に匹敵する特性を有していることが明らか
にされつつある。しかし、これら低分子化合物は、結晶
化のため長時間融液状態に保つと分解するなどの理由か
ら、光学純度の高い結晶材料を得ることが難しく素子応
用には至っていない。さらに、既知のスチルバゾリウム
系化合物は吸湿性が高いため、現状のままでは実用に供
すことは難しい。
N-diethyl-4”-dito-1-costilbene (Kobayashi, Ophthalmology, International Kantal Electronics)
Conference Technical Digest, page 90, TUNN2, (1987)) and DMS-PTS:
N,N-dimethyl-4-amino-N゛-methyl-4゛-
Stilbazolium-P-) luenesulfonate (inspection seal,
Nakanishi, Kaida, Kato, Proceedings of the 4th Symposium on Organic Materials for Optics and Electronics, 9-
11, (1987)) has a property comparable to that of π-conjugated polymers in terms of third harmonic generation efficiency. However, these low-molecular compounds are difficult to obtain crystalline materials with high optical purity because they decompose when kept in a melt state for a long time due to crystallization, and have not been applied to devices. Furthermore, known stilbazolium compounds have high hygroscopicity, so it is difficult to put them into practical use as is.

本発明は上記問題点に鑑みなされたものであって、化学
的・物理的に安定であり、かつ高速・高効率の光非線形
応答を示す有機非線形光学材料を提供し、さらにその新
規な製造方法を提供することを目的としている。
The present invention has been made in view of the above problems, and provides an organic nonlinear optical material that is chemically and physically stable and exhibits a fast and highly efficient optical nonlinear response, and also provides a novel method for producing the same. is intended to provide.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点を解決するため、本発明による有機非線形光
学材料は、 下記−数式〔1〕(ただし、RおよびRo
は、炭素数18以下のアルキル基、A−は疏水性アニオ
ンを表す。)で示されることを特徴としている。
In order to solve the above problems, the organic nonlinear optical material according to the present invention has the following formula [1] (where R and Ro
represents an alkyl group having 18 or less carbon atoms, and A- represents a hydrophobic anion. ).

また、本発明による有機非線形光学材料の製造方法は、
−数式(Illで示される構造の化合物を原料とし、こ
れをゲル中で、疏水性アニオンにイオン交換することを
特徴としている。
Furthermore, the method for producing an organic nonlinear optical material according to the present invention includes:
- It is characterized by using a compound having the structure represented by the formula (Ill) as a raw material and ion-exchanging it into a hydrophobic anion in a gel.

(It) (ただしRおよびRoは、炭素数18以下のアルキル基
、X−はハロゲンイオンを示す)本発明をさらに詳しく
説明する。
(It) (R and Ro are alkyl groups having 18 or less carbon atoms, and X- is a halogen ion) The present invention will be explained in more detail.

本発明の有機非線形光学材料は、下記−数式%式% (r) 上記式中、RおよびR”は、炭素数18以下のアルキル
基である。炭素数が18を越えると、合成が困難なうえ
、ゲル中での結晶化の際に、激しい会合が起こり、均一
は結晶作製が困難になる恐れを生じるからである。特に
好ましくは、炭素数が8以下である。最も好ましくはR
がエチル基、Roがメチル基の時、合成・結晶育成・非
線形光学効果のすべての面で、優れた材料が得られる。
The organic nonlinear optical material of the present invention has the following formula: % Formula % (r) In the above formula, R and R'' are alkyl groups having 18 or less carbon atoms. In addition, during crystallization in the gel, intense association may occur, making it difficult to produce uniform crystals. Particularly preferably, the number of carbon atoms is 8 or less. Most preferably, R
When is an ethyl group and Ro is a methyl group, a material excellent in all aspects of synthesis, crystal growth, and nonlinear optical effects can be obtained.

X−は疏水性アニオンを表し、本発明においては疏水性
アニオンであれば、特に限定されるものではない。たと
えば実施例に示したp−トルエンスルホナート、テトラ
フェニルボレートなどの他、けい皮酸アニオン、各種カ
ルボン酸アニオンなどの一種以上であることができる。
X- represents a hydrophobic anion, and in the present invention, it is not particularly limited as long as it is a hydrophobic anion. For example, in addition to p-toluenesulfonate and tetraphenylborate shown in the examples, it can be one or more of cinnamic acid anions, various carboxylic acid anions, and the like.

特にテトラフェニルボレートである時、化学的・物理的
に安定で、非線形光学効果の大きい良質の結晶材料が得
られる。
In particular, when tetraphenylborate is used, a high-quality crystalline material that is chemically and physically stable and has a large nonlinear optical effect can be obtained.

本発明による有機非線形光学材料の主要な特徴は、π共
役低分子系化合物でありながら、従来のπ共役高分子を
上回る二次の非線形光学効果を有するだけでなく、従来
からイオン性結晶の欠点であった潮解性を大幅に低下さ
せ、実用材料としての要求条件を十分満足できるように
なった点にある。
The main feature of the organic nonlinear optical material according to the present invention is that although it is a π-conjugated low-molecular compound, it not only has a second-order nonlinear optical effect that exceeds that of conventional π-conjugated polymers, but also has the drawbacks of conventional ionic crystals. The deliquescent property of this material has been significantly reduced, and it has become possible to fully satisfy the requirements for a practical material.

本発明の有機非線形光学材料〔1〕の製造にあたっては
、−数式CI+)の化合物 〔■〕 (ただし、RおよびRoは、炭素数18以下のアルキル
、;5.x−はハロゲンイオンを示す)をゲル中で、前
記ハロゲンを疏水性アニオンにイオン交換することによ
って製造できる。
In producing the organic nonlinear optical material [1] of the present invention, a compound [■] of formula CI+) (wherein R and Ro are alkyl having 18 or less carbon atoms; 5.x- represents a halogen ion) can be produced by ion-exchanging the halogen to a hydrophobic anion in a gel.

本発明による有機非線形光学材料の製造方法の主要な特
徴は、ゲル中にてイオン交換し、新規な有機非線形光学
材料を合成すると同時に良質の結晶材料が得られる点で
ある。
The main feature of the method for producing an organic nonlinear optical material according to the present invention is that a novel organic nonlinear optical material can be synthesized by ion exchange in a gel, and at the same time, a high-quality crystalline material can be obtained.

ゲルを用いたイオン交換結晶化法については、1(、K
、ヘニッシェ著、中国一部・中田公子訳、“結晶成長と
ゲル法゛°、コロナ社刊、(1972)、に詳しい解説
がある。−船釣には、無機系イオン結晶の育成用として
、メタ・ケイ酸ナトリウムを主成分とするゲルが用いら
れているが、本発明による有機非線形光学材料の製造方
法においては、中性条件で容易にゲルを形成し、しかも
化学的に不活性なポリシロキサンゲルを用いることによ
って、良質大型結晶材料を得ることに成功したものであ
る。
Regarding the ion exchange crystallization method using gel, 1(,K
A detailed explanation can be found in ``Crystal Growth and Gel Methods'' by Hennische, translated by Kimiko Nakata, published by Corona Publishing Co., Ltd. (1972). A gel containing sodium metasilicate as the main component is used, but in the method for producing an organic nonlinear optical material according to the present invention, a chemically inert polyester that easily forms a gel under neutral conditions is used. By using siloxane gel, we succeeded in obtaining a high quality large crystal material.

本発明による有機非線形光学材料を製造するにあたって
は特に以下の手順が有効である。すなわち、■N−アル
キルーT−ピコリニウムハライドとp−(N、N”−ジ
アルキルアミノ)ベンズアルデヒドを塩基触媒下で脱水
縮合する。再結晶により精製し、高純度のスチルバゾリ
ウムハライドを得る。■スチルバゾリウムハライドの溶
解したゲル上に、疏水性アニオン溶液を注ぎ、アニオン
が徐々にゲル中に拡11シするように、25±0. 5
°Cに設定した恒温槽に静置する。■−週間すると、ゲ
ル内に、最大3X3X0. 7m”のスチルバゾリウム
テトラフェニルボレート〔1〕の単結晶が士数個得られ
る。ゲルの種類、溶媒の極性、ゲルの堅さ、スチルバゾ
リウムハライドや疏水性アニオンの濃度、育成m度によ
り結晶成長の速度、結晶の形状、結晶の光学純度をコン
トロールすることができる。
The following procedure is particularly effective in producing the organic nonlinear optical material according to the present invention. That is, (1) N-alkyl-T-picolinium halide and p-(N,N''-dialkylamino)benzaldehyde are dehydrated and condensed under a base catalyst. Purification is performed by recrystallization to obtain highly pure stilbazolium halide. ■Pour the hydrophobic anion solution onto the gel in which stilbazolium halide has been dissolved, and add 25±0.5 so that the anion gradually spreads into the gel.
Leave it in a constant temperature bath set at °C. - After a week, up to 3X3X0. Several 7 m" single crystals of stilbazolium tetraphenylborate [1] are obtained. Type of gel, polarity of solvent, hardness of gel, concentration of stilbazolium halide and hydrophobic anion, growth m The rate of crystal growth, crystal shape, and optical purity of the crystal can be controlled by controlling the degree of crystal growth.

以下、実施例に基づき本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail based on Examples.

〔実施例1〜2〕 常法に従って、N−メチル−γ−ピコリニウムアイオダ
イドとp−(N、N” −ジエチルアミノ)ベンズアル
デヒドをピペリジン存在下で脱水縮合し、N、  N’
 −ジエチル−4−アミノ−N“−メチル−4゛−スチ
ルバゾリウム−アイオダイド(以下DES Iと略す)
を得た。このメタノール溶液に、テトラフェニルボレー
トメタノール溶液を加え、−夜装置した。析出固体(N
、 N”−ジエチル−4−アミノ−No−メチル−4°
−スチルバゾリウム−テトラフェニルボレート:以下ブ
ト略す)をろ取し二分して、一方をエタノール(〔実施
例1〕)、他方をアセトン:メタノール:ヘキサン1:
1:2((実施例2〕)から再結晶した。
[Examples 1 to 2] According to a conventional method, N-methyl-γ-picolinium iodide and p-(N,N''-diethylamino)benzaldehyde were dehydrated and condensed in the presence of piperidine to form N, N'
-diethyl-4-amino-N"-methyl-4"-stilbazolium iodide (hereinafter abbreviated as DES I)
I got it. A methanol solution of tetraphenylborate was added to this methanol solution, and the mixture was heated overnight. Precipitated solid (N
, N”-diethyl-4-amino-No-methyl-4°
-Stilbazolium-tetraphenylborate (hereinafter abbreviated as but) is collected by filtration and divided into two parts, one part is ethanol ([Example 1]), the other part is acetone: methanol: hexane: 1:
It was recrystallized from 1:2 ((Example 2)).

(実施例3〜5〕 実施例1にて合成したDES Iを、テトラエトキシシ
ラン:メタノール:水に加え、完全に溶解させた。30
°Cで一夜放置し、ゲル化が完了し、ゲル中にDES 
[の析出がないことを確かめた。
(Examples 3 to 5) DES I synthesized in Example 1 was added to tetraethoxysilane:methanol:water and completely dissolved. 30
Leave to stand overnight at °C to complete gelation and DES in the gel.
It was confirmed that there was no precipitation of [.

ゲル上にテトラフェニルボレート溶液(メタノール:水
=1 : 1)を注ぎ、25±0.5°Cに設定した恒
温槽に一週間静置した。−週間後、ゲル内に成長した最
大3X3X0.7mm’のDEST単結晶が士数個得ら
れた。実施例3〜5における枯菌育成条件を下表に示す
。実施例5において、上記結晶を含め大型良質結晶が得
られた。
A tetraphenylborate solution (methanol:water=1:1) was poured onto the gel, and the gel was left to stand in a constant temperature bath set at 25±0.5°C for one week. After - weeks, several DEST single crystals with a maximum size of 3X3X0.7 mm' were obtained, grown in the gel. The Bacillus subtilis growth conditions in Examples 3 to 5 are shown in the table below. In Example 5, large quality crystals including the above crystals were obtained.

(実施例6) やや疏水性に劣るアニオンとして、P−)ルエンスルホ
ナートを用いて、〔製造例1〕と同様の方法で、DES
 Iをアニオン交換し、N、 N’ −ジエチル−4−
アミノ−N”−メチル−4゛−スチルバゾリウム−P−
1−ルエンスルホナート(DBS−pTSと略す)を得
た。メタノールで再結晶し、赤色板状晶を得た。
(Example 6) DES was produced in the same manner as in [Production Example 1] using P-)luenesulfonate as an anion with slightly inferior hydrophobicity.
I was anion-exchanged to form N, N'-diethyl-4-
Amino-N"-methyl-4"-stilbazolium-P-
1-luenesulfonate (abbreviated as DBS-pTS) was obtained. Recrystallization from methanol gave red plate-like crystals.

〔比較例1〕 [実施例1]で合成したDBS +をメタノールから再
結晶し、赤色板状晶を得た。
[Comparative Example 1] DBS + synthesized in [Example 1] was recrystallized from methanol to obtain red plate-like crystals.

〔比較例2) (実施例1]と同様の操作で、N−メチル−T−ピコリ
ニウムアイオダイドとp−(N、N−ジメチルアミノ)
ベンズアルデヒドをピペリジン存在下で脱水縮合し、N
、 N−ジメチル−4−アミノ−No−メチル−4°−
スチルバゾリウム−アイオダイド(以下DMS +と略
す)を得た。これをエタノールから再結晶し、赤色板状
晶を得た。
[Comparative Example 2] In the same manner as in (Example 1), N-methyl-T-picolinium iodide and p-(N,N-dimethylamino)
Benzaldehyde is dehydrated and condensed in the presence of piperidine, and N
, N-dimethyl-4-amino-No-methyl-4°-
Stilbazolium iodide (hereinafter abbreviated as DMS+) was obtained. This was recrystallized from ethanol to obtain red plate-like crystals.

〔比較例3] 〔実施例1)と同様の方法で、DMS Iをアニオン交
換し、N、 N−ジメチル−4−アミノ−No−メチル
−4゛ −スチルバゾリウム−テトラフェニルボレート
(DMSTと略す)を得た。メタノールで再結晶し、赤
色板状晶を得た。アイオダイドで合成したDES Iを
メタノールから再結晶し、赤色板状晶を得た。
[Comparative Example 3] In the same manner as in [Example 1), DMSI was anion-exchanged to obtain N,N-dimethyl-4-amino-No-methyl-4'-stilbazolium-tetraphenylborate (abbreviated as DMST). I got it. Recrystallization from methanol gave red plate-like crystals. DES I synthesized with iodide was recrystallized from methanol to obtain red platelet crystals.

〔実施例1〜6、比較例1〜3のSHO相対強度および
THG相対強度の測定結果] THG測定の方法は、以下に述べるとおりである。光源
には、Nd : YAGレーザ−(波長1゜06 tt
m、  10 Hz −8KW/c+a)を用い、可視
光をカットした後、レンズで集光したビームを試料に照
射し、試料より放射された光をモノクロメータに通して
、THC光(0,353μm)のみの強度をホトマルで
検知した。測定試料としては、実施例1〜6、比較例1
〜3の9種類を用意し、すべて105〜120μmの粒
径に粉砕したものを用いた。さらに、観測されるTHG
光が、尿素やMNA (2−メチル−4−ニトロアニリ
ン)に見られるような二次のカスケード効果(ω+2ω
)ではなく、純粋に三次の効果のみによることを確認す
るために、同一試料のSHGについても測定した。
[Measurement results of SHO relative intensity and THG relative intensity of Examples 1 to 6 and Comparative Examples 1 to 3] The method of THG measurement is as described below. The light source was a Nd: YAG laser (wavelength: 1°06 tt
After cutting off the visible light, the sample was irradiated with a beam focused by a lens, and the light emitted from the sample was passed through a monochromator to generate THC light (0,353 μm). ) was detected using a photomultiplier. Examples 1 to 6 and Comparative Example 1 were used as measurement samples.
3 to 3 were prepared, and all were ground to a particle size of 105 to 120 μm. Furthermore, the observed THG
Light causes a second-order cascade effect (ω+2ω
), and to confirm that this was due to a purely third-order effect, SHG of the same sample was also measured.

第2表 〔発明の効果〕 以上説明したように、本発明による有機非線形光学材料
およびその製造方法は、従来になく大きな三次の光非線
形有機結晶を提供するので、これを利用した光学素子、
例えば光双安定性素子、光スィッチ、光メモリなど将来
の光通信用集積素子の開発に極めて有効である。
Table 2 [Effects of the Invention] As explained above, the organic nonlinear optical material and the method for producing the same according to the present invention provide a third-order optically nonlinear organic crystal that is larger than ever before, so optical elements using the same,
For example, it is extremely effective for the development of future optical communication integrated devices such as optical bistable devices, optical switches, and optical memories.

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式〔 I 〕 ▲数式、化学式、表等があります▼ 〔 I 〕 (ただし、RおよびR’は、炭素数18以下のアルキル
基、A^−は疏水性アニオンを表す。)で示されること
を特徴とする有機非線形光学材料。
(1) The following general formula [I] ▲Mathematical formulas, chemical formulas, tables, etc.▼ [I] (However, R and R' are alkyl groups with 18 or less carbon atoms, and A^- represents a hydrophobic anion.) An organic nonlinear optical material characterized by:
(2)一般式〔II〕で示される構造の化合物を原料とし
、これをゲル中で、疏水性アニオンにイオン交換するこ
とを特徴とする有機非線形光学材料の▲数式、化学式、
表等があります▼ 〔II〕 (ただし、RおよびR’は、炭素数18以下のアルキル
基、X^−はハロゲンイオンを示す)(3)前記ゲルと
してポリシロキサンゲルであることを特徴とする特許請
求の範囲第2項記載の有機非線形光学材料の製造方法。
(2) ▲Mathematical formula, chemical formula,
There are tables, etc. ▼ [II] (However, R and R' are alkyl groups having 18 or less carbon atoms, and X^- represents a halogen ion.) (3) The gel is a polysiloxane gel. A method for producing an organic nonlinear optical material according to claim 2.
JP62264526A 1987-10-20 1987-10-20 Organic nonlinear optical material and production thereof Pending JPH01106022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62264526A JPH01106022A (en) 1987-10-20 1987-10-20 Organic nonlinear optical material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62264526A JPH01106022A (en) 1987-10-20 1987-10-20 Organic nonlinear optical material and production thereof

Publications (1)

Publication Number Publication Date
JPH01106022A true JPH01106022A (en) 1989-04-24

Family

ID=17404482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62264526A Pending JPH01106022A (en) 1987-10-20 1987-10-20 Organic nonlinear optical material and production thereof

Country Status (1)

Country Link
JP (1) JPH01106022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912257A (en) * 1995-09-06 1999-06-15 The Research Foundation Of State University Of New York Two-photon upconverting dyes and applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912257A (en) * 1995-09-06 1999-06-15 The Research Foundation Of State University Of New York Two-photon upconverting dyes and applications
US6402037B1 (en) 1995-09-06 2002-06-11 The Research Foundation Of State University Of New York Two-photon upconverting dyes and applications

Similar Documents

Publication Publication Date Title
JPS6089437A (en) Diacetylene with liquid crystal phase
JPH075572B2 (en) 2- [2- (2-hydroxyphenyl) vinylpyrazine and method for producing the same
US4746199A (en) Non-linear optic process using N-(4-nitrophenyl)-2-(hydroxymethyl)-pyrrolidine and deuterated derivatives thereof
JPH0377923A (en) Organic nonlinear optical material
JPH01106022A (en) Organic nonlinear optical material and production thereof
DE3710889A1 (en) PYRROLO (1.2-B) AZINE
JPS62255475A (en) Novel diacetylene compound polymerizable in solid phase
EP0570250A2 (en) Crystalline structure of monohydrogentartrates, process for its preparation and application thereof
JPS62136601A (en) Organic nonlinear optical material
JPH02135427A (en) Nonlinear optical material consisting of conjugated organic amine salt
JPH01245229A (en) Nonlinear type optical crystal and its production
JPH0438335B2 (en)
JP2530725B2 (en) Organic nonlinear optical material
JPH03140927A (en) Organic nonlinear optical material
EP0619308A1 (en) Crystalline structures of the hydrogen chloride salt of 2-amino-5-nitro-pyridinium, process for their preparation and an electrooptical device with such structures
JPH04140728A (en) Nonlinear optical material
JPH0377871A (en) 2-(2-(3-hydroxyphenyl)vinyl)-pyrazine and its production
JPH03259126A (en) Novel aromatic nonlinear optical material
JPH02138163A (en) Nonlinear optical material composed of conjugated organic amine salt
JPH0469624A (en) Nonlinear optical material
JPH03181919A (en) Organic nonlinear optical material
JPH0432822A (en) Nonlinear optical material containing aromatic ring
JPH02226125A (en) Organic nonlinear optical material
JPH03140928A (en) Organic nonlinear optical material
JPH03230127A (en) Aromatic nonlinear optical material