JPH01104820A - Production of high-strength acrylic fiber - Google Patents

Production of high-strength acrylic fiber

Info

Publication number
JPH01104820A
JPH01104820A JP25800787A JP25800787A JPH01104820A JP H01104820 A JPH01104820 A JP H01104820A JP 25800787 A JP25800787 A JP 25800787A JP 25800787 A JP25800787 A JP 25800787A JP H01104820 A JPH01104820 A JP H01104820A
Authority
JP
Japan
Prior art keywords
spinning
strength
organic solvent
acrylonitrile
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25800787A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nishihara
良浩 西原
Yoshinori Furuya
古谷 ▲き▼典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP25800787A priority Critical patent/JPH01104820A/en
Publication of JPH01104820A publication Critical patent/JPH01104820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fiber with high strength and high modulus, useful for tire cords, reinforcing fibers for composite materials etc., by dry-wet spinning of a stock solution of a high-molecular weight acrylonitrile-based polymer into a coagulating both retained at low temperatures followed by drawing at high draw ratio. CONSTITUTION:A stock solution prepared by dissolving in an organic solvent (pref. DMF or dimethylacetamide) an acrylonitrile-based polymer containing >=95wt.% of acrylonitrile, with a weight-average molecular weight of >=1,000,000 is subjected to dry-wet spinning into a coagulating both retained at <=-40 deg.C (pref. a mixed solvent of organic solvent/alcohol) followed by drawing so as to be >=20 for the overall draw ratio, thus obtaining the objective fiber having the following characteristics: 1. tenacity...>=22g/d 2. tensile modulus...>=250g/d 3. degree of orientation (pi) measured by X-ray spectrometry...pref. >=95% 4. crystallinity parameter (beta)...<=0.8 deg. 5. knot strength...>=4g/d 6. knot modulus...>=150g/d.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はタイヤコード、複合材料用補強繊維等の工業用
繊維として有用な高強力アクリル繊維の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the production of high-strength acrylic fibers useful as industrial fibers such as tire cords and reinforcing fibers for composite materials.

〔従来の技術〕[Conventional technology]

従来アクリル繊維は衣料用として大量に生産され七いる
が、工業用または産業用としては機械的強度が十分でな
いために、はとんど使用されていないのが現状であり、
工業用もしく性産業資材用繊維として使用可能な機械的
特性を有するアクリル繊維を製造しようとする試みが数
多く提案されてきた。
Traditionally, acrylic fibers have been produced in large quantities for clothing, but at present they are rarely used for industrial or industrial purposes because they do not have sufficient mechanical strength.
Many attempts have been made to produce acrylic fibers with mechanical properties that can be used as industrial or sex industry material fibers.

たとえば特開昭57−51819号公報には湿式または
乾湿式紡糸法によシ得られた繊維を湿式延伸し無緊張下
に乾燥し引き続いて加熱板上に接触延伸して有効延伸倍
率を9倍以上25倍以下にして高弾性率のアクリル繊維
とすることが提案されている。一方特開昭57−161
117号公報には相対粘度が2−5〜&0のアクリロニ
トリ〃系重合体を乾式または湿式紡糸し洗浄もしくは洗
浄後に湿式延伸し二緊張下に加熱ローμ上で乾燥し、乾
熱下に熱処理する方法が提案されている。更に特開昭5
9−199809号公報には分子量が40万のアクリμ
系ポリマーを減圧、脱泡しながらその溶剤に溶解し得ら
れた紡糸原液を紡出、凝固させた後、後工程になるほど
高温度の条件下で多段延伸し次いで130℃以下で緊張
下乾燥するととKよって20 g / d以上のアクリ
ル系繊維を製造することが記載されている。
For example, Japanese Patent Application Laid-open No. 57-51819 discloses that fibers obtained by wet or wet-dry spinning are wet-stretched, dried under no tension, and then contact-stretched on a heating plate to increase the effective stretching ratio to 9 times. It has been proposed to make acrylic fibers with a high elastic modulus by 25 times or less. On the other hand, JP-A-57-161
No. 117 discloses that an acrylonitrium-based polymer having a relative viscosity of 2-5 to &0 is spun by dry or wet processes, washed, or wet-stretched after washing, dried on a heated row μ under two tensions, and heat-treated under dry heat. A method is proposed. In addition, Japanese Patent Application Publication No. 5
Publication No. 9-199809 describes acryl μ with a molecular weight of 400,000.
After the spinning stock solution obtained by dissolving the polymer in the solvent under reduced pressure and defoaming is spun and solidified, it is stretched in multiple stages at higher temperatures in subsequent steps, and then dried under tension at 130°C or less. It is described that acrylic fibers having a weight of 20 g/d or more can be produced by using K and K.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの公知技術はいずれも引張強度を向上させること
のみをその要旨としており、このような引張強度の向上
は他の機械的性質、たとえば引張弾性率や結節強度を低
下させることが多く、引張強度のみならず弾性率や結節
強度などの他の機械的特性を総合的に向上、改良するも
のではなく、引張強度が約20g/dに及ぶデュポン社
の1ケプフー1に代表される全芳香族ポリアミド繊維の
ように複合材料の補強繊維に要求される繊維物性を満足
するものではない。
The gist of all of these known techniques is to improve tensile strength, and such improvement in tensile strength often reduces other mechanical properties, such as tensile modulus and knot strength. In addition, it does not comprehensively improve or improve other mechanical properties such as elastic modulus and knot strength. Unlike fibers, it does not satisfy the fiber properties required for reinforcing fibers in composite materials.

そこで本発明者らは重量平均分子f1100万以上の高
重合度のアクリロニ)!J/L’系重合体を用いて繊維
の機械的特性のパフンスがとれておシ、さらに耐薬品性
、耐候性を向上させることを目的として共重合成分(第
2成分)の少ない高強力アクリル繊維の製造法について
鋭意検討の結果、−40℃という極低温の凝固浴を用い
ることによって従来のアクリル繊維に比較して、その機
械的強度が著しく向上した高強力アクリル繊維を工業的
に有利に製造する方法を見出し本発明を完成した。
Therefore, the present inventors developed an acrylonitrile with a high degree of polymerization with a weight average molecular f11 million or more! J/L'-based polymers are used to remove the puffiness of the mechanical properties of fibers, and high-strength acrylic with a small amount of copolymerized components (second component) is used to improve chemical resistance and weather resistance. As a result of extensive research into fiber manufacturing methods, we have developed industrially advantageous high-strength acrylic fibers that have significantly improved mechanical strength compared to conventional acrylic fibers by using an extremely low temperature coagulation bath of -40°C. They discovered a manufacturing method and completed the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は、95重量%以上のアクリロニトリルを
含有する重量平均分子量100万以上のアクリロニトリ
ル系重合体を有機溶媒に溶解して得られる紡糸原液を一
40℃以下の温度に保った凝固浴中に乾湿式紡糸し、全
延伸倍率が20倍以上となるように延伸して、強度22
g / d以上、弾性率250g/d以上の高強力アク
リル繊維を製造することにある。
The gist of the present invention is to prepare a spinning stock solution obtained by dissolving an acrylonitrile polymer containing 95% by weight or more of acrylonitrile and having a weight average molecular weight of 1 million or more in an organic solvent in a coagulation bath maintained at a temperature of -40°C or less. Wet-dry spinning and stretching the total stretching ratio to 20 times or more to achieve a strength of 22
The objective is to produce high-strength acrylic fibers with a g/d or more and an elastic modulus of 250 g/d or more.

本発明で用いるアクリロニトリル系重合体は重量平均分
子量100万以上、好ましくは120万以上であること
が必要である。本発明の高強力アクリル繊維を製造する
ためには、20倍以上の高延伸をおこなう必要があるが
、重量平均分子量100万未満のアクリロニ)IJA/
系重合体を用いた場合にはこのような高延伸をおこなう
ことは不可能であシ、従って本発明の高強力アクリル繊
維を得ることはできない。本発明に用いられる重量平均
分子量100万以上のアクリロニ)l171z系重合体
は通常の懸濁重合法、乳化重合法及び溶液重合法によっ
て製造することができるが、たとえば特開昭61−11
1510号公報に記載の方法すなわちアクリロ::)!
JA/10〜70重量%、有機溶剤15〜60重量%、
水16〜60重量−の混合物をフジカル開始剤の存在下
で重合した後、水及び/又は有機溶剤を該単量体1重量
部に対し1〜10重量部添加して重合する方法が、繊維
賦形に適した高分子量重合体が安定に得られるという点
で好ましい。
The acrylonitrile polymer used in the present invention needs to have a weight average molecular weight of 1,000,000 or more, preferably 1,200,000 or more. In order to produce the high-strength acrylic fiber of the present invention, it is necessary to perform high stretching of 20 times or more.
When such a polymer is used, it is impossible to perform such high stretching, and therefore the high strength acrylic fiber of the present invention cannot be obtained. The acrylonitrile) l171z-based polymer having a weight average molecular weight of 1 million or more used in the present invention can be produced by ordinary suspension polymerization, emulsion polymerization, and solution polymerization.
The method described in Publication No. 1510, that is, acrylic ::)!
JA/10-70% by weight, organic solvent 15-60% by weight,
A method in which a mixture of 16 to 60 parts by weight of water is polymerized in the presence of a physical initiator, and then 1 to 10 parts by weight of water and/or an organic solvent is added to 1 part by weight of the monomer to polymerize the fibers. This is preferable in that a high molecular weight polymer suitable for shaping can be stably obtained.

ここで用いる有機溶剤としてはDMF (ジメチμホ〃
ムアミド)、DMAc(ジメチルアセトアミド)、r−
プチロフクトン、DM80(ジメチルスルホキシド)等
が挙げられる。また、ここで用いるアクリロニトリル系
重合体の組成はそのアクリル繊維の使用目的によって自
由に選択できるが、その繊維物性の点から共重合割合を
5重量−以下にするのが好ましい。5重量%を越える共
重合成分を共重合した場合には、その耐候性、耐アルカ
リ性等、アクリル繊維の長所が低下する。共重合成分の
具体例としては、メチルアクリレートまたはメタクリレ
ート、メチルアクリレートまたはメタクリレート、n−
もしくはイソ−もしくはt−ブチルアクリレ−Fまたは
メタクリV−)、2−エチμヘキシμアクリレートまた
はメタクリレート、α−クロロアクリロニトリル、2−
ヒドロキシエチμアクリレート、ヒドロキVμエチルア
クリV−)、ヒドロキシアルキルアクリレートまたはメ
タクリV−)、塩化ビニμ、塩化ビニリデン、臭化ビニ
μ、酢酸ビニμ等の不飽和単量体が挙げられるが、これ
以外にもアクリロニトリルと共重合しうる単量体ならい
ずれの単量体でもよく、単独であるいは併用してアクリ
ロニトリルと共重合させることができる。
The organic solvent used here is DMF
DMAc (dimethylacetamide), r-
Examples include petilofucton and DM80 (dimethyl sulfoxide). Further, the composition of the acrylonitrile polymer used here can be freely selected depending on the purpose of use of the acrylic fiber, but from the viewpoint of the physical properties of the fiber, it is preferable that the copolymerization ratio is 5 weight or less. If more than 5% by weight of the copolymerization component is copolymerized, the advantages of the acrylic fiber, such as its weather resistance and alkali resistance, will be reduced. Specific examples of copolymer components include methyl acrylate or methacrylate, methyl acrylate or methacrylate, n-
or iso- or t-butyl acrylate-F or methacrylate V-), 2-ethyμhexyμ acrylate or methacrylate, α-chloroacrylonitrile, 2-
Examples include unsaturated monomers such as hydroxyethyl acrylate, hydroxyethyl acrylate, hydroxyalkyl acrylate or methacrylate V-), vinyl chloride, vinylidene chloride, vinyl bromide, and vinyl acetate, but other than these Any monomer can be used as long as it can be copolymerized with acrylonitrile, and it can be copolymerized with acrylonitrile alone or in combination.

本発明の高強力アクリル繊維を製造するためには前記の
高分子量のアクリロニトリル系重合体をDMF、DMA
c、DMSOあるいはγ−ブチロフクトン等の有機溶媒
に溶解して紡糸原液を調製する。高強力繊維を得るため
には繊維を構成する分子鎖全体を繊維軸方向に伸びた、
いわゆる伸び切シ鎖の状態に近づけることが必要であり
、紡糸、延伸段階でポリマー分子鎖を引きそろえ易くす
るために分子鎖が十分にほぐれた重合体溶液(紡糸原液
)を調製することが重要である。また乾湿式紡糸法によ
って紡糸をおこなう場合、その操作性を考えると紡糸原
液の粘度を45℃で500〜1500ポイズの範囲に設
定するのが好ましい。
In order to produce the high-strength acrylic fiber of the present invention, the above-mentioned high molecular weight acrylonitrile polymer is mixed with DMF and DMA.
c. A spinning stock solution is prepared by dissolving in an organic solvent such as DMSO or γ-butyrofuctone. In order to obtain high-strength fibers, the entire molecular chains constituting the fibers are stretched in the fiber axis direction.
It is necessary to approach the so-called stretched chain state, and it is important to prepare a polymer solution (spinning dope) in which the molecular chains are sufficiently loosened to make it easier to align the polymer molecular chains during the spinning and stretching stages. It is. Further, when spinning is performed by a dry-wet spinning method, it is preferable to set the viscosity of the spinning dope in the range of 500 to 1500 poise at 45° C. in view of its operability.

1500ポイズを越える粘度を持つ紡糸原液を用いて紡
糸をおこなう場合には紡糸ノズル、原液r逸機をはじめ
として紡糸装置に非常に高い圧力が加わることになジ紡
糸機の耐久性が低下する。さらに紡糸原液を高温にする
ことで粘度を低下させることも可能であるが、この場合
溶媒や原液の安定性が低下するといった問題点が生じて
くる。一方5001イズ未満の紡糸原液を用いた場合は
曳糸性が低下し乾湿式紡糸法によって安定に紡糸するこ
とはできない。また重量平均分子量100万以上のアク
リロニトリル系重合体を用いて500〜1500ポイズ
の紡糸原液をえるためにはその原液濃度を10重量−以
下にする必要がある。ところがアクリロニ1すμを95
重量−以上含有した重量平均分子量100万以上のアク
リロニトリル系重合体は、従来の水/有機溶媒の2成分
より成る凝固浴を用い重合体濃度が10−以下の低濃度
紡糸原液を凝固させると、重合体濃度が低いため凝固過
程において急激に脱溶媒がおこる結果、ボイド等が発生
し易くなり、このような未延伸糸を延伸したとしても望
ましい繊維物性を発現させることはできない。このよう
な構造欠陥をなくす方法として凝固浴の温度を低下させ
凝固糸条の形成時に脱溶媒を徐々におこなおうとしても
、従来の水/有機溶媒の2成分系からなる凝固浴ではそ
の融点の関係から極低温まで温度を低下させることは不
可能であり、また、温度を低下させるにつれその粘度も
著しく増大するため、凝固糸条に対する抵抗が大きくな
シ、凝固糸にダメージを与える結果、このような水/有
機溶媒系の凝固浴で温度を低下させるのは好ましい方法
であるとは言えない。しかしながら、たとえばその−例
として有機溶媒/アルコール系溶媒の混合溶媒からなる
凝固浴を用いることによって、理由は明らかではないが
低濃度紡糸原液からでも水/有機溶媒の2成分系にくら
べてボイド等の構造欠陥の発生が抑制され幅広い凝固条
件にて紡糸することが可能である。さらに、水/有機溶
媒の2成分系にくらべその融点が大幅に低下し、さらに
、−40℃以下の極低温領域において本凝固液の粘度は
ほとんど上昇しないため、極低温での紡糸が可能となっ
た。
When spinning is performed using a spinning dope with a viscosity exceeding 1500 poise, extremely high pressure is applied to the spinning equipment, including the spinning nozzle and dope spinning machine, reducing the durability of the spinning machine. Furthermore, it is possible to lower the viscosity by heating the spinning stock solution to a high temperature, but in this case, a problem arises in that the stability of the solvent and the stock solution decreases. On the other hand, if a spinning dope having a diameter of less than 5001 is used, the spinnability deteriorates and stable spinning cannot be performed by the dry-wet spinning method. Further, in order to obtain a spinning stock solution of 500 to 1,500 poise using an acrylonitrile polymer having a weight average molecular weight of 1 million or more, the concentration of the stock solution must be 10% by weight or less. However, Acryloni 1μ is 95
An acrylonitrile polymer having a weight average molecular weight of 1,000,000 or more and having a weight average molecular weight of 1,000,000 or more can be obtained by coagulating a low-concentration spinning stock solution with a polymer concentration of 10- or less using a conventional coagulation bath consisting of two components of water and an organic solvent. Since the polymer concentration is low, solvent removal occurs rapidly during the coagulation process, and as a result, voids are likely to occur, and even if such an undrawn yarn is drawn, desired fiber properties cannot be developed. As a method to eliminate such structural defects, even if attempts are made to lower the temperature of the coagulation bath and gradually remove the solvent during the formation of coagulated threads, the melting point of the conventional coagulation bath consisting of a two-component system of water and organic solvent is low. Due to the relationship between It cannot be said that reducing the temperature in such a water/organic solvent system coagulation bath is a preferable method. However, for example, by using a coagulation bath consisting of a mixed solvent of organic solvent/alcoholic solvent, even from a low-concentration spinning stock solution, voids can be generated compared to a two-component system of water/organic solvent, although the reason is not clear. The occurrence of structural defects is suppressed, and spinning can be performed under a wide range of coagulation conditions. Furthermore, its melting point is significantly lower than that of a two-component system of water/organic solvent, and the viscosity of this coagulated liquid hardly increases in the cryogenic region below -40°C, making spinning at cryogenic temperatures possible. became.

このような極低温での紡糸が可能な凝固浴の例としては
、メチ〜アyコーμ、エチルアルコール、プロピμアル
コール、ブチルア〃コーμ等のアルコール系溶媒の他に
ケトン類、エステル類、エーテル類、ハロゲン化炭化水
素類等があげられる。
Examples of coagulation baths that allow spinning at such extremely low temperatures include alcoholic solvents such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol, as well as ketones, esters, Examples include ethers and halogenated hydrocarbons.

これらを単独で使用することも差支えないが好ましくは
紡糸原液の調製に使用した有機溶媒との混合系溶媒を使
用するのがよく、好ましい有機溶媒/アルコール系溶媒
の重量比は0〜70/100〜30、より好ましくは1
0〜60790〜40である。
Although these may be used alone, it is preferable to use a mixed solvent with the organic solvent used for preparing the spinning dope, and the preferred weight ratio of organic solvent/alcoholic solvent is 0 to 70/100. ~30, more preferably 1
0-60790-40.

従来の乾湿式紡糸法では凝固浴温度が高いため、紡糸原
液が凝固浴と接触するとまず、溶剤の除去が進行しその
後にゲル化するようになるが、本発明のように極低温の
凝固浴を用いると、まず紡糸原液のゲル化が進行し、そ
の後溶剤の除去がおこなわれるようになる。このように
して得られる凝固糸はスビノーダμ分解によって高濃度
のポリアクリロニトリル系重合体が低濃度のなかでネッ
トワーク状に分離して訃り、よシ低温の凝固浴を用いる
ほうが、重合体が均質に分散した凝固糸が得られ、この
ような凝固糸を延伸することによって、高強力アクリル
繊維を製造することができる。
In the conventional dry-wet spinning method, the temperature of the coagulation bath is high, so when the spinning stock solution comes into contact with the coagulation bath, first the solvent is removed and then gelation occurs.However, as in the present invention, the coagulation bath temperature is high. When using this method, gelation of the spinning solution first proceeds, and then the solvent is removed. In the coagulated threads obtained in this way, the high concentration polyacrylonitrile polymer separates into a network in a low concentration due to Subinoda μ decomposition, and it is better to use a coagulation bath at a lower temperature to make the polymer more homogeneous. A coagulated thread in which the fibers are dispersed is obtained, and by drawing such a coagulated thread, a high-strength acrylic fiber can be produced.

紡糸をおこなう場合のノズルの孔径は、α3目以上のも
のが好ましい。本発明のように高分子量の重合体を用い
る場合には、紡糸原液の重合体濃度を下げる必要があり
、したがって重合体濃度の高い紡糸原液を用いる場合に
比較して吐出量を高く設定して紡糸する必要があるが、
孔径が0.31m11以下の紡糸ノズルを用いた場合に
は吐出量を増すと紡糸ドラフトが低下し凝固浴中での糸
のたるみ、ひいては糸斑の原因となるため好ましくない
The diameter of the nozzle for spinning is preferably α3 or larger. When using a high molecular weight polymer as in the present invention, it is necessary to lower the polymer concentration in the spinning dope, and therefore the discharge rate must be set higher than when using a spinning dope with a high polymer concentration. It is necessary to spin,
When a spinning nozzle with a hole diameter of 0.31 m11 or less is used, increasing the discharge rate lowers the spinning draft, causing slack in the yarn in the coagulation bath and even yarn unevenness, which is not preferable.

このようにして得られた凝固糸は後工程になる程高温に
なるように温度勾配をつけた温水で凝固糸に含まれる有
機溶媒を洗浄しながら延伸をおこない、次に100℃を
越える温度で延伸をおこなう必要がある。このような1
00℃を越える温度での延伸は、スチーム延伸や高沸点
溶媒を熱媒として用いる湿熱雰囲気での延伸法が挙げら
れる。なお、高沸点溶媒としては、水溶性の多価アルコ
ール、例えばエチレングリコール、ジエチレングリコ−
μ、トリエチレングリコ−μ、グリセリン等が挙げられ
る。
The coagulated thread obtained in this way is stretched while washing the organic solvent contained in the coagulated thread with hot water with a temperature gradient so that the temperature becomes higher in the later steps, and then stretched at a temperature exceeding 100°C. It is necessary to perform stretching. 1 like this
Examples of stretching at a temperature exceeding 00° C. include steam stretching and stretching in a moist heat atmosphere using a high boiling point solvent as a heating medium. Note that the high boiling point solvent includes water-soluble polyhydric alcohols such as ethylene glycol and diethylene glycol.
μ, triethylene glyco-μ, glycerin, and the like.

こうして得られた延伸糸は必要によっては再 。The drawn yarn thus obtained may be recycled if necessary.

度洗浄をおこなった後、油剤処理し100〜150℃の
温度で乾燥、焼きつぶしをおこない、さらに好ましくは
150〜250℃の温度で1.05〜1.2倍の乾熱延
伸をおこなって、全延伸倍率20倍以上とする必要があ
る。
After thorough washing, oil treatment, drying and baking at a temperature of 100 to 150°C, and more preferably dry heat stretching of 1.05 to 1.2 times at a temperature of 150 to 250°C. The total stretching ratio must be 20 times or more.

このようにして得られる本発明のアクly繊維は単繊維
強度が22g/d以上、弾性率250g/d以上の物性
を有しており、工業用、産業用、または繊維強化用とし
て多くの分野、具体的にはキャンパス、アスベスト代w
、m糸、ホース、重布、タイヤコートなどの工業用とし
て、さらに複合材料の補強用繊維として使用することが
可能である。
The acly fiber of the present invention obtained in this way has physical properties such as a single fiber strength of 22 g/d or more and an elastic modulus of 250 g/d or more, and is used in many fields for industrial use, industrial use, or fiber reinforcement. , Specifically, campus and asbestos fees lol
It can be used for industrial purposes such as , m yarn, hoses, heavy fabrics, and tire coats, and as a reinforcing fiber for composite materials.

〔実施例〕〔Example〕

以下、実施例によシ本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained using Examples.

イ0重量平均分子量(Mvr)は、ジメチルホルムアミ
ドを溶媒として、25℃にて重合体の極限粘度〔η〕を
測定し、次の式によって算出した値である。
The weight average molecular weight (Mvr) is a value calculated by the following formula by measuring the intrinsic viscosity [η] of the polymer at 25° C. using dimethylformamide as a solvent.

〔η) = A 35 X ’I O−’ (My)’
、”口4強度及び伸度はS−S曲線より算出した。
[η) = A 35 X 'I O-'(My)'
The strength and elongation were calculated from the SS curve.

ハ、配向度及び結晶性パラメーターはX線回折法によっ
て次の手順で測定した。
C. The degree of orientation and crystallinity parameters were measured by X-ray diffraction according to the following procedure.

(イ)配向度(π) アクリ〃繊維の赤道方向の散乱角2θ=176付近の反
射につき方位角方向の回折プロファイルを得、グラフ上
にペースフィンを引きピークの半値幅Hの(度)よシ次
の式で求めた。
(a) Degree of orientation (π) Obtain a diffraction profile in the azimuth direction for the reflection near the scattering angle 2θ = 176 in the equatorial direction of the acrylic fiber, and draw a pace fin on the graph to calculate the half-width H of the peak (in degrees). It was calculated using the following formula.

呻) 結晶性パフメーター@ アクリル繊維の全散乱角での回折プロファイルを得、グ
ラフ上にペースフィンを引きピークの半値幅Bより次の
式で求めた。
) Crystalline Puffmeter @ A diffraction profile of the acrylic fiber at all scattering angles was obtained, a pace fin was drawn on the graph, and the half-width B of the peak was calculated using the following formula.

(β) = Bl −b2 (ただしbは標準試料(シリコンパウダー)の半値幅) なお、配向度(π)及び結晶性パラメーター■は理学電
気社製RAD−Aを用い、下記の条件で測定した。
(β) = Bl - b2 (where b is the half width of the standard sample (silicon powder)) The degree of orientation (π) and crystallinity parameter ■ were measured using RAD-A manufactured by Rigaku Denki under the following conditions. .

管電圧、管電流: 40KV、200mA(π)管電圧
、管電流: 40KV、 2 Q 0rnk(1)N1
フィルター使用 実施例1、比較例1 懸濁重合法で調製した重量平均分子量85万、109万
のポリアクリロニトリ/L’(AN100チ)を用い、
表1に示したとおシ45℃における粘度が600〜80
0ポイズの紡糸原液を得た。この紡糸原液を50℃に保
持したスピンタンクから孔径α55日、孔数50のノズ
ルを用い、メチルアルコ−/L//DMAc−90/1
0(重量チ)、温度−50℃の凝固浴へ乾湿式紡糸法を
用いて紡出した。なお、ノズル面と凝固浴の距離は5■
とした。こうして得られた凝固糸を、70℃の温水中で
3倍、沸水中で!L5倍、さらに200℃のグリセリン
中で2.4倍延伸した後油剤処理し、140℃で乾燥し
た後、更に200℃で1.15倍の乾熱延伸をおこない
、計211L9倍の延伸倍率を達成した。このようにし
て得られたアクリル繊維の物性を表1に示した。
Tube voltage, tube current: 40KV, 200mA (π) Tube voltage, tube current: 40KV, 2 Q 0rnk (1) N1
Filter Use Example 1, Comparative Example 1 Using polyacrylonitrile/L' (AN100) with a weight average molecular weight of 850,000 and 1,090,000 prepared by suspension polymerization method,
The viscosity at 45℃ shown in Table 1 is 600-80
A spinning stock solution of 0 poise was obtained. This spinning stock solution was transferred from a spin tank maintained at 50°C using a nozzle with a pore diameter α of 55 days and a number of holes of 50 to methyl alcohol/L//DMAc-90/1.
0 (weight) and spun into a coagulation bath at a temperature of -50°C using a dry-wet spinning method. The distance between the nozzle surface and the coagulation bath is 5■
And so. The coagulated thread obtained in this way was heated three times in 70°C water, and then in boiling water! After stretching L5 times and further 2.4 times in glycerin at 200°C, oil treatment and drying at 140°C, dry heat stretching was further performed at 200°C 1.15 times, resulting in a total stretching ratio of 211L9 times. Achieved. Table 1 shows the physical properties of the acrylic fiber thus obtained.

実施例2 懸濁重合法で調製した重量平均分子量105万かつメタ
クリル酸を3重量俤共重合したアクリロニトリル系重合
体を用い、実施例1と同様にして紡糸した。得られたア
クリル繊維の物性は、繊度1.14d、強度(結節強度
)22.4(6,1)g/d、伸度(結節伸度)EL5
(2,1)−1弾性率(結節弾性率)261(158)
g/d、X線配向度(ff) 9 & 4 % 、結晶
性z<’yメーターに)LL69°であった。
Example 2 Spinning was carried out in the same manner as in Example 1 using an acrylonitrile polymer prepared by suspension polymerization and having a weight average molecular weight of 1,050,000 and copolymerized with 3 weights of methacrylic acid. The physical properties of the obtained acrylic fiber are: fineness 1.14 d, strength (knot strength) 22.4 (6,1) g/d, elongation (knot elongation) EL5.
(2,1)-1 elastic modulus (nodule elastic modulus) 261 (158)
g/d, X-ray orientation (ff) 9 & 4%, crystallinity z<'y (meter) LL69°.

実施例3 実施例1で用いた重量平均分子量109万の紡糸原液を
用い、紡糸ノズル孔径のみを変えてその他は全く同一条
件で紡糸実験を行った。その結果を表2に示した。
Example 3 Using the spinning dope having a weight average molecular weight of 1,090,000 used in Example 1, a spinning experiment was conducted under exactly the same conditions except that only the diameter of the spinning nozzle hole was changed. The results are shown in Table 2.

比較例2 実施例1で用いた重量平均分子量109万のポリアクリ
ロニドVtVを用いて表3の組成及び粘度を有する紡糸
原液を得、紡糸実験を行った。
Comparative Example 2 A spinning dope having the composition and viscosity shown in Table 3 was obtained using the polyacrylonide VtV having a weight average molecular weight of 1,090,000 used in Example 1, and a spinning experiment was conducted.

実施例4 懸濁重合法で調製した重量平均分子量134万0ダリア
クリロニトリ/L/(ANlool)を用いDMAcに
溶解し、重合体濃度5重量%の紡糸原液を調製した。尚
、その時の粘度は540ポイズ(45℃〕であった。こ
の紡糸原液を50℃に保持したスピンタンクから孔径0
.35閣、孔数50のノズルを用いメチルアルコ一μ/
DMAC=90/10 (重量%)、温度−50℃の凝
固浴へ乾湿式紡糸法を用いて紡糸した。
Example 4 Using a weight average molecular weight of 1,340,000 dahliacrylonitrile/L/L/(ANlool) prepared by a suspension polymerization method, it was dissolved in DMAc to prepare a spinning dope having a polymer concentration of 5% by weight. The viscosity at that time was 540 poise (45°C).
.. 35, using a nozzle with 50 holes, methyl alcohol 1μ/
DMAC=90/10 (wt %) and spinning was performed in a coagulation bath at a temperature of -50° C. using a dry-wet spinning method.

なお、ノズル面と凝固浴の距離は5露とした。Note that the distance between the nozzle surface and the coagulation bath was 5 degrees.

こうして得られた凝固糸を70℃の温水中で5倍、沸水
中で3倍、さらに200℃のグリセリン中で3倍延伸し
た後油剤処理し1’ 40 ℃で乾燥した後、更に20
0℃で1.1倍の乾熱延伸を行い計29.7倍の延伸を
施した。このようにして得られたアク!J/I/繊Rは
、繊度1.06 d、強度(結節強度)2五1(&4)
g/d、伸度(結節伸度)7.85(2,41)1弾性
率(結節弾性率272(180)g/d%X線配向度(
π) 96.7 %、結晶性パ’F、+1−グー(/1
cL6B°であった。
The coagulated thread thus obtained was stretched 5 times in hot water at 70°C, 3 times in boiling water, and 3 times in glycerin at 200°C, treated with an oil agent, dried at 1'40°C, and then stretched for 20
Dry heat stretching was carried out at 0° C. by a factor of 1.1, resulting in a total stretching of 29.7 times. Aku obtained in this way! J/I/Fiber R has a fineness of 1.06 d and a strength (knot strength) of 251 (&4).
g/d, elongation (knot elongation) 7.85 (2,41) 1 elastic modulus (knot elastic modulus 272 (180) g/d% X-ray orientation degree (
π) 96.7%, crystalline Pa'F, +1-gu (/1
It was cL6B°.

比較例3 実施例1で用いた、重量子均分%11109万のポリア
クリロニトリルより得られる紡糸原液を用いて、実施例
1と同様にして凝固浴の温度のみを0℃に変えて紡糸実
験を行った。得られたアクリル繊維の強度は19.6 
g / dであった。
Comparative Example 3 Using the spinning dope obtained from the polyacrylonitrile with an average weight fraction of 111,090,000 used in Example 1, a spinning experiment was carried out in the same manner as in Example 1 except that only the temperature of the coagulation bath was changed to 0°C. went. The strength of the obtained acrylic fiber is 19.6
g/d.

Claims (1)

【特許請求の範囲】 1、95重量%以上のアクリロニトリルを含有する重量
平均分子量100万以上のアクリロニトリル系重合体を
有機溶媒に溶解して得られる紡糸原液を−40℃以下の
温度に保つた凝固浴中に乾湿式紡糸し、全延伸倍率が2
0倍以上となるように延伸することを特徴とする強度2
2g/d以上、弾性率250g/d以上の高強力アクリ
ル繊維を製造する方法。 2、凝固浴が有機溶媒/アルコール系溶媒の混合溶媒で
あることを特徴とする特許請求の範囲第1項記載の方法
。 3、アクリル繊維のX線配向度(π)が95%以上、結
晶性パラメターβが0.8°以下であることを特徴とす
る特許請求の範囲第1項記載の方法。 4、孔径が0.3mm以上の紡糸ノズルで紡糸すること
を特徴とする特許請求の範囲第1項記載の方法。 5、有機溶媒がジメチルホルムアミド又はジメチルアセ
トアミドであることを特徴とする特許請求の範囲第2項
記載の方法。 6、アルコール系溶媒がメチルアルコールであることを
特徴とする特許請求の範囲第2項記載の方法。 7、紡糸原液の粘度が45℃で500〜1500ポイズ
であることを特徴とする特許請求の範囲第1項記載の方
法。 8、アクリル繊維の結節強度が4g/d以上、結節弾性
率が150g/d以上であることを特徴とする特許請求
の範囲第1項記載の方法。
[Claims] 1. Coagulation of a spinning stock solution obtained by dissolving an acrylonitrile polymer containing 95% by weight or more of acrylonitrile and having a weight average molecular weight of 1,000,000 or more in an organic solvent at a temperature of -40°C or less. Wet-dry spinning in a bath, with a total stretching ratio of 2.
Strength 2 characterized by stretching to 0 times or more
A method for producing high-strength acrylic fibers having an elastic modulus of 250 g/d or more and a modulus of elasticity of 2 g/d or more. 2. The method according to claim 1, wherein the coagulation bath is a mixed solvent of an organic solvent/alcoholic solvent. 3. The method according to claim 1, wherein the degree of X-ray orientation (π) of the acrylic fiber is 95% or more, and the crystallinity parameter β is 0.8° or less. 4. The method according to claim 1, characterized in that spinning is carried out using a spinning nozzle with a hole diameter of 0.3 mm or more. 5. The method according to claim 2, wherein the organic solvent is dimethylformamide or dimethylacetamide. 6. The method according to claim 2, wherein the alcohol solvent is methyl alcohol. 7. The method according to claim 1, wherein the viscosity of the spinning dope is 500 to 1500 poise at 45°C. 8. The method according to claim 1, wherein the acrylic fiber has a knot strength of 4 g/d or more and a knot elastic modulus of 150 g/d or more.
JP25800787A 1987-10-13 1987-10-13 Production of high-strength acrylic fiber Pending JPH01104820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25800787A JPH01104820A (en) 1987-10-13 1987-10-13 Production of high-strength acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25800787A JPH01104820A (en) 1987-10-13 1987-10-13 Production of high-strength acrylic fiber

Publications (1)

Publication Number Publication Date
JPH01104820A true JPH01104820A (en) 1989-04-21

Family

ID=17314240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25800787A Pending JPH01104820A (en) 1987-10-13 1987-10-13 Production of high-strength acrylic fiber

Country Status (1)

Country Link
JP (1) JPH01104820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU771674B2 (en) * 1999-08-30 2004-04-01 Ya-Man Ltd. Health amount-of-exercise managing device
JP2008214816A (en) * 2007-03-06 2008-09-18 Mitsubishi Rayon Co Ltd Spinning dope for acrylic fiber and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU771674B2 (en) * 1999-08-30 2004-04-01 Ya-Man Ltd. Health amount-of-exercise managing device
JP2008214816A (en) * 2007-03-06 2008-09-18 Mitsubishi Rayon Co Ltd Spinning dope for acrylic fiber and method for producing the same

Similar Documents

Publication Publication Date Title
JP5691366B2 (en) Carbon fiber manufacturing method
JPH0415287B2 (en)
TW201608069A (en) Highly functional multifilament
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JPH01104820A (en) Production of high-strength acrylic fiber
KR102178877B1 (en) Method for preparing polyacrylonitrile based fiber
JPS63275718A (en) Production of high-tenacity carbon fiber
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JP5504678B2 (en) Polyacrylonitrile polymer solution, carbon fiber precursor fiber, and method for producing carbon fiber
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JPH01104819A (en) Production of high-strength acrylic fiber
JPH01104818A (en) Production of high-strength acrylic fiber
JPH01104816A (en) Production of high-strength acrylic fiber
JPS63275713A (en) Production of high-strength carbon fiber
JPH01104817A (en) Production of high-strength acrylic fiber
JPS63275715A (en) Production of high-strength carbon fiber
JPS58169518A (en) Preparation of high-strength carbon fiber having improved uniformity
JPS6385108A (en) Highly strong acrylic fiber and production thereof
JPS5819766B2 (en) Manufacturing method of acrylic fiber for carbon fiber
JP2023163084A (en) Manufacturing method of polyacrylonitrile fiber and carbon fiber
JP2015183165A (en) Acrylonitrile-based copolymer, polyacrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JPS63275716A (en) Production of high-tenacity carbon fiber
JPH0657524A (en) Production of acrylic fiber
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules