JPH01100445A - Gas detector - Google Patents

Gas detector

Info

Publication number
JPH01100445A
JPH01100445A JP25754987A JP25754987A JPH01100445A JP H01100445 A JPH01100445 A JP H01100445A JP 25754987 A JP25754987 A JP 25754987A JP 25754987 A JP25754987 A JP 25754987A JP H01100445 A JPH01100445 A JP H01100445A
Authority
JP
Japan
Prior art keywords
gas
heating resistor
sensor
resistor
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25754987A
Other languages
Japanese (ja)
Other versions
JPH0656371B2 (en
Inventor
Hiroshi Haruki
春木 弘
Hiroshi Sakai
博 酒井
Shinichi Ochiwa
小知和 眞一
Kazunari Kubota
窪田 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25754987A priority Critical patent/JPH0656371B2/en
Publication of JPH01100445A publication Critical patent/JPH01100445A/en
Publication of JPH0656371B2 publication Critical patent/JPH0656371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To apply a commercial power source directly to a gas sensor to heat, by arranging a heating resistor to be always heated up to a specified temperature on one hand and to be heated higher than the specified temperature in reaction with a gas to be inspected on the other. CONSTITUTION:A gas sensitive section comprising a stannic oxide semiconductor 14 is provided on one surface of a sensor element substrate 11 while a heating resistor 23 mainly composed of ruthenium oxide and a heating resistor 24 mainly composed of stannic oxide are provided on the other side thereof across electrodes 21 and 22. The sensor element of such a type is provided with leads 15, 16, 25 and 26 bonded on the respective electrodes 12, 13, 21 and 22 to form a gas sensor 20, which is connected to a commercial AC power source to be used as gas leak alarm. A heating is normally performed with the heating resistor 23 upto a specified temperature and the temperature of a gas sensitive body is raised with the heating resistor 24 which generates heat in reaction with a gas to be inspected in an atmosphere of the gas being inspected thereby increasing an output of the gas sensitive body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は酸化すず系半導体をガス感応体とするガスセ
ンサ、特にそのガスセンサを加熱するための装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas sensor using a tin oxide semiconductor as a gas sensitive body, and particularly to a device for heating the gas sensor.

〔従来の技術〕[Conventional technology]

酸化すず系半導体をガス感応体とする従来のガスセンサ
を第11図に示し、このガスセンサはアルミナ興のセン
サ基板11の一方の面に電極12 、13を跨いでガス
感応体としての酸化すず半導体14が設けられ、センサ
基板1】の他方の面には第12図に示すように白金厚膜
ヒータ17が設けられている。この白金厚膜ヒータ17
はこのようなガスセンサラ−般家庭用ガス漏れ警報器に
用いる場合、被検ガスとしてのイソブタン、メタンおよ
び水素をガス感応体により検知しガス漏れ警報器として
必要な出力を得るために常時350℃〜450℃に加熱
しておくためのものである。15 、16 、18 、
19はそれぞれリード線である。
FIG. 11 shows a conventional gas sensor using a tin oxide based semiconductor as a gas sensitive material.This gas sensor has a tin oxide semiconductor 14 as a gas sensitive material on one surface of a sensor substrate 11 made of Alumina Co., Ltd., spanning electrodes 12 and 13. A platinum thick film heater 17 is provided on the other surface of the sensor substrate 1, as shown in FIG. This platinum thick film heater 17
When such a gas sensor is used in a general household gas leak alarm, the gas sensor detects isobutane, methane, and hydrogen as the test gases, and the temperature is constantly kept at 350°C to obtain the necessary output as a gas leak alarm. This is for heating to 450°C. 15, 16, 18,
19 are lead wires.

前記白金厚膜ヒータ17を350℃〜450℃に加熱す
るためにヒータに印加される電圧は数■(ボルト)から
十数■であり、ガス漏れ警報器の電源として一般家庭用
電源である交流100vを用いる一場合には第13図に
示すように降圧用変圧器を用いるつ第13図において、
1は商用交流電源、2はガスセンサ、3は降圧用変圧器
、4は分圧抵抗器、5は警報ブザー等を作動させるため
に必要な出力V。
The voltage applied to the platinum thick film heater 17 to heat it to 350° C. to 450° C. is from several volts to more than ten volts, and AC, which is a general household power source, is used as the power source for the gas leak alarm. In the case of using 100V, a step-down transformer is used as shown in Fig. 13. In Fig. 13,
1 is a commercial AC power supply, 2 is a gas sensor, 3 is a step-down transformer, 4 is a voltage dividing resistor, and 5 is an output V required to operate an alarm buzzer, etc.

を得るための負荷抵抗器である。降圧用変圧器3の二次
出力はガスセンサ2のリード線1s 、 191e 介
して第3図に示すようなステム32 、33に接続され
、ガスセンサ2)ガス感応体はリード線15 、16お
よびステムア、35を介して交流電源11に接続されて
いるう 〔発明が解決しようとする問題点〕 酸化すず系半導体をガス感応体とし、このガス感応体を
加熱する発熱抵抗体として白金厚膜ヒータを用いるガス
センサを一般家庭用ガス漏れ警報器に用いる場合には商
用交流電源を降圧する変圧器を必要とし、ガス漏れ警報
器の小形イし、軽量化。
It is a load resistor to obtain . The secondary output of the step-down transformer 3 is connected to the stems 32 and 33 as shown in FIG. [Problem to be solved by the invention] A tin oxide based semiconductor is used as a gas sensitive body, and a platinum thick film heater is used as a heating resistor to heat the gas sensitive body. When using a gas sensor as a household gas leak alarm, a transformer is required to step down the commercial AC power supply, making the gas leak alarm smaller and lighter.

低価格化をはかることができないという欠点を有する。The disadvantage is that it is not possible to reduce the price.

このため降圧用変圧器を用いることな(交流100 V
を直接印加できる発熱抵抗体材料とじて酸化ルテニウム
(RuO2’)を主成分とする発熱抵抗体が注目されて
いる。しかしながら、この酸化ルテニウム系発熱抵抗体
は酸化すず系半導体をガス感応体とするガスセンサから
必要な出力を得るために350℃〜450℃のような高
温で長期間使用した場合、酸化ルテニウムの蒸発等によ
りその電気抵抗が増大して発熱体としての性能が劣化す
る欠点を有する。
Therefore, it is not necessary to use a step-down transformer (AC 100 V).
A heating resistor whose main component is ruthenium oxide (RuO2') is attracting attention as a heating resistor material that can be directly applied with . However, when this ruthenium oxide heating resistor is used for a long period of time at high temperatures such as 350°C to 450°C in order to obtain the necessary output from a gas sensor that uses a tin oxide semiconductor as a gas sensor, ruthenium oxide evaporates. This has the disadvantage that its electrical resistance increases and its performance as a heating element deteriorates.

そこで本発明の目的は上述した従来装置の欠点を除去し
、降圧用変圧器を用いることなく商用電源を直接利用す
ることができかつ長期間使用することができるガス検出
装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the drawbacks of the conventional devices described above, and to provide a gas detection device that can directly utilize commercial power without using a step-down transformer and can be used for a long period of time. .

〔問題点を解決する手段〕[Means to solve problems]

この目的は本発明によれば、センサ基板の一方の面に酸
化すず系半導体からなるガス感応体を有し、前記センサ
基板の他方の面に発熱抵抗体を有するガス検出装置にお
いて、前記発熱抵抗体を、常時所定の温度に加熱される
第1の発熱抵抗体と被検ガスをこ反応して前記所定の温
度よりも高温に加熱される第2の発熱抵抗体とにより構
成することによって達成される。
According to the present invention, this object is achieved by providing a gas detection device having a gas sensitive body made of a tin oxide semiconductor on one surface of a sensor substrate and a heat generating resistor on the other surface of the sensor substrate. This is achieved by constructing the body with a first heating resistor that is constantly heated to a predetermined temperature and a second heating resistor that is heated to a higher temperature than the predetermined temperature by reacting with the gas to be detected. be done.

〔作用〕[Effect]

第1の発熱抵抗体として酸化ルテニウムを主成分とする
発熱抵抗体を用い、第2の発熱抵抗体として酸化すずを
主成分とする発熱抵抗体を用いることにより、第1の発
熱抵抗体により常時は所定の温度で加熱し、被検ガスの
雰囲気中では被検ガスと反応して発熱抵抗体となる第2
の発熱抵抗体によりガス感応体の温度を高めてその出力
を増大させることにより、高温では劣化しやすい酸化ル
テニウムを発熱抵抗体材料として長期間使用することが
できる。
By using a heating resistor mainly composed of ruthenium oxide as the first heating resistor and using a heating resistor mainly composed of tin oxide as the second heating resistor, the first heating resistor is constantly activated. is heated at a predetermined temperature, and in the atmosphere of the test gas, it reacts with the test gas and becomes a heat-generating resistor.
By raising the temperature of the gas sensitive body using the heat generating resistor and increasing its output, ruthenium oxide, which easily deteriorates at high temperatures, can be used for a long period of time as the heat generating resistor material.

〔実施例〕〔Example〕

第1図ないし第3図はそれぞれ本発明の一実施例を示し
、第1図ないし第3図において第11図ないし第12図
に示すものと同一のものには同一の符号を付して説明を
省略する。
1 to 3 each show an embodiment of the present invention, and the same parts in FIGS. 1 to 3 as shown in FIGS. 11 to 12 are given the same reference numerals and explained. omitted.

第1図において従来装置と異なる点はセンサ基板11の
他方の面に、電極21.22を跨いで第1の発熱抵抗体
としての酸化ルテニウム(RuO2)を主成分とする発
熱抵抗体nと、第2の発熱抵抗体としての酸化すずを主
成分とする発熱抵抗体冴を並置し、電極21.22にそ
れぞれリード線部、26を設けたものである。
The difference from the conventional device in FIG. 1 is that on the other side of the sensor substrate 11, a heating resistor n whose main component is ruthenium oxide (RuO2) is provided as a first heating resistor, spanning the electrodes 21 and 22; Heat generating resistors mainly composed of tin oxide as a second heat generating resistor are arranged side by side, and lead wire portions 26 are provided on electrodes 21 and 22, respectively.

この実施例におけるセンサ基板11の一方の面に設ける
酸化すず半導体14からなるガス感応部とセンサ基板1
1の他方の面に設ける発熱抵抗体n、24はスクリーン
印刷法により次のようにして製造される。まずアルミナ
類のセンサ基板11にそれぞnの電極12 、13 、
21 、22を形成するためにセンサ基板11に白金ペ
ーストを塗布して焼成する。次に酸化ルテニウム系ペー
ストを電極21.22間に所定の形状に塗布し空気中に
おいて850℃で加分間焼成して酸化ルテニウム系発熱
抵抗体を得る。この酸化ルテニウム系発熱抵抗体はレー
ザトリミング法により所定の抵抗値にy4整する。この
酸化ルテニウム系発熱抵抗体の上にガラス系ペーストを
塗布して空気中で15分間焼成し絶縁層を形成する。ガ
ス感応体と第2の発熱抵抗体としての酸化すず半導体は
、金属すずを硝酸で酸化することにより得た酸化すず粉
末にバインダーを混合してペースト状にし、これを所定
の形状に塗布して800℃で加分間焼成したのち塩化パ
ラジウム水溶液を含浸させ空気中において600℃で3
時間処理してガス感応体と発熱抵抗体を得る。
In this embodiment, a gas sensing section made of a tin oxide semiconductor 14 provided on one surface of the sensor substrate 11 and the sensor substrate 1
The heating resistor n, 24 provided on the other surface of the substrate 1 is manufactured by screen printing as follows. First, n electrodes 12, 13,
In order to form 21 and 22, platinum paste is applied to the sensor substrate 11 and fired. Next, a ruthenium oxide paste is applied in a predetermined shape between the electrodes 21 and 22 and fired in air at 850° C. to obtain a ruthenium oxide heating resistor. This ruthenium oxide heating resistor is trimmed to a predetermined resistance value y4 by laser trimming. A glass paste is applied onto this ruthenium oxide heating resistor and baked in air for 15 minutes to form an insulating layer. The tin oxide semiconductor used as the gas sensitive element and the second heating resistor is made by mixing a binder with tin oxide powder obtained by oxidizing metal tin with nitric acid, making it into a paste, and applying this paste in a predetermined shape. After calcining at 800°C, impregnated with palladium chloride aqueous solution and heated at 600°C in air for 30 minutes.
A gas sensitive member and a heating resistor are obtained by time treatment.

このようにガス感応体と発熱抵抗体器、24とを形成し
たセンサ素子は第3図に示すように、センサ基板11上
に形成された各電極12 、13 、21 、22にそ
れぞれリード線15 、16 、25 、26をボンデ
ィングし、これらのリード線15 、16 、25 、
26をベース31に植設したステム32〜35に接続し
、そしてベース31に不図示のステンレス製金網を被せ
ることによりガスセンサ加が構成される。
As shown in FIG. 3, the sensor element in which the gas sensitive body and the heating resistor 24 are formed has a lead wire 15 connected to each electrode 12, 13, 21, 22 formed on the sensor substrate 11, respectively. , 16 , 25 , 26 and these lead wires 15 , 16 , 25 ,
26 is connected to stems 32 to 35 implanted in a base 31, and the base 31 is covered with a stainless wire mesh (not shown), thereby constructing a gas sensor.

第3図のように組豆てられたガスセンサ加は第4図に示
すように商用交流電源11に接続されてガス漏れ警報器
として使用される。f!44図において第13図に示し
た従来装置と同一のものには同一の符号を付して説明を
省略する。第4図において、lで再び商用交流電源を示
し、ガスセンサIの酸化ルテニウムを主成分とする#g
1の発熱抵抗体および酸化すずを主成分とする第2の発
熱抵抗体が接続されるステム32 、33が直接商用交
流電源1に接続されている。第4図に示す基本電気回路
において、酸化ルテニウムを主成分とする第1の発熱抵
抗体の抵抗値は28にΩになるようにトリミングされ、
商用交流電源1は100V、負荷抵抗器5の抵抗値は8
にΩ、分圧抵抗器4の抵抗値は64にΩとして、その出
力特性を通常のガス注入法により実験した結果を第7図
に示す。第7図において縦軸は出力電圧(V)、横軸は
被検ガスとしてのイソブタン濃度(%)を示すつ前記実
験において、ガスセンサ加は清浄空気中では酸化ルテニ
ウムを主成分とする第1の発熱抵抗体により300℃に
加熱されていたが、0.2%のイソブタン中では酸化す
ずを主成分とする第2の発熱抵抗体の抵抗値が小さくな
ってヒータとして作用しガスセンサ加は450℃に加熱
されていた。@8図に比較例として従来の白金厚膜ヒー
タを用いたガスセンサによる出力特性図を示すように、
この実施例によるガスセンサ(9)は従来装置と同一の
出力特性が得られる。第9図には他の比較例として発熱
抵抗体として酸化ルテニウムを主成分とする発熱抵抗体
のみを用いた場合の出力特性図を示し、イ1に示すよう
な出力特性を得るためには発熱抵抗体の電力を大きくし
てガスセンサの温度を450℃に維持しておかねばなら
ずこの場合には酸化ルテニウムの熱的劣化が促進される
、(員に示す出力特性は酸化ルテニウムの熱的劣化が生
じないガスセンサを300℃に加熱して維持しておいた
場合であり、この場合には十分な出力特性が得られない
The gas sensor assembled as shown in FIG. 3 is connected to a commercial AC power source 11 as shown in FIG. 4 and used as a gas leak alarm. f! In FIG. 44, the same components as those in the conventional device shown in FIG. 13 are given the same reference numerals, and their explanation will be omitted. In Fig. 4, l again indicates the commercial AC power supply, and #g of gas sensor I whose main component is ruthenium oxide.
Stems 32 and 33 to which the first heating resistor and the second heating resistor whose main component is tin oxide are connected are directly connected to the commercial AC power supply 1. In the basic electric circuit shown in FIG. 4, the resistance value of the first heating resistor mainly composed of ruthenium oxide is trimmed to 28Ω,
The commercial AC power supply 1 is 100V, and the resistance value of the load resistor 5 is 8.
The resistance value of the voltage dividing resistor 4 was set to 64 Ω, and the output characteristics were tested using a conventional gas injection method. The results are shown in FIG. In Fig. 7, the vertical axis shows the output voltage (V), and the horizontal axis shows the concentration of isobutane as the test gas (%). The heating resistor was heated to 300°C, but in 0.2% isobutane, the resistance of the second heating resistor, whose main component is tin oxide, becomes small and acts as a heater, causing the gas sensor to reach 450°C. It was heated to. As shown in Figure 8, the output characteristic diagram of a gas sensor using a conventional platinum thick film heater is shown as a comparative example.
The gas sensor (9) according to this embodiment can obtain the same output characteristics as the conventional device. As another comparative example, Figure 9 shows an output characteristic diagram when only a heating resistor whose main component is ruthenium oxide is used as the heating resistor. The temperature of the gas sensor must be maintained at 450°C by increasing the power of the resistor; in this case, the thermal deterioration of ruthenium oxide is accelerated (the output characteristics shown in the figure indicate the thermal deterioration of ruthenium oxide). This is a case in which a gas sensor that does not generate is heated and maintained at 300° C., and in this case, sufficient output characteristics cannot be obtained.

第10図はガスセンサにおける0、2%濃度のイソブタ
ンに対する出力の経時安定性を示したものであり、縦軸
は出力電圧、横軸は通電時間(日)である。
FIG. 10 shows the stability over time of the output of the gas sensor for isobutane at concentrations of 0 and 2%, where the vertical axis represents the output voltage and the horizontal axis represents the energization time (days).

第10図において、1/i(ま本発明によるガスセンサ
、に)(ホ)は比較例として酸化ルテニウムを主成分と
する発熱抵抗体のみを用いに)は450℃に加熱維持し
、(ホ)は300℃に加熱維持しておいたものである。
In FIG. 10, 1/i (gas sensor according to the present invention, 2) (e) is a comparative example using only a heating resistor mainly composed of ruthenium oxide) is heated and maintained at 450°C, and (e) was heated and maintained at 300°C.

この図から明らかなように本発明によるガスセンサは長
期間安定した出力特性を維持することができる。
As is clear from this figure, the gas sensor according to the present invention can maintain stable output characteristics for a long period of time.

第5図および第6図は本発明の他の実施例を示し、第1
図および第2図に示す実施例と異なる点は、第1の発熱
抵抗体器に重ねて第2の発熱抵抗体列を設けた点である
。勿論第1の発熱抵抗体器と第2の発熱抵抗体器との間
は絶縁されており、酸化すずを主成分とする第2の発熱
抵抗体列は被検ガスに反応し易(するために第1の発熱
抵抗体器の上部−に設けられている。この実施例におい
ても第1図および第2図に示す実施例と同様に十分な出
力特注と経時安定性を有する。
FIGS. 5 and 6 show other embodiments of the invention;
The difference from the embodiment shown in the figures and FIG. 2 is that a second heating resistor array is provided overlapping the first heating resistor device. Of course, the first heating resistor and the second heating resistor are insulated, and the second heating resistor array, which is mainly composed of tin oxide, easily reacts with the gas to be detected. This embodiment also has sufficient output customization and stability over time, similar to the embodiments shown in FIGS. 1 and 2.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によれば、センサ基板の一
方の面に酸化すず系半導体からなるガス感応体を有し、
前記センサ基板の他方の面に発熱抵抗体を有するガス検
出装置において、前記発熱抵抗体を、常時所定温度に加
熱される第1の発熱抵抗体と被検ガスに反応して前記所
定温度よりも高温に加熱される第2の発熱抵抗体とによ
り構成することにより、一般家庭用商用′眠源を用いて
その電源電圧を直接ガスセンサに印加して加熱すること
ができ、そしてガスセンサから所要の出力を得ることが
できるとともに長期に安定したガスセンサを提供するこ
とができる。
As explained above, according to the present invention, the sensor substrate has a gas sensitive body made of a tin oxide semiconductor on one side,
In the gas detection device having a heating resistor on the other surface of the sensor substrate, the heating resistor is heated to a first heating resistor which is constantly heated to a predetermined temperature, and the heating resistor is heated to a temperature lower than the predetermined temperature in response to the test gas. By constructing a second heating resistor that is heated to a high temperature, it is possible to directly apply the power supply voltage to the gas sensor using a general household commercial power source to heat it, and to obtain the required output from the gas sensor. In addition, it is possible to provide a gas sensor that is stable over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はそれぞれ本発明の一実施例を示し
、第1図はセンサ素子の要部断面図、第2図は第1図の
Q矢印方向からみた表面図、第3図はガスセンサの組豆
図、第4図はガス漏れ警報器の基本電気回路図、第5図
および第6図は本発明の異なる実施例の要部断面図およ
び要部表面図、第7図ないし第9図はそれぞれガスセン
サの出力特性を表わす出力・特性図、第10図はガスセ
ンサの経時的出力特性を表わす特性図である。第11図
ないし第13図はそれぞれ従来装置を示し、第11図お
よび第12図はそれぞれガス感応部およびヒータを示す
表面図、第13図は基本電気回路図である。 11:センサ基板、14:ガス感応体、23:&化ルテ
ニウムを主成分とする第1の発熱抵抗体、冴二酸化すず
を主成分とする第2の発熱抵抗体。 図 く 貿 月や 七 ギタ 巨
1 to 4 each show an embodiment of the present invention, in which FIG. 1 is a cross-sectional view of a main part of a sensor element, FIG. 2 is a surface view seen from the direction of arrow Q in FIG. 1, and FIG. FIG. 4 is a basic electrical circuit diagram of a gas leak alarm; FIGS. 5 and 6 are sectional views and surface views of essential parts of different embodiments of the present invention; FIGS. FIG. 9 is an output/characteristic diagram showing the output characteristics of the gas sensor, and FIG. 10 is a characteristic diagram showing the output characteristics of the gas sensor over time. 11 to 13 each show a conventional device, FIGS. 11 and 12 are surface views showing a gas sensing section and a heater, respectively, and FIG. 13 is a basic electric circuit diagram. 11: sensor substrate, 14: gas sensitive body, 23: first heating resistor containing ruthenium chloride as a main component, second heating resistor containing tin dioxide as a main component. Tsukubogetsuya Seven guitars gigantic

Claims (1)

【特許請求の範囲】 1)センサ基板の一方の面に酸化すず系半導体からなる
ガス感応体を有し、前記センサ基板の他方の面に発熱抵
抗体を有するガス検出装置において、前記発熱抵抗体は
、常時所定温度に加熱される第1の発熱抵抗体と被検ガ
スに反応して前記所定温度よりも高温に加熱される第2
の発熱抵抗体とからなることを特徴とするガス検出装置
。 2)特許請求の範囲第1項記載のガス検出装置において
、第1の発熱抵抗体が酸化ルテニウムを主成分とする発
熱抵抗体であることを特徴とするガス検出装置。 3)特許請求の範囲第1項記載のガス検出装置において
、第2の発熱抵抗体が酸化すずを主成分とする発熱抵抗
体であることを特徴とするガス検出装置。
[Scope of Claims] 1) In a gas detection device having a gas sensitive body made of a tin oxide based semiconductor on one surface of a sensor substrate and a heating resistor on the other surface of the sensor substrate, the heating resistor The first heating resistor is always heated to a predetermined temperature, and the second heating resistor is heated to a higher temperature than the predetermined temperature in response to the test gas.
A gas detection device comprising: a heating resistor; 2) The gas detection device according to claim 1, wherein the first heating resistor is a heating resistor containing ruthenium oxide as a main component. 3) The gas detection device according to claim 1, wherein the second heat generating resistor is a heat generating resistor whose main component is tin oxide.
JP25754987A 1987-10-13 1987-10-13 Gas detector Expired - Lifetime JPH0656371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25754987A JPH0656371B2 (en) 1987-10-13 1987-10-13 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25754987A JPH0656371B2 (en) 1987-10-13 1987-10-13 Gas detector

Publications (2)

Publication Number Publication Date
JPH01100445A true JPH01100445A (en) 1989-04-18
JPH0656371B2 JPH0656371B2 (en) 1994-07-27

Family

ID=17307826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25754987A Expired - Lifetime JPH0656371B2 (en) 1987-10-13 1987-10-13 Gas detector

Country Status (1)

Country Link
JP (1) JPH0656371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019885A (en) * 1989-03-30 1991-05-28 Ricoh Company, Ltd. Gas detecting device
US5734809A (en) * 1989-02-27 1998-03-31 Ricoh Company, Ltd. Controller for a photocopier providing the ability to transfer data to a replacement controller through communication channels used to control sections of the photocopier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734809A (en) * 1989-02-27 1998-03-31 Ricoh Company, Ltd. Controller for a photocopier providing the ability to transfer data to a replacement controller through communication channels used to control sections of the photocopier
US5019885A (en) * 1989-03-30 1991-05-28 Ricoh Company, Ltd. Gas detecting device

Also Published As

Publication number Publication date
JPH0656371B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JPH0510901A (en) Catalyst burning type gas sensor
JPH01100445A (en) Gas detector
US3955268A (en) Method of fabricating an electrolytic cell gas sensor
EP0038078B1 (en) Gas sensor
JPS5840695B2 (en) gas sensing element
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH0220681Y2 (en)
JPH01295151A (en) Gas detector
JPS5919363Y2 (en) Positive characteristic thermistor for temperature range display
JPH053973Y2 (en)
JPS59188549A (en) Two-terminal type semiconductor gas detecting element
JPH0545322A (en) Gas detecting apparatus
JPH05133920A (en) Gas detector
JPH0710286Y2 (en) Gas detector
JPH0447658Y2 (en)
JPS63293456A (en) Gas sensor
JPH03150454A (en) Ozone detecting device
JPS63233358A (en) Gas sensor
JPS63173943A (en) Gas sensor
JPH06148115A (en) Gas sensor
JPH04256851A (en) Gas detecting apparatus
JPS6124649B2 (en)
JPS5833499B2 (en) Reducing gas detection device and its manufacturing method
JPH01213562A (en) Gaseous ozone sensor
JPS58166247A (en) Gas-and temperature-sensitive element