JPH01100414A - Ultrasonic-wave flow velocity measuring apparatus - Google Patents

Ultrasonic-wave flow velocity measuring apparatus

Info

Publication number
JPH01100414A
JPH01100414A JP62257251A JP25725187A JPH01100414A JP H01100414 A JPH01100414 A JP H01100414A JP 62257251 A JP62257251 A JP 62257251A JP 25725187 A JP25725187 A JP 25725187A JP H01100414 A JPH01100414 A JP H01100414A
Authority
JP
Japan
Prior art keywords
point
signal
received signal
ultrasonic wave
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62257251A
Other languages
Japanese (ja)
Other versions
JPH0810151B2 (en
Inventor
Yukio Yoshida
幸男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP62257251A priority Critical patent/JPH0810151B2/en
Publication of JPH01100414A publication Critical patent/JPH01100414A/en
Publication of JPH0810151B2 publication Critical patent/JPH0810151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure the flow velocity of fluid stably at high measuring accuracy even if a received waveform level is fluctuated, by reciprocating an ultrasonic wave between two points in the fluid, and outputting a wave received signal when the received signal corresponding to the arrival of said ultrasonic wave exceeds a reference signal. CONSTITUTION:Ultrasonic wave transmitting and receiving devices 5 and 6 are arranged on a flow pipe 4, in which fluid flows in the direction of an arrow V with a distance (l) being separated. Switching is performed with a send/ receive switching circuit 7 so that an ultrasonic wave is transmitted from the transmitting and receiving device 5 to 6 and from 6 to 5. A voltage signal D corresponding to the signal received with the receiver 5 or 6 is multiplied by a constant factor, and a reference voltage E is obtained. The reference voltage E is compared with a voltage signal C2, which is obtained by delaying a voltage signal C1 in a delay circuit 12 in a voltage comparator 13. When the voltage signal C2 is larger than the reference voltage E, a high level '1' is outputted. Then the number of clock pulses CP corresponding to a time when an output signal H of an FF 18 is at a high level '1' is counted in a counter 20. Thus the flow velocity is computed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は超音波を利用して流体の流速を測定する超音波
流速測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultrasonic flow rate measuring device that measures the flow rate of a fluid using ultrasonic waves.

[従来の技術] 従来から流体中に超音波を送波して、流体を伝搬する超
音波を受波し、超音波の伝搬時間を測定することにより
、流体の流速を測定する超音波流速測定装置が知られて
いる。このような超音波流速apl定装置においては、
流体中を伝搬する超音波を超音波受波器で受波して、電
圧信号に変換し、この電圧信号を増幅器で所定のレベル
まで増幅した後、予め設定した基準電圧(以下、トリガ
レベルという)と比較し、超音波に対応する電圧信号が
トリガレベルを越えた時点又は超音波に対応する電圧信
号がトリガレベルを越えた直後のゼロクロス点(電圧信
号がOVをよぎる点)をもって超音波の到達時点として
いた。
[Prior art] Ultrasonic flow velocity measurement has conventionally been used to measure the flow velocity of a fluid by transmitting ultrasonic waves into a fluid, receiving the ultrasonic waves propagating through the fluid, and measuring the propagation time of the ultrasonic waves. The device is known. In such an ultrasonic flow rate apl determination device,
Ultrasonic waves propagating in a fluid are received by an ultrasonic receiver and converted into a voltage signal. After amplifying this voltage signal to a predetermined level with an amplifier, a preset reference voltage (hereinafter referred to as a trigger level) is applied. ), the time when the voltage signal corresponding to the ultrasonic wave exceeds the trigger level or the zero cross point (the point where the voltage signal crosses OV) immediately after the voltage signal corresponding to the ultrasonic wave exceeds the trigger level is when the ultrasonic wave is detected. It was the time of arrival.

しかしながら、流体中を伝搬する超音波は流体の成分、
流体の温度、流体中の挟雑物等によりその減衰量が異な
り、又、温度分布その他の流体の不均一性により伝搬経
路上で反射、屈折等が行なわれるので、超音波受波器で
受波した受信波レベルは著しく変動する。特に、流体が
気体である場合には、液体に比べて大きく影響を受ける
However, ultrasonic waves propagating in a fluid
The amount of attenuation varies depending on the temperature of the fluid, impurities in the fluid, etc., and reflection, refraction, etc. occur on the propagation path due to temperature distribution and other non-uniformities in the fluid, so it is difficult to receive it with an ultrasonic receiver. The received wave level fluctuates significantly. In particular, when the fluid is gas, it is more affected than when it is liquid.

第5図は受信波レベルが変動する情況を説明する図であ
る。第5図において、Aは超音波送波器から送波した超
音波信号(以下、送信波という)Bは超音波受波器で受
波した超音波信号(以下、受信波という)、Cは受信波
がトリガレベルvthをよぎった後に、最初のゼロクロ
ス点をよぎったときに出力されるゼロクロスパルスであ
る。なお受信波Bは時間軸を拡大して示しである。第5
図に示すように、受信波Blに対応するゼロクロスパル
スはC1であるが、受信波B2に対応するゼロクロスパ
ルスはC2になり、伝搬時間はt2からt3に変動した
ように測定される。
FIG. 5 is a diagram illustrating a situation in which the received wave level fluctuates. In Fig. 5, A is an ultrasonic signal transmitted from an ultrasonic transmitter (hereinafter referred to as a transmitted wave), B is an ultrasonic signal received by an ultrasonic receiver (hereinafter referred to as a received wave), and C is an ultrasonic signal received by an ultrasonic receiver (hereinafter referred to as a received wave). This is a zero-crossing pulse that is output when the received wave crosses the first zero-crossing point after crossing the trigger level vth. Note that the received wave B is shown with the time axis expanded. Fifth
As shown in the figure, the zero-crossing pulse corresponding to the received wave Bl is C1, but the zero-crossing pulse corresponding to the received wave B2 is C2, and the propagation time is measured as changing from t2 to t3.

[発明が解決しようとする問題点] ところで、受信波を安定して捉えるため、従来から受信
波の増幅回路にAGC(自動利得制御)を施し、受信波
レベルを一定にして、トリガレベルと比較する手段が用
いられていた。
[Problems to be solved by the invention] By the way, in order to capture the received wave stably, AGC (automatic gain control) has traditionally been applied to the received wave amplification circuit to keep the received wave level constant and compare it with the trigger level. A method was used to do so.

しかし、受信波(又は受信波に対応する電圧信号)の増
幅回路に施されるAGCは、AGCが施される以前の受
信波レベルによって決定されるものである−0従って、
受信波の増幅回路にAGCを施しても、これから受波す
る受信波レベルを予測するものではないので、受信波レ
ベルの変動が遅い場合には効果があるが、受信波レベル
の変動が激しい(受信波レベルの変動が速い)場合には
何等の効果がないばかりか、かえって逆効果を招く恐れ
すらあった。(少なくとも送信波を送波する間隔だけ時
間がおいているので、この間に受信波レベルが変動して
しまう場合がある。)従って、超音波の伝搬流体の温度
むら、ゆらぎ等があると受信波レベルが変動するので、
測定値に大きなアバレ内至誤差を生じることになる。
However, the AGC applied to the amplification circuit of the received wave (or the voltage signal corresponding to the received wave) is determined by the level of the received wave before the AGC is applied. Therefore,
Even if AGC is applied to the received wave amplifier circuit, it does not predict the level of the received wave that will be received in the future, so it is effective when the received wave level fluctuates slowly, but when the received wave level fluctuates rapidly ( If the level of the received wave fluctuates quickly), there is a risk that it will not only have no effect, but may even have the opposite effect. (Since there is at least a time interval between transmitting the transmitted waves, the level of the received waves may fluctuate during this time.) Therefore, if there are temperature irregularities or fluctuations in the ultrasonic propagation fluid, the received waves As the level changes,
This will result in a large error within the measurement value.

本発明は係る問題点を解決するためになされたものであ
り、受信波レベルが変動しても安定かつ高い測定精度で
、流体の流速を測定できる超音波流速測定装置を提供す
ることを目的とするものである。
The present invention has been made to solve these problems, and an object of the present invention is to provide an ultrasonic flow rate measuring device that can measure the flow rate of a fluid stably and with high measurement accuracy even when the received wave level fluctuates. It is something to do.

[問題点を解決するための手段] 本発明に係る超音波流速測定装置は、第1の発明として
、超音波が流体中の第1の地点から第2の地点及び第2
の地点から第1の地点に伝搬するように切り換わるとと
もに、第1の地点に到達した超音波に対応する受信信号
及び第2の地点に到達した超音波に対応する受信信号を
順次選択出力する切換手段と、受信信号の振幅に比例す
る基準信号を出力する基準信号出力手段と、少なくとも
基準信号が出力されるまでの時間だけ、受信信号を遅延
させた遅延受信信号を出力する遅延手段と、遅延受信信
号が基準信号より大きくなったときに、受波信号を出力
する比較手段とを備えている。
[Means for Solving the Problems] As a first invention, the ultrasonic flow velocity measuring device according to the present invention is characterized in that ultrasonic waves are transmitted from a first point in a fluid to a second point and a second point.
The ultrasonic wave is switched to propagate from the point to the first point, and the received signal corresponding to the ultrasonic wave that has reached the first point and the received signal that corresponds to the ultrasonic wave that has reached the second point are sequentially selected and output. a switching means, a reference signal output means for outputting a reference signal proportional to the amplitude of the received signal, and a delay means for outputting a delayed received signal obtained by delaying the received signal by at least the time until the reference signal is output; and comparison means for outputting a received signal when the delayed received signal becomes larger than the reference signal.

又、第2の発明として、第1の超音波及び第1の超音波
と略同一波形の第2の超音波を短い間隔で流体中に出力
する超音波出力手段と、第1の超音波及び第2の超音波
が、第1の地点から第2の地点及び第2の地点から第1
の地点にそれぞれ伝搬されるように切り換わるとともに
、第1の地点に到達した第1の超音波及び第2の超音波
に対応する第1の受信信号並びに第2の地点に到達した
第1の超音波及び第2の超音波に対応する第2の受信信
号を順次選択出力する切換手段と、第1の受信信号の振
幅に比例する基準信号を出力する基準信号出力手段と、
第2の受信信号が基準信号より大きくなったときに、受
波信号を出力する比較手段とを備えている。
Further, as a second invention, an ultrasonic output means for outputting a first ultrasonic wave and a second ultrasonic wave having substantially the same waveform as the first ultrasonic wave into a fluid at short intervals; A second ultrasonic wave is transmitted from the first point to the second point and from the second point to the first point.
and the first received signal corresponding to the first ultrasonic wave and the second ultrasonic wave that reached the first point, and the first received signal that corresponded to the second ultrasonic wave that reached the second point. a switching means for sequentially selectively outputting the ultrasonic wave and a second received signal corresponding to the second ultrasonic wave; a reference signal outputting means for outputting a reference signal proportional to the amplitude of the first received signal;
and comparison means for outputting a received signal when the second received signal becomes larger than the reference signal.

[作用] 第1の発明においては、切換手段が第1の地点から第2
の地点及び第2の地点から第1の地点に超音波が伝搬す
るように切り換わり、第1の地点及び第2の地点に到達
した超音波に対応する受信信号を順次選択出力し、基準
信号出力手段が受信信号の振幅に比例する大きさの基準
信号を出力し、遅延手段が受信信号を遅延させた遅延受
信信号を出力し、比較手段が遅延受信信号が基準信号よ
り大きくなったときに、受波信号を出力する。
[Operation] In the first invention, the switching means moves from the first point to the second point.
The ultrasound is switched so that it propagates from the point and the second point to the first point, and the received signals corresponding to the ultrasound that have reached the first point and the second point are sequentially selected and output, and the reference signal is The output means outputs a reference signal having a magnitude proportional to the amplitude of the received signal, the delay means outputs a delayed received signal obtained by delaying the received signal, and the comparison means outputs a delayed received signal when the delayed received signal becomes larger than the reference signal. , outputs the received signal.

又、第2の発明においては、超音波出力手段が第1の超
音波及び第2の超音波を短い間隔出力し、切換手段が第
1の地点から第2の地点及び第2の地点から第1の地点
に第1の超音波及び第2の超音波がそれぞれ伝搬される
ように切り換わり、第1の地点に到達した第1の超音波
及び第2の超音波に対応する第1の受信信号並びに第2
の地点に到達した第1の超音波及び第2の超音波に対応
する第2の受信“信号を順次選択出力し、基準信号出力
手段が第1の受信信号の振幅に比例する大きさの基準信
号を出力し、比較手段が第2の受信信号が基準信号より
大きくなったときに、受波信号を出力する。
Further, in the second invention, the ultrasonic output means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals, and the switching means outputs the first ultrasonic wave and the second ultrasonic wave at short intervals. Switching so that the first ultrasonic wave and the second ultrasonic wave are respectively propagated to the first point, and the first reception corresponding to the first ultrasonic wave and the second ultrasonic wave that have reached the first point. signal and second
The reference signal output means sequentially selects and outputs the second reception signal corresponding to the first ultrasound wave and the second ultrasound wave that have arrived at the point, and the reference signal output means outputs a reference signal whose magnitude is proportional to the amplitude of the first reception signal. The comparing means outputs a received signal when the second received signal becomes larger than the reference signal.

[実施例] 第1図は本発明の一実施例に係る超音波流速測定装置の
回路ブロック図である。第1図において、1は所定周波
数のクロックパルスCPを出力するクロックパルス発生
回路、2はクロックパルス発生回路1のクロックパルス
CPを適当に分周し、この装置の動作に必要なタイミン
グパルスTを出力するタイミングパルス発生回路、3は
タイミングパルス発生回路2から出力される送信指令信
号Aにより、送信信号Bを出力する送信回路、4は矢印
V方向に流体が流れている流管、5.6は流管4に距離
gを隔てて配置された超音波送受波器、7は送信信号B
に対応する送信波が超音波送受波器5から6方向(以下
、順方向という)及び超音波送受波器6から5方向(以
下、逆方向という)に伝搬されるように切り換わる送受
切換回路、8は超音波受波器5又は6が受波した受信信
号に対応する電圧信号りを出力する受信回路、9は超音
波受波器5又は6が受波した受信信号に対応する電圧信
号C1を出力する受信回路、10は電圧信号りの最大値
D  を検出し、保持するピークホール+++aX ド回路、11は電圧信号りの最大値D  に一定検II
ax 数Kを乗じ、た大きさの電圧信号E (E−K・D  
)を出力する係数器、12は電圧信号C1をAaX 所定時間だけ遅延させた電圧信号C2を出力する遅延回
路、13は電圧信号C2を基準電圧Eと比較し、電圧信
号C2が基準電圧Eより大きいときはハイレベル「1」
の比較信号を出力する電圧比較器、14は電圧信号C2
を通常Ovに設定されている基準電圧VRと比較し、電
圧信号C2が基準電圧VRをよぎったときハイレベル「
1」の比較信号を出力する電圧比較器、15は電圧比較
器13からハイレベル「1」の比較信号が出力されると
、電圧信号りの略1周期に相当する幅のパルス信号Fを
出力するモノステーブルマルチバイブレータ、16は電
圧比較器14からハイレベル「1」の比較信号が出力さ
れると、所定のパルス幅のゼロクロスパルスを出力する
モノステーブルマルチバイブレータ、17はモノステー
ブルマルチバイブレータ15及び1Bの出力がともに「
1」のときにゼロクロスパルスGを出力するアンドゲー
ト、18はセット端子Sに送信指令信号Aが、リセット
端子RにゼロクロスパルスGが入力され、出力端子Qか
らハイレベル「1」又はローレベルrOJの信号Hを出
力するフリップフロップ、19はフリップフロップIB
の出力信号Hがハイレベル「1」の間だけ、クロックパ
ルスCPを出力するアンドゲート、2oはフリップフロ
ップ■8の出力信号Hがハイレベル「1」である時間に
対応するクロックパルスCPのパルス数をカウントする
カウンタ、21はカウンタ2oの計数値に基づいて流速
を算出する信号処理回路、22は算出した流速を表示す
る表示器である。
[Embodiment] FIG. 1 is a circuit block diagram of an ultrasonic flow rate measuring device according to an embodiment of the present invention. In FIG. 1, 1 is a clock pulse generation circuit that outputs a clock pulse CP of a predetermined frequency, and 2 is a clock pulse generation circuit that appropriately divides the clock pulse CP of the clock pulse generation circuit 1 to generate a timing pulse T necessary for the operation of this device. 5.6 is a timing pulse generation circuit that outputs a timing pulse; 3 is a transmission circuit that outputs a transmission signal B in response to the transmission command signal A output from the timing pulse generation circuit 2; 4 is a flow tube through which fluid flows in the direction of arrow V; is an ultrasonic transducer placed in the flow tube 4 at a distance g, and 7 is a transmitted signal B.
A transmitting/receiving switching circuit that switches so that the transmitted waves corresponding to , 8 is a receiving circuit that outputs a voltage signal corresponding to the received signal received by the ultrasonic receiver 5 or 6, and 9 is a voltage signal corresponding to the received signal received by the ultrasonic receiver 5 or 6. 10 is a peak hole +++aX circuit that detects and holds the maximum value D of the voltage signal; 11 is a constant detection circuit II that outputs the maximum value D of the voltage signal;
ax Multiplied by the number K, the voltage signal E (E-K・D
), 12 is a delay circuit that outputs voltage signal C2 delayed by AaX predetermined time from voltage signal C1, and 13 is a delay circuit that compares voltage signal C2 with reference voltage E, and voltage signal C2 is smaller than reference voltage E. When it is large, high level "1"
A voltage comparator 14 outputs a comparison signal of the voltage signal C2.
is compared with the reference voltage VR which is normally set to Ov, and when the voltage signal C2 crosses the reference voltage VR, the high level "
A voltage comparator 15 outputs a comparison signal of ``1'', and when a comparison signal of high level ``1'' is output from the voltage comparator 13, outputs a pulse signal F with a width corresponding to approximately one period of the voltage signal R. 16 is a monostable multivibrator that outputs a zero-cross pulse with a predetermined pulse width when a high-level "1" comparison signal is output from the voltage comparator 14; 17 is a monostable multivibrator 15 and Both outputs of 1B are “
An AND gate 18 outputs a zero-cross pulse G when the signal is ``1'', the transmission command signal A is input to the set terminal S, the zero-cross pulse G is input to the reset terminal R, and the output terminal Q outputs a high level ``1'' or a low level rOJ. 19 is a flip-flop IB that outputs a signal H.
2o is a flip-flop which outputs a clock pulse CP only while the output signal H of 8 is at a high level "1". 21 is a signal processing circuit that calculates the flow velocity based on the count value of the counter 2o, and 22 is a display that displays the calculated flow velocity.

上記のように構成した超音波流速測定装置の動作を第2
図に示したタイミングチャートに基いて説明する。第2
図において記号AからHで示した波形は第1図に示した
回路の要部における出力波形を示す。
The operation of the ultrasonic flow rate measuring device configured as described above is explained in the second section.
This will be explained based on the timing chart shown in the figure. Second
In the figure, waveforms indicated by symbols A to H indicate output waveforms in the essential parts of the circuit shown in FIG.

送信回路3はタイミングパルス発生回路2から送信指令
信号Aが出力されると(第2図(a)参照)、送信信号
Bを出力する(第2図(b)参照)又、送信指令信号A
の出力により、ピークホールド回路lOはリセットされ
る。さらに、フリップフロップ18が送信指令信号Aの
出力によりセットされて、ハイレベル「1」の信号Hを
出力するのでカウンタ20はクロックパルス発生回路1
が出力するクロックパルスCPのパルス数を計数し始め
る(第2図(1)参照)。
When the transmission command signal A is output from the timing pulse generation circuit 2 (see FIG. 2(a)), the transmission circuit 3 outputs the transmission signal B (see FIG. 2(b)).
The peak hold circuit IO is reset by the output of . Further, since the flip-flop 18 is set by the output of the transmission command signal A and outputs a signal H of high level "1", the counter 20 is activated by the clock pulse generation circuit 1.
begins counting the number of clock pulses CP output by (see FIG. 2 (1)).

送受切換回路7は送信指令信号Aが出力されるのに対応
して、タイミングパルス発生回路2の制御により送信回
路3から出力される送信信号Bを超音波送受波器5に出
力する。超音波送受波器5は送信信号Bを超音波信号に
変換して、送信波として流体中に送波する。超音波送受
波器6は超音波送受波器5から送波された送信波を受波
して、電圧信号に変換する。
In response to the output of the transmission command signal A, the transmission/reception switching circuit 7 outputs the transmission signal B output from the transmission circuit 3 to the ultrasonic transducer 5 under the control of the timing pulse generation circuit 2. The ultrasonic transducer 5 converts the transmission signal B into an ultrasonic signal and transmits it into the fluid as a transmission wave. The ultrasonic transducer 6 receives the transmission wave transmitted from the ultrasonic transducer 5 and converts it into a voltage signal.

受信増幅回路8及び9は超音波送受波器6から送受切換
回路7を介して出力される電圧信号をそれぞれ増幅し、
受信信号に対応する大きさの電圧信号り及びC1をピー
クホールド回路lO及び遅延回路12にそれぞれ出力す
る(第2図(d) 、(e)参照)。ピークホールド回
路lOは電圧信号りのビーク値を保持する。係数器11
はピークホールド回路lOが保持する電圧信号りの最大
値D  に−完像aX 数Kを乗じた大きさの電圧信号E (E−K・D  )
を出力する(第2図(f)参照)。又、連層ax 延回路12は電圧信号Cを所定の遅延時間t、だ■ け遅延させた電圧信号C2を出力する。
The reception amplification circuits 8 and 9 each amplify the voltage signal output from the ultrasonic transducer 6 via the transmission/reception switching circuit 7,
A voltage signal C1 having a magnitude corresponding to the received signal is outputted to the peak hold circuit 10 and the delay circuit 12, respectively (see FIGS. 2(d) and (e)). The peak hold circuit IO holds the peak value of the voltage signal. Coefficient unit 11
is the voltage signal E (E-K・D) with a magnitude obtained by multiplying the maximum value D of the voltage signal held by the peak hold circuit IO by the number K of -complete image aX
(see Fig. 2(f)). Further, the multilayer ax extension circuit 12 outputs a voltage signal C2 obtained by delaying the voltage signal C by a predetermined delay time t.

電圧比較器18は電圧信号C2をトリガレベルとしての
電圧信号Eと比較しており、電圧信号c2が電圧信号E
より大きくなると、ハイレベル「1」の比較信号を出力
する。モノステーブルマルチバイブレータ15は電圧比
較器13がハイレベル「1」の比較信号を出力すると、
電圧信号C2の略1周期に相当する幅のパルス信号Fを
出力する(第2図(g)参照)。
The voltage comparator 18 compares the voltage signal C2 with the voltage signal E as a trigger level, and the voltage signal c2 is compared with the voltage signal E.
When it becomes larger, a comparison signal of high level "1" is output. When the voltage comparator 13 outputs a comparison signal of high level "1", the monostable multivibrator 15
A pulse signal F having a width corresponding to approximately one period of the voltage signal C2 is output (see FIG. 2(g)).

ところで、電圧信号C2は常に電圧信号りの最大値D 
 に係数Kを乗じた大きさである電圧信aX 号Eよりも遅延時間tdだけ遅れている。又、電圧信号
り及びC2はもともと同じ伝搬経路を伝搬してきたもの
であるので、流体の温度ムラ、その他の外乱により生じ
る変動は時間差があるだけで等しいものである。
By the way, the voltage signal C2 is always the maximum value D of the voltage signal.
The voltage signal aX, which has a magnitude obtained by multiplying by a coefficient K, lags behind E by a delay time td. Further, since the voltage signal C2 and the voltage signal C2 have originally propagated along the same propagation path, the fluctuations caused by temperature irregularities in the fluid and other disturbances are the same except for the time difference.

従って、電圧信号Eは電圧信号C2の変動に相応して変
動することになる。例えば、電圧信号りの最大値D  
を電圧信号C2の1/2の大きさにaX なるように係数器11の係数Kを設定すると(電圧信号
E−D   /2) 、電圧信号C2がどのようTMa
x に変動しても、電圧比較器13は電圧信号C2が電圧信
号りの最大値D  の1/2を越えた時点でハ18X イレベル「1」の比較信号を出力する。換言すると、電
圧比較器13は電圧信号C2が0から次第に増加してい
き、例えば電圧信号C2の第3番目の山で電圧信号Eを
越えると、電圧信号C2及びDが相似的に変化する限り
においては、電圧信号C2及びDの振幅がどのように変
化しても、電圧信号C2の第3番目の山でハイレベル「
1」の比較信号を出力することになる。
Therefore, the voltage signal E will vary in accordance with the variation in the voltage signal C2. For example, the maximum value D of the voltage signal
If the coefficient K of the coefficient multiplier 11 is set so that aX becomes 1/2 the magnitude of the voltage signal C2 (voltage signal E-D /2), then the voltage signal C2 becomes TMa
x, the voltage comparator 13 outputs a comparison signal of level "1" when the voltage signal C2 exceeds 1/2 of the maximum value D of the voltage signal. In other words, the voltage comparator 13 detects that the voltage signal C2 gradually increases from 0 and, for example, when it exceeds the voltage signal E at the third peak of the voltage signal C2, as long as the voltage signals C2 and D change in a similar manner. , no matter how the amplitudes of the voltage signals C2 and D change, the third peak of the voltage signal C2 is at a high level.
A comparison signal of "1" is output.

一方、電圧比較器14は電圧信号C2が基準電圧vRを
よぎった時点(本実施例では正値から負値によぎった時
点)に、電圧信号C2に対応する受信信号を受波した旨
を示すハイレベル「1」の比較信号を出力する。モノス
テーブルマルチバイブレークIBは電圧比較器14がハ
イレベル「1」の比較信号を出力すると、電圧信号C2
の略1/2周期以下に相当するパルス幅のゼロクロスパ
ルスを出力する(第2図(h)参照)。
On the other hand, the voltage comparator 14 indicates that a reception signal corresponding to the voltage signal C2 has been received at the time when the voltage signal C2 crosses the reference voltage vR (in this embodiment, the time when the voltage signal crosses from a positive value to a negative value). A comparison signal of high level "1" is output. When the voltage comparator 14 outputs a comparison signal of high level "1", the monostable multi-by-break IB outputs a voltage signal C2.
A zero-cross pulse with a pulse width corresponding to approximately 1/2 period or less is output (see FIG. 2(h)).

アンドゲート17はモノステーブルマルチバイブレータ
15及びIBの出力の論理積をとり、電圧信号C2の振
幅の大きさに拘らず、電圧信号C2の特定の山(例えば
、電圧信号C2の第3番目の山)の直後のゼロクロス点
に対応するゼロクロスパルスGを出力する。
The AND gate 17 performs a logical product of the outputs of the monostable multivibrator 15 and IB, and selects a specific peak of the voltage signal C2 (for example, the third peak of the voltage signal C2), regardless of the magnitude of the amplitude of the voltage signal C2. ) outputs a zero-crossing pulse G corresponding to the zero-crossing point immediately after.

送信指令信号Aの出力によりセットされたフリップフロ
ップ18は、ゼロクロスパルスGによりリセットされる
。なお、電圧比較器14は電圧信号C2がゼロクロス点
をよぎる度毎にゼロクロスパルスを出力するが、電圧信
号C2が電圧信号Eを越えない限り、電圧比較器13が
ハイレベル「1」の比較信号を出力しないので、フリッ
プフロップ18はリセットされない。カウンタ20はフ
リップフロップ18のリセットにより、クロックパルス
CPのパルス数の計数を停止する(第2図(1)参照)
The flip-flop 18 set by the output of the transmission command signal A is reset by the zero cross pulse G. Note that the voltage comparator 14 outputs a zero-crossing pulse every time the voltage signal C2 crosses a zero-crossing point, but as long as the voltage signal C2 does not exceed the voltage signal E, the voltage comparator 13 outputs a comparison signal of high level "1". is not output, the flip-flop 18 is not reset. The counter 20 stops counting the number of clock pulses CP by resetting the flip-flop 18 (see FIG. 2 (1)).
.

従って、カウンタ20は順方向の超音波の伝搬時間に相
当する時間t 1遅延時間t、及びトリガ遅延時間12
との和の時間だけ、クロックパルスCPのパルス数を計
数することになる。トリガ遅延時間12は一定に保てる
ので、遅延時間t、が既知であれば、計数値に基づいて
順方向における超音波の伝搬時間T(−tl (順方向
))を計時で■ きることになる。以上のようにして超音波の順方向の伝
搬時間の計時を終了すると、今度は逆方向の伝搬時間の
計時を行なう。即ち、送受切換回路7を切り換えて、超
音波送受波器6から5に超音波を伝搬させ、この伝搬時
間T(−tl (逆方向))を計時するのである。
Therefore, the counter 20 has a time t1 corresponding to the propagation time of the forward ultrasound wave, a delay time t, and a trigger delay time 12.
The number of pulses of the clock pulse CP is counted for the sum of the times. Since the trigger delay time 12 can be kept constant, if the delay time t is known, the propagation time T (-tl (forward direction)) of the ultrasound in the forward direction can be measured based on the count value. . Once the forward propagation time of the ultrasonic waves has been measured in the manner described above, the reverse propagation time is now measured. That is, the transmission/reception switching circuit 7 is switched to propagate the ultrasonic waves from the ultrasonic transducers 6 to 5, and the propagation time T (-tl (reverse direction)) is measured.

信号処理回路21はカウンタ20が計時した超音波の順
方向の伝搬時間T1及び逆方向の伝搬時間T2に基づい
て、流体の流速Vを算出する。本実施例では、順方向及
び逆方向の伝搬時間に基3く流速Vの基本的な算出方法
について説明する。即ち、超音波送受波器5と6との距
離をg1超音波送受波器5と6とを結ぶ線分と流体の流
速方向とのなす角をθ、流体中の音速をCとすると、順
方向の伝搬時間T1及び逆方向の伝搬時間T2は、 T1−1 / (c + vcos θ)T2 =1 
/ (c−vcos θ)となる。伝搬時間T 及びT
2に対して、■ f l −172T 1 T2−112T2 なる関係の周波数f 及びT2の差の周波数fはf−f
 −T2−m(77g)cosθとなる。距離ρ及び角
度θは既知であるので、周波数fから流速Vは容易に算
出される。
The signal processing circuit 21 calculates the flow velocity V of the fluid based on the forward propagation time T1 and the reverse propagation time T2 of the ultrasound measured by the counter 20. In this embodiment, a basic method of calculating the flow velocity V based on the forward and reverse propagation times will be described. That is, if the distance between the ultrasonic transducers 5 and 6 is g1, the angle between the line segment connecting the ultrasonic transducers 5 and 6 and the flow velocity direction of the fluid is θ, and the speed of sound in the fluid is C, then The propagation time T1 in the direction and the propagation time T2 in the opposite direction are T1-1 / (c + vcos θ)T2 = 1
/ (c-vcos θ). Propagation time T and T
2, the frequency f with the relationship f l -172T 1 T2-112T2 and the frequency f of the difference between T2 is f - f
-T2-m(77g) cos θ. Since the distance ρ and the angle θ are known, the flow velocity V can be easily calculated from the frequency f.

表示器22は信号処理回路21が算出した流速Vを表示
する。
The display 22 displays the flow velocity V calculated by the signal processing circuit 21.

第3図は本発明の一実施例に係る超音波流速測定装置の
他の実施例の回路ブロック図である。なお、第3図にお
いて、第1図と同様な機能を果だす部分については同一
の符号を付し、その説明は省略する。又、第3図におい
て、23はオアゲート24はタイミングパルス発生回路
2から続けて出力される送信指令信号A、A2により、
所定時間■ 遅延した所定幅のパルス信号り。及びC6を受信回路8
及び9に出力する受信ゲート発生回路である。なお、送
信指令信号A とパルス信号DG及び送信指令信号A 
とパルス信号C6との間隔は流管4の径から予め計算で
算出しておく。
FIG. 3 is a circuit block diagram of another embodiment of the ultrasonic flow rate measuring device according to one embodiment of the present invention. In FIG. 3, parts that perform the same functions as those in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted. Further, in FIG. 3, the OR gate 23 is operated by the transmission command signals A and A2 successively outputted from the timing pulse generation circuit 2.
Predetermined time■ Pulse signal with a predetermined width delayed. and C6 to the receiving circuit 8
This is a reception gate generation circuit that outputs signals to and 9. In addition, the transmission command signal A, the pulse signal DG, and the transmission command signal A
The interval between the pulse signal C6 and the pulse signal C6 is calculated in advance from the diameter of the flow tube 4.

ところで、第1図に示した実施例では遅延回路12によ
って、電圧信号C1を所定の遅延時間t。
By the way, in the embodiment shown in FIG. 1, the delay circuit 12 delays the voltage signal C1 by a predetermined delay time t.

だけ遅延させた。しかし、気体用超音波流速測定装置の
場合、遅延時間t、が数十〜100μs、遅延時間ta
の安定性が0.1μs以上のものが必要とされる。この
ような遅延素子は大形で、高価なものになってしまう。
only delayed. However, in the case of an ultrasonic flow velocity measurement device for gas, the delay time t is several tens to 100 μs, and the delay time ta
A stability of 0.1 μs or more is required. Such a delay element is large and expensive.

そこで、本実施例では遅延回路12を使用せずに、伝搬
時間を測定できるようにした。
Therefore, in this embodiment, the propagation time can be measured without using the delay circuit 12.

以下、上記構成の超音波流速測定装置の動作を第4図に
示したタイミングチャートに基いて説明する。
Hereinafter, the operation of the ultrasonic flow rate measuring device having the above configuration will be explained based on the timing chart shown in FIG. 4.

送信回路3は上記実施例において送信指令信号Aが出力
される間隔に比べて、非常に短い間隔でタイミングパル
ス発生回路2から送信指令信号A 及びA2が出力され
ると(第4図(a)参照)■ 送信指令信号A 及びA2に対応する送信信号B、B2
を出力する(第4図(b)参照)。又、送信指令信号A
 (及びA2)の出力により、ピ■ 一りホールド回路10はリセットされる。さらに、フリ
ップフロップ18が送信指令信号A2の出力によりセッ
トされて、ハイレベル「1」の信号Hを出力するので、
カウンタ20はクロックパルス発生回路1が出力するク
ロックパルスCPのパルス数を計数し始める(第4図(
j)参照)。
When the transmission circuit 3 outputs the transmission command signals A and A2 from the timing pulse generation circuit 2 at very short intervals compared to the interval at which the transmission command signal A is output in the above embodiment (see FIG. 4(a) Reference) ■ Transmission command signal A and transmission signals B and B2 corresponding to A2
(See FIG. 4(b)). Also, transmission command signal A
(and A2), the pin hold circuit 10 is reset. Furthermore, since the flip-flop 18 is set by the output of the transmission command signal A2 and outputs a signal H of high level "1",
The counter 20 starts counting the number of clock pulses CP output by the clock pulse generation circuit 1 (see Fig. 4).
See j).

送受切換回路7は送信指令信号A 及びA2が出力され
るのに対応して、送信信号B 及びB2を超音波送受波
器5に出力する。超音波送受波器5は送信信号B 及び
B2を超音波信号に変換して、送信波として流体中に送
波する。超音波送受波器6は超音波送受波器5から送波
された送信波を受波して、電圧信号に変換する。
The transmission/reception switching circuit 7 outputs the transmission signals B 2 and B2 to the ultrasonic transducer 5 in response to the output of the transmission command signals A 1 and A2. The ultrasonic transducer 5 converts the transmission signals B 1 and B 2 into ultrasonic signals and transmits them into the fluid as transmission waves. The ultrasonic transducer 6 receives the transmission wave transmitted from the ultrasonic transducer 5 and converts it into a voltage signal.

超音波送受波器6が送信波を受波するタイミングにあわ
せて、受信ゲート発生回路24が受信増幅回路8にパル
ス信号り。を出力すると(第4図(c)参照)、受信増
幅回路8は超音波送受波器6から送受切換回路7を介し
て出力される電圧信号を増幅し、受信信号に対応する大
きさの電圧信号りをピークホールド回路10に出力する
(第4図(d)参照)。ピークホールド回路10は電圧
信号りのピーク値を保持する。さらに、係数器11はピ
ークホールド回路10が保持する電圧信号りの最大値D
  に一定係数Kを乗じた大きさの電圧信号En+ax ・を出力する(第4図(c)参照)。
The reception gate generation circuit 24 sends a pulse signal to the reception amplifier circuit 8 in synchronization with the timing when the ultrasonic transducer 6 receives the transmission wave. (see FIG. 4(c)), the receiving amplifier circuit 8 amplifies the voltage signal output from the ultrasonic transducer 6 via the transmitting/receiving switching circuit 7, and generates a voltage corresponding to the received signal. The signal is output to the peak hold circuit 10 (see FIG. 4(d)). The peak hold circuit 10 holds the peak value of the voltage signal. Further, the coefficient unit 11 outputs the maximum value D of the voltage signal held by the peak hold circuit 10.
A voltage signal En+ax .multidot. is multiplied by a constant coefficient K (see FIG. 4(c)).

又、超音波送受波器6が送信波を受波するタイミングに
あわせて、受信ゲート発生回路24が受信増幅回路9に
パルス信号C6を出力すると(第4図(r)参照)、受
信増幅回路9は超音波送受波器6から出力される電圧信
号を増幅し、電圧信号Cを電圧比較器13及び14に出
力する(第4図(g)参照)。電圧比較器13は電圧信
号Cをトリガレベルとしての電圧信号Eと比較しており
、電圧信号Cが電圧信号Eより大きくなると、ハイレベ
ル「1」の比較信号を出力する。モノステーブルマルチ
バイブレーク15は電圧比較器13がハイレベル「1」
の比較信号を出力すると、電圧信号Cの略1周期に相当
する幅のパルス信号Fを出力する(第4図(h)参照)
Further, when the reception gate generation circuit 24 outputs a pulse signal C6 to the reception amplifier circuit 9 in synchronization with the timing at which the ultrasonic transducer 6 receives the transmission wave (see FIG. 4(r)), the reception amplifier circuit 9 amplifies the voltage signal output from the ultrasonic transducer 6 and outputs the voltage signal C to the voltage comparators 13 and 14 (see FIG. 4(g)). The voltage comparator 13 compares the voltage signal C with the voltage signal E as a trigger level, and when the voltage signal C becomes larger than the voltage signal E, it outputs a comparison signal of high level "1". In the monostable multi-by-break 15, the voltage comparator 13 is at high level "1"
When the comparison signal is outputted, a pulse signal F having a width corresponding to approximately one period of the voltage signal C is outputted (see Fig. 4 (h)).
.

一方、電圧比較器14は電圧信号Cが基準電圧VRをよ
ぎった時点に、電圧信号Cに対応する受信信号を受波し
た旨を示すハイレベル「1」の比較信号を出力する。モ
ノステーブルマルチバイブレータ16は電圧比較器14
がハイレベル「1」の比較信号を出力すると、電圧信号
Cの略1/2周期以下に相当するパルス幅のゼロクロス
パルスヲ出力する(第一4図(1)参照)。
On the other hand, the voltage comparator 14 outputs a comparison signal of high level "1" indicating that a reception signal corresponding to the voltage signal C has been received at the time when the voltage signal C crosses the reference voltage VR. Monostable multivibrator 16 is connected to voltage comparator 14
When it outputs a comparison signal of high level "1", it outputs a zero-cross pulse with a pulse width corresponding to approximately 1/2 period or less of the voltage signal C (see FIG. 4 (1)).

アンドゲート17はモノステーブルマルチバイブレータ
15及び16の出力の論理積をとり、電圧信号Cの振幅
の大きさに拘らず、電圧信号Cの特定の山の直後のゼロ
クロス点に対応するゼロクロスパルスを出力する。
The AND gate 17 takes the logical product of the outputs of the monostable multivibrators 15 and 16, and outputs a zero-crossing pulse corresponding to the zero-crossing point immediately after a specific peak of the voltage signal C, regardless of the amplitude of the voltage signal C. do.

送信指令信号A2の出力によりセットされたフリップフ
ロップ18は、ゼロクロスパルスGによりリセットされ
る。カウンタ20はフリップフロップ18のリセットに
より、クロックパルスCPのパルス数の計数を停止し、
順方向における超音波の伝搬時間T1を計時を終了する
(第4図(j)参照)。
The flip-flop 18 set by the output of the transmission command signal A2 is reset by the zero-cross pulse G. The counter 20 stops counting the number of clock pulses CP by resetting the flip-flop 18,
The measurement of the propagation time T1 of the ultrasonic wave in the forward direction is completed (see FIG. 4(j)).

同様にして、逆方向の伝搬時間T2を計時する。Similarly, the propagation time T2 in the opposite direction is measured.

信号処理回路21はカウンタ20が計時した超音波の順
方向の伝搬時間T1及び逆方向の伝搬時間T2に基づい
て、流体の流速Vを算出する。表示器22は信号処理回
路2Fが算出した流速Vを表示する。
The signal processing circuit 21 calculates the flow velocity V of the fluid based on the forward propagation time T1 and the reverse propagation time T2 of the ultrasound measured by the counter 20. The display 22 displays the flow velocity V calculated by the signal processing circuit 2F.

このように、本実施例では伝搬時間を直接的に測定する
ので、この処理過程に誤差が入らないことになる。
In this way, since the propagation time is directly measured in this embodiment, no error is introduced into this processing process.

[発明の効果コ 以上説明したように、第1の発明においては、切換手段
が第1の地点から第2の地点及び第2の地点から第1の
地点に超音波が伝搬するように切り換わるとともに、第
1の地点及び第2の地点に到達した超音波に対応する受
信信号を順次選択出力し、基準信号出力手段が受信信号
の振幅に比例する大きさの基準信号を出力するとともに
、遅延手段により基準信号が出力される時間、受信信号
を遅延させた遅延受信信号を出力し、受信信号とトリガ
レベルである基準信号との相対的関係を常に一定に保っ
た上で、比較手段により遅延受信信号と基準信号とを比
較して、受信信号の到達を検出しており、 又、第2の発明においては、超音波出力手段が第1の超
音波及び第1の超音波とほぼ同じ波形の第2の超音波を
短い間隔で出力し、切換手段が第1の地点から第2の地
点及び第2の地点から第1の地点に第1の超音波及び第
2の超音波が伝搬されるように切り換わるとともに、第
1の地点に到達した第1の超音波及び第2の超音波に対
応する第1の受信信号及び第2の地点に到達した第1の
超音波及び第2の超音波に対応する第2の受信信号を順
次選択出力し、基準信号出力手段が第1の受信信号の振
幅に比例する大きさの基準信号を出力するとともに、比
較手段により第2の受信信号と基準信号とを比較して、
受信信号の到達を検出するので、いずれの場合であって
も受信信号の振幅の変動の影響を受けずに、安定かつ正
確に流速を測定できる超音波流速測定装置を得ることが
できる。
[Effects of the Invention] As explained above, in the first invention, the switching means switches so that the ultrasonic waves propagate from the first point to the second point and from the second point to the first point. At the same time, the received signals corresponding to the ultrasonic waves that have arrived at the first point and the second point are sequentially selected and outputted, and the reference signal output means outputs a reference signal with a magnitude proportional to the amplitude of the received signal, and the delay A delayed received signal is output by delaying the received signal by the time the reference signal is output by the means, and the delayed received signal is outputted by the comparison means while keeping the relative relationship between the received signal and the reference signal, which is the trigger level, constant. Arrival of the received signal is detected by comparing the received signal with a reference signal, and in the second invention, the ultrasonic output means generates the first ultrasonic wave and a waveform substantially the same as the first ultrasonic wave. The switching means outputs the second ultrasonic waves at short intervals, and the switching means propagates the first ultrasonic waves and the second ultrasonic waves from the first point to the second point and from the second point to the first point. At the same time, the first received signal corresponding to the first ultrasonic wave and the second ultrasonic wave that reached the first point, and the first received signal corresponding to the first ultrasonic wave and the second ultrasonic wave that reached the second point The second received signal corresponding to the ultrasonic wave is sequentially selected and outputted, the reference signal output means outputs a reference signal having a magnitude proportional to the amplitude of the first received signal, and the comparison means compares the second received signal with the amplitude of the first received signal. Compare with the reference signal,
Since the arrival of the received signal is detected, it is possible to obtain an ultrasonic flow velocity measurement device that can stably and accurately measure the flow velocity without being affected by fluctuations in the amplitude of the received signal in any case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る超音波流速測定装置の
回路ブロック図、第2図は上記ブロック図の各部の波形
を示す波形図、第3図は本発明の一実施例に係る超音波
流速測定装置の他の実施例の回路ブロック図、第4図は
上記ブロック図の各部の波形を示す波形図、第5図は流
体中を伝搬する超音波のレベルが変動する状況の説明図
である。 1・・・クロックパルス発生回路、2・・・タイミング
パルス発生回路、3・・・送信回路、4・・・流管、5
゜6・・・超音波送受波器、7・・・送受切換回路、8
,9・・・受信回路、10・・・ピークホールド回路、
11・・・係数器、12・・・遅延回路、13.14・
・・電圧比較器、15.18・・・モノステーブルマル
チバイブレータ、17.19・・・アンドゲート、18
・・・フリップフロップ、20・・・カウンタ、21・
・・信号処理回路、22・・・表示器、23・・・オア
ゲート、24・・・受信ゲート発生回路。
Fig. 1 is a circuit block diagram of an ultrasonic current velocity measuring device according to an embodiment of the present invention, Fig. 2 is a waveform diagram showing waveforms of each part of the above block diagram, and Fig. 3 is a circuit block diagram of an ultrasonic flow rate measuring device according to an embodiment of the present invention. A circuit block diagram of another embodiment of the ultrasonic flow rate measuring device, FIG. 4 is a waveform diagram showing the waveforms of each part of the above block diagram, and FIG. 5 is an explanation of the situation in which the level of ultrasonic waves propagating in a fluid fluctuates. It is a diagram. DESCRIPTION OF SYMBOLS 1... Clock pulse generation circuit, 2... Timing pulse generation circuit, 3... Transmission circuit, 4... Flow tube, 5
゜6... Ultrasonic transducer, 7... Transmission/reception switching circuit, 8
, 9... receiving circuit, 10... peak hold circuit,
11...Coefficient unit, 12...Delay circuit, 13.14.
... Voltage comparator, 15.18 ... Monostable multivibrator, 17.19 ... AND gate, 18
...Flip-flop, 20...Counter, 21.
... Signal processing circuit, 22 ... Display device, 23 ... OR gate, 24 ... Reception gate generation circuit.

Claims (6)

【特許請求の範囲】[Claims] (1)所定距離だけ離れた流体中の第1の地点から第2
の地点まで伝搬する超音波の伝搬時間及び該第2の地点
から該第1の地点まで伝搬する超音波の伝搬時間に基づ
いて、該流体の流速を測定する超音波流速測定装置にお
いて、 前記超音波が前記第1の地点から前記第2の地点及び該
第2の地点から該第1の地点に伝搬するように切り換わ
るとともに、該第1の地点に到達した超音波に対応する
受信信号及び該第2の地点に到達した超音波に対応する
受信信号を順次選択出力する切換手段と、 前記受信信号の振幅に比例する基準信号を出力する基準
信号出力手段と、 少なくとも前記基準信号が出力されるまでの時間だけ、
前記受信信号を遅延させた遅延受信信号を出力する遅延
手段と、 前記遅延受信信号が前記基準信号より大きくなったとき
に、受波信号を出力する比較手段と、を備えたことを特
徴とする超音波流速測定装置。
(1) From a first point in a fluid a predetermined distance away to a second point
In an ultrasonic flow rate measuring device that measures the flow velocity of the fluid based on the propagation time of the ultrasonic wave propagating to the point and the propagation time of the ultrasonic wave propagating from the second point to the first point, A received signal corresponding to the ultrasonic wave that has reached the first point, and switching means for sequentially selecting and outputting received signals corresponding to the ultrasound waves that have reached the second point; reference signal outputting means for outputting a reference signal proportional to the amplitude of the received signal; Just the time until
The apparatus is characterized by comprising: a delay means for outputting a delayed received signal obtained by delaying the received signal; and a comparison means for outputting a received signal when the delayed received signal becomes larger than the reference signal. Ultrasonic flow velocity measuring device.
(2)基準信号は、前記受信信号の最大値に所定の係数
を乗じた大きさである特許請求の範囲第1項記載の超音
波流速測定装置。
(2) The ultrasonic flow rate measuring device according to claim 1, wherein the reference signal has a magnitude obtained by multiplying the maximum value of the received signal by a predetermined coefficient.
(3)比較手段は、前記受信信号が前記基準信号より大
きくなった後に、該受信信号がゼロクロス点をよぎった
ときに、前記受波信号を出力する特許請求の範囲第1項
又は第2項記載の超音波流速測定装置。
(3) The comparing means outputs the received signal when the received signal crosses a zero cross point after the received signal becomes larger than the reference signal. The ultrasonic flow velocity measurement device described.
(4)所定距離だけ離れた流体中の第1の地点から第2
の地点まで伝搬する超音波の伝搬時間及び該第2の地点
から該第1の地点まで伝搬する超音波の伝搬時間に基づ
いて、該流体の流速を測定する超音波流速測定装置にお
いて、 第1の超音波及び該第1の超音波と略同一波形の第2の
超音波を短い間隔で前記流体中に出力する超音波出力手
段と、 前記第1の超音波及び前記第2の超音波が、前記第1の
地点から前記第2の地点及び該第2の地点から該第1の
地点に伝搬されるように切り換わるとともに、該第1の
地点に到達した前記第1の超音波及び前記第2の超音波
に対応する第1の受信信号及び該第2の地点に到達した
該第1の超音波及び該第2の超音波に対応する第2の受
信信号を順次選択出力する切換手段と、 前記第1の受信信号の振幅に比例する基準信号を出力す
る基準信号出力手段と、 前記第2の受信信号が前記基準信号より大きくなったと
きに、受波信号を出力する比較手段と、を備えたことを
特徴とする超音波流速測定装置。
(4) From the first point in the fluid a predetermined distance away to the second point
In an ultrasonic flow velocity measuring device that measures the flow velocity of the fluid based on the propagation time of the ultrasonic wave propagating to the point and the propagation time of the ultrasonic wave propagating from the second point to the first point, and a second ultrasonic wave having substantially the same waveform as the first ultrasonic wave into the fluid at short intervals; and the first ultrasonic wave and the second ultrasonic wave are , the first ultrasonic wave is switched to be propagated from the first point to the second point, and from the second point to the first point, and the first ultrasonic wave reaches the first point; A switching means for sequentially selectively outputting a first received signal corresponding to a second ultrasonic wave and a second received signal corresponding to the first ultrasonic wave and the second ultrasonic wave that have reached the second point. and a reference signal output means for outputting a reference signal proportional to the amplitude of the first received signal; and a comparison means for outputting a received signal when the second received signal becomes larger than the reference signal. An ultrasonic flow velocity measuring device comprising:
(5)基準信号は、前記受信信号の最大値に所定の係数
を乗じた大きさである特許請求の範囲第4項記載の超音
波流速測定装置。
(5) The ultrasonic flow rate measuring device according to claim 4, wherein the reference signal has a magnitude obtained by multiplying the maximum value of the received signal by a predetermined coefficient.
(6)比較手段は、前記受信信号が前記基準信号より大
きくなった後に、該受信信号がゼロクロス点をよぎった
ときに、前記受波信号を出力する特許請求の範囲第4項
又は第5項記載の超音波流速測定装置。
(6) Claim 4 or 5, wherein the comparison means outputs the received signal when the received signal crosses a zero cross point after the received signal becomes larger than the reference signal. The ultrasonic flow velocity measurement device described.
JP62257251A 1987-10-14 1987-10-14 Ultrasonic velocity measuring device Expired - Lifetime JPH0810151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257251A JPH0810151B2 (en) 1987-10-14 1987-10-14 Ultrasonic velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257251A JPH0810151B2 (en) 1987-10-14 1987-10-14 Ultrasonic velocity measuring device

Publications (2)

Publication Number Publication Date
JPH01100414A true JPH01100414A (en) 1989-04-18
JPH0810151B2 JPH0810151B2 (en) 1996-01-31

Family

ID=17303790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257251A Expired - Lifetime JPH0810151B2 (en) 1987-10-14 1987-10-14 Ultrasonic velocity measuring device

Country Status (1)

Country Link
JP (1) JPH0810151B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090770A (en) * 2001-09-20 2003-03-28 Babcock Hitachi Kk Sound-wave type gas temperature measuring apparatus and method therefor
JP2006275814A (en) * 2005-03-29 2006-10-12 Tokyo Gas Co Ltd Ultrasonic flowmeter
JP2007530933A (en) * 2004-03-25 2007-11-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Zero-crossing detection of ultrasonic signals with variable threshold
JP2011257435A (en) * 2011-10-03 2011-12-22 Osaka Gas Co Ltd Ultrasonic type meter device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090770A (en) * 2001-09-20 2003-03-28 Babcock Hitachi Kk Sound-wave type gas temperature measuring apparatus and method therefor
JP2007530933A (en) * 2004-03-25 2007-11-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Zero-crossing detection of ultrasonic signals with variable threshold
JP2006275814A (en) * 2005-03-29 2006-10-12 Tokyo Gas Co Ltd Ultrasonic flowmeter
JP2011257435A (en) * 2011-10-03 2011-12-22 Osaka Gas Co Ltd Ultrasonic type meter device

Also Published As

Publication number Publication date
JPH0810151B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5796009A (en) Method for measuring in a fluid with the aid of sing-around technique
US6062091A (en) Method and apparatus for determining ultrasonic pulse arrival in fluid using phase correlation
EP0441531A2 (en) Method and system for digital measurement of acoustic burst travel time in a fluid medium
JP2007187506A (en) Ultrasonic flowmeter
JPS5856085B2 (en) Method and device for measuring thickness or depth of abnormal area using ultrasonic pulses
US4583410A (en) Timing circuit for acoustic flow meters
JPH01100414A (en) Ultrasonic-wave flow velocity measuring apparatus
CN112903043A (en) Multichannel ultrasonic flowmeter system
US20230243682A1 (en) Ultrasonic flow measurement
JPH11304559A (en) Flow rate measuring apparatus
JP2608961B2 (en) Sound wave propagation time measurement method
JP3422100B2 (en) Flow measurement device
JP2008185441A (en) Ultrasonic flowmeter
JP3624743B2 (en) Ultrasonic flow meter
JPH1019619A (en) Method of ultrasonic measuring flow velocity
JP3438371B2 (en) Flow measurement device
JPS61100616A (en) Apparatus for measuring flow amount
JP3496670B2 (en) Flow measurement device
JPH01100490A (en) Ultrasonic range finder
JP3508756B2 (en) Flow measurement device, flow velocity measurement device, and flow measurement method
JPH01100488A (en) Ultrasonic range finder
JP3468235B2 (en) Flow measurement device
JP2020180811A (en) Ultrasonic flowmeter
JPH0117090B2 (en)
JPH01100489A (en) Ultrasonic range finder