JP7470760B2 - Cytotoxicity-inducing therapeutic agent for use in the treatment of cancer - Google Patents

Cytotoxicity-inducing therapeutic agent for use in the treatment of cancer Download PDF

Info

Publication number
JP7470760B2
JP7470760B2 JP2022154330A JP2022154330A JP7470760B2 JP 7470760 B2 JP7470760 B2 JP 7470760B2 JP 2022154330 A JP2022154330 A JP 2022154330A JP 2022154330 A JP2022154330 A JP 2022154330A JP 7470760 B2 JP7470760 B2 JP 7470760B2
Authority
JP
Japan
Prior art keywords
seq
antigen
binding
cancer
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022154330A
Other languages
Japanese (ja)
Other versions
JP2023050167A (en
Inventor
慎也 石井
雄之 上川
直紀 木村
達史 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022578651A external-priority patent/JPWO2023053282A1/ja
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JP2023050167A publication Critical patent/JP2023050167A/en
Priority to JP2023214776A priority Critical patent/JP2024039035A/en
Application granted granted Critical
Publication of JP7470760B2 publication Critical patent/JP7470760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本開示は、クローディン6を標的とする多重特異性抗原結合分子を含む抗がん剤、および少なくとも1つの他の抗がん剤との併用療法等に関する。 The present disclosure relates to an anticancer drug comprising a multispecific antigen-binding molecule that targets claudin-6, and a combination therapy with at least one other anticancer drug, etc.

クローディンファミリーは、4つの膜貫通ドメインを有し、タイトジャンクションを構成する、分子量およそ23 kDの細胞膜タンパク質のファミリーである。クローディンファミリーは、ヒトおよびマウスにおいて24種類のメンバーを含み、クローディンファミリーの各メンバーは、各上皮細胞型に応じて非常にユニークな発現パターンを示すことが公知である(非特許文献1~非特許文献4)。上皮細胞のシートにおいては、物質が細胞間隙に漏出(拡散)するのを防ぐようにある機構が働き、タイトジャンクションと呼ばれる細胞間接着システムは、この漏出を防ぐ機構において「バリア」としての中心的役割を実際に果たすことが示されている。 The claudin family is a family of cell membrane proteins with a molecular weight of approximately 23 kD that have four transmembrane domains and form tight junctions. The claudin family contains 24 members in humans and mice, and it is known that each member of the claudin family shows a very unique expression pattern depending on each epithelial cell type (Non-Patent Documents 1 to 4). In sheets of epithelial cells, a mechanism works to prevent substances from leaking (diffusing) into the intercellular space, and it has been shown that the intercellular adhesion system called tight junctions actually plays a central role as a "barrier" in the mechanism to prevent this leakage.

タイトジャンクション分子クローディン6(CLDN6)は、クローディンファミリータンパク質のメンバーであり、正常な生体組織では転写的に発現していない(非特許文献5および非特許文献6)が、卵巣がん、NSCLC、および胃がんなどの複数種類のがんでは発現上昇を示す(非特許文献7~非特許文献9)。
抗CLDN6抗体に関して、CLDN6に対する単一特異性抗体は、CLDN6陽性がん細胞株に対してADCC活性または内部移行活性を有することが報告されている(特許文献1~特許文献5)。これまでに、6PHU3と名付けられた、CLDN6を標的とするT細胞リダイレクティング二重特異性抗体が、抗CD3/抗CLDN6特異性を有する二重特異性sc(Fv)2形式を用いて作られている(特許文献6~特許文献7)。前臨床評価において、6PHU3は、in vitroおよびin vivoでがん細胞の強力な殺傷を示すことが報告されている(非特許文献10)。
The tight junction molecule claudin 6 (CLDN6) is a member of the claudin family of proteins and is not transcriptionally expressed in normal biological tissues (Non-Patent Documents 5 and 6), but is upregulated in several types of cancer, including ovarian cancer, NSCLC, and gastric cancer (Non-Patent Documents 7 to 9).
Regarding anti-CLDN6 antibodies, monospecific antibodies against CLDN6 have been reported to have ADCC activity or internalization activity against CLDN6-positive cancer cell lines (Patent Documents 1 to 5). To date, a T cell redirecting bispecific antibody targeting CLDN6, named 6PHU3, has been created using a bispecific sc(Fv) 2 format with anti-CD3/anti-CLDN6 specificity (Patent Documents 6 to 7). In preclinical evaluation, 6PHU3 has been reported to exhibit potent killing of cancer cells in vitro and in vivo (Non-Patent Document 10).

WO2009/087978WO2009/087978 WO2011/057788WO2011/057788 WO2012/003956WO2012/003956 WO2012/156018WO2012/156018 WO2015/069794WO2015/069794 WO2014/075697WO2014/075697 WO2014/075788WO2014/075788

Furuse and Tsukita, TRENDS in Cell Biology 2006, 16: 181Furuse and Tsukita, TRENDS in Cell Biology 2006, 16: 181 Wilcox, et al., Cell 2001, 104: 165Wilcox et al., Cell 2001, 104: 165 Rahner, et al., GASTROENTEROLOGY 2001, 120: 411Rahner et al., GASTROENTEROLOGY 2001, 120: 411 Morita, et al., Proc. Natl. Acad. Sci. USA 1999, 96: 511Morita, et al., Proc. Natl. Acad. Sci. USA 1999, 96: 511 Dev Dyn. 2004 Oct;231(2):425-31.Dev Dyn. 2004 Oct;231(2):425-31. Am J Physiol Renal Physiol. 2006 Dec;291(6):F1132-41.Am J Physiol Renal Physiol. 2006 Dec;291(6):F1132-41. Int J Cancer. 2014 Nov 1;135(9):2206-14.Int J Cancer. 2014 Nov 1;135(9):2206-14. Histopathology. 2012 Dec;61(6):1043-56.Histopathology. 2012 Dec;61(6):1043-56. J Gastrointest Cancer. 2010 Mar;41(1):52-9.J Gastrointest Cancer. 2010 Mar;41(1):52-9. Oncoimmunology. 2015 Oct 29;5(3):e1091555.Oncoimmunology. 2015 Oct 29;5(3):e1091555.

本開示の目的は、標的がん細胞、特に、がん細胞などのCLDN6発現細胞にT細胞を効率的かつ特異的に動員することができ、かつCLDN6発現細胞を含有する標的がん組織に対するT細胞の細胞傷害活性を通じてがんを治療することができる、多重特異性抗原結合分子を有効成分として含む抗がん剤を提供することである。また本発明は、前記多重特異性抗原結合分子と他の薬剤とを用いた併用療法を提供することを目的とする。 The object of the present disclosure is to provide an anticancer agent containing a multispecific antigen-binding molecule as an active ingredient, which can efficiently and specifically recruit T cells to target cancer cells, particularly CLDN6-expressing cells such as cancer cells, and can treat cancer through the cytotoxic activity of T cells against target cancer tissues containing CLDN6-expressing cells. Another object of the present invention is to provide a combination therapy using the multispecific antigen-binding molecule and another drug.

本発明者らは、CD3およびCD137(4-1BB)に結合することができ、CD3とCD137のいずれかに結合する(すなわち、CD3およびCD137にデュアル(dual)結合性であるが、同時には結合しない)第1の抗原結合部分と、がん組織に特異的に発現している分子、特にクローディン6(CLDN6)に結合することができる第2の抗原結合部分と、を含む、多重特異性抗原結合分子を見出した。本発明者らは、本発明に係る多重特異性抗原結合分子が、CLDN6発現がん細胞を含むがん細胞を傷害することを明らかにした。本発明は、該多重特異性抗原結合分子を有効成分として含む抗がん剤、該多重特異性抗原結合分子と少なくとも1つの他の抗がん剤とを用いた併用療法、および多重特異性抗原結合分子と抗がん剤とを組み合わせてなる医薬組成物を提供する。 The present inventors have found a multispecific antigen-binding molecule that can bind to both CD3 and CD137 (4-1BB) and contains a first antigen-binding portion that binds to either CD3 or CD137 (i.e., has dual binding to CD3 and CD137 but does not bind simultaneously), and a second antigen-binding portion that can bind to a molecule specifically expressed in cancer tissue, particularly claudin 6 (CLDN6). The present inventors have demonstrated that the multispecific antigen-binding molecule of the present invention damages cancer cells, including CLDN6-expressing cancer cells. The present invention provides an anticancer agent containing the multispecific antigen-binding molecule as an active ingredient, a combination therapy using the multispecific antigen-binding molecule and at least one other anticancer agent, and a pharmaceutical composition comprising a combination of the multispecific antigen-binding molecule and an anticancer agent.

より具体的には、本開示は以下を提供する:
(A-1) 以下の多重特異性抗原結合分子を有効成分として含む、抗がん剤:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(A-2) 以下の(1)~(6)のいずれかに記載の多重特異性抗原結合分子を有効成分として含む、抗がん剤:
(1) 配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む、第1の抗体可変領域;配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域を含む、多重特異性抗原結合分子;
(2) 配列番号:9の相補性決定領域(CDR)1、配列番号:15のCDR 2、および配列番号:21のCDR 3を含む、第1の抗体可変領域;配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域を含む、多重特異性抗原結合分子;
(3) 配列番号:10の相補性決定領域(CDR)1、配列番号:16のCDR 2、および配列番号:22のCDR 3を含む、第1の抗体可変領域;配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域; 配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域を含む、多重特異性抗原結合分子;
(4) 配列番号:12の相補性決定領域(CDR)1、配列番号:18のCDR 2、および配列番号:24のCDR 3を含む、第1の抗体可変領域;配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域を含む、多重特異性抗原結合分子;
(5) 配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む、第1の抗体可変領域;配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域を含む、多重特異性抗原結合分子;
(6) 配列番号:12の相補性決定領域(CDR)1、配列番号:18のCDR 2、および配列番号:24のCDR 3を含む、第1の抗体可変領域;配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域を含む、多重特異性抗原結合分子。
(A-3)前記第1の抗体可変領域、前記第2の抗体可変領域、前記第3の抗体可変領域、および前記第4の抗体可変領域からなる群より選ばれる少なくとも1つが、ヒト抗体フレームワークまたはヒト化抗体フレームワークを含む、(A-2)の抗がん剤。
(A-4) 以下の(I)~(VI)のいずれかに記載の多重特異性抗原結合分子を有効成分として含む、抗がん剤:
(I) 配列番号:5のアミノ酸配列を含む第1の抗体可変領域;配列番号:28のアミノ酸配列を含む第2の抗体可変領域;配列番号:1のアミノ酸配列を含む第3の抗体可変領域;および配列番号:25のアミノ酸配列を含む第4の抗体可変領域を含む、多重特異性抗原結合分子;
(II) 配列番号:3のアミノ酸配列を含む第1の抗体可変領域;配列番号:27のアミノ酸配列を含む第2の抗体可変領域;配列番号:2のアミノ酸配列を含む第3の抗体可変領域;および配列番号:26のアミノ酸配列を含む第4の抗体可変領域を含む、多重特異性抗原結合分子;
(III) 配列番号:4のアミノ酸配列を含む第1の抗体可変領域;配列番号:27のアミノ酸配列を含む第2の抗体可変領域;配列番号:2のアミノ酸配列を含む第3の抗体可変領域;および配列番号:26のアミノ酸配列を含む第4の抗体可変領域を含む、多重特異性抗原結合分子;
(IV) 配列番号:6のアミノ酸配列を含む第1の抗体可変領域;配列番号:28のアミノ酸配列を含む第2の抗体可変領域;配列番号:1のアミノ酸配列を含む第3の抗体可変領域;および配列番号:25のアミノ酸配列を含む第4の抗体可変領域を含む、多重特異性抗原結合分子;
(V) 配列番号:5のアミノ酸配列を含む第1の抗体可変領域;配列番号:28のアミノ酸配列を含む第2の抗体可変領域;配列番号:25のアミノ酸配列を含む第3の抗体可変領域;および配列番号:1のアミノ酸配列を含む第4の抗体可変領域を含む、多重特異性抗原結合分子;
(VI) 配列番号:6のアミノ酸配列を含む第1の抗体可変領域;配列番号:28のアミノ酸配列を含む第2の抗体可変領域;配列番号:25のアミノ酸配列を含む第3の抗体可変領域;および配列番号:1のアミノ酸配列を含む第4の抗体可変領域を含む、多重特異性抗原結合分子。
(A-5) 前記第1の抗体可変領域と前記第2の抗体可変領域とが、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分を構成し、前記第3の抗体可変領域と前記第4の抗体可変領域とが、CLDN6に結合することができる第2の抗原結合部分を構成する、(A-2)~(A-4)のいずれか1つの抗がん剤。
(A-6) 前記第1の抗体可変領域と前記第2の抗体可変領域とが、CD3に結合する第1の抗原結合部分を構成し、前記第3の抗体可変領域と前記第4の抗体可変領域とが、CLDN6に結合することができる第2の抗原結合部分を構成する、(A-2)~(A-4)のいずれか1つの抗がん剤。
(A-7) 前記第1の抗体可変領域と前記第2の抗体可変領域とが、CD137に結合する第1の抗原結合部分を構成し、前記第3の抗体可変領域と前記第4の抗体可変領域とが、CLDN6に結合することができる第2の抗原結合部分を構成する、(A-2)~(A-4)のいずれか1つの抗がん剤。
(A-8)(i)CD3に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第1の抗原結合部分が、以下の(a1)~(a4):
(a1)配列番号:9の相補性決定領域(CDR)1、配列番号:15のCDR 2、および配列番号:21のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;
(a2)配列番号:10の相補性決定領域(CDR)1、配列番号:16のCDR 2、および配列番号:22のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;
(a3)配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;
(a4)配列番号:12の相補性決定領域(CDR)1、配列番号:18のCDR 2、および配列番号:24のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-9) 第2の抗原結合部分が、以下の(b1)~(b3):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域;
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域
のいずれか1つを含む、(A-8)の抗がん剤。
(A-10)(i)CD3に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第2の抗原結合部分が、以下の(b1)~(b3):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域;
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-11) 前記第1の抗体可変領域、前記第2の抗体可変領域、前記第3の抗体可変領域、および前記第4の抗体可変領域からなる群より選ばれる少なくとも1つが、ヒト抗体フレームワークまたはヒト化抗体フレームワークを含む、(A-8)~(A-10)のいずれか1つの抗がん剤。
(A-12) (i)CD3に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第1の抗原結合部分が、以下の(c1)~(c4):
(c1)配列番号:3のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域;
(c2)配列番号:4のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域;
(c3)配列番号:5のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域;
(c4)配列番号:6のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-13) 第2の抗原結合部分が、以下の(d1)~(d3):
(d1)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d3)配列番号:25のアミノ酸配列を含む第3の抗体可変領域、および配列番号:1のアミノ酸配列を含む第4の抗体可変領域
のいずれか1つを含む、(A-12)の抗がん剤。
(A-14)(i)CD3に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第2の抗原結合部分が、以下の(d1)~(d3):
(d1)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d3)配列番号:25のアミノ酸配列を含む第3の抗体可変領域、および配列番号:1のアミノ酸配列を含む第4の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-15)(i)CD137に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第1の抗原結合部分が、以下の(a1)~(a4):
(a1)配列番号:9の相補性決定領域(CDR)1、配列番号:15のCDR 2、および配列番号:21のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;
(a2)配列番号:10の相補性決定領域(CDR)1、配列番号:16のCDR 2、および配列番号:22のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;
(a3)配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;
(a4)配列番号:12の相補性決定領域(CDR)1、配列番号:18のCDR 2、および配列番号:24のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-16) 第2の抗原結合部分が、以下の(b1)~(b3):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域;
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域
のいずれか1つを含む、(A-15)の抗がん剤。
(A-17)(i)CD137に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第2の抗原結合部分が、以下の(b1)~(b3):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域;
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-18) 前記第1の抗体可変領域、前記第2の抗体可変領域、前記第3の抗体可変領域、および前記第4の抗体可変領域からなる群より選ばれる少なくとも1つが、ヒト抗体フレームワークまたはヒト化抗体フレームワークを含む、(A-15)~(A-17)のいずれか1つの抗がん剤。
(A-19)(i)CD137に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第1の抗原結合部分が、以下の(c1)~(c4):
(c1)配列番号:3のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域;
(c2)配列番号:4のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域;
(c3)配列番号:5のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域;
(c4)配列番号:6のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-20) 第2の抗原結合部分が、以下の(d1)~(d3):
(d1)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d3)配列番号:25のアミノ酸配列を含む第3の抗体可変領域、および配列番号:1のアミノ酸配列を含む第4の抗体可変領域
のいずれか1つを含む、(A-19)の抗がん剤。
(A-21)(i)CD137に結合する第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合する第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む抗がん剤であって、
第2の抗原結合部分が、以下の(d1)~(d3):
(d1)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d3)配列番号:25のアミノ酸配列を含む第3の抗体可変領域、および配列番号:1のアミノ酸配列を含む第4の抗体可変領域
のいずれか1つを含む、抗がん剤。
(A-22) 以下の(c1)~(c4):
(c1)配列番号:3のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域;
(c2)配列番号:4のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域;
(c3)配列番号:5のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域;
(c4)配列番号:6のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域
のいずれか1つを含む、多重特異性抗原結合分子を有効成分として含む抗がん剤。
(A-23) 以下の(d1)~(d3):
(d1)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d3)配列番号:25のアミノ酸配列を含む第3の抗体可変領域、および配列番号:1のアミノ酸配列を含む第4の抗体可変領域
のいずれか1つをさらに含む、(A-22)の抗がん剤。
(A-24) 以下の(d1)~(d3):
(d1)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d3)配列番号:25のアミノ酸配列を含む第3の抗体可変領域、および配列番号:1のアミノ酸配列を含む第4の抗体可変領域
のいずれか1つを含む、多重特異性抗原結合分子を有効成分として含む抗がん剤。
(A-25) 以下の(a1)~(a4):
(a1)配列番号:9の相補性決定領域(CDR)1、配列番号:15のCDR 2、および配列番号:21のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;
(a2)配列番号:10の相補性決定領域(CDR)1、配列番号:16のCDR 2、および配列番号:22のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域;
(a3)配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;
(a4)配列番号:12の相補性決定領域(CDR)1、配列番号:18のCDR 2、および配列番号:24のCDR 3を含む、第1の抗体可変領域、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域
のいずれか1つを含む、多重特異性抗原結合分子を有効成分として含む抗がん剤。
(A-26) 以下の(b1)~(b3):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域;
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域
のいずれか1つをさらに含む、(A-25)の抗がん剤。
(A-27) 以下の(b1)~(b3):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域;
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第3の抗体可変領域、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第4の抗体可変領域
のいずれか1つを含む、多重特異性抗原結合分子を有効成分として含む抗がん剤。
(A-28) 前記多重特異性抗原結合分子が、(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメインをさらに含む、(A-1)~(A-27)のいずれか1つの抗がん剤。
(A-29) 前記Fcドメインが、第1のFc領域サブユニットおよび第2のFc領域サブユニットで構成される、(A-28)の抗がん剤。
(A-30) 前記Fcドメインが、以下の(e1)または(e2):
(e1)349位にCys、366位にSer、368位にAla、および407位にValを含む、第1のFc領域サブユニット、ならびに354位にCysおよび366位にTrpを含む第2のFc領域サブユニット;
(e2)439位にGluを含む第1のFc領域サブユニット、および356位にLysを含む第2のFc領域サブユニット
を含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、(A-29)の抗がん剤。
(A-31) 第1および/または第2のFc領域サブユニットが、以下の(f1)または(f2):
(f1)234位にAlaおよび235位にAla;
(f2)234位にAla、235位にAla、および297位にAla
を含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、(A-29)または(A-30)の抗がん剤。
(A-32) 前記Fcドメインが、天然型ヒトIgG1 Fcドメインと比較して、ヒトFcRnに対するより強力なFcRn結合親和性をさらに示す、(A-29)~(A-31)のいずれか1つの抗がん剤。
(A-33) 前記第1および/または第2のFc領域サブユニットが、428位にLeu、434位にAla、438位にArg、および440位にGluを含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、(A-32)の抗がん剤。
(A-34) 第1の抗原結合部分の第1の抗体可変領域が第1の重鎖定常領域に融合されており、第1の抗原結合部分の第2の抗体可変領域が第1の軽鎖定常領域に融合されており、第2の抗原結合部分の第3の抗体可変領域が第2の重鎖定常領域に融合されており、第2の抗原結合部分の第4の抗体可変領域が第2の軽鎖定常領域に融合されており、
該定常領域が、以下の(g1)~(g7):
(g1)配列番号:74のアミノ酸配列を含む第1の重鎖定常領域、配列番号:87のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:73のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:88のアミノ酸配列を含む第2の軽鎖定常領域;
(g2)配列番号:74のアミノ酸配列を含む第1の重鎖定常領域、配列番号:85のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:81のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:86のアミノ酸配列を含む第2の軽鎖定常領域;
(g3)配列番号:79のアミノ酸配列を含む第1の重鎖定常領域、配列番号:72のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:80のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:89のアミノ酸配列を含む第2の軽鎖定常領域;
(g4)配列番号:83のアミノ酸配列を含む第1の重鎖定常領域、配列番号:87のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:82のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:88のアミノ酸配列を含む第2の軽鎖定常領域;
(g5)配列番号:83のアミノ酸配列を含む第1の重鎖定常領域、配列番号:85のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:84のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:86のアミノ酸配列を含む第2の軽鎖定常領域;
(g6)配列番号:77のアミノ酸配列を含む第1の重鎖定常領域、配列番号:72のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:78のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:89のアミノ酸配列を含む第2の軽鎖定常領域;
(g7)配列番号:75のアミノ酸配列を含む第1の重鎖定常領域、配列番号:72のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:76のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:89のアミノ酸配列を含む第2の軽鎖定常領域
のいずれか1つである、(A-1)~(A-27)のいずれか1つの抗がん剤。
(A-35) 以下の(h01)~(h18):
(h01)配列番号:42のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h02)配列番号:41のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:54のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h03)配列番号:41のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:55のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h04)配列番号:42のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:57のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h05)配列番号:44のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:60のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h06)配列番号:44のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:61のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h07)配列番号:45のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:62のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h08)配列番号:45のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:63のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h09)配列番号:46のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:64のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h10)配列番号:46のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:65のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h11)配列番号:47のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:66のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h12)配列番号:47のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:67のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h13)配列番号:48のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h14)配列番号:48のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:57のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h15)配列番号:49のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:64のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h16)配列番号:49のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:65のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h17)配列番号:43のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:58のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);および
(h18)配列番号:43のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:59のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4)
のいずれか1つである4本のポリペプチド鎖の組み合わせを含む、多重特異性抗原結合分子
を有効成分として含む、抗がん剤。
(A-36) (i)鎖3に含まれる抗体可変領域および鎖4に含まれる抗体可変領域が、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分を形成し;
(ii)鎖1に含まれる抗体可変領域および鎖2に含まれる抗体可変領域が、クローディン6(CLDN6)に結合することができる第2の抗原結合部分を形成し;
(iii)鎖1に含まれる抗体Fc領域サブユニットおよび鎖3に含まれる抗体Fc領域サブユニットが、Fcドメインを形成する、
(A-35)の抗がん剤。
(A-37) (i)鎖3に含まれる抗体可変領域および鎖4に含まれる抗体可変領域が、CD3に結合する第1の抗原結合部分を形成し;
(ii)鎖1に含まれる抗体可変領域および鎖2に含まれる抗体可変領域が、
クローディン6(CLDN6)に結合する第2の抗原結合部分を形成し;
(iii)鎖1に含まれる抗体Fc領域サブユニットおよび鎖3に含まれる抗体Fc領域サブユニットが、Fcドメインを形成する、
(A-35)の抗がん剤。
(A-38) (i)鎖3に含まれる抗体可変領域および鎖4に含まれる抗体可変領域が、CD137に結合する第1の抗原結合部分を形成し;
(ii)鎖1に含まれる抗体可変領域および鎖2に含まれる抗体可変領域が、クローディン6(CLDN6)に結合する第2の抗原結合部分を形成し;
(iii)鎖1に含まれる抗体Fc領域サブユニットおよび鎖3に含まれる抗体Fc領域サブユニットが、Fcドメインを形成する、
(A-35)の抗がん剤。
(A-39) (A-5)~(A-7)のいずれかの多重特異性抗原結合分子が結合するCLDN6およびCD3/CD137上のエピトープとそれぞれ重複および/または競合するエピトープに結合する多重特異性抗原結合分子を有効成分として含む、抗がん剤。
(A-40) 対象とするがんが、CLDN6陽性のがんである、(A-1)~(A-39)のいずれか1つの抗がん剤。
(A-41) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれる少なくとも1つのがんである、(A-1)~(A-40)のいずれか1つの抗がん剤。
(A-42) 対象とするがんが、腹膜に転移したがんである、(A-1)~(A-41)のいずれか1つの抗がん剤。
(A-43) 対象とするがんが、腹膜播種したがんである(A-1)~(A-42)のいずれか1つの抗がん剤。
(A-44) 前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による処置に対して不応性のがんを有する患者を治療するための、(A-1)~(A-43)のいずれか1つの抗がん剤。
(A-45) 前記CLDN6陽性のがんが、他の抗がん剤による治療経験があるがんである、(A-40)~(A-44)のいずれか1つの抗がん剤。
(A-46) 前記CLDN6陽性のがんが、他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(A-40)~(A-45)のいずれか1つの抗がん剤。
(A-47) 薬学的に許容される担体をさらに含む、(A-1)~(A-46)のいずれか1つの抗がん剤。
(A-48) 前記多重特異性抗原結合分子は、細胞傷害を誘導する、(A-1)~(A-47)のいずれか1つの抗がん剤。
(A-49) 前記細胞傷害は、T細胞依存的細胞傷害である、(A-48)の抗がん剤。
More specifically, the present disclosure provides:
(A-1) An anticancer agent comprising as an active ingredient the following multispecific antigen-binding molecule:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(A-2) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule according to any one of (1) to (6) below:
(1) a multispecific antigen-binding molecule comprising a first antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 11, a CDR 2 of SEQ ID NO: 17, and a CDR 3 of SEQ ID NO: 23; a second antibody variable region comprising a CDR 1 of SEQ ID NO: 32, a CDR 2 of SEQ ID NO: 36, and a CDR 3 of SEQ ID NO: 40; a third antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 7, a CDR 2 of SEQ ID NO: 13, and a CDR 3 of SEQ ID NO: 19; and a fourth antibody variable region comprising a CDR 1 of SEQ ID NO: 29, a CDR 2 of SEQ ID NO: 33, and a CDR 3 of SEQ ID NO: 37;
(2) a multispecific antigen-binding molecule comprising a first antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO:9, a CDR 2 of SEQ ID NO:15, and a CDR 3 of SEQ ID NO:21; a second antibody variable region comprising a CDR 1 of SEQ ID NO:31, a CDR 2 of SEQ ID NO:35, and a CDR 3 of SEQ ID NO:39; a third antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO:8, a CDR 2 of SEQ ID NO:14, and a CDR 3 of SEQ ID NO:20; and a fourth antibody variable region comprising a CDR 1 of SEQ ID NO:30, a CDR 2 of SEQ ID NO:34, and a CDR 3 of SEQ ID NO:38;
(3) A multispecific antigen-binding molecule comprising a first antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 10, a CDR 2 of SEQ ID NO: 16, and a CDR 3 of SEQ ID NO: 22; a second antibody variable region comprising a CDR 1 of SEQ ID NO: 31, a CDR 2 of SEQ ID NO: 35, and a CDR 3 of SEQ ID NO: 39; a third antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 8, a CDR 2 of SEQ ID NO: 14, and a CDR 3 of SEQ ID NO: 20; and a fourth antibody variable region comprising a CDR 1 of SEQ ID NO: 30, a CDR 2 of SEQ ID NO: 34, and a CDR 3 of SEQ ID NO: 38;
(4) A multispecific antigen-binding molecule comprising a first antibody variable region comprising CDR 1 of SEQ ID NO: 12, CDR 2 of SEQ ID NO: 18, and CDR 3 of SEQ ID NO: 24; a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40; a third antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19; and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(5) A multispecific antigen-binding molecule comprising a first antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 11, a CDR 2 of SEQ ID NO: 17, and a CDR 3 of SEQ ID NO: 23; a second antibody variable region comprising a CDR 1 of SEQ ID NO: 32, a CDR 2 of SEQ ID NO: 36, and a CDR 3 of SEQ ID NO: 40; a third antibody variable region comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 29, a CDR 2 of SEQ ID NO: 33, and a CDR 3 of SEQ ID NO: 37; and a fourth antibody variable region comprising a CDR 1 of SEQ ID NO: 7, a CDR 2 of SEQ ID NO: 13, and a CDR 3 of SEQ ID NO: 19;
(6) A multispecific antigen-binding molecule comprising a first antibody variable region comprising CDR 1 of SEQ ID NO: 12, CDR 2 of SEQ ID NO: 18, and CDR 3 of SEQ ID NO: 24; a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40; a third antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37; and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-3) The anticancer agent of (A-2), wherein at least one selected from the group consisting of the first antibody variable region, the second antibody variable region, the third antibody variable region, and the fourth antibody variable region comprises a human antibody framework or a humanized antibody framework.
(A-4) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule according to any one of the following (I) to (VI):
(I) a multispecific antigen-binding molecule comprising: a first antibody variable region comprising the amino acid sequence of SEQ ID NO:5; a second antibody variable region comprising the amino acid sequence of SEQ ID NO:28; a third antibody variable region comprising the amino acid sequence of SEQ ID NO:1; and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO:25;
(II) a multispecific antigen-binding molecule comprising: a first antibody variable region comprising the amino acid sequence of SEQ ID NO:3; a second antibody variable region comprising the amino acid sequence of SEQ ID NO:27; a third antibody variable region comprising the amino acid sequence of SEQ ID NO:2; and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO:26;
(III) a multispecific antigen-binding molecule comprising: a first antibody variable region comprising the amino acid sequence of SEQ ID NO:4; a second antibody variable region comprising the amino acid sequence of SEQ ID NO:27; a third antibody variable region comprising the amino acid sequence of SEQ ID NO:2; and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO:26;
(IV) a multispecific antigen-binding molecule comprising: a first antibody variable region comprising the amino acid sequence of SEQ ID NO:6; a second antibody variable region comprising the amino acid sequence of SEQ ID NO:28; a third antibody variable region comprising the amino acid sequence of SEQ ID NO:1; and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO:25;
(V) a multispecific antigen-binding molecule comprising: a first antibody variable region comprising the amino acid sequence of SEQ ID NO:5; a second antibody variable region comprising the amino acid sequence of SEQ ID NO:28; a third antibody variable region comprising the amino acid sequence of SEQ ID NO:25; and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO:1;
(VI) A multispecific antigen-binding molecule comprising: a first antibody variable region comprising the amino acid sequence of SEQ ID NO:6; a second antibody variable region comprising the amino acid sequence of SEQ ID NO:28; a third antibody variable region comprising the amino acid sequence of SEQ ID NO:25; and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO:1.
(A-5) Any one of the anticancer agents (A-2) to (A-4), wherein the first antibody variable region and the second antibody variable region are capable of binding to CD3 and CD137 and constitute a first antigen-binding portion that binds to either CD3 or CD137, and the third antibody variable region and the fourth antibody variable region constitute a second antigen-binding portion that is capable of binding to CLDN6.
(A-6) Any one of the anticancer agents (A-2) to (A-4), wherein the first antibody variable region and the second antibody variable region constitute a first antigen-binding portion that binds to CD3, and the third antibody variable region and the fourth antibody variable region constitute a second antigen-binding portion that can bind to CLDN6.
(A-7) Any one of the anticancer agents (A-2) to (A-4), wherein the first antibody variable region and the second antibody variable region constitute a first antigen-binding portion that binds to CD137, and the third antibody variable region and the fourth antibody variable region constitute a second antigen-binding portion that can bind to CLDN6.
(A-8) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD3; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The first antigen-binding portion is selected from the group consisting of the following (a1) to (a4):
(a1) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 9, CDR 2 of SEQ ID NO: 15, and CDR 3 of SEQ ID NO: 21, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a2) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 10, CDR 2 of SEQ ID NO: 16, and CDR 3 of SEQ ID NO: 22, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a3) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 11, CDR 2 of SEQ ID NO: 17, and CDR 3 of SEQ ID NO: 23, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40;
(a4) An anticancer agent comprising either one of a first antibody variable region having complementarity determining region (CDR) 1 of SEQ ID NO: 12, CDR 2 of SEQ ID NO: 18, and CDR 3 of SEQ ID NO: 24, and a second antibody variable region having CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40.
(A-9) The second antigen-binding portion is selected from the following (b1) to (b3):
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(b3) An anticancer agent (A-8) comprising a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-10) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD3; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The second antigen-binding portion is selected from the following (b1) to (b3):
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(b3) An anticancer agent comprising a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37, and any one of a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-11) The anticancer agent according to any one of (A-8) to (A-10), wherein at least one selected from the group consisting of the first antibody variable region, the second antibody variable region, the third antibody variable region, and the fourth antibody variable region comprises a human antibody framework or a humanized antibody framework.
(A-12) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD3; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The first antigen-binding portion is selected from the following (c1) to (c4):
(c1) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 3, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27;
(c2) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 4, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27;
(c3) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 5, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28;
(c4) An anticancer agent comprising either a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 6 or a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28.
(A-13) The second antigen-binding portion is selected from the following (d1) to (d3):
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d3) An anticancer agent according to (A-12), comprising either a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 25, or a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 1.
(A-14) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion that binds to CD3; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The second antigen-binding portion is selected from the following (d1) to (d3):
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d3) An anticancer agent comprising either a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 25 or a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 1.
(A-15) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD137; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The first antigen-binding portion is selected from the group consisting of the following (a1) to (a4):
(a1) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 9, CDR 2 of SEQ ID NO: 15, and CDR 3 of SEQ ID NO: 21, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a2) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 10, CDR 2 of SEQ ID NO: 16, and CDR 3 of SEQ ID NO: 22, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a3) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 11, CDR 2 of SEQ ID NO: 17, and CDR 3 of SEQ ID NO: 23, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40;
(a4) An anticancer agent comprising either one of a first antibody variable region having complementarity determining region (CDR) 1 of SEQ ID NO: 12, CDR 2 of SEQ ID NO: 18, and CDR 3 of SEQ ID NO: 24, and a second antibody variable region having CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40.
(A-16) The second antigen-binding portion is selected from the following (b1) to (b3):
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(b3) An anticancer agent (A-15) comprising a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-17) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD137; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The second antigen-binding portion is selected from the following (b1) to (b3):
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(b3) An anticancer agent comprising a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37, and any one of a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-18) The anticancer agent according to any one of (A-15) to (A-17), wherein at least one selected from the group consisting of the first antibody variable region, the second antibody variable region, the third antibody variable region, and the fourth antibody variable region comprises a human antibody framework or a humanized antibody framework.
(A-19) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD137; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The first antigen-binding portion is selected from the following (c1) to (c4):
(c1) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 3, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27;
(c2) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 4, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27;
(c3) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 5, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28;
(c4) An anticancer agent comprising either a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 6 or a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28.
(A-20) The second antigen-binding portion is selected from the group consisting of the following (d1) to (d3):
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d3) An anticancer agent of (A-19), comprising either a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 25, or a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 1.
(A-21) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion that binds to CD137; and (ii) a second antigen-binding portion that binds to claudin 6 (CLDN6),
The second antigen-binding portion is selected from the following (d1) to (d3):
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d3) An anticancer agent comprising either a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 25 or a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 1.
(A-22) (c1) to (c4) below:
(c1) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 3, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27;
(c2) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 4, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27;
(c3) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 5, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28;
(c4) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising either a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 6 or a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28.
(A-23) (d1) to (d3) below:
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d3) An anticancer agent according to (A-22), further comprising either a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 25, or a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 1.
(A-24) (d1) to (d3) below:
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d3) An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising either a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 25 or a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 1.
(A-25) (a1) to (a4) below:
(a1) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 9, CDR 2 of SEQ ID NO: 15, and CDR 3 of SEQ ID NO: 21, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a2) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 10, CDR 2 of SEQ ID NO: 16, and CDR 3 of SEQ ID NO: 22, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a3) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 11, CDR 2 of SEQ ID NO: 17, and CDR 3 of SEQ ID NO: 23, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40;
(a4) An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising any one of a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 12, CDR 2 of SEQ ID NO: 18, and CDR 3 of SEQ ID NO: 24, and a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40.
(A-26) (b1) to (b3) below:
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(b3) An anticancer agent (A-25) further comprising a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37, and any one of a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-27) (b1) to (b3) below:
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37;
(b3) An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising any one of a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37, and a fourth antibody variable region comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
(A-28) The anticancer agent according to any one of (A-1) to (A-27), wherein the multispecific antigen-binding molecule further comprises (iii) an Fc domain that exhibits reduced binding affinity to a human Fcγ receptor as compared to a native human IgG1 Fc domain.
(A-29) The anticancer agent of (A-28), wherein the Fc domain is composed of a first Fc region subunit and a second Fc region subunit.
(A-30) The Fc domain is the following (e1) or (e2):
(e1) a first Fc region subunit comprising a Cys at position 349, a Ser at position 366, an Ala at position 368, and a Val at position 407, and a second Fc region subunit comprising a Cys at position 354 and a Trp at position 366;
(e2) An anticancer agent according to (A-29), comprising a first Fc region subunit having Glu at position 439 and a second Fc region subunit having Lys at position 356, wherein the amino acid positions are numbered according to the EU index.
(A-31) The first and/or second Fc region subunit is (f1) or (f2) below:
(f1) Ala at position 234 and Ala at position 235;
(f2) Ala at 234th position, Ala at 235th position, and Ala at 297th position
The anticancer agent according to (A-29) or (A-30), wherein the amino acid positions are numbered according to the EU index.
(A-32) Any one of the anticancer agents according to (A-29) to (A-31), wherein the Fc domain further exhibits stronger FcRn-binding affinity to human FcRn compared to a native human IgG1 Fc domain.
(A-33) The anticancer agent of (A-32), wherein the first and/or second Fc region subunit comprises Leu at position 428, Ala at position 434, Arg at position 438, and Glu at position 440, and the amino acid positions are numbered according to the EU index.
(A-34) A first antibody variable region of a first antigen-binding portion is fused to a first heavy chain constant region, a second antibody variable region of the first antigen-binding portion is fused to a first light chain constant region, a third antibody variable region of the second antigen-binding portion is fused to a second heavy chain constant region, and a fourth antibody variable region of the second antigen-binding portion is fused to a second light chain constant region;
The constant region is selected from the following (g1) to (g7):
(g1) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 74, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 87, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 73, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 88;
(g2) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 74, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 85, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 81, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 86;
(g3) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 79, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 72, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 80, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 89;
(g4) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 83, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 87, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 82, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 88;
(g5) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 83, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 85, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 84, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 86;
(g6) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 77, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 72, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 78, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 89;
(g7) Any one of the anticancer agents (A-1) to (A-27), which is any one of a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 75, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 72, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 76, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 89.
(A-35) (h01) to (h18) below:
(h01) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 42 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h02) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 41 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 54 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h03) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 41 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 55 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h04) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 42 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 57 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h05) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 44 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 60 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h06) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 44 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 61 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h07) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 45 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 62 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h08) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 45 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 63 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h09) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 46 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 64 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h10) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 46 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 65 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h11) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 47 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 66 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h12) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 47 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 67 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h13) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 48 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h14) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 48 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 57 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h15) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 49 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 64 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h16) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 49 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 65 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h17) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 43 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 58 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70; and (h18) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 43 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 59 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70.
An anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising a combination of four polypeptide chains, the combination being any one of the following:
(A-36) (i) the antibody variable region contained in chain 3 and the antibody variable region contained in chain 4 form a first antigen-binding portion capable of binding to CD3 and CD137 and which binds to either CD3 or CD137;
(ii) the antibody variable region contained in chain 1 and the antibody variable region contained in chain 2 form a second antigen-binding portion capable of binding to claudin 6 (CLDN6);
(iii) the antibody Fc region subunit contained in chain 1 and the antibody Fc region subunit contained in chain 3 form an Fc domain;
(A-35) Anticancer drug.
(A-37) (i) the antibody variable region contained in chain 3 and the antibody variable region contained in chain 4 form a first antigen-binding moiety that binds to CD3;
(ii) the antibody variable region contained in chain 1 and the antibody variable region contained in chain 2 are
forming a second antigen-binding portion that binds to claudin 6 (CLDN6);
(iii) the antibody Fc region subunit contained in chain 1 and the antibody Fc region subunit contained in chain 3 form an Fc domain;
(A-35) Anticancer drug.
(A-38) (i) the antibody variable region contained in chain 3 and the antibody variable region contained in chain 4 form a first antigen-binding portion that binds to CD137;
(ii) the antibody variable region contained in chain 1 and the antibody variable region contained in chain 2 form a second antigen-binding moiety that binds to claudin 6 (CLDN6);
(iii) the antibody Fc region subunit contained in chain 1 and the antibody Fc region subunit contained in chain 3 form an Fc domain;
(A-35) Anticancer drug.
(A-39) An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule that binds to epitopes that overlap and/or compete with epitopes on CLDN6 and CD3/CD137 bound by any one of the multispecific antigen-binding molecules (A-5) to (A-7).
(A-40) Any one of the anticancer agents (A-1) to (A-39), for which the target cancer is CLDN6-positive cancer.
(A-41) Any one of the anticancer agents (A-1) to (A-40), wherein the target cancer is at least one cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(A-42) Any one of the anticancer agents (A-1) to (A-41), for which the target cancer is cancer that has metastasized to the peritoneum.
(A-43) Any one of the anticancer drugs (A-1) to (A-42) for the target cancer being peritoneal dissemination cancer.
(A-44) Any one of the anticancer agents (A-1) to (A-43) for treating a patient having cancer that is refractory to treatment with the at least one other anticancer agent or an anticancer agent different from the at least one other anticancer agent.
(A-45) Any one of the anticancer agents (A-40) to (A-44), wherein the CLDN6-positive cancer is a cancer that has previously been treated with another anticancer agent.
(A-46) Any one of the anticancer agents (A-40) to (A-45), wherein the CLDN6-positive cancer is a cancer in which the desired effect has not been obtained in treatment with a single administration of another anticancer agent.
(A-47) Any one of the anticancer agents (A-1) to (A-46) further comprising a pharma-ceutically acceptable carrier.
(A-48) The anticancer agent according to any one of (A-1) to (A-47), wherein the multispecific antigen-binding molecule induces cytotoxicity.
(A-49) The anticancer agent according to (A-48), wherein the cytotoxicity is T cell-dependent cytotoxicity.

さらに、本開示は以下を提供する:
(B-1) 以下の多重特異性抗原結合分子を有効成分として含む、少なくとも1つの他の抗がん剤と併用するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分;ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(B-2) (A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子を有効成分として含む、少なくとも1つの他の抗がん剤と併用するための医薬組成物。
(B-3) 対象とするがんが、CLDN6陽性のがんである、(B-1)または(B-2)の医薬組成物。
(B-4) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(B-1)~(B-3)のいずれか1つの医薬組成物。
(B-5) 対象とするがんが、腹膜に転移したがんである、(B-1)~(B-4)のいずれか1つの医薬組成物。
(B-6)対象とするがんが、腹膜播種したがんである(B-1)~(B-5)のいずれか1つの医薬組成物
(B-7) 前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による処置に対して不応性のがんを有する患者を治療するための、(B-1)~(B-6)のいずれか1つの医薬組成物。
(B-8) 対象とするがんが、前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による治療経験があるがんである、(B-1)~(B-7)のいずれか1つの医薬組成物。
(B-9) 対象とするがんが、前記少なくとも1つの他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(B-1)~(B-8)のいずれか1つの医薬組成物。
(B-10) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤と別々に、または連続して投与されることを特徴とする、(B-1)~(B-9)のいずれか1つの医薬組成物。
(B-11) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする、(B-1)~(B-10)のいずれか1つの医薬組成物。
(B-12) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の投与によりCLDN6の発現が増加したがんを有する患者に投与されることを特徴とする、(B-1)~(B-11)のいずれか1つの医薬組成物。
(B-13) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の投与によりTGFβの発現が増加したがんを有する患者に投与されることを特徴とする、(B-1)~(B-12)のいずれか1つの医薬組成物。
(B-14) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の投与によりTGFβ1の発現が増加したがんを有する患者に投与されることを特徴とする、(B-1)~(B-13)のいずれか1つの医薬組成物。
(B-15) 前記少なくとも1つの他の抗がん剤の投与により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(B-1)~(B-14)のいずれか1つの医薬組成物。
(B-16) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(B-1)~(B-15)のいずれか1つの医薬組成物。
(B-17) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(B-1)~(B-16)のいずれか1つの医薬組成物。
(B-18) 前記少なくとも1つの他の抗がん剤が、TGFβ誘導効果を有する薬剤である、(B-1)~(B-17)のいずれか1つの医薬組成物。
(B-19) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(B-16)から(B-18)のいずれか1つの医薬組成物。
(B-20) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(B-16)~(B-19)のいずれか1つの医薬組成物。
(B-21) 前記少なくとも1つの他の抗がん剤が、アルカロイドである、(B-16)~(B-20)のいずれか1つの医薬組成物。
(B-22) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(B-16)~(B-19)のいずれか1つの医薬組成物。
(B-23) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(B-16)~(B-19)のいずれか1つの医薬組成物。
(B-24) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(B-16)~(B-19)のいずれか1つの医薬組成物。
(B-25) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、(B-16)~(B-19)のいずれか1つの医薬組成物。
(B-26) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、(B-16)~(B-19)のいずれか1つの医薬組成物。
(B-27) 前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(B-16)の医薬組成物。
(B-28) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(B-16)の医薬組成物。
(B-29) (B-1)~(B-28)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。
(B2-1) 以下の多重特異性抗原結合分子を有効成分として含む、少なくとも1つのTGFβを誘導する治療法と併用するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分;ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(B2-2) 前記TGFβを誘導する治療法は、TGFβを誘導する剤の投与である、(B2-1)の医薬組成物。
(B2-3) 前記TGFβを誘導する治療法は、TGFβ1を誘導する剤の投与である、(B2-1)または(B2-2)の医薬組成物。
(B2-4) 対象とするがんが、CLDN6陽性のがんである、(B2-1)~(B2-3)のいずれか1つの医薬組成物。
(B2-5) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(B2-1)~(B2-4)のいずれか1つの医薬組成物。
(B2-6) 対象とするがんが、腹膜に転移したがんである、(B2-1)~(B2-5)のいずれか1つの医薬組成物。
(B2-7)対象とするがんが、腹膜播種したがんである(B2-1)~(B2-6)のいずれか1つの医薬組成物
(B2-8)前記TGFβを誘導する治療法による処置に対して不応性のがんを有する患者を治療するための、(B2-1)~(B2-7)のいずれか1つの医薬組成物。
(B2-9)対象とするがんが、前記TGFβを誘導する治療法による治療経験があるがん、または、前記TGFβを誘導する治療法による治療に対して所望の効果が得られなかったがんである、(B2-1)~(B2-8)のいずれか1つの医薬組成物。
(B2-10)前記多重特異性抗原結合分子を含む医薬組成物が、前記TGFβを誘導する治療と別々に、または連続して投与されることを特徴とする、(B2-1)~(B2-9)のいずれか1つの医薬組成物。
(B2-11) 前記多重特異性抗原結合分子が、前記TGFβを誘導する治療前、治療と同時、および/または治療後に投与されることを特徴とする、(B2-2)~(B2-10)のいずれか1つの医薬組成物。
(B2-12) 前記多重特異性抗原結合分子が、前記TGFβを誘導する治療によりCLDN6の発現が増加したがんを有する患者に投与されることを特徴とする、(B2-1)~(B2-11)のいずれか1つの医薬組成物。
(B2-13) 前記多重特異性抗原結合分子が、前記TGFβを誘導する治療によりTGFβの発現が増加したがんを有する患者に投与されることを特徴とする、(B2-1)~(B2-12)のいずれか1つの医薬組成物。
(B2-14) 前記多重特異性抗原結合分子が、前記TGFβを誘導する治療によりTGFβ1の発現が増加したがんを有する患者に投与されることを特徴とする、(B2-1)~(B2-13)のいずれか1つの医薬組成物。
(B2-15) 前記TGFβを誘導する治療により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(B2-1)~(B2-14)のいずれか1つの医薬組成物。
(B2-16) (B2-1)~(B2-15)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。

(B3-1) 以下の多重特異性抗原結合分子を有効成分として含む、少なくとも1つのCLDN6発現誘導剤と併用するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分;ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(B3-2) 対象とするがんが、CLDN6陽性のがんである、(B3-1)の医薬組成物。
(B3-3) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(B3-1)または(B3-2)の医薬組成物。
(B3-4) 対象とするがんが、腹膜に転移したがんである、(B3-1)~(B3-3)のいずれか1つの医薬組成物。
(B3-5)対象とするがんが、腹膜播種したがんである、(B3-1)~(B3-4)のいずれか1つの医薬組成物
(B3-6)前記CLDN6発現誘導剤による処置に対して不応性のがんを有する患者を治療するための、(B3-1)~(B3-5)のいずれか1つの医薬組成物。
(B3-7)対象とするがんが、前記CLDN6発現誘導剤による治療経験があるがん、または、前記CLDN6発現誘導剤による治療に対して所望の効果が得られなかったがんである、(B3-1)~(B3-6)のいずれか1つの医薬組成物。
(B3-8)前記多重特異性抗原結合分子を含む医薬組成物が、前記CLDN6発現誘導剤と別々に、または連続して投与されることを特徴とする、(B3-1)~(B3-7)のいずれか1つの医薬組成物。
(B3-9) 前記多重特異性抗原結合分子が、前記CLDN6発現誘導剤投与前、投与と同時、および/または投与後に投与されることを特徴とする、(B3-1)~(B3-8)のいずれか1つの医薬組成物。
(B3-10) 前記多重特異性抗原結合分子が、前記CLDN6発現誘導剤の投与によりCLDN6の発現が増加したがんを有する患者に投与されることを特徴とする、(B3-1)~(B3-9)のいずれか1つの医薬組成物。
(B3-11) 前記多重特異性抗原結合分子が、前記CLDN6発現誘導剤の投与によりTGFβの発現が増加したがんを有する患者に投与されることを特徴とする、(B3-1)~(B3-10)のいずれか1つの医薬組成物。
(B3-12) 前記多重特異性抗原結合分子が、前記CLDN6発現誘導剤の投与によりTGFβ1の発現が増加したがんを有する患者に投与されることを特徴とする、(B3-1)~(B3-11)のいずれか1つの医薬組成物。
(B3-13) 前記CLDN6発現誘導剤の投与により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(B3-1)~(B3-12)のいずれか1つの医薬組成物。
(B3-14) (B3-1)~(B3-13)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。
Additionally, the present disclosure provides:
(B-1) A pharmaceutical composition for use in combination with at least one other anticancer agent, comprising as an active ingredient the following multispecific antigen-binding molecule:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(B-2) A pharmaceutical composition comprising as an active ingredient the multispecific antigen-binding molecule according to any one of (A-2) to (A-39) for use in combination with at least one other anticancer agent.
(B-3) The pharmaceutical composition according to (B-1) or (B-2), wherein the target cancer is a CLDN6-positive cancer.
(B-4) Any one of the pharmaceutical compositions (B-1) to (B-3), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(B-5) Any one of the pharmaceutical compositions (B-1) to (B-4), wherein the target cancer is cancer that has metastasized to the peritoneum.
(B-6) Any one of the pharmaceutical compositions (B-1) to (B-5) for treating a cancer that has spread to the peritoneum
(B-7) Any one of the pharmaceutical compositions (B-1) to (B-6) for treating a patient having cancer refractory to treatment with the at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(B-8) Any one of the pharmaceutical compositions (B-1) to (B-7), wherein the target cancer is a cancer that has been treated with at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(B-9) Any one of the pharmaceutical compositions (B-1) to (B-8), wherein the target cancer is a cancer for which the desired effect has not been obtained by treatment with the administration of the at least one other anticancer agent alone.
(B-10) Any one of the pharmaceutical compositions (B-1) to (B-9), wherein the multispecific antigen-binding molecule is administered separately or sequentially with the at least one other anticancer drug.
(B-11) Any one of the pharmaceutical compositions (B-1) to (B-10), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one other anticancer agent.
(B-12) Any one of the pharmaceutical compositions (B-1) to (B-11), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which CLDN6 expression has been increased by administration of the at least one other anticancer agent.
(B-13) Any one of the pharmaceutical compositions (B-1) to (B-12), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which expression of TGFβ has been increased by administration of the at least one other anticancer agent.
(B-14) Any one of the pharmaceutical compositions (B-1) to (B-13), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which expression of TGFβ1 has been increased by administration of the at least one other anticancer agent.
(B-15) Any one of the pharmaceutical compositions (B-1) to (B-14), wherein the antitumor effect of the multispecific antigen-binding molecule is enhanced by administration of the at least one other anticancer drug.
(B-16) Any one of the pharmaceutical compositions (B-1) to (B-15), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(B-17) Any one of the pharmaceutical compositions (B-1) to (B-16), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in a cell.
(B-18) Any one of the pharmaceutical compositions (B-1) to (B-17), wherein the at least one other anticancer drug is a drug having a TGFβ inducing effect.
(B-19) Any one of the pharmaceutical compositions of (B-16) to (B-18), wherein the at least one other anticancer drug is a platinum agent, an alkaloid, or an antimetabolite.
(B-20) Any one of the pharmaceutical compositions of (B-16) to (B-19), wherein the at least one other anticancer drug is a platinum preparation.
(B-21) Any one of the pharmaceutical compositions of (B-16) to (B-20), wherein the at least one other anticancer drug is an alkaloid.
(B-22) Any one of the pharmaceutical compositions of (B-16) to (B-19), wherein the at least one other anticancer drug is a topoisomerase inhibitor.
(B-23) Any one of the pharmaceutical compositions of (B-16) to (B-19), wherein the at least one other anticancer drug is an antimetabolite.
(B-24) Any one of the pharmaceutical compositions (B-16) to (B-19), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(B-25) Any one of the pharmaceutical compositions (B-16) to (B-19), wherein the at least one other anticancer drug is irinotecan.
(B-26) Any one of the pharmaceutical compositions (B-16) to (B-19), wherein the at least one other anticancer drug is gemcitabine.
(B-27) The pharmaceutical composition of (B-16), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(B-28) The pharmaceutical composition of (B-16), wherein the at least one other anticancer drug is olaparib.
(B-29) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions (B-1) to (B-28).
(B2-1) A pharmaceutical composition for use in combination with at least one TGFβ-inducing therapy, comprising as an active ingredient the following multispecific antigen-binding molecule:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(B2-2) The pharmaceutical composition according to (B2-1), wherein the treatment for inducing TGFβ is administration of an agent that induces TGFβ.
(B2-3) The pharmaceutical composition according to (B2-1) or (B2-2), wherein the treatment for inducing TGFβ is administration of an agent that induces TGFβ1.
(B2-4) Any one of the pharmaceutical compositions (B2-1) to (B2-3), wherein the target cancer is a CLDN6-positive cancer.
(B2-5) Any one of the pharmaceutical compositions (B2-1) to (B2-4), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(B2-6) Any one of the pharmaceutical compositions (B2-1) to (B2-5), wherein the target cancer is cancer that has metastasized to the peritoneum.
(B2-7) Any one of the pharmaceutical compositions (B2-1) to (B2-6), wherein the target cancer is peritoneal disseminated cancer.
(B2-8) Any one of the pharmaceutical compositions (B2-1) to (B2-7) for treating a patient having a cancer refractory to treatment with a therapy that induces TGFβ.
(B2-9) Any one of the pharmaceutical compositions (B2-1) to (B2-8), wherein the target cancer is a cancer that has previously been treated with a therapy that induces TGFβ, or a cancer for which the desired effect has not been obtained with the therapy that induces TGFβ.
(B2-10) Any one of the pharmaceutical compositions (B2-1) to (B2-9), characterized in that the pharmaceutical composition comprising the multispecific antigen-binding molecule is administered separately or consecutively to the treatment that induces TGFβ.
(B2-11) Any one of the pharmaceutical compositions (B2-2) to ( B2-10 ), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the treatment that induces TGFβ.
(B2-12) Any one of the pharmaceutical compositions (B2-1) to (B2-11), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which CLDN6 expression has been increased by a treatment that induces TGFβ.
(B2-13) Any one of the pharmaceutical compositions (B2-1) to (B2-12), wherein the multispecific antigen-binding molecule is administered to a patient having a cancer in which expression of TGFβ has been increased by a treatment that induces TGFβ.
(B2-14) Any one of the pharmaceutical compositions (B2-1) to (B2-13), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which expression of TGFβ1 has been increased by a treatment that induces TGFβ.
(B2-15) Any one of the pharmaceutical compositions according to (B2-1) to (B2-14), wherein the anti-tumor effect of the multispecific antigen-binding molecule is enhanced by treatment that induces TGFβ.
(B2-16) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions (B2-1) to (B2-15).

(B3-1) A pharmaceutical composition for use in combination with at least one CLDN6 expression inducer, comprising as an active ingredient the following multispecific antigen-binding molecule:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(B3-2) The pharmaceutical composition according to (B3-1), wherein the target cancer is a CLDN6-positive cancer.
(B3-3) The pharmaceutical composition according to (B3-1) or (B3-2), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(B3-4) Any one of the pharmaceutical compositions (B3-1) to (B3-3), wherein the target cancer is cancer that has metastasized to the peritoneum.
(B3-5) Any one of the pharmaceutical compositions (B3-1) to (B3-4), wherein the target cancer is peritoneal disseminated cancer.
(B3-6) Any one of the pharmaceutical compositions (B3-1) to (B3-5) for treating a patient having cancer refractory to treatment with the CLDN6 expression inducer.
(B3-7) Any one of the pharmaceutical compositions (B3-1) to (B3-6), wherein the target cancer is a cancer that has previously been treated with the CLDN6 expression inducer, or a cancer for which the desired effect has not been obtained by treatment with the CLDN6 expression inducer.
(B3-8) Any one of the pharmaceutical compositions (B3-1) to (B3-7), characterized in that the pharmaceutical composition comprising the multispecific antigen-binding molecule is administered separately or consecutively with the CLDN6 expression inducer.
(B3-9) Any one of the pharmaceutical compositions (B3-1) to (B3-8), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the CLDN6 expression inducer.
(B3-10) Any one of the pharmaceutical compositions (B3-1) to (B3-9), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which CLDN6 expression has been increased by administration of the CLDN6 expression inducer.
(B3-11) Any one of the pharmaceutical compositions (B3-1) to (B3-10), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which TGFβ expression has been increased by administration of the CLDN6 expression inducer.
(B3-12) Any one of the pharmaceutical compositions (B3-1) to (B3-11), characterized in that the multispecific antigen-binding molecule is administered to a patient having a cancer in which TGFβ1 expression has been increased by administration of the CLDN6 expression inducer.
(B3-13) Any one of the pharmaceutical compositions (B3-1) to (B3-12), which enhances the antitumor effect of the multispecific antigen-binding molecule by administration of the CLDN6 expression inducer.
(B3-14) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions (B3-1) to (B3-13).

さらに、本開示は以下を提供する:
(C-1) (i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含み、かつ前記第1の抗原結合部分がCD3にのみ結合することができる抗原結合部分である場合と比較して細胞傷害活性が高い、多重特異性抗原結合分子
を有効成分として含む、抗がん剤。
(C-2) (i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含み、かつ前記第1の抗原結合部分がCD3にのみ結合することができる抗原結合部分である場合と比較して毒性が低い、多重特異性抗原結合分子
を有効成分として含む、抗がん剤。
(C-3) (1)T細胞受容体複合体に結合することができる第1の抗原結合部分、および(2)CLDN6に結合することができる第2の抗原結合部分、を含む多重特異性抗原結合分子であって、配列番号:194のアミノ酸配列を含む重鎖および配列番号:192のアミノ酸配列を含む軽鎖を含むT細胞受容体複合体に結合することができる抗原結合部分ならびに配列番号:193のアミノ酸配列を含む重鎖および配列番号:195のアミノ酸配列を含む軽鎖を含むCLDN6に結合することができる抗原結合部分を含む多重特異性抗体(CS3348)と比較して、T細胞傷害活性が同等またはそれ以上である、多重特異性抗原結合分子
を有効成分として含む、抗がん剤。
(C-4) 前記多重特異性抗原結合分子が、(3)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメインをさらに含む、(C-1)~(C-3)のいずれか1つの抗がん剤。
(C-5) 前記多重特異性抗原結合分子が、前記多重特異性抗体(CS3348)と比較して毒性が低いことをさらに特徴とする、(C-1)、(C-3)、または(C-4)の抗がん剤。
(C-6) 第1の抗原結合部分が、以下の(a1)または(a2)から選ばれる抗体可変領域の組み合わせ、または、これと機能的に同等の抗体可変領域の組み合わせを含む、(C-1)~(C-5)のいずれか1つの抗がん剤:
(a1) 配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む、第1の抗体可変領域;ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む、第2の抗体可変領域;
(a2) 配列番号:10の相補性決定領域(CDR)1、配列番号:16のCDR 2、および配列番号:22のCDR 3を含む、第1の抗体可変領域;ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む、第2の抗体可変領域。
(C-7) 第2の抗原結合部分が以下の(b1)または(b2)から選ばれる抗体可変領域の組み合わせ、または、これと機能的に同等の抗体可変領域の組み合わせを含む、(C-1)~(C-6)のいずれか1つの抗がん剤:
(b1) 配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む、第4の抗体可変領域;
(b2) 配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む、第3の抗体可変領域;ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む、第4の抗体可変領域。
(C-8) 第1の抗原結合部分が、以下の(c1)または(c2)から選ばれる抗体可変領域の組み合わせ、または、これと機能的に同等の抗体可変領域の組み合わせを含む、(C-1)~(C-7)のいずれか1つの抗がん剤:
(c1)配列番号:5のアミノ酸配列を含む第1の抗体可変領域、および配列番号:28のアミノ酸配列を含む第2の抗体可変領域;
(c2)配列番号:4のアミノ酸配列を含む第1の抗体可変領域、および配列番号:27のアミノ酸配列を含む第2の抗体可変領域。
(C-9) 第2の抗原結合部分が、以下の(d1)または(d2)から選ばれる抗体可変領域の組み合わせ、または、これと機能的に同等の抗体可変領域の組み合わせを含む、(C-1)~(C-8)のいずれか1つの抗がん剤:
(d1)配列番号:1のアミノ酸配列を含む第3の抗体可変領域、および配列番号:25のアミノ酸配列を含む第4の抗体可変領域;
(d2)配列番号:2のアミノ酸配列を含む第3の抗体可変領域、および配列番号:26のアミノ酸配列を含む第4の抗体可変領域。
(C-10) 前記Fcドメインが、第1のFc領域サブユニットおよび第2のFc領域サブユニットで構成される、(C-4)~(C-9)のいずれか1つの抗がん剤。
(C-11) 前記Fcドメインが、以下の(e1)または(e2):
(e1)349位にCys、366位にSer、368位にAla、および407位にValを含む、第1のFc領域サブユニット、ならびに354位にCysおよび366位にTrpを含む第2のFc領域サブユニット;
(e2)439位にGluを含む第1のFc領域サブユニット、および356位にLysを含む第2のFc領域サブユニット
を含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、(C-4)~(C-10)のいずれか1つの抗がん剤。
(C-12) 第1および/または第2のFc領域サブユニットが、以下の(f1)または(f2):
(f1)234位にAlaおよび235位にAla;
(f2)234位にAla、235位にAla、および297位にAla
を含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、(C-9)または(C-11)の抗がん剤。
(C-13) 前記Fcドメインが、天然型ヒトIgG1 Fcドメインと比較して、ヒトFcRnに対するより強力なFcRn結合親和性をさらに示す、(C-4)~(C-12)のいずれか1つの抗がん剤。
(C-14) 薬学的に許容される担体をさらに含む、(C-1)~(C-13)のいずれか1つの抗がん剤。
Additionally, the present disclosure provides:
(C-1) An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising: (i) a first antigen-binding moiety capable of binding to both CD3 and CD137 and binding to either CD3 or CD137; and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), the multispecific antigen-binding molecule having higher cytotoxic activity than an antigen-binding moiety capable of binding only to CD3.
(C-2) An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to both CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), wherein the first antigen-binding moiety has lower toxicity compared to a case where the first antigen-binding moiety is an antigen-binding moiety capable of binding only to CD3.
(C-3) An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising (1) a first antigen-binding portion capable of binding to a T cell receptor complex, and (2) a second antigen-binding portion capable of binding to CLDN6, the multispecific antigen-binding molecule having equivalent or greater T cell toxic activity than a multispecific antibody (CS3348) comprising an antigen-binding portion capable of binding to a T cell receptor complex comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 194 and a light chain comprising the amino acid sequence of SEQ ID NO: 192, and an antigen-binding portion capable of binding to CLDN6 comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 193 and a light chain comprising the amino acid sequence of SEQ ID NO: 195.
(C-4) The anticancer agent according to any one of (C-1) to (C-3), wherein the multispecific antigen-binding molecule further comprises (3) an Fc domain that exhibits reduced binding affinity to a human Fcγ receptor compared to a native human IgG1 Fc domain.
(C-5) The anticancer agent according to (C-1), (C-3), or (C-4), further characterized in that the multispecific antigen-binding molecule has lower toxicity compared to the multispecific antibody (CS3348).
(C-6) Any one of the anticancer agents (C-1) to (C-5), wherein the first antigen-binding portion comprises a combination of antibody variable regions selected from the following (a1) or (a2), or a combination of antibody variable regions functionally equivalent thereto:
(a1) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 11, CDR 2 of SEQ ID NO: 17, and CDR 3 of SEQ ID NO: 23; and a second antibody variable region comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40;
(a2) a first antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO: 10, CDR 2 of SEQ ID NO: 16, and CDR 3 of SEQ ID NO: 22; and a second antibody variable region comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39.
(C-7) Any one of the anticancer agents (C-1) to (C-6), wherein the second antigen-binding portion comprises a combination of antibody variable regions selected from the following (b1) or (b2), or a combination of antibody variable regions functionally equivalent thereto:
(b1) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO:7, CDR 2 of SEQ ID NO:13, and CDR 3 of SEQ ID NO:19; and a fourth antibody variable region comprising CDR 1 of SEQ ID NO:29, CDR 2 of SEQ ID NO:33, and CDR 3 of SEQ ID NO:37;
(b2) a third antibody variable region comprising complementarity determining region (CDR) 1 of SEQ ID NO:8, CDR 2 of SEQ ID NO:14, and CDR 3 of SEQ ID NO:20; and a fourth antibody variable region comprising CDR 1 of SEQ ID NO:30, CDR 2 of SEQ ID NO:34, and CDR 3 of SEQ ID NO:38.
(C-8) Any one of the anticancer agents (C-1) to (C-7), wherein the first antigen-binding portion comprises a combination of antibody variable regions selected from the following (c1) or (c2), or a combination of antibody variable regions functionally equivalent thereto:
(c1) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 5, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 28;
(c2) a first antibody variable region comprising the amino acid sequence of SEQ ID NO: 4, and a second antibody variable region comprising the amino acid sequence of SEQ ID NO: 27.
(C-9) Any one of the anticancer agents (C-1) to (C-8), wherein the second antigen-binding portion comprises a combination of antibody variable regions selected from the following (d1) or (d2), or a combination of antibody variable regions functionally equivalent thereto:
(d1) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 1, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 25;
(d2) a third antibody variable region comprising the amino acid sequence of SEQ ID NO: 2, and a fourth antibody variable region comprising the amino acid sequence of SEQ ID NO: 26.
(C-10) Any one of the anticancer agents (C-4) to (C-9), wherein the Fc domain is composed of a first Fc region subunit and a second Fc region subunit.
(C-11) The Fc domain is selected from the group consisting of (e1) and (e2) below:
(e1) a first Fc region subunit comprising a Cys at position 349, a Ser at position 366, an Ala at position 368, and a Val at position 407, and a second Fc region subunit comprising a Cys at position 354 and a Trp at position 366;
(e2) Any one of the anticancer agents (C-4) to (C-10), comprising a first Fc region subunit having Glu at position 439 and a second Fc region subunit having Lys at position 356, wherein the amino acid positions are numbered according to the EU index.
(C-12) The first and/or second Fc region subunit is selected from the group consisting of (f1) and (f2) below:
(f1) Ala at position 234 and Ala at position 235;
(f2) Ala at 234th place, Ala at 235th place, and Ala at 297th place
wherein the amino acid positions are numbered according to the EU index.
(C-13) Any one of the anticancer agents according to (C-4) to (C-12), wherein the Fc domain further exhibits stronger FcRn-binding affinity to human FcRn compared to a native human IgG1 Fc domain.
(C-14) Any one of the anticancer agents (C-1) to (C-13) further comprising a pharma- ceutically acceptable carrier.

さらに、本開示は以下を提供する:
(D-1) 少なくとも1つの他の抗がん剤を有効成分として含む医薬組成物であって、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、と併用するための医薬組成物。
(D-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(D-1)の医薬組成物。
(D-3) 対象とするがんが、CLDN6陽性のがんである、(D-1)または(D-2)のいずれか1つの医薬組成物。
(D-4) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(D-1)~(D-3)のいずれか1つの医薬組成物。
(D-5) 対象とするがんが、腹膜に転移したがんである、(D-1)~(D-4)のいずれか1つの医薬組成物。
(D-6)対象とするがんが、腹膜播種したがんである(D-1)~(D-5)のいずれか1つの医薬組成物。
(D-7) 前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による処置に対して不応性のがんを有する患者を治療するための、(D-1)~(D-6)のいずれか1つの医薬組成物。
(D-8) 対象とするがんが、前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による治療経験があるがんである、(D-1)~(D-7)のいずれか1つの医薬組成物。
(D-9) 対象とするがんが、前記少なくとも1つの他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(D-1)~(D-8)のいずれか1つの医薬組成物。
(D-10) 前記少なくとも1つの他の抗がん剤が、前記多重特異性抗原結合分子と別々に、または連続して投与されることを特徴とする、(D-1)~(D-9)のいずれか1つの医薬組成物。
(D-11) 前記少なくとも1つの他の抗がん剤が、前記多重特異性抗原結合分子の前に、同時に、および/または後に投与されることを特徴とする、(D-1)~(D-10)のいずれか1つの医薬組成物。
(D-12) 前記多重特異性抗原結合分子の投与により前記少なくとも1つの他の抗がん剤の抗腫瘍効果を増強する、(D-1)~(D-11)のいずれか1つの医薬組成物。
(D-13) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(D-1)~(D-12)のいずれか1つの医薬組成物。
(D-14) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(D-1)~(D-13)のいずれか1つの医薬組成物。
(D-15) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβの発現を誘導する剤である、(D-1)~(D-14)のいずれか1つの医薬組成物。
(D-16) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβ1の発現を誘導する剤である、(D-1)~(D-15)のいずれか1つの医薬組成物。
(D-17) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(D-13)~(D-16)のいずれか1つの医薬組成物。
(D-18) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-19) 前記少なくとも1つの他の抗がん剤が、植物アルカロイドである、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-20) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-21) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-22) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-23) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-24) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、(D-13)~(D-17)のいずれか1つの医薬組成物。
(D-25) 前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(D-13)の医薬組成物。
(D-26) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(D-13)の医薬組成物。
(D-27) (D-1)~(D-26)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。
Additionally, the present disclosure provides:
(D-1) A pharmaceutical composition comprising at least one other anticancer drug as an active ingredient, for use in combination with a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(D-2) The pharmaceutical composition of (D-1), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(D-3) The pharmaceutical composition of any one of (D-1) and (D-2), wherein the target cancer is a CLDN6-positive cancer.
(D-4) Any one of the pharmaceutical compositions (D-1) to (D-3), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(D-5) Any one of the pharmaceutical compositions (D-1) to (D-4), wherein the target cancer is cancer that has metastasized to the peritoneum.
(D-6) Any one of the pharmaceutical compositions (D-1) to (D-5), wherein the target cancer is a peritoneal disseminated cancer.
(D-7) Any one of the pharmaceutical compositions (D-1) to (D-6) for treating a patient having cancer refractory to treatment with the at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(D-8) Any one of the pharmaceutical compositions (D-1) to (D-7), wherein the target cancer is a cancer that has been treated with at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(D-9) Any one of the pharmaceutical compositions (D-1) to (D-8), wherein the target cancer is a cancer for which a desired effect has not been obtained by treatment with the administration of the at least one other anticancer agent alone.
(D-10) Any one of the pharmaceutical compositions according to (D-1) to (D-9), wherein the at least one other anticancer agent is administered separately or consecutively with the multispecific antigen-binding molecule.
(D-11) Any one of the pharmaceutical compositions (D-1) to (D-10), characterized in that the at least one other anticancer drug is administered before, simultaneously with, and/or after the multispecific antigen-binding molecule.
(D-12) Any one of the pharmaceutical compositions (D-1) to (D-11), wherein administration of the multispecific antigen-binding molecule enhances the antitumor effect of the at least one other anticancer agent.
(D-13) Any one of the pharmaceutical compositions (D-1) to (D-12), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(D-14) Any one of the pharmaceutical compositions (D-1) to (D-13), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in a cell.
(D-15) The pharmaceutical composition according to any one of (D-1) to (D-14), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ in a cell.
(D-16) Any one of the pharmaceutical compositions (D-1) to (D-15), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ1 in a cell.
(D-17) Any one of the pharmaceutical compositions (D-13) to (D-16), wherein the at least one other anticancer drug is a platinum agent, an alkaloid, or an antimetabolite.
(D-18) Any one of the pharmaceutical compositions of (D-13) to (D-17), wherein the at least one other anticancer drug is a platinum preparation.
(D-19) Any one of the pharmaceutical compositions (D-13) to (D-17), wherein the at least one other anticancer drug is a plant alkaloid.
(D-20) Any one of the pharmaceutical compositions of (D- 13 ) to (D-17), wherein the at least one other anticancer drug is a topoisomerase inhibitor.
(D- 21 ) Any one of the pharmaceutical compositions (D-13) to (D-17), wherein the at least one other anticancer drug is an antimetabolite.
(D- 22 ) Any one of the pharmaceutical compositions (D-13) to (D-17), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(D- 23 ) Any one of the pharmaceutical compositions (D-13) to (D-17), wherein the at least one other anticancer drug is irinotecan.
(D- 24 ) Any one of the pharmaceutical compositions of (D-13) to (D-17), wherein the at least one other anticancer drug is gemcitabine.
(D- 25 ) The pharmaceutical composition of (D-13), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(D- 26 ) The pharmaceutical composition of (D-13), wherein the at least one other anticancer drug is olaparib.
(D- 27 ) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions (D- 1 ) to (D-26).

さらに、本開示は以下を提供する:
(E-1) 以下の多重特異性抗原結合分子、および、少なくとも1つの他の抗がん剤を組み合わせてなる、がんを治療または予防するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子。
(E-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(E-1)の医薬組成物。
(E-3) 前記がんが、CLDN6陽性のがんである、(E-1)または(E-2)のいずれか1つの医薬組成物。
(E-4) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(E-1)~(E-3)のいずれか1つの医薬組成物。
(E-5) 前記がんが、腹膜に転移したがんである、(E-1)~(E-4)のいずれか1つの医薬組成物。
(E-6)前記がんが、腹膜播種したがんである(E-1)~(E-5)のいずれか1つの医薬組成物。
(E-7) 前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による処置に対して不応性のがんを有する患者を治療するための、(E-1)~(E-6)のいずれか1つの医薬組成物。
(E-8) 前記がんが、前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による治療経験があるがんである、(E-1)~(E-7)のいずれか1つの医薬組成物。
(E-9) 前記がんが、前記少なくとも1つの他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(E-1)~(E-8)のいずれか1つの医薬組成物。
(E-10) 前記少なくとも1つの他の抗がん剤の投与により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(E-1)~(E-9)のいずれか1つの医薬組成物。
(E-11) 前記多重特異性抗原結合分子の投与により前記少なくとも1つの他の抗がん剤の抗腫瘍効果を増強する、(E-1)~(E-9)のいずれか1つの医薬組成物。
(E-12) 前記医薬組成物が配合剤であることを特徴とする、(E-1)~(E-11)のいずれか1つの医薬組成物。
(E-13) 前記多重特異性抗原結合分子と、前記少なくとも1つの他の抗がん剤が、別々に、または連続して投与されることを特徴とする、(E-1)~(E-12)のいずれか1つの医薬組成物。
(E-14) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする(E-13)の医薬組成物。
(E-15) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(E-1)~(E-14)のいずれか1つの医薬組成物。
(E-16) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(E-1)~(E-15)のいずれか1つの医薬組成物。
(E-17) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβの発現を誘導する剤である、(E-1)~(E-16)のいずれか1つの医薬組成物。
(E-18) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβ1の発現を誘導する剤である、(E-1)~(E-17)のいずれか1つの医薬組成物。
(E-19) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、植物アルカロイド、または代謝拮抗薬である、(E-15)~(E-18)のいずれか1つの医薬組成物。
(E-20) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-21) 前記少なくとも1つの他の抗がん剤が、アルカロイドである、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-22) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-23) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-24) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-25) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-26) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、(E-15)~(E-19)のいずれか1つの医薬組成物。
(E-27) 前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(E-15)の医薬組成物。
(E-28) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(E-15)の医薬組成物。
(E-29) (E-1)~(E-28)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。

(E2-1) 以下の多重特異性抗原結合分子、および、少なくとも1つのTGFβ誘導剤を組み合わせてなる、がんを治療または予防するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子。
(E2-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(E2-1)の医薬組成物。
(E2-3) 前記がんが、CLDN6陽性のがんである、(E2-1)または(E2-2)のいずれか1つの医薬組成物。
(E2-4) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(E2-1)~(E2-3)のいずれか1つの医薬組成物。
(E2-5) 前記がんが、腹膜に転移したがんである、(E2-1)~(E2-4)のいずれか1つの医薬組成物。
(E2-6)前記がんが、腹膜播種したがんである(E2-1)~(E2-5)のいずれか1つの医薬組成物。
(E2-7) 前記少なくとも1つのTGFβ誘導剤、あるいは、前記少なくとも1つのTGFβ誘導剤とは異なるTGFβ誘導剤による処置に対して不応性のがんを有する患者を治療するための、(E2-1)~(E2-6)のいずれか1つの医薬組成物。
(E2-8) 前記がんが、前記少なくとも1つのTGFβ誘導剤、あるいは、前記少なくとも1つのTGFβ誘導剤とは異なるTGFβ誘導剤による治療経験があるがんである、(E2-1)~(E2-7)のいずれか1つの医薬組成物。
(E2-9) 前記がんが、前記少なくとも1つのTGFβ誘導剤単独投与による治療に対して所望の効果が得られなかったがんである、(E2-1)~(E2-8)のいずれか1つの医薬組成物。
(E2-10) 前記少なくとも1つのTGFβ誘導剤の投与により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(E2-1)~(E2-9)のいずれか1つの医薬組成物。
(E2-11) 前記医薬組成物が配合剤であることを特徴とする、(E2-1)~(E2-10)のいずれか1つの医薬組成物。
(E2-12) 前記多重特異性抗原結合分子と、前記少なくとも1つのTGFβ誘導剤が、別々に、または連続して投与されることを特徴とする、(E2-1)~(E2-11)のいずれか1つの医薬組成物。
(E2-13) 前記多重特異性抗原結合分子が、前記少なくとも1つのTGFβ誘導剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする(E2-12)の医薬組成物。
(E2-14) (E2-1)~(E2-13)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。

(E3-1) 以下の多重特異性抗原結合分子、および、少なくとも1つのCLDN6発現誘導剤を組み合わせてなる、がんを治療または予防するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子。
(E3-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(E3-1)の医薬組成物。
(E3-3) 前記がんが、CLDN6陽性のがんである、(E3-1)または(E3-2)のいずれか1つの医薬組成物。
(E3-4) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(E3-1)~(E3-3)のいずれか1つの医薬組成物。
(E3-5) 前記がんが、腹膜に転移したがんである、(E3-1)~(E3-4)のいずれか1つの医薬組成物。
(E3-6)前記がんが、腹膜播種したがんである(E3-1)~(E3-5)のいずれか1つの医薬組成物。
(E3-7) 前記少なくとも1つのCLDN6発現誘導剤、あるいは、前記少なくとも1つのCLDN6発現誘導剤とは異なるCLDN6発現誘導剤による処置に対して不応性のがんを有する患者を治療するための、(E3-1)~(E3-6)のいずれか1つの医薬組成物。
(E3-8) 前記がんが、前記少なくとも1つのCLDN6発現誘導剤、あるいは、前記少なくとも1つのCLDN6発現誘導剤とは異なるCLDN6発現誘導剤による治療経験があるがんである、(E3-1)~(E3-7)のいずれか1つの医薬組成物。
(E3-9) 前記がんが、前記少なくとも1つのTGFβ誘導剤単独投与による治療に対して所望の効果が得られなかったがんである、(E3-1)~(E3-8)のいずれか1つの医薬組成物。
(E3-10) 前記少なくとも1つのCLDN6発現誘導剤の投与により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(E3-1)~(E3-9)のいずれか1つの医薬組成物。
(E3-11) 前記医薬組成物が配合剤であることを特徴とする、(E3-1)~(E3-10)のいずれか1つの医薬組成物。
(E3-12) 前記多重特異性抗原結合分子と、前記少なくとも1つのCLDN6発現誘導剤が、別々に、または連続して投与されることを特徴とする、(E3-1)~(E3-11)のいずれか1つの医薬組成物。
(E3-13) 前記多重特異性抗原結合分子が、前記少なくとも1つのCLDN6発現誘導剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする(E3-12)の医薬組成物。
(E3-14) (E3-1)~(E3-13)のいずれか1つの医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。
Additionally, the present disclosure provides:
(E-1) A pharmaceutical composition for treating or preventing cancer, comprising a combination of the following multispecific antigen-binding molecule and at least one other anticancer agent:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(E-2) The pharmaceutical composition of (E-1), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(E-3) The pharmaceutical composition of any one of (E-1) or (E-2), wherein the cancer is a CLDN6-positive cancer.
(E-4) Any one of the pharmaceutical compositions (E-1) to (E-3), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(E-5) Any one of the pharmaceutical compositions (E-1) to (E-4), wherein the cancer is cancer that has metastasized to the peritoneum.
(E-6) Any one of the pharmaceutical compositions (E-1) to (E-5), wherein the cancer is a peritoneal disseminated cancer.
(E-7) Any one of the pharmaceutical compositions (E-1) to (E-6) for treating a patient having cancer refractory to treatment with the at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(E-8) Any one of the pharmaceutical compositions (E-1) to (E-7), wherein the cancer is a cancer that has been treated with at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(E-9) Any one of the pharmaceutical compositions (E-1) to (E-8), wherein the cancer is a cancer for which a desired effect has not been obtained in response to treatment with the at least one other anticancer agent alone.
(E-10) Any one of the pharmaceutical compositions (E-1) to (E-9), wherein the antitumor effect of the multispecific antigen-binding molecule is enhanced by administration of the at least one other anticancer agent.
(E-11) Any one of the pharmaceutical compositions (E-1) to (E-9), wherein administration of the multispecific antigen-binding molecule enhances the antitumor effect of the at least one other anticancer agent.
(E-12) Any one of the pharmaceutical compositions (E-1) to (E-11), characterized in that the pharmaceutical composition is a combination drug.
(E-13) Any one of the pharmaceutical compositions (E-1) to (E-12), characterized in that the multispecific antigen-binding molecule and the at least one other anticancer drug are administered separately or sequentially.
(E-14) The pharmaceutical composition according to (E-13), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one other anticancer agent.
(E-15) Any one of the pharmaceutical compositions (E-1) to (E-14), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(E-16) Any one of the pharmaceutical compositions (E-1) to (E-15), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in a cell.
(E-17) Any one of the pharmaceutical compositions (E-1) to (E-16), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ in a cell.
(E-18) Any one of the pharmaceutical compositions (E-1) to (E-17), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ1 in cells.
(E-19) Any one of the pharmaceutical compositions (E-15) to (E-18), wherein the at least one other anticancer agent is a platinum agent, a plant alkaloid, or an antimetabolite.
(E-20) Any one of the pharmaceutical compositions (E-15) to (E-19), wherein the at least one other anticancer agent is a platinum agent.
(E-21) Any one of the pharmaceutical compositions (E-15) to (E-19), wherein the at least one other anticancer agent is an alkaloid.
(E-22) Any one of the pharmaceutical compositions (E-15) to (E-19), wherein the at least one other anticancer drug is a topoisomerase inhibitor.
(E-23) Any one of the pharmaceutical compositions (E-15) to (E-19), wherein the at least one other anticancer drug is an antimetabolite.
(E-24) Any one of the pharmaceutical compositions (E-15) to (E-19), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(E-25) Any one of the pharmaceutical compositions (E-15) to (E-19), wherein the at least one other anticancer drug is irinotecan.
(E-26) Any one of the pharmaceutical compositions of (E-15) to (E-19), wherein the at least one other anticancer drug is gemcitabine.
(E-27) The pharmaceutical composition of (E-15), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(E-28) The pharmaceutical composition of (E-15), wherein the at least one other anticancer drug is olaparib.
(E-29) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions (E-1) to (E-28).

(E2-1) A pharmaceutical composition for treating or preventing cancer, comprising a combination of the following multispecific antigen-binding molecule and at least one TGFβ inducer:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(E2-2) The pharmaceutical composition of (E2-1), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(E2-3) The pharmaceutical composition of any one of (E2-1) or (E2-2), wherein the cancer is a CLDN6-positive cancer.
(E2-4) Any one of the pharmaceutical compositions (E2-1) to (E2-3), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(E2-5) The pharmaceutical composition according to any one of (E2-1) to (E2-4), wherein the cancer is cancer that has metastasized to the peritoneum.
(E2-6) Any one of the pharmaceutical compositions according to (E2-1) to (E2-5), wherein the cancer is a peritoneal disseminated cancer.
(E2-7) Any one of the pharmaceutical compositions (E2-1) to (E2-6) for treating a patient having cancer that is refractory to treatment with at least one TGFβ inducer or a TGFβ inducer different from the at least one TGFβ inducer.
(E2-8) Any one of the pharmaceutical compositions (E2-1) to (E2-7), wherein the cancer is a cancer that has been treated with at least one TGFβ inducer or a TGFβ inducer different from the at least one TGFβ inducer.
(E2-9) Any one of the pharmaceutical compositions (E2-1) to (E2-8), wherein the cancer is a cancer for which a desired effect has not been obtained by treatment with the administration of at least one TGFβ inducer alone.
(E2-10) Any one of the pharmaceutical compositions (E2-1) to (E2-9), wherein the anti-tumor effect of the multispecific antigen-binding molecule is enhanced by administration of the at least one TGFβ inducer.
(E2-11) Any one of the pharmaceutical compositions according to (E2-1) to (E2-10), characterized in that the pharmaceutical composition is a combination drug.
(E2-12) Any one of the pharmaceutical compositions (E2-1) to (E2-11), characterized in that the multispecific antigen-binding molecule and the at least one TGFβ inducer are administered separately or sequentially.
(E2-13) The pharmaceutical composition according to (E2-12), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one TGFβ inducer.
(E2-14) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions (E2-1) to (E2-13).

(E3-1) A pharmaceutical composition for treating or preventing cancer, comprising a combination of the following multispecific antigen-binding molecule and at least one CLDN6 expression inducer:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(E3-2) The pharmaceutical composition of (E3-1), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(E3-3) Any one of the pharmaceutical compositions of (E3-1) or (E3-2), wherein the cancer is a CLDN6-positive cancer.
(E3-4) Any one of the pharmaceutical compositions (E3-1) to (E3-3), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(E3-5) The pharmaceutical composition according to any one of (E3-1) to (E3-4), wherein the cancer is cancer that has metastasized to the peritoneum.
(E3-6) Any one of the pharmaceutical compositions according to (E3-1) to (E3-5), wherein the cancer is a peritoneal disseminated cancer.
(E3-7) Any one of the pharmaceutical compositions (E3-1) to (E3-6) for treating a patient having cancer that is refractory to treatment with at least one CLDN6 expression inducer or a CLDN6 expression inducer different from the at least one CLDN6 expression inducer.
(E3-8) Any one of the pharmaceutical compositions (E3-1) to (E3-7), wherein the cancer is a cancer that has a history of treatment with at least one CLDN6 expression inducer or a CLDN6 expression inducer different from the at least one CLDN6 expression inducer.
(E3-9) Any one of the pharmaceutical compositions (E3-1) to (E3-8), wherein the cancer is a cancer for which the desired effect has not been obtained by treatment with the administration of at least one TGFβ inducer alone.
(E3-10) Any one of the pharmaceutical compositions (E3-1) to (E3-9), which enhances the anti-tumor effect of the multispecific antigen-binding molecule by administration of the at least one CLDN6 expression inducer.
(E3-11) Any one of the pharmaceutical compositions according to (E3-1) to (E3-10), characterized in that the pharmaceutical composition is a combination drug.
(E3-12) Any one of the pharmaceutical compositions (E3-1) to (E3-11), characterized in that the multispecific antigen-binding molecule and the at least one CLDN6 expression inducer are administered separately or sequentially.
(E3-13) The pharmaceutical composition of (E3-12), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one CLDN6 expression inducer .
(E3-14) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one of the pharmaceutical compositions of (E3-1) to (E3-13).

(F-1) 以下の多重特異性抗原結合分子と少なくとも1つの他の抗がん剤との組み合わせ:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(F-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(F-1)の組み合わせ。
(F-3) 対象とするがんが、CLDN6陽性のがんである、(F-1)または(F-2)の組み合わせ。
(F-4) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(F-1)~(F-3)のいずれか1つの組み合わせ。
(F-5) 対象とするがんが、腹膜に転移したがんである、(F-1)~(F-4)のいずれか1つの組み合わせ。
(F-6)対象とするがんが、腹膜播種したがんである(F-1)~(F-5)のいずれか1つの組み合わせ。
(F-7) 前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による処置に対して不応性のがんを有する患者を治療するための、(F-1)~(F-6)のいずれか1つの組み合わせ。
(F-8) 対象とするがんが、前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による治療経験があるがんである、(F-1)~(F-7)のいずれか1つの組み合わせ。
(F-9) 対象とするがんが、前記少なくとも1つの他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(F-1)~(F-8)のいずれか1つの組み合わせ。
(F-10) 前記少なくとも1つの他の抗がん剤により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(F-1)~(F-9)のいずれか1つの組み合わせ。
(F-11) 前記多重特異性抗原結合分子により前記少なくとも1つの他の抗がん剤の抗腫瘍効果を増強する、(F-1)~(F-9)のいずれか1つの組み合わせ。
(F-12) 前記多重特異性抗原結合分子と前記少なくとも1つの他の抗がん剤とが、別々に、または連続して投与されることを特徴とする、(F-1)~(F-11)のいずれか1つの組み合わせ。
(F-13) 前記多重特異性抗原結合分子が前記少なくとも1つの他の抗がん剤の前に、同時に、および/または後に投与されることを特徴とする、(F-1)~(F-12)のいずれか1つの組み合わせ。
(F-14) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(F-1)~(F-13)のいずれか1つの組み合わせ。
(F-15) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(F-1)~(F-14)のいずれか1つの組み合わせ。
(F-16) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβの発現を誘導する剤である、(F-1)~(F-15)のいずれか1つの組み合わせ。
(F-17) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβ1の発現を誘導する剤である、(F-1)~(F-16)のいずれか1つの組み合わせ。
(F-18) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(F-14)~(F-17)のいずれか1つの組み合わせ。
(F-19) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(F-14)~(F-18)のいずれか1つの組み合わせ。
(F-20) 前記少なくとも1つの他の抗がん剤が、アルカロイドである、(F-14)~(F-18)のいずれか1つの組み合わせ。
(F-21) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(F-14)~(F-18)のいずれか1つの医薬組成物。
(F-22) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(F-14)~(F-18)のいずれか1つの組み合わせ。
(F-23) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(F-14)~(F-17)のいずれか1つの組み合わせ。
(F-24) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、(F-14)~(F-17)のいずれか1つの組み合わせ。
(F-25) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、(F-14)~(F-17)のいずれか1つの組み合わせ。
(F-26) 前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(F-14)の組み合わせ。
(F-27) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(F-14)の組み合わせ。
(F-28) (F-1)~(F-27)のいずれか1つの組み合わせを含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。

(F2-1) 以下の多重特異性抗原結合分子と少なくとも1つのTGFβ誘導剤との組み合わせ:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(F2-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(F2-1)の組み合わせ。
(F2-3) 対象とするがんが、CLDN6陽性のがんである、(F2-1)または(F2-2)の組み合わせ。
(F2-4) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(F2-1)~(F2-3)のいずれか1つの組み合わせ。
(F2-5) 対象とするがんが、腹膜に転移したがんである、(F2-1)~(F2-4)のいずれか1つの組み合わせ。
(F2-6)対象とするがんが、腹膜播種したがんである(F2-1)~(F2-5)のいずれか1つの組み合わせ。
(F2-7) 前記少なくとも1つのTGFβ誘導剤、あるいは、前記少なくとも1つのTGFβ誘導剤とは異なるTGFβ誘導剤による処置に対して不応性のがんを有する患者を治療するための、(F2-1)~(F2-6)のいずれか1つの組み合わせ。
(F2-8) 対象とするがんが、前記少なくとも1つのTGFβ誘導剤、あるいは、前記少なくとも1つのTGFβ誘導剤とは異なるTGFβ誘導剤による治療経験があるがんである、(F2-1)~(F2-7)のいずれか1つの組み合わせ。
(F2-9) 対象とするがんが、前記少なくとも1つのTGFβ誘導剤単独投与による治療に対して所望の効果が得られなかったがんである、(F2-1)~(F2-8)のいずれか1つの組み合わせ。
(F2-10) 前記少なくとも1つのTGFβ誘導剤により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(F2-1)~(F2-9)のいずれか1つの組み合わせ。
(F2-11) 前記多重特異性抗原結合分子と前記少なくとも1つのTGFβ誘導剤とが、別々に、または連続して投与されることを特徴とする、(F2-1)~(F2-10)のいずれか1つの組み合わせ。
(F2-12) 前記多重特異性抗原結合分子が前記少なくとも1つのTGFβ誘導剤の前に、同時に、および/または後に投与されることを特徴とする、(F2-1)~(F2-11)のいずれか1つの組み合わせ。
(F2-13) 前記少なくとも1つのTGFβ誘導剤が、細胞のCLDN6の発現を増強する剤である、(F2-1)~(F2-12)のいずれか1つの組み合わせ。
(F2-14) 前記少なくとも1つのTGFβ誘導剤が、細胞のTGFβ1の発現を誘導する剤である、(F2-1)~(F2-13)のいずれか1つの組み合わせ。
(F2-15) (F2-1)~(F2-14)のいずれか1つの組み合わせを含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。

(F3-1) 以下の多重特異性抗原結合分子と少なくとも1つのCLDN6発現誘導剤との組み合わせ:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、多重特異性抗原結合分子。
(F3-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(F3-1)の組み合わせ。
(F3-3) 対象とするがんが、CLDN6陽性のがんである、(F3-1)または(F3-2)の組み合わせ。
(F3-4) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(F3-1)~(F3-3)のいずれか1つの組み合わせ。
(F3-5) 対象とするがんが、腹膜に転移したがんである、(F3-1)~(F3-4)のいずれか1つの組み合わせ。
(F3-6)対象とするがんが、腹膜播種したがんである(F3-1)~(F3-5)のいずれか1つの組み合わせ。
(F3-7) 前記少なくとも1つのCLDN6発現誘導剤、あるいは、前記少なくとも1つのCLDN6発現誘導剤とは異なるCLDN6発現誘導剤による処置に対して不応性のがんを有する患者を治療するための、(F3-1)~(F3-6)のいずれか1つの組み合わせ。
(F3-8) 対象とするがんが、前記少なくとも1つのCLDN6発現誘導剤、あるいは、前記少なくとも1つのCLDN6発現誘導剤とは異なるCLDN6発現誘導剤剤による治療経験があるがんである、(F3-1)~(F3-7)のいずれか1つの組み合わせ。
(F3-9) 対象とするがんが、前記少なくとも1つの他のCLDN6発現誘導剤単独投与による治療に対して所望の効果が得られなかったがんである、(F3-1)~(F3-8)のいずれか1つの組み合わせ。
(F3-10) 前記少なくとも1つの他のCLDN6発現誘導剤により前記多重特異性抗原結合分子の抗腫瘍効果を増強する、(F3-1)~(F3-9)のいずれか1つの組み合わせ。
(F3-11) 前記多重特異性抗原結合分子と前記少なくとも1つのCLDN6発現誘導剤とが、別々に、または連続して投与されることを特徴とする、(F3-1)~(F3-10)のいずれか1つの組み合わせ。
(F3-12) 前記多重特異性抗原結合分子が前記少なくとも1つのCLDN6発現誘導剤の前に、同時に、および/または後に投与されることを特徴とする、(F3-1)~(F3-11)のいずれか1つの組み合わせ。
(F3-13) 前記少なくとも1つのCLDN6発現誘導剤が、細胞のTGFβの発現を増強する剤である、(F3-1)~(F3-12)のいずれか1つの組み合わせ。
(F3-14) 前記少なくとも1つのCLDN6発現誘導剤が、細胞のTGFβ1の発現を誘導する剤である、(F3-1)~(F3-13)のいずれか1つの組み合わせ。
(F3-15) (F3-1)~(F3-14)のいずれか1つの組み合わせを含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤、またはがん予防剤。
(F-1) A combination of the following multispecific antigen-binding molecules with at least one other anticancer drug:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(F-2) The combination of (F-1), wherein the multispecific antigen-binding molecule is any one of (A-2) to (A-39).
(F-3) A combination of (F-1) or (F-2), in which the target cancer is CLDN6-positive cancer.
(F-4) Any one of the combinations of (F-1) to (F-3), in which the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumors, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(F-5) Any one of (F-1) to (F-4) in which the target cancer is cancer that has metastasized to the peritoneum.
(F-6) Any one of the combinations (F-1) to (F-5) in which the target cancer is peritoneal dissemination cancer.
(F-7) Any one of the combinations (F-1) to (F-6) for treating a patient having a cancer that is refractory to treatment with the at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(F-8) Any one of the combinations of (F-1) to (F-7), wherein the target cancer is a cancer that has been treated with at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(F-9) Any one of the combinations of (F-1) to (F-8), wherein the target cancer is a cancer for which the desired effect was not obtained by treatment with the administration of the at least one other anticancer agent alone.
(F-10) Any one of the combinations (F-1) to (F-9), wherein the antitumor effect of the multispecific antigen-binding molecule is enhanced by the at least one other anticancer drug.
(F-11) Any one of the combinations (F-1) to (F-9), wherein the multispecific antigen-binding molecule enhances the antitumor effect of the at least one other anticancer agent.
(F-12) Any one of the combinations (F-1) to (F-11), characterized in that the multispecific antigen-binding molecule and the at least one other anticancer agent are administered separately or sequentially.
(F-13) Any one of the combinations (F-1) to (F-12), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one other anticancer drug.
(F-14) Any one of the combinations (F-1) to (F-13), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(F-15) Any one of the combinations (F-1) to (F-14), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in cells.
(F-16) Any one of the combinations (F-1) to (F-15), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ in cells.
(F-17) Any one of the combinations (F-1) to (F-16), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ1 in cells.
(F-18) Any one of the combinations (F-14) to (F-17), wherein the at least one other anticancer drug is a platinum agent, an alkaloid, or an antimetabolite.
(F-19) Any one of the combinations (F-14) to (F-18), wherein the at least one other anticancer drug is a platinum agent.
(F-20) Any one of the combinations (F-14) to (F-18), wherein the at least one other anticancer drug is an alkaloid.
(F-21) Any one of the pharmaceutical compositions (F-14) to (F-18), wherein the at least one other anticancer drug is a topoisomerase inhibitor.
(F-22) Any one of the combinations (F-14) to (F-18), wherein the at least one other anticancer drug is an antimetabolite.
(F-23) Any one of the combinations (F-14) to (F-17), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(F-24) Any one of the combinations (F-14) to (F-17), wherein the at least one other anticancer drug is irinotecan.
(F-25) Any one of the combinations (F-14) to (F-17), wherein the at least one other anticancer drug is gemcitabine.
(F-26) The combination of (F-14), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(F- 27 ) The combination of (F-14), wherein the at least one other anticancer drug is olaparib.
(F- 28 ) A cytotoxicity inducer, a cell proliferation inhibitor, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent comprising a combination of any one of (F- 1 ) to (F-27).

(F2-1) A combination of the following multispecific antigen-binding molecule and at least one TGFβ inducer:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(F2-2) The combination of (F2-1), wherein the multispecific antigen-binding molecule is any one of (A-2) to (A-39).
(F2-3) A combination of (F2-1) or (F2-2), in which the target cancer is CLDN6-positive cancer.
(F2-4) Any one combination of (F2-1) to (F2-3), in which the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(F2-5) Any one of (F2-1) to (F2-4) in which the target cancer has metastasized to the peritoneum.
(F2-6) Any one of the combinations (F2-1) to (F2-5) in which the target cancer is peritoneal dissemination.
(F2-7) A combination of any one of (F2-1) to (F2-6) for treating a patient having cancer that is refractory to treatment with at least one TGFβ inducer or a TGFβ inducer different from the at least one TGFβ inducer.
(F2-8) Any one of the combinations (F2-1) to (F2-7), wherein the target cancer is a cancer that has been treated with at least one TGFβ inducer or a TGFβ inducer different from the at least one TGFβ inducer.
(F2-9) Any one of the combinations (F2-1) to (F2-8), wherein the target cancer is a cancer for which the desired effect was not obtained by treatment with the administration of at least one TGF-β inducer alone.
(F2-10) Any one of the combinations (F2-1) to (F2-9), wherein the anti-tumor effect of the multispecific antigen-binding molecule is enhanced by the at least one TGFβ inducer.
(F2-11) Any one of the combinations (F2-1) to (F2-10), characterized in that the multispecific antigen-binding molecule and the at least one TGFβ inducer are administered separately or sequentially.
(F2-12) Any one of the combinations (F2-1) to (F2-11), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one TGFβ inducer.
(F2-13) Any one of the combinations (F2-1) to (F2-12), wherein the at least one TGFβ inducer is an agent that enhances cellular CLDN6 expression.
(F2-14) Any one of the combinations (F2-1) to (F2-13), wherein the at least one TGFβ inducer is an agent that induces expression of TGFβ1 in cells.
(F2-15) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one combination of (F2-1) to (F2-14).

(F3-1) A combination of the following multispecific antigen-binding molecules and at least one CLDN6 expression inducer:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(F3-2) The combination of (F3-1), wherein the multispecific antigen-binding molecule is any one of (A-2) to (A-39).
(F3-3) A combination of (F3-1) or (F3-2), in which the target cancer is CLDN6-positive cancer.
(F3-4) Any one combination of (F3-1) to (F3-3), in which the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(F3-5) The target cancer is cancer that has metastasized to the peritoneum, and any combination of (F3-1) to (F3-4) is used.
(F3-6) Any one of the combinations (F3-1) to (F3-5) in which the target cancer is peritoneal dissemination.
(F3-7) A combination of any one of (F3-1) to (F3-6) for treating a patient having cancer that is refractory to treatment with at least one CLDN6 expression inducer or a CLDN6 expression inducer different from the at least one CLDN6 expression inducer.
(F3-8) Any one of the combinations (F3-1) to (F3-7), wherein the target cancer is a cancer that has a history of treatment with at least one CLDN6 expression inducer or a CLDN6 expression inducer different from the at least one CLDN6 expression inducer.
(F3-9) Any one of the combinations of (F3-1) to (F3-8), wherein the target cancer is a cancer for which the desired effect was not obtained when treated with the at least one other CLDN6 expression inducer alone.
(F3-10) Any one of the combinations (F3-1) to (F3-9), wherein the anti-tumor effect of the multispecific antigen-binding molecule is enhanced by the at least one other CLDN6 expression inducer.
(F3-11) Any one of the combinations (F3-1) to (F3-10), characterized in that the multispecific antigen-binding molecule and the at least one CLDN6 expression inducer are administered separately or sequentially.
(F3-12) Any one of the combinations (F3-1) to (F3-11), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one CLDN6 expression inducer.
(F3-13) Any one of the combinations (F3-1) to (F3-12), wherein the at least one CLDN6 expression inducer is an agent that enhances the expression of TGFβ in cells.
(F3-14) Any one of the combinations (F3-1) to (F3-13), wherein the at least one CLDN6 expression inducer is an agent that induces the expression of TGFβ1 in cells.
(F3-15) A cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer therapeutic agent, or a cancer preventive agent, comprising any one combination of (F3-1) to (F3-14).

(G-1) 有効量の多重特異性抗原結合分子、および有効量の少なくとも1つの他の抗がん剤を投与することを含む、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G-2) 個体に、有効量の少なくとも1つの他の抗がん剤を投与することを含む、多重特異性抗原結合分子と併用して、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G-3) 個体に、有効量の少なくとも1つの他の抗がん剤を投与することを含む、多重特異性抗原結合分子による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G-4) 個体に、有効量の多重特異性抗原結合分子を投与することを含む、少なくとも1つの他の抗がん剤による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G-5) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(G-1)~(G-4)のいずれか1つの方法。
(G-6) 前記がんが、CLDN6陽性のがんである、(G-1)~(G-5)のいずれか1つの方法。
(G-7) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(G-1)~(G-6)のいずれか1つの方法。
(G-8) 前記がんが、腹膜に転移したがんである、(G-1)~(G-7)のいずれか1つの方法。
(G-9)前記がんが、腹膜播種したがんである、(G-1)~(G-8)のいずれか1つの方法。
(G-10) 前記多重特異性抗原結合分子と前記少なくとも1つの他の抗がん剤が、別々に、または連続して投与されることを特徴とする、(G-1)~(G-9)のいずれか1つの方法。
(G-11) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする、(G-1)~(G-10)のいずれか1つの方法。
(G-12) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(G-1)~(G-11)のいずれか1つの方法。
(G-13) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(G-1)~(G-12)のいずれか1つの方法。
(G-14) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβの発現を誘導する剤である、(G-1)~(G-13)のいずれか1つの方法。
(G-15) 前記少なくとも1つの他の抗がん剤が、細胞のTGFβ1の発現を誘導する剤である、(G-1)~(G-14)のいずれか1つの方法。
(G-16) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(G-12)~(G-15)のいずれか1つの方法。
(G-17) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(G-12)~(G-16)のいずれか1つの方法。
(G-18) 前記少なくとも1つの他の抗がん剤が、アルカロイドである、(G-12)~(G-16)のいずれか1つの方法。
(G-19) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(G-12)~(G-16)のいずれか1つの医薬組成物
(G-20) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(G-12)~(G-16)のいずれか1つの方法。
(G-21) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(G-12)~(G-16) の方法。
(G-22) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、(G-12)~(G-16)の方法。
(G-23) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、(G-12)~(G-16)の方法。
(G-24)前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(G-12)の方法。
(G-25) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(G-12)の方法。

(G2-1) 有効量の多重特異性抗原結合分子、および有効量の少なくとも1つのTGFβ誘導剤を投与することを含む、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G2-2) 個体に、有効量の少なくとも1つのTGFβ誘導剤を投与することを含む、多重特異性抗原結合分子と併用して、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G2-3) 個体に、有効量の少なくとも1つのTGFβ誘導剤を投与することを含む、多重特異性抗原結合分子による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G2-4) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(G2-1)~(G2-3)のいずれか1つの方法。
(G2-5) 前記がんが、CLDN6陽性のがんである、(G2-1)~(G2-4)のいずれか1つの方法。
(G2-6) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(G2-1)~(G2-5)のいずれか1つの方法。
(G2-7) 前記がんが、腹膜に転移したがんである、(G2-1)~(G2-6)のいずれか1つの方法。
(G2-8)前記がんが、腹膜播種したがんである、(G2-1)~(G2-7)のいずれか1つの方法。
(G2-9) 前記多重特異性抗原結合分子と前記少なくとも1つのTGFβ誘導剤が、別々に、または連続して投与されることを特徴とする、(G2-1)~(G2-8)のいずれか1つの方法。
(G2-10) 前記多重特異性抗原結合分子が、前記少なくとも1つのTGFβ誘導剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする、(G2-1)~(G2-9)のいずれか1つの方法。
(G2-11) 前記少なくとも1つのTGFβ誘導剤が、細胞のCLDN6の発現を増強する剤である、(G2-1)~(G2-10)のいずれか1つの方法。
(G2-12) 前記少なくとも1つのTGFβ誘導剤が、がん細胞のTGFβ1の発現を誘導する剤である、(G2-1)~(G2-11)のいずれか1つの方法。

(G3-1) 有効量の多重特異性抗原結合分子、および有効量の少なくとも1つのCLDN6発現誘導剤を投与することを含む、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G3-2) 個体に、有効量の少なくとも1つのCLDN6発現誘導剤を投与することを含む、多重特異性抗原結合分子と併用して、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G3-3) 個体に、有効量の少なくとも1つのCLDN6発現誘導剤を投与することを含む、多重特異性抗原結合分子による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(G3-4) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(G3-1)~(G3-3)のいずれか1つの方法。
(G3-5) 前記がんが、CLDN6陽性のがんである、(G3-1)~(G3-4)のいずれか1つの方法。
(G3-6) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(G3-1)~(G3-5)のいずれか1つの方法。
(G3-7) 前記がんが、腹膜に転移したがんである、(G3-1)~(G3-6)のいずれか1つの方法。
(G3-8)前記がんが、腹膜播種したがんである、(G3-1)~(G3-7)のいずれか1つの方法。
(G3-9) 前記多重特異性抗原結合分子と前記少なくとも1つのCLDN6発現誘導剤が、別々に、または連続して投与されることを特徴とする、(G3-1)~(G3-8)のいずれか1つの方法。
(G3-10) 前記多重特異性抗原結合分子が、前記少なくとも1つのCLDN6発現誘導剤の投与前、投与と同時、および/または投与後に投与されることを特徴とする、(G3-1)~(G3-9)のいずれか1つの方法。
(G3-11) 前記少なくとも1つのCLDN6発現誘導剤が、がん細胞のTGFβの発現を増強する剤である、(G2-1)~(G2-10)のいずれか1つの方法。
(G3-12) 前記少なくとも1つのCLDN6発現誘導剤が、がん細胞のTGFβ1の発現を誘導する剤である、(G3-1)~(G3-11)のいずれか1つの方法。
(G-1) A method for inducing cell damage, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering an effective amount of a multispecific antigen-binding molecule and an effective amount of at least one other anticancer agent,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G-2) A method for inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual in combination with a multispecific antigen-binding molecule, comprising administering to the individual an effective amount of at least one other anticancer agent,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G-3) A method for enhancing the effect of a multispecific antigen-binding molecule on induction of cytotoxicity, suppression of cell proliferation, inhibition of cell proliferation, activation of immune response, treatment of cancer, or prevention of cancer in an individual, comprising administering to the individual an effective amount of at least one other anticancer agent,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G-4) A method for enhancing the effect of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating immune response, treating cancer, or preventing cancer in an individual by at least one other anticancer agent, comprising administering to the individual an effective amount of a multispecific antigen-binding molecule,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G-5) Any one of the methods (G-1) to (G-4), wherein the multispecific antigen-binding molecule is a multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(G-6) Any one of methods (G-1) to (G-5), wherein the cancer is a CLDN6-positive cancer.
(G-7) Any one of the methods (G-1) to (G-6), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(G-8) Any one of the methods (G-1) to (G-7), wherein the cancer is a cancer that has metastasized to the peritoneum.
(G-9) Any one of methods (G-1) to (G-8), wherein the cancer is a peritoneal disseminated cancer.
(G-10) Any one of the methods (G-1) to (G-9), wherein the multispecific antigen-binding molecule and the at least one other anticancer agent are administered separately or sequentially.
(G-11) Any one of the methods (G-1) to (G-10), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one other anticancer agent.
(G-12) Any one of methods (G-1) to (G-11), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(G-13) Any one of methods (G-1) to (G-12), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in cells.
(G-14) Any one of methods (G-1) to (G-13), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ in cells.
(G-15) Any one of the methods (G-1) to (G-14), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ1 in cells.
(G-16) Any one of methods (G-12) to (G-15), wherein the at least one other anticancer drug is a platinum agent, an alkaloid, or an antimetabolite.
(G-17) Any one of methods (G-12) to (G-16), wherein the at least one other anticancer drug is a platinum agent.
(G-18) Any one of the methods (G-12) to (G-16), wherein the at least one other anticancer drug is an alkaloid.
(G-19) Any one of the pharmaceutical compositions (G-12) to (G-16), wherein the at least one other anticancer drug is a topoisomerase inhibitor .
(G-20) Any one of the methods (G-12) to (G-16), wherein the at least one other anticancer drug is an antimetabolite.
(G-21) The method according to (G-12) to (G-16), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(G-22) The method of (G-12) to (G-16), wherein the at least one other anticancer drug is irinotecan.
(G-23) The method according to (G-12) to (G-16), wherein the at least one other anticancer drug is gemcitabine.
(G-24) The method of (G-12), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(G-25) The method of (G-12), wherein the at least one other anticancer drug is olaparib.

(G2-1) A method for inducing cell damage, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering an effective amount of a multispecific antigen-binding molecule and an effective amount of at least one TGFβ inducer,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G2-2) A method for inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual in combination with a multispecific antigen-binding molecule, comprising administering to the individual an effective amount of at least one TGFβ inducer,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G2-3) A method for enhancing the effect of a multispecific antigen-binding molecule on induction of cytotoxicity, suppression of cell proliferation, inhibition of cell proliferation, activation of immune response, treatment of cancer, or prevention of cancer in an individual, comprising administering to the individual an effective amount of at least one TGFβ inducer,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G2-4) Any one of the methods (G2-1) to (G2-3), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(G2-5) Any one of the methods (G2-1) to (G2-4), wherein the cancer is a CLDN6-positive cancer.
(G2-6) Any one of the methods (G2-1) to (G2-5), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(G2-7) Any one of the methods (G2-1) to (G2-6), wherein the cancer is a cancer that has metastasized to the peritoneum.
(G2-8) Any one of the methods (G2-1) to (G2-7), wherein the cancer is a peritoneal disseminated cancer.
(G2-9) Any one of the methods (G2-1) to (G2-8), characterized in that the multispecific antigen-binding molecule and the at least one TGFβ inducer are administered separately or sequentially.
(G2-10) Any one of the methods (G2-1) to (G2-9), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one TGFβ inducer.
(G2-11) Any one of the methods (G2-1) to (G2-10), wherein the at least one TGFβ inducer is an agent that enhances cellular CLDN6 expression.
(G2-12) Any one of the methods (G2-1) to (G2-11), wherein the at least one TGFβ inducer is an agent that induces expression of TGFβ1 in cancer cells.

(G3-1) A method for inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering an effective amount of a multispecific antigen-binding molecule and an effective amount of at least one CLDN6 expression inducer,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G3-2) A method for inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, in combination with a multispecific antigen-binding molecule, comprising administering to the individual an effective amount of at least one CLDN6 expression inducer,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G3-3) A method for enhancing the effect of a multispecific antigen-binding molecule on induction of cytotoxicity, suppression of cell proliferation, inhibition of cell proliferation, activation of immune response, treatment of cancer, or prevention of cancer in an individual, comprising administering to the individual an effective amount of at least one CLDN6 expression inducer,
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(G3-4) Any one of the methods (G3-1) to (G3-3), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(G3-5) Any one of the methods (G3-1) to (G3-4), wherein the cancer is a CLDN6-positive cancer.
(G3-6) Any one of the methods (G3-1) to (G3-5), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(G3-7) Any one of the methods (G3-1) to (G3-6), wherein the cancer is a cancer that has metastasized to the peritoneum.
(G3-8) Any one of the methods (G3-1) to (G3-7), wherein the cancer is a peritoneal disseminated cancer.
(G3-9) Any one of the methods (G3-1) to (G3-8), characterized in that the multispecific antigen-binding molecule and the at least one CLDN6 expression inducer are administered separately or sequentially.
(G3-10) Any one of the methods (G3-1) to (G3-9), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after administration of the at least one CLDN6 expression inducer.
(G3-11) Any one of the methods (G2-1) to (G2-10), wherein the at least one CLDN6 expression inducer is an agent that enhances the expression of TGFβ in cancer cells.
(G3-12) Any one of the methods (G3-1) to (G3-11), wherein the at least one CLDN6 expression inducer is an agent that induces the expression of TGFβ1 in cancer cells.

(H-1) がん細胞を、多重特異性抗原結合分子、および少なくとも1つの他の抗がん剤と接触させることにより、がん細胞もしくはがん細胞を含む腫瘍組織に傷害を引き起こす方法、または、がん細胞もしくはがん細胞を含む腫瘍組織の増殖を抑制する方法であって、
前記多重特異性抗原結合分子は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、
方法。
(H-2) がん細胞を、多重特異性抗原結合分子、および少なくとも1つの他の抗がん剤と接触させることにより、該多重特異性抗原結合分子および少なくとも1つの他の抗がん剤が、がん細胞もしくはがん細胞を含む腫瘍組織に傷害を引き起こし、または、がん細胞もしくはがん細胞を含む腫瘍組織の増殖を抑制するかを確認する方法であって、前記多重特異性抗原結合分子は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む、方法。
(H-3) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(H-1)または(H-2)の方法。
(H-4) 前記がん細胞が、CLDN6陽性のがん細胞である、(H-1)~(H-3)のいずれか1つの方法。
(H-5) 前記がん細胞が、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれる少なくとも1つのがんのがん細胞である、(H-1)~(H-4)のいずれか1つの方法。
(H-6) 前記がん細胞が、腹膜播種したがんのがん細胞である、(H-1)~(H-5)のいずれか1つの方法。
(H-7) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(H-1)~(H-6)のいずれか1つの方法。
(H-8) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(H-1)~(H-7)のいずれか1つの方法。
(H-9) 前記少なくとも1つの他の抗がん剤が、がん細胞のTGFβの発現を誘導する剤である、(H-1)~(H-8)のいずれか1つの方法。
(H-10) 前記少なくとも1つの他の抗がん剤が、がん細胞のTGFβ1の発現を誘導する剤である、(H-1)~(H-9)のいずれか1つの方法。
(H-11) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(H-7)~(H-10)のいずれか1つの方法。
(H-12) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(H-7)~(H-11)のいずれか1つの方法。
(H-13) 前記少なくとも1つの他の抗がん剤が、アルカロイドである、(H-7)~(H-11)のいずれか1つの方法。
(H-14) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(H-7)~(H-11)のいずれか1つの医薬組成物。
(H-15) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(H-7)~(H-11)のいずれか1つの方法。
(H-16) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(H-7)~(H-11)のいずれか1つの方法。
(H-17) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、(H-7)~(H-11)のいずれか1つのの医薬組成物。
(H-18) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、(H-7)~(H-11)のいずれか1つのの医薬組成物。
(H-19) 前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(H-7)の方法。
(H-20) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(H-7)の方法。
(H-1) A method for inducing damage to cancer cells or tumor tissues containing cancer cells, or a method for inhibiting the proliferation of cancer cells or tumor tissues containing cancer cells, by contacting cancer cells with a multispecific antigen-binding molecule and at least one other anticancer drug, comprising:
The multispecific antigen-binding molecule comprises (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
Method.
(H-2) A method for confirming whether a multispecific antigen-binding molecule and at least one other anticancer drug cause damage to cancer cells or tumor tissue containing cancer cells, or inhibit the proliferation of cancer cells or tumor tissue containing cancer cells, by contacting cancer cells with the multispecific antigen-binding molecule and at least one other anticancer drug, wherein the multispecific antigen-binding molecule is
The method includes (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).
(H-3) The method according to (H-1) or (H-2), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(H-4) Any one of the methods (H-1) to (H-3), wherein the cancer cells are CLDN6-positive cancer cells.
(H-5) Any one of the methods (H-1) to (H-4), wherein the cancer cells are cells of at least one cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, and atypical teratoid rhabdoid tumor.
(H-6) Any one of the methods (H-1) to (H-5), wherein the cancer cells are cancer cells of a peritoneal disseminated cancer.
(H-7) Any one of methods (H-1) to (H-6), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(H-8) Any one of methods (H-1) to (H-7), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in cells.
(H-9) Any one of the methods (H-1) to (H-8), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ in cancer cells.
(H-10) Any one of the methods (H-1) to (H-9), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ1 in cancer cells.
(H-11) Any one of methods (H-7) to (H-10), wherein the at least one other anticancer drug is a platinum agent, an alkaloid, or an antimetabolite.
(H-12) Any one of methods (H-7) to (H-11), wherein the at least one other anticancer drug is a platinum agent.
(H-13) Any one of the methods (H-7) to (H-11), wherein the at least one other anticancer drug is an alkaloid.
(H-14) Any one of the pharmaceutical compositions of (H-7) to (H-11), wherein the at least one other anticancer drug is a topoisomerase inhibitor.
(H-15) Any one of the methods (H-7) to (H-11), wherein the at least one other anticancer drug is an antimetabolite.
(H-16) Any one of the methods (H-7) to (H-11), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(H- 17 ) Any one of the pharmaceutical compositions of (H-7) to (H-11), wherein the at least one other anticancer drug is irinotecan.
(H- 18 ) The pharmaceutical composition of any one of (H-7) to (H-11), wherein the at least one other anticancer drug is gemcitabine.
(H- 19 ) The method of (H-7), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(H- 20 ) The method of (H-7), wherein the at least one other anticancer drug is olaparib.

(I-1) (A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記多重特異性抗原結合分子と少なくとも一種の少なくとも1つの他の抗がん剤を組み合わせて個体に投与することを示す指示書またはラベル
を含むキット。
(I-2) (A)少なくとも1つの他の抗がん剤、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記少なくとも1つの他の抗がん剤と、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物とを組み合わせて個体に投与することを示す指示書またはラベル
を含むキット。
(I-3) 前記多重特異性抗原結合分子または少なくとも1つの他の抗がん剤が、前記容器に充填されていることを特徴とする、(I-1)または(I-2)のキット。
(I-4) (A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、および
(C)少なくとも1つの他の抗がん剤
を含むキット。
(I-5) 前記多重特異性抗原結合分子および少なくとも1つの他の抗がん剤が、1つの容器に充填されている、またはそれぞれ別の容器に充填されていることを特徴とする、(I-4)のキット。
(I-6) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(I-1)~(I-5)のいずれか1つのキット。
(I-7) 対象とするがんが、CLDN6陽性のがんである、(I-1)~(I-6)のいずれか1つのキット。
(I-8) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(I-1)~(I-7)のいずれか1つのキット。
(I-9) 前記がんが、腹膜に転移したがんである、(I-1)~(I-8)のいずれか1つのキット。
(I-10)対象とするがんが、腹膜播種したがんである(I-1)~(I-9)のいずれか1つのキット。
(I-11) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤と別々に、または連続して投与されることを特徴とする、(I-1)~(I-10)のいずれか1つのキット。
(I-12) 前記多重特異性抗原結合分子が、前記少なくとも1つの他の抗がん剤の前に、同時に、および/または後に投与されることを特徴とする、(I-1)~(I-11)のいずれか1つのキット。
(I-13) 前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(I-1)~(I-12)のいずれか1つのキット。
(I-14) 前記少なくとも1つの他の抗がん剤が、細胞のCLDN6の発現を増強する剤である、(I-1)~(I-13)のいずれか1つのキット。
(I-15) 前記少なくとも1つの他の抗がん剤が、がん細胞のTGFβの発現を誘導する剤である、(I-1)~(I-14)のいずれか1つのキット。
(I-16) 前記少なくとも1つの他の抗がん剤が、がん細胞のTGFβ1の発現を誘導する剤である、(I-1)~(I-15)のいずれか1つのキット。
(I-17) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(I-1)~(I-16)のいずれか1つのキット。
(I-18) 前記少なくとも1つの他の抗がん剤が、プラチナ製剤である、(I-1)~(I-17)のいずれか1つのキット。
(I-19) 前記少なくとも1つの他の抗がん剤が、アルカロイドである、(I-1)~(I-17)のいずれか1つのキット。
(I-20) 前記少なくとも1つの他の抗がん剤が、トポイソメラーゼ阻害剤である、(I-1)~(I-17)のいずれか1つのキット。
(I-21) 前記少なくとも1つの他の抗がん剤が、代謝拮抗薬である、(I-1)~(I-17)のいずれか1つのキット。
(I-22) 前記少なくとも1つの他の抗がん剤が、カルボプラチンまたはシスプラチンである、(I-1)~(I-17)のいずれか1つのキット。
(I-23) 前記少なくとも1つの他の抗がん剤が、イリノテカンである、、(I-1)~(I-17)のキット。
(I-24) 前記少なくとも1つの他の抗がん剤が、ゲムシタビンである、、(I-1)~(I-17)のキット。
(I-25) 前記少なくとも1つの他の抗がん剤が、抗PD-L1抗体である、(I-1)~(I-17) のキット。
(I-26) 前記少なくとも1つの他の抗がん剤が、オラパリブである、(I-1)~(I-17) のキット。

(I2-1) (A)少なくとも1つのTGFβ誘導剤、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記少なくとも1つの他の抗がん剤と、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物とを組み合わせて個体に投与することを示す指示書またはラベル
を含むキット。
(I2-2) 前記多重特異性抗原結合分子または少なくとも1つのTGFβ誘導剤が、前記容器に充填されていることを特徴とする、(I2-1)のキット。
(I2-3) (A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、および
(C) 少なくとも1つのTGFβ誘導剤、
を含むキット。
(I2-4) 前記多重特異性抗原結合分子および前記少なくとも1つのTGFβ誘導剤、が、1つの容器に充填されている、またはそれぞれ別の容器に充填されていることを特徴とする、(I2-3)のキット。
(I2-5) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(I2-1)~(I2-4)のいずれか1つのキット。
(I2-6) 対象とするがんが、CLDN6陽性のがんである、(I2-1)~(I2-5)のいずれか1つのキット。
(I2-7) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(I2-1)~(I2-6)のいずれか1つのキット。
(I2-8) 前記がんが、腹膜に転移したがんである、(I2-1)~(I2-7)のいずれか1つのキット。
(I2-9)対象とするがんが、腹膜播種したがんである(I2-1)~(I2-8)のいずれか1つのキット。
(I2-10) 前記多重特異性抗原結合分子が、前記少なくとも1つのTGFβ誘導剤と別々に、または連続して投与されることを特徴とする、(I2-1)~(I2-9)のいずれか1つのキット。
(I2-11) 前記多重特異性抗原結合分子が、前記少なくとも1つのTGFβ誘導剤の前に、同時に、および/または後に投与されることを特徴とする、(I2-1)~(I2-10)のいずれか1つのキット。
(I2-12) 前記少なくとも1つのTGFβ誘導剤が、細胞のCLDN6の発現を増強する剤である、(I2-1)~(I2-11)のいずれか1つのキット。
(I2-13) 前記少なくとも1つのTGFβ誘導剤が、細胞のTGFβの発現を誘導する剤である、(I2-1)~(I2-12)のいずれか1つのキット。
(I2-14) 前記少なくとも1つのTGFβ誘導剤が、細胞のTGFβ1の発現を誘導する剤である、(I2-1)~(I2-13)のいずれか1つのキット。

(I3-1) (A)少なくとも1つのCLDN6発現誘導剤、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記少なくとも1つの他の抗がん剤と、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物とを組み合わせて個体に投与することを示す指示書またはラベル
を含むキット。
(I3-2) 前記多重特異性抗原結合分子または前記少なくとも1つのCLDN6発現誘導剤が、前記容器に充填されていることを特徴とする、(I3-1)のキット。
(I3-3) (A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、および
(C)少なくとも1つのCLDN6発現誘導剤、
を含むキット。
(I3-4) 前記多重特異性抗原結合分子および前記少なくとも1つのCLDN6発現誘導剤が、1つの容器に充填されている、またはそれぞれ別の容器に充填されていることを特徴とする、(I3-3)のキット。
(I3-5) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(I3-1)~(I3-4)のいずれか1つのキット。
(I3-6) 対象とするがんが、CLDN6陽性のがんである、(I3-1)~(I3-5)のいずれか1つのキット。
(I3-7) 対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(I3-1)~(I3-6)のいずれか1つのキット。
(I3-8) 前記がんが、腹膜に転移したがんである、(I3-1)~(I3-7)のいずれか1つのキット。
(I3-9) 対象とするがんが、腹膜播種したがんである(I3-1)~(I3-8)のいずれか1つのキット。
(I3-10) 前記多重特異性抗原結合分子が、前記少なくとも1つのCLDN6発現誘導剤と別々に、または連続して投与されることを特徴とする、(I3-1)~(I3-9)のいずれか1つのキット。
(I3-11) 前記多重特異性抗原結合分子が前記少なくとも1つのCLDN6発現誘導剤の前に、同時に、および/または後に投与されることを特徴とする、(I3-1)~(I3-10)のいずれか1つのキット。
(I3-12) 前記少なくとも1つのCLDN6発現誘導剤が、細胞のCLDN6の発現を増強する剤である、(I3-1)~(I3-11)のいずれか1つのキット。
(I3-13) 前記少なくとも1つのCLDN6発現誘導剤が、細胞のTGFβの発現を誘導する剤である、(I3-1)~(I3-12)のいずれか1つのキット。
(I3-14) 前記少なくとも1つのCLDN6発現誘導剤が、細胞のTGFβ1の発現を誘導する剤である、(I3-1)~(I3-13)のいずれか1つのキット。
(I-1) (A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6);
(B) Containers, and
(C) A kit comprising instructions or a label for administering the multispecific antigen-binding molecule in combination with at least one other anti-cancer agent to an individual to treat or prevent cancer in the individual.
(I-2) (A) at least one other anticancer drug;
(B) Containers, and
(C) A kit comprising instructions or a label indicating that the at least one other anticancer agent is administered in combination with a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6) to treat or prevent cancer in the individual.
(I-3) The kit according to (I-1) or (I-2), wherein the multispecific antigen-binding molecule or at least one other anticancer drug is packed in the container.
(I-4) (A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6);
(B) a container; and
(C) A kit comprising at least one other anticancer drug.
(I-5) The kit according to (I-4), wherein the multispecific antigen-binding molecule and at least one other anticancer drug are packed in one container or each is packed in a separate container.
(I-6) Any one of the kits (I-1) to (I-5), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(I-7) Any one of the kits (I-1) to (I-6), wherein the target cancer is CLDN6-positive cancer.
(I-8) Any one of the kits (I-1) to (I-7), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(I-9) Any one of the kits (I-1) to (I-8), wherein the cancer is cancer that has metastasized to the peritoneum.
(I-10) Any one of the kits (I-1) to (I-9) for treating peritoneal dissemination of the cancer.
(I-11) Any one of the kits (I-1) to (I-10), wherein the multispecific antigen-binding molecule and the at least one other anticancer drug are administered separately or sequentially.
(I-12) Any one of the kits according to (I-1) to (I-11), characterized in that the multispecific antigen-binding molecule is administered prior to, simultaneously with, and/or after the at least one other anticancer drug.
(I-13) Any one of the kits (I-1) to (I-12), wherein the at least one other anticancer agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(I-14) Any one of the kits (I-1) to (I-13), wherein the at least one other anticancer agent is an agent that enhances the expression of CLDN6 in a cell.
(I-15) Any one of the kits (I-1) to (I-14), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ in cancer cells.
(I-16) Any one of the kits (I-1) to (I-15), wherein the at least one other anticancer agent is an agent that induces expression of TGFβ1 in cancer cells.
(I-17) Any one of the kits (I-1) to (I-16), wherein the at least one other anticancer drug is a platinum agent, an alkaloid, or an antimetabolite.
(I-18) Any one of the kits (I-1) to (I-17), wherein the at least one other anticancer drug is a platinum agent.
(I-19) Any one of the kits (I-1) to (I-17), wherein the at least one other anticancer drug is an alkaloid.
(I-20) Any one of the kits (I-1) to (I-17), wherein the at least one other anticancer drug is a topoisomerase inhibitor.
(I-21) The kit according to any one of (I-1) to (I-17), wherein the at least one other anticancer drug is an antimetabolite.
(I-22) Any one of the kits (I-1) to (I-17), wherein the at least one other anticancer drug is carboplatin or cisplatin.
(I- 23 ) The kit according to (I-1) to (I-17), wherein the at least one other anticancer drug is irinotecan.
(I- 24 ) The kit according to (I-1) to (I-17), wherein the at least one other anticancer drug is gemcitabine.
(I- 25 ) The kit of (I-1) to (I-17), wherein the at least one other anticancer drug is an anti-PD-L1 antibody.
(I- 26 ) The kit of (I-1) to (I-17), wherein the at least one other anticancer drug is olaparib.

(I2-1) (A) at least one TGFβ inducer;
(B) Containers, and
(C) A kit comprising instructions or a label indicating that the at least one other anticancer agent is administered in combination with a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6) to treat or prevent cancer in the individual.
(I2-2) The kit according to (I2-1), wherein the multispecific antigen-binding molecule or at least one TGFβ inducer is packed in the container.
(I2-3) (A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6);
(B) a container; and
(C) at least one TGFβ inducer;
Kit including:
(I2-4) The kit according to (I2-3), wherein the multispecific antigen-binding molecule and the at least one TGFβ inducer are packed in a single container or each is packed in a separate container.
(I2-5) The kit according to any one of (I2-1) to (I2-4), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(I2-6) Any one of the kits (I2-1) to (I2-5), wherein the target cancer is CLDN6-positive cancer.
(I2-7) Any one of the kits (I2-1) to (I2-6), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(I2-8) Any one of the kits (I2-1) to (I2-7), wherein the cancer is cancer that has metastasized to the peritoneum.
(I2-9) Any one of the kits (I2-1) to (I2-8) for treating peritoneal dissemination of the cancer to be treated.
(I2-10) Any one of the kits (I2-1) to (I2-9), characterized in that the multispecific antigen-binding molecule is administered separately or consecutively with the at least one TGFβ inducer.
(I2-11) Any one of the kits (I2-1) to (I2-10), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one TGFβ inducer.
(I2-12) Any one of the kits (I2-1) to (I2-11), wherein the at least one TGFβ inducer is an agent that enhances cellular CLDN6 expression.
(I2-13) The kit according to any one of (I2-1) to (I2-12), wherein the at least one TGFβ inducer is an agent that induces expression of TGFβ in a cell.
(I2-14) The kit according to any one of (I2-1) to (I2-13), wherein the at least one TGFβ inducer is an agent that induces expression of TGFβ1 in a cell.

(I3-1) (A) at least one CLDN6 expression inducer;
(B) Containers, and
(C) A kit comprising instructions or a label indicating that the at least one other anticancer agent is administered in combination with a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6) to treat or prevent cancer in the individual.
(I3-2) The kit according to (I3-1), characterized in that the multispecific antigen-binding molecule or the at least one CLDN6 expression inducer is packed in the container.
(I3-3) (A) A pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity to claudin 6 (CLDN6);
(B) a container; and
(C) at least one CLDN6 expression inducer;
Kit including:
(I3-4) The kit according to (I3-3), characterized in that the multispecific antigen-binding molecule and the at least one CLDN6 expression inducer are packed in a single container or each is packed in a separate container.
(I3-5) The kit according to any one of (I3-1) to (I3-4), wherein the multispecific antigen-binding molecule is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(I3-6) Any one of the kits (I3-1) to (I3-5), wherein the target cancer is CLDN6-positive cancer.
(I3-7) Any one of the kits (I3-1) to (I3-6), wherein the target cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(I3-8) Any one of the kits (I3-1) to (I3-7), wherein the cancer is cancer that has metastasized to the peritoneum.
(I3-9) Any one of the kits (I3-1) to (I3-8) for which the target cancer is peritoneal dissemination cancer.
(I3-10) Any one of the kits (I3-1) to (I3-9), characterized in that the multispecific antigen-binding molecule is administered separately or consecutively with the at least one CLDN6 expression inducer.
(I3-11) Any one of the kits (I3-1) to (I3-10), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one CLDN6 expression inducer.
(I3-12) Any one of the kits (I3-1) to (I3-11), wherein the at least one CLDN6 expression inducer is an agent that enhances the expression of CLDN6 in a cell.
(I3-13) Any one of the kits (I3-1) to (I3-12), wherein the at least one CLDN6 expression inducer is an agent that induces expression of TGFβ in a cell.
(I3-14) Any one of the kits (I3-1) to (I3-13), wherein the at least one CLDN6 expression inducer is an agent that induces expression of TGFβ1 in a cell.

(J-1) がんの治療における使用のための多重特異性抗原結合分子であって、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む、多重特異性抗原結合分子。
(J-2) (A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(J-1)の多重特異性抗原結合分子。
(J-3) 他の抗がん剤、TGFβ誘導剤、及びCLDN6発現誘導剤から成る群から選択された少なくとも1つの剤と組み合わせてがんの治療に使用されることを特徴とする、(J-1)または(J-2)のいずれか1つの多重特異性抗原結合分子。
(J-4) がんの治療における使用のための、多重特異性抗原結合分子と、他の抗がん剤、TGFβ誘導剤、及びCLDN6発現誘導剤から成る群から選択された少なくとも1つの剤と、の組み合わせであって、前記多重特異性抗原結合分子は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む、組み合わせ。
(J-5) 前記多重特異性抗原結合分子は、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(J-4)の組み合わせ。
(J-6) 前記多重特異性抗原結合分子と、前記少なくとも1つの剤が、別々に、または連続して投与されることを特徴とする、(J-3)~(J-5)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-7) 前記多重特異性抗原結合分子が、前記少なくとも1つの剤の前に、同時に、および/または後に投与されることを特徴とする、(J-6)の多重特異性抗原結合分子または組み合わせ。
(J-8) 前記少なくとも1つの剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(J-3)~(J-7)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-9) 前記少なくとも1つの剤が、細胞のCLDN6の発現を増強する剤である、(J-3)~(J-8)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-10) 前記少なくとも1つの剤が、がん細胞のTGFβの発現を誘導する剤である、(J-3)~(J-9)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-11) 前記少なくとも1つの剤が、がん細胞のTGFβ1の発現を誘導する剤である、(J-3)~(J-10)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-12) 前記少なくとも1つの剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(J-8)~(J-11)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-13) 前記少なくとも1つの剤が、プラチナ製剤である、(J-8)~(J-12)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-14) 前記少なくとも1つの剤が、アルカロイドである、(J-8)~(J-12)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-15) 前記少なくとも1つの剤が、トポイソメラーゼ阻害剤である、(J-8)~(J-12)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-16) 前記少なくとも1つ剤が、代謝拮抗薬である、(J-8)~(J-12)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-17) 前記少なくとも1つの剤が、カルボプラチンまたはシスプラチンである、(J-8)~(J-12)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-18) 前記少なくとも1つの剤が、イリノテカンである、(J-8)~(J-12)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-19) 前記少なくとも1つの剤が、ゲムシタビンである、、(J-8)~(J-12)の多重特異性抗原結合分子または組み合わせ。
(J-20) 前記少なくとも1つの剤が、抗PD-L1抗体である、(J-8)の多重特異性抗原結合分子または組み合わせ。
(J-21) 前記少なくとも1つの剤が、オラパリブである、(J-8)の多重特異性抗原結合分子または組み合わせ。
(J-22) 前記がんが、CLDN6陽性のがんである、(J-1)~(J-21)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-23) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(J-1)~(J-22)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-24) 前記がんが、腹膜に転移したがんである、(J-1)~(J-23)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-25)前記がんが、腹膜播種したがんである、(J-1)~(J-24)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-26) 免疫チェックポイント阻害剤による処置に対して不応性のがんを有する患者を治療するための、(J-1)~(J-25)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-27) 前記がんが、前記他の抗がん剤、あるいは、前記他の抗がん剤とは異なる抗がん剤による治療経験があるがんである、(J-1)~(J-26)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-28) 前記がんが、前記他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(J-1)~(J-27)のいずれか1つの多重特異性抗原結合分子または組み合わせ。
(J-1) A multispecific antigen-binding molecule for use in the treatment of cancer, comprising:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding portion having binding activity for claudin 6 (CLDN6).
(J-2) The multispecific antigen-binding molecule of (J-1), which is the multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(J-3) Any one of the multispecific antigen-binding molecules (J-1) and (J-2), which is used for the treatment of cancer in combination with at least one agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers.
(J-4) A combination of a multispecific antigen-binding molecule and at least one agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers for use in the treatment of cancer, wherein the multispecific antigen-binding molecule is
A combination comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding portion having binding activity for claudin 6 (CLDN6).
(J-5) The combination of (J-4), wherein the multispecific antigen-binding molecule is any one of (A-2) to (A-39).
(J-6) Any one of the multispecific antigen-binding molecules or combinations according to (J-3) to (J-5), characterized in that the multispecific antigen-binding molecule and the at least one agent are administered separately or sequentially.
(J-7) The multispecific antigen-binding molecule or combination of (J-6), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one agent.
(J-8) The multispecific antigen-binding molecule or combination of any one of (J-3) to (J-7), wherein the at least one agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(J-9) Any one of the multispecific antigen-binding molecules or combinations of (J-3) to (J-8), wherein the at least one agent is an agent that enhances the expression of CLDN6 in a cell.
(J-10) The multispecific antigen-binding molecule or combination of any one of (J-3) to (J-9), wherein the at least one agent is an agent that induces expression of TGFβ in cancer cells.
(J-11) The multispecific antigen-binding molecule or combination of any one of (J-3) to (J-10), wherein the at least one agent is an agent that induces expression of TGFβ1 in cancer cells.
(J-12) The multispecific antigen-binding molecule or combination of any one of (J-8) to (J-11), wherein the at least one agent is a platinum agent, an alkaloid, or an antimetabolite.
(J-13) The multispecific antigen-binding molecule or combination of any one of (J-8) to (J-12), wherein the at least one agent is a platinum drug.
(J-14) The multispecific antigen-binding molecule or combination of any one of (J-8) to (J-12), wherein the at least one agent is an alkaloid.
(J-15) The multispecific antigen-binding molecule or combination of any one of (J-8) to (J-12), wherein the at least one agent is a topoisomerase inhibitor.
(J-16) The multispecific antigen-binding molecule or combination of any one of (J-8) to (J-12), wherein the at least one agent is an antimetabolite.
(J-17) The multispecific antigen-binding molecule or combination of any one of (J-8) to (J-12), wherein the at least one agent is carboplatin or cisplatin.
(J-18) Any one of the multispecific antigen-binding molecules or combinations of (J-8) to (J-12), wherein the at least one agent is irinotecan.
(J-19) The multispecific antigen-binding molecule or combination of (J-8) to (J-12), wherein the at least one agent is gemcitabine.
(J-20) The multispecific antigen-binding molecule or combination of (J-8), wherein the at least one agent is an anti-PD-L1 antibody.
(J-21) The multispecific antigen-binding molecule or combination of (J-8), wherein said at least one agent is olaparib.
(J-22) Any one of the multispecific antigen-binding molecules or combinations of (J-1) to (J-21), wherein the cancer is a CLDN6-positive cancer.
(J-23) Any one of the multispecific antigen-binding molecules or combinations of (J-1) to (J-22), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumors, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(J-24) The multispecific antigen-binding molecule or combination of any one of (J-1) to (J-23), wherein the cancer is cancer that has metastasized to the peritoneum.
(J-25) Any one of the multispecific antigen-binding molecules or combinations of (J-1) to (J-24), wherein the cancer is peritoneal disseminated cancer.
(J-26) A multispecific antigen-binding molecule or combination of any one of (J-1) to (J-25) for treating a patient having cancer refractory to treatment with an immune checkpoint inhibitor.
(J-27) The multispecific antigen-binding molecule or combination of any one of (J-1) to (J-26), wherein the cancer is a cancer that has been treated with the other anticancer agent or an anticancer agent different from the other anticancer agent.
(J-28) The multispecific antigen-binding molecule or combination of any one of (J-1) to (J-27), wherein the cancer is a cancer for which a desired effect was not obtained in response to treatment with the other anticancer agent alone.

(K-1) がんを治療するための医薬の製造における、以下の多重特異性抗原結合の使用:(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む、多重特異性抗原結合分子。
(K-2) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(K-1)の使用。
(K-3) 前記多重特異性抗原結合分子が、他の抗がん剤、TGFβ誘導剤、及びCLDN6発現誘導剤から成る群から選択された少なくとも1つの剤と組み合わせて使用されることを特徴とする、(K-1)または(K-2)のいずれか1つの使用。
(K-4) がんを治療するための医薬の製造における、以下の多重特異性抗原結合分子と、他の抗がん剤、TGFβ誘導剤、及びCLDN6発現誘導剤から成る群から選択された少なくとも1つの剤と、の組み合わせの使用:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子。
(K-5) 前記多重特異性抗原結合分子が、(A-2)~(A-39)のいずれかに記載の多重特異性抗原結合分子である、(K-4)の使用。
(K-6) 前記医薬が多重特異性抗原結合分子と前記少なくとも1つの剤の配合剤であることを特徴とする、(K-4)または(K-5)の使用。
(K-7) 前記多重特異性抗原結合分子と、前記少なくとも1つの剤が別々に、または連続して投与されることを特徴とする、(K-3)~(K-5)のいずれか1つの使用。
(K-8) 前記多重特異性抗原結合分子が、前記少なくとも1つの剤の前に、同時に、および/または後に投与されることを特徴とする、(K-7)の使用。
(K-9) 前記少なくとも1つの剤が、化学療法剤、免疫チェックポイント阻害剤、およびPARP阻害剤からなる群より選ばれる少なくとも1つである、(K-3)~(K-8)のいずれか1つの使用。
(K-10) 前記少なくとも1つの剤が、細胞のCLDN6の発現を増強する剤である、(K-3)~(K-9)のいずれか1つの使用。
(K-11) 前記少なくとも1つの剤が、がん細胞のTGFβの発現を誘導する剤である、(K-3)~(K-10)のいずれか1つの使用。
(K-12) 前記少なくとも1つの剤が、がん細胞のTGFβ1の発現誘導の発現を誘導する剤である、(K-3)~(K-11)のいずれか1つの使用。
(K-13) 前記少なくとも1つの剤が、プラチナ製剤、アルカロイド、または代謝拮抗薬である、(K-9)~(K-12)のいずれか1つの使用。
(K-14) 前記少なくとも1つの剤が、プラチナ製剤である、(K-9)~(K-13)のいずれか1つの使用。
(K-15) 前記少なくとも1つの剤が、アルカロイドである、(K-9)~(K-13)のいずれか1つの使用。
(K-16) 前記少なくとも1つの剤が、トポイソメラーゼ阻害剤である、(K-9)~(K-13) のいずれか1つの使用。
(K-17) 前記少なくとも1つの剤が、代謝拮抗薬である、(K-9)~(K-13)のいずれか1つの使用。
(K-18) 前記少なくとも1つの他の剤が、カルボプラチンまたはシスプラチンである、(K-9)~(K-13)のいずれか1つの使用。
(K-19) 前記少なくとも1つの他の剤が、イリノテカンである、(K-9)~(K-13)のいずれか1つの使用。
(K-20) 前記少なくとも1つの他の剤が、ゲムシタビンである、(K-9)~(K-13)のいずれか1つの使用。
(K-21) 前記少なくとも1つの他の剤が、抗PD-L1抗体である、(K-9)の使用。
(K-22) 前記少なくとも1つの他の剤が、オラパリブである、(K-9)の使用。
(K-23) 前記がんが、CLDN6陽性のがんである、(K-1)~(K-22)のいずれか1つの使用。
(K-24) 前記がんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれるいずれかのがんである、(K-1)~(K-23)のいずれか1つの使用。
(K-25) 前記がんが、腹膜に転移したがんである、(K-1)~(K-24)のいずれか1つの使用。
(K-26) 前記がんが、腹膜播種したがんである、(K-1)~(K-25)のいずれか1つの使用。
(K-27) 免疫チェックポイント阻害剤による処置に対して不応性のがんを有する患者を治療するための、(K-1)~(K-26)のいずれか1つの使用。
(K-28) 前記がんが、前記少なくとも1つの他の抗がん剤、あるいは、前記少なくとも1つの他の抗がん剤とは異なる抗がん剤による治療経験があるがんである、(K-1)~(K-27)のいずれか1つの使用。
(K-29) 前記がんが、前記少なくとも1つの他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、(K-1)~(K-28)のいずれか1つの使用。
(K-1) Use of a multispecific antigen-binding molecule in the manufacture of a medicament for treating cancer, comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and binding to either CD3 or CD137; and (ii) a second antigen-binding portion having binding activity to claudin 6 (CLDN6).
(K-2) Use of (K-1), wherein the multispecific antigen-binding molecule is a multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(K-3) Use of any one of (K-1) or (K-2), characterized in that the multispecific antigen-binding molecule is used in combination with at least one agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers.
(K-4) Use of a combination of the following multispecific antigen-binding molecule and at least one agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers in the manufacture of a medicament for treating cancer:
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding portion having binding activity for claudin 6 (CLDN6).
(K-5) Use of (K-4), wherein the multispecific antigen-binding molecule is a multispecific antigen-binding molecule according to any one of (A-2) to (A-39).
(K-6) Use of (K-4) or (K-5), characterized in that the pharmaceutical is a combination of a multispecific antigen-binding molecule and the at least one agent.
(K-7) The use of any one of (K-3) to (K-5), characterized in that the multispecific antigen-binding molecule and the at least one agent are administered separately or sequentially.
(K-8) The use of (K-7), characterized in that the multispecific antigen-binding molecule is administered before, simultaneously with, and/or after the at least one agent.
(K-9) The use of any one of (K-3) to (K-8), wherein the at least one agent is at least one selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, and a PARP inhibitor.
(K-10) Use of any one of (K-3) to (K-9), wherein the at least one agent is an agent that enhances the expression of CLDN6 in a cell.
(K-11) Use of any one of (K-3) to (K-10), wherein the at least one agent is an agent that induces expression of TGFβ in cancer cells.
(K-12) Use of any one of (K-3) to (K-11), wherein the at least one agent is an agent that induces expression of TGFβ1 in cancer cells.
(K-13) The use of any one of (K-9) to (K-12), wherein the at least one agent is a platinum agent, an alkaloid, or an antimetabolite.
(K-14) Use of any one of (K-9) to (K-13), wherein the at least one agent is a platinum agent.
(K-15) The use of any one of (K-9) to (K-13), wherein the at least one agent is an alkaloid.
(K-16) The use of any one of (K-9) to (K-13), wherein the at least one agent is a topoisomerase inhibitor.
(K-17) The use of any one of (K-9) to (K-13), wherein the at least one agent is an antimetabolite.
(K-18) The use of any one of (K-9) to (K-13), wherein the at least one other agent is carboplatin or cisplatin.
(K-19) Use of any one of (K-9) to (K-13), wherein the at least one other agent is irinotecan.
(K-20) The use of any one of (K-9) to (K-13), wherein the at least one other agent is gemcitabine.
(K-21) The use of (K-9), wherein the at least one other agent is an anti-PD-L1 antibody.
(K-22) The use of (K-9), wherein the at least one other agent is olaparib.
(K-23) The use of any one of (K-1) to (K-22), wherein the cancer is a CLDN6-positive cancer.
(K-24) The use of any one of (K-1) to (K-23), wherein the cancer is any cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor.
(K-25) The use of any one of (K-1) to (K-24), wherein the cancer is cancer that has metastasized to the peritoneum.
(K-26) The use of any one of (K-1) to (K-25), wherein the cancer is a peritoneal disseminated cancer.
(K-27) Use of any one of (K-1) to (K-26) for treating a patient having cancer refractory to treatment with an immune checkpoint inhibitor.
(K-28) Use of any one of (K-1) to (K-27), wherein the cancer is a cancer that has been treated with at least one other anticancer drug or an anticancer drug different from the at least one other anticancer drug.
(K-29) Use of any one of (K-1) to (K-28), wherein the cancer is a cancer for which the desired effect has not been obtained in response to treatment with the at least one other anticancer agent administered alone.

TCGA (The Cancer Genome Atlas)データをもとに、各種がん組織におけるCLDN6の発現を比較したグラフである。This is a graph comparing CLDN6 expression in various cancer tissues based on TCGA (The Cancer Genome Atlas) data. CD137上のH0868L0581 Fab接触領域のエピトープを示す。CD137アミノ酸配列におけるエピトープマッピング(黒色:H0868L0581から3.0オングストロームよりも近い、縞:4.5オングストロームよりも近い)。The epitope of the H0868L0581 Fab contact region on CD137 is shown. Epitope mapping in the CD137 amino acid sequence (black: closer than 3.0 Å to H0868L0581, stripes: closer than 4.5 Å). CD137上のH0868L0581 Fab接触領域のエピトープを示す。結晶構造におけるエピトープマッピング(暗灰色の球:H0868L0581から3.0オングストロームよりも近い、薄灰色の棒:4.5オングストロームよりも近い)。The epitope of the H0868L0581 Fab contact region on CD137 is shown, with epitope mapping in the crystal structure (dark grey spheres: closer than 3.0 Å to H0868L0581, light grey bars: closer than 4.5 Å). 様々な抗体フォーマットを図示する。表4の各Fv領域のアノテーション、ならびに表4、表5、および表6の命名規則。(a)FAST-Igを利用することによる1+1二重特異性抗体;(b)CrossMabテクノロジーを利用することによる1+1二重特異性抗体を図示する図。Illustrating various antibody formats. Annotation of each Fv region in Table 4 and naming conventions in Tables 4, 5, and 6. Diagram illustrating (a) 1+1 bispecific antibody by utilizing FAST-Ig; (b) 1+1 bispecific antibody by utilizing CrossMab technology. ヒトCLDNファミリータンパク質(CLDN3、CLDN4、CLDN6、およびCLDN9)に対する抗CLDN6/CD3二重特異性抗体(CS2961および6PHU3/TR01)の結合活性を示す。BaF3トランスフェクタント(hCLDN6/BaF、hCLDN3/BaF、hCLDN4/BaF、およびhCLDN9/BaF)に対する抗CLDN6/CD3二重特異性抗体の結合活性を15μg/mlの濃度でフローサイトメーターによって調べ、ヒストグラムとしてプロットした。KLH/TR01を陰性対照として用いた。The binding activity of anti-CLDN6/CD3 bispecific antibodies (CS2961 and 6PHU3/TR01) to human CLDN family proteins (CLDN3, CLDN4, CLDN6, and CLDN9) is shown. The binding activity of anti-CLDN6/CD3 bispecific antibodies to BaF3 transfectants (hCLDN6/BaF, hCLDN3/BaF, hCLDN4/BaF, and hCLDN9/BaF) was examined by flow cytometer at a concentration of 15 μg/ml and plotted as a histogram. KLH/TR01 was used as a negative control. LDHアッセイによるT細胞依存性細胞傷害の評価を示す。1 shows the evaluation of T cell-dependent cytotoxicity by LDH assay. ヒトCLDN9とヒトCLDN6のアミノ酸配列アライメントを示す。ヒトCLDN9およびヒトCLDN6は、N末端残基(29位のMet/Leu)を除いて、細胞外ドメイン1においてほぼ同じ配列を含む。細胞外ドメイン2において、2つのアミノ酸が、ヒトCLDN9とヒトCLDN6とで異なる(145位のArg/Leuおよび156位のGlu/Leu)。Amino acid sequence alignment of human CLDN9 and human CLDN6 is shown. Human CLDN9 and human CLDN6 contain nearly identical sequences in extracellular domain 1, except for the N-terminal residue (Met/Leu at position 29). In extracellular domain 2, two amino acids differ between human CLDN9 and human CLDN6 (Arg/Leu at position 145 and Glu/Leu at position 156). LDHアッセイによる、種々のがん細胞株(NUGC-3、PA-1、SNG-M、NEC8、NEC14、CHLA-02-ATRT、HT-1197、およびOUMS-23)に対する抗体(PPU4135)のT細胞依存性細胞傷害の評価結果を示す。1 shows the results of evaluating T cell-dependent cytotoxicity of an antibody (PPU4135) against various cancer cell lines (NUGC-3, PA-1, SNG-M, NEC8, NEC14, CHLA-02-ATRT, HT-1197, and OUMS-23) by LDH assay. xCELLigenceアッセイによる、種々のがん細胞株に対する抗体(CS3348、PPU4135、およびPPU4136)のリアルタイム細胞増殖阻害アッセイの結果を示す。1 shows the results of a real-time cell proliferation inhibition assay of antibodies (CS3348, PPU4135, and PPU4136) against various cancer cell lines using the xCELLigence assay. CLDN6発現ヒト細胞株(OVCAR3およびNCI-H1435)およびCLDN6陰性細胞株(5637)との共培養下での、抗体(CS3348、PPU4135、PPU4136、PPU4137、およびPPU4138)によるCD3結合を通じたT細胞の活性化を示す。陰性対照としてKLH/TR01を用いた。Activation of T cells through CD3 engagement by antibodies (CS3348, PPU4135, PPU4136, PPU4137, and PPU4138) in co-culture with CLDN6-expressing human cell lines (OVCAR3 and NCI-H1435) and a CLDN6-negative cell line (5637). KLH/TR01 was used as a negative control. CLDN6発現ヒト細胞株(OVCAR3およびNCI-H1435)およびCLDN6陰性細胞株(5637)との共培養下での、抗体(CS3348、PPU4134、PPU4135、PPU4136、PPU4137、およびPPU4138)によるCD137結合を通じたNFκBの活性化を示す。陰性対照としてKLH/TR01を用いた。Activation of NFκB through CD137 binding by antibodies (CS3348, PPU4134, PPU4135, PPU4136, PPU4137, and PPU4138) in co-culture with CLDN6-expressing human cell lines (OVCAR3 and NCI-H1435) and a CLDN6-negative cell line (5637). KLH/TR01 was used as a negative control. NCI-H1435/HuNOGマウスモデルを用いた、1 mg/kgの用量での抗体(CS3348、PPU4134、PPU4135、PPU4136、PPU4137、およびPPU4138)のin vivo抗腫瘍効果を示す。1 shows the in vivo antitumor effects of antibodies (CS3348, PPU4134, PPU4135, PPU4136, PPU4137, and PPU4138) at a dose of 1 mg/kg using the NCI-H1435/HuNOG mouse model. OV-90/HuNOGマウスモデルを用いた、0.05 mg/kgおよび0.2 mg/kgの用量での抗体(CS3348およびPPU4135)のin vivo抗腫瘍効果を示す。The in vivo antitumor effects of antibodies (CS3348 and PPU4135) at doses of 0.05 mg/kg and 0.2 mg/kg are shown using an OV-90/HuNOG mouse model. CS3348またはPPU4135の投与によって媒介されるAST、ALT、GLDH(肝酵素)、ALP、TBIL、GGT、TBA(肝胆道障害パラメーター)、およびCRP(炎症マーカー)レベルの変化を示す。1 shows changes in AST, ALT, GLDH (liver enzymes), ALP, TBIL, GGT, TBA (hepatobiliary injury parameters), and CRP (inflammatory marker) levels mediated by administration of CS3348 or PPU4135. マウス腹膜播種モデルにおける、抗CLDN6/Dual-Fab抗体投与後の生存率を示した図である。FIG. 1 shows the survival rate after administration of anti-CLDN6/Dual-Fab antibody in a mouse peritoneal dissemination model. 各種がん細胞(ヒト卵巣がん細胞株(NIH-OVCAR3)、ヒト肺がん細胞株(NCI-H1435)、およびヒト子宮体がん細胞株(SNG-M))を化学療法剤(シスプラチン(CDDP)またはカルボプラチン(CBDCA))で処理した後のCLDN6発現量の変化を示す図である。FIG. 1 shows changes in CLDN6 expression levels after treatment of various cancer cells (human ovarian cancer cell line (NIH-OVCAR3), human lung cancer cell line (NCI-H1435), and human endometrial cancer cell line (SNG-M)) with chemotherapeutic agents (cisplatin (CDDP) or carboplatin (CBDCA)). 化学療法剤(シスプラチン(CDDP)またはカルボプラチン(CBDCA))で処理した後の、CS4135抗体のCD3結合を通じたT細胞活性化能の変化を、GloResponse NFAT-luc2 Jurkat細胞を用いたルシフェラーゼアッセイシステムを用いて評価した図である。This figure shows changes in the ability of the CS4135 antibody to activate T cells through CD3 binding after treatment with chemotherapy agents (cisplatin (CDDP) or carboplatin (CBDCA)), evaluated using a luciferase assay system with GloResponse NFAT-luc2 Jurkat cells. SNG-M腫瘍移植マウスにおける、カルボプラチン投与後のCLDN6の相対発現量を、GAPDHを内部コントロールとして、リアルタイムPCRにより調べた図である。FIG. 13 is a graph showing the relative expression level of CLDN6 after administration of carboplatin in SNG-M tumor-bearing mice, as determined by real-time PCR using GAPDH as an internal control. ヒト子宮体がん細胞株SNG-MとヒトCD34陽性細胞を移植したNOG(huNOG)マウスを用いたxenograft移植モデルにおける、CS4135抗体単剤投与、カルボプラチン単剤投与、およびCS4135抗体とカルボプラチンの併用投与による腫瘍体積の変化を示した図である。FIG. 13 shows changes in tumor volume following administration of the CS4135 antibody alone, carboplatin alone, and the combined administration of the CS4135 antibody and carboplatin in a xenograft transplantation model using NOG (huNOG) mice transplanted with the human endometrial cancer cell line SNG-M and human CD34-positive cells. 卵巣がん細胞株OVCAR3とヒトCD34陽性細胞を移植したNOG(huNOG)マウスを用いたxenograft移植モデルにおける、CS4135抗体単剤投与、カルボプラチン単剤投与、およびCS4135抗体とカルボプラチンの併用投与(同時)による腫瘍体積の変化を示した図である。FIG. 1 shows changes in tumor volume following administration of CS4135 antibody alone, carboplatin alone, and combined administration of CS4135 antibody and carboplatin (simultaneous administration) in a xenograft transplantation model using NOG (huNOG) mice transplanted with the ovarian cancer cell line OVCAR3 and human CD34-positive cells. 卵巣がん細胞株OVCAR3とヒトCD34陽性細胞を移植したNOG(huNOG)マウスを用いたxenograft移植モデルにおける、CS4135抗体単剤投与、カルボプラチン単剤投与、カルボプラチン投与後のCS4135抗体の連続的投与による腫瘍体積の変化を示した図である。FIG. 1 shows changes in tumor volume following administration of the CS4135 antibody alone, carboplatin alone, and consecutive administration of the CS4135 antibody after carboplatin administration in a xenograft transplantation model using NOG (huNOG) mice transplanted with the ovarian cancer cell line OVCAR3 and human CD34-positive cells. 卵巣がん細胞株OVCAR3とヒトCD34陽性細胞を移植したNOG(huNOG)マウスを用いたxenograft移植モデルにおける、CS4135抗体単剤投与、イリノテカン塩酸塩単剤投与、CS4135抗体とイリノテカン塩酸塩の併用投与による腫瘍体積の変化を示した図である。FIG. 13 shows changes in tumor volume following administration of the CS4135 antibody alone, irinotecan hydrochloride alone, and combined administration of the CS4135 antibody and irinotecan hydrochloride in a xenograft transplantation model using NOG (huNOG) mice transplanted with the ovarian cancer cell line OVCAR3 and human CD34-positive cells. クローディン6(CLDN6)を強制発現させた肺がん細胞株LLC1を移植したhCD137 KI/hCD3Tgマウスにおける、CS4135抗体単剤投与による腫瘍体積の変化を示した図である。FIG. 13 shows the change in tumor volume following single administration of CS4135 antibody in hCD137 KI/hCD3Tg mice transplanted with the lung cancer cell line LLC1, in which claudin 6 (CLDN6) was forcibly expressed. クローディン6(CLDN6)を強制発現させた肺がん細胞株LLC1を移植したhCD137 KI/hCD3TgマウスにCS4135抗体を投与し、腫瘍組織中のCD8陽性T細胞数をフローサイトメトリー (FCM)により解析した結果を示す図である。FIG. 13 shows the results of flow cytometry (FCM) analysis of the number of CD8 positive T cells in tumor tissue after administration of the CS4135 antibody to hCD137 KI/hCD3Tg mice transplanted with the lung cancer cell line LLC1, in which claudin 6 (CLDN6) is forcibly expressed. クローディン6(CLDN6)を強制発現させた肺がん細胞株LLC1を移植したhCD137 KI/hCD3Tgマウスにおける、CS4135抗体単剤投与、抗マウスPD-L1抗体単剤投与、およびCS4135抗体と抗マウスPD-L1抗体の併用投与による腫瘍体積の変化を示した図である。This figure shows the change in tumor volume following administration of CS4135 antibody alone, anti-mouse PD-L1 antibody alone, and combined administration of CS4135 antibody and anti-mouse PD-L1 antibody in hCD137 KI/hCD3Tg mice implanted with the lung cancer cell line LLC1, which overexpresses claudin 6 (CLDN6). ヒトCLDN6を発現するBRCA1欠損卵巣がん細胞株UWB1.289またはBRCA1野生型卵巣がん細胞株OV-90(ATCC)における、PARP阻害剤(オラパリブ(Olaparib))で処理した後のCLDN6発現量の変化をFACS解析により調べた図である。FIG. 1 shows the change in CLDN6 expression level after treatment with a PARP inhibitor (Olaparib) in the BRCA1-deficient ovarian cancer cell line UWB1.289 expressing human CLDN6 or the BRCA1 wild-type ovarian cancer cell line OV-90 (ATCC), as determined by FACS analysis. PARP阻害剤(オラパリブ(Olaparib))を添加したヒトCLDN6を発現するBRCA1欠損卵巣がん細胞株UWB1.289またはBRAC1野生型卵巣がん細胞株OV-90における、CS4135抗体による細胞傷害活性を、ヒトPBMCをエフェクター細胞として用いる乳酸デヒドロゲナーゼ(LDH)放出アッセイによって評価した図である。FIG. 1 shows the cytotoxic activity of CS4135 antibody in human CLDN6-expressing BRCA1-deficient ovarian cancer cell line UWB1.289 or BRAC1 wild-type ovarian cancer cell line OV-90 treated with a PARP inhibitor (Olaparib) assessed by lactate dehydrogenase (LDH) release assay using human PBMC as effector cells. CS4135抗体による細胞傷害活性を、KLH/CD137二重特異性抗体の存在下または非存在下において、リアルタイム細胞増殖阻害アッセイ(xCELLigenceアッセイ)を用いて解析した図である。標的細胞として、ヒトCLDN6を発現するマウス結腸がん細胞株MC38/CLDN6を、エフェクター細胞として、hCD3トランスジェニックマウスまたはhCD3/hCD137ノックインマウス由来のT細胞を用いた。The cytotoxic activity of CS4135 antibody was analyzed by real-time cell proliferation inhibition assay (xCELLigence assay) in the presence or absence of KLH/CD137 bispecific antibody. The target cells were mouse colon cancer cell line MC38/CLDN6 expressing human CLDN6, and the effector cells were T cells derived from hCD3 transgenic mice or hCD3/hCD137 knock-in mice. ヒト卵巣がん細胞株(NIH:OVCAR-3)を、カルボプラチン、シスプラチン、イリノテカン、またはゲムシタビンで処理し、CLDN6発現量を定量PCRで測定し、無処理細胞と比較した図である。This figure shows the results of treating a human ovarian cancer cell line (NIH:OVCAR-3) with carboplatin, cisplatin, irinotecan, or gemcitabine, measuring the CLDN6 expression level by quantitative PCR, and comparing it with that of untreated cells. ヒト卵巣がん細胞株(NIH:OVCAR-3)をカルボプラチン、シスプラチン、イリノテカン、またはゲムシタビンで処理し、TGFβ1発現量を定量PCRで測定し、無処理細胞と比較した図である。This figure shows the results of treating a human ovarian cancer cell line (NIH:OVCAR-3) with carboplatin, cisplatin, irinotecan, or gemcitabine, measuring the expression level of TGFβ1 by quantitative PCR, and comparing it with that of untreated cells. ヒト卵巣がん細胞株(NIH:OVCAR-3)をTGFβ1で刺激し、CLDN6発現量を定量PCRで測定し、無刺激細胞と比較した図である。This is a graph showing the results of stimulating a human ovarian cancer cell line (NIH: OVCAR-3) with TGFβ1, measuring the CLDN6 expression level by quantitative PCR, and comparing it with unstimulated cells. 各種卵巣癌細胞株(NIH:OVCAR-3, COV362, COV413A, COV413B)をTGFβ1で刺激し、CLDN6発現量をFACSで解析し、無刺激細胞と比較した図である。Various ovarian cancer cell lines (NIH: OVCAR-3, COV362, COV413A, COV413B) were stimulated with TGFβ1, and the CLDN6 expression levels were analyzed by FACS, comparing the results with those of unstimulated cells.

本明細書において記載または参照される技法および手順は、概して十分に理解されており、例えば、Sambrook et al., Molecular Cloning: A Laboratory Manual 3d edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.;Current Protocols in Molecular Biology (F.M. Ausubel, et al. eds., (2003));the series Methods in Enzymology (Academic Press, Inc.):PCR 2: A Practical Approach (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995))、Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual、およびAnimal Cell Culture (R.I. Freshney, ed. (1987));Oligonucleotide Synthesis (M.J. Gait, ed., 1984);Methods in Molecular Biology, Humana Press;Cell Biology: A Laboratory Notebook (J.E. Cellis, ed., 1998) Academic Press;Animal Cell Culture (R.I. Freshney), ed., 1987);Introduction to Cell and Tissue Culture (J. P. Mather and P.E. Roberts, 1998) Plenum Press;Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J.B. Griffiths, and D.G. Newell, eds., 1993-8) J. Wiley and Sons;Handbook of Experimental Immunology (D.M. Weir and C.C. Blackwell, eds.);Gene Transfer Vectors for Mammalian Cells (J.M. Miller and M.P. Calos, eds., 1987);PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994);Current Protocols in Immunology (J.E. Coligan et al., eds., 1991);Short Protocols in Molecular Biology (Wiley and Sons, 1999);Immunobiology (C.A. Janeway and P. Travers, 1997);Antibodies (P. Finch, 1997);Antibodies: A Practical Approach (D. Catty., ed., IRL Press, 1988-1989);Monoclonal Antibodies: A Practical Approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000);Using Antibodies: A Laboratory Manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999);The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995);ならびにCancer: Principles and Practice of Oncology (V.T. DeVita et al., eds., J.B. Lippincott Company, 1993) に記載される広く利用されている方法論などの従来の方法論を使用して当業者によって一般的に用いられるものである。 The techniques and procedures described or referenced herein are generally well understood and may be found in, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual 3rd edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Current Protocols in Molecular Biology (F.M. Ausubel, et al. eds., (2003)); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) Antibodies, A Laboratory Manual, and Animal Cell Culture (R.I. Freshney, ed. (1987)); Oligonucleotide Synthesis (M.J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J.E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R.I. Freshney, ed., 1987); Introduction to Cell and Tissue Culture (J.P. Mather and P.E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J.B. Griffiths, and D.G. Newell, eds., 1993-8) J. Wiley and Sons; Handbook of Experimental Immunology (D.M. Weir and C.C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J.M. Miller and M.P. Calos, eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C.A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: A Practical Approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal Antibodies: A Practical Approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using Antibodies: A Laboratory Manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995); and Cancer: Principles and Practice of These methods are commonly employed by those skilled in the art using conventional methodologies, such as the widely used methodologies described in Oncology (V.T. DeVita et al., eds., J.B. Lippincott Company, 1993).

以下の定義および詳細な説明は、本明細書において説明する本開示の理解を容易にするために提供される。 The following definitions and detailed descriptions are provided to facilitate understanding of the present disclosure described herein.

定義
アミノ酸
本明細書において、アミノ酸は、1文字コードもしくは3文字コードまたはその両方、例えば、Ala/A、Leu/L、Arg/R、Lys/K、Asn/N、Met/M、Asp/D、Phe/F、Cys/C、Pro/P、Gln/Q、Ser/S、Glu/E、Thr/T、Gly/G、Trp/W、His/H、Tyr/Y、Ile/I、またはVal/Vによって記載される。
Definition
Amino Acids As used herein, amino acids are described by the one-letter or three-letter code or both, e.g., Ala/A, Leu/L, Arg/R, Lys/K, Asn/N, Met/M, Asp/D, Phe/F, Cys/C, Pro/P, Gln/Q, Ser/S, Glu/E, Thr/T, Gly/G, Trp/W, His/H, Tyr/Y, Ile/I, or Val/V.

アミノ酸の改変Amino acid modification

抗原結合分子のアミノ酸配列中のアミノ酸改変(本明細書において「アミノ酸置換」または「アミノ酸変異」とも記載される)のためには、部位特異的変異誘発法(Kunkelら(Proc. Natl. Acad. Sci. USA (1985) 82, 488-492))および重複伸長PCRなどの公知の方法が適宜採用され得る。さらに、非天然アミノ酸に置換するためのアミノ酸改変方法として、いくつかの公知の方法もまた採用され得る(Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249;およびProc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357)。例えば、終止コドンの1つであるUAGコドン(アンバーコドン)の相補的アンバーサプレッサーtRNAに非天然アミノ酸が結合したtRNAを含む無細胞翻訳系 (Clover Direct (Protein Express)) を用いることが適切である。 For amino acid modification in the amino acid sequence of an antigen-binding molecule (also referred to herein as "amino acid substitution" or "amino acid mutation"), known methods such as site-directed mutagenesis (Kunkel et al. (Proc. Natl. Acad. Sci. USA (1985) 82, 488-492)) and overlap extension PCR may be appropriately employed. In addition, some known methods may also be employed as amino acid modification methods for substituting unnatural amino acids (Annu. Rev. Biophys. Biomol. Struct. (2006) 35, 225-249; and Proc. Natl. Acad. Sci. U.S.A. (2003) 100 (11), 6353-6357). For example, it is appropriate to use a cell-free translation system (Clover Direct (Protein Express)) that contains a tRNA in which a non-natural amino acid is bound to the complementary amber suppressor tRNA of the UAG codon (amber codon), which is one of the stop codons.

本明細書において、アミノ酸改変の部位を記載する際の用語「および/または」の意味は、「および」と「または」が適切に組み合わされたあらゆる組合せを含む。具体的には、例えば、「33位、55位、および/または96位のアミノ酸が置換される」は、アミノ酸改変の以下のバリエーションを含む:(a) 33位、(b) 55位、(c) 96位、(d) 33位および55位、(e) 33位および96位、(f) 55位および96位、ならびに (g) 33位、55位、および96位のアミノ酸。 In this specification, the meaning of the term "and/or" when describing the site of amino acid modification includes any combination of "and" and "or" appropriately combined. Specifically, for example, "amino acids at positions 33, 55, and/or 96 are substituted" includes the following variations of amino acid modification: (a) amino acids at positions 33, (b) 55, (c) 96, (d) 33 and 55, (e) 33 and 96, (f) 55 and 96, and (g) 33, 55, and 96.

さらに、本明細書において、アミノ酸の改変を示す表現として、特定の位置を表す数字の前および後に、それぞれ改変前および改変後のアミノ酸の1文字コードまたは3文字コードを示す表現が、適宜使用され得る。例えば、抗体可変領域中に含まれるアミノ酸を置換する際に用いられるN100bLまたはAsn100bLeuという改変は、100b位(Kabatナンバリングによる)におけるAsnの、Leuによる置換を表す。すなわち、数字はKabatナンバリングによるアミノ酸の位置を示し、数字の前に記載される1文字または3文字のアミノ酸コードは置換前のアミノ酸を示し、数字の後に記載される1文字または3文字のアミノ酸コードは置換後のアミノ酸を示す。同様に、抗体定常領域中に含まれるFc領域のアミノ酸を置換する際に用いられるP238DまたはPro238Aspという改変は、238位(EUナンバリングによる)におけるProの、Aspによる置換を表す。すなわち、数字はEUナンバリングによるアミノ酸の位置を示し、数字の前に記載される1文字または3文字のアミノ酸コードは置換前のアミノ酸を示し、数字の後に記載される1文字または3文字のアミノ酸コードは置換後のアミノ酸を示す。 Furthermore, in the present specification, as an expression indicating an amino acid modification, an expression indicating the one-letter code or three-letter code of the amino acid before and after the modification, respectively, before and after the number indicating a specific position may be appropriately used. For example, the modification N100bL or Asn100bLeu used in replacing an amino acid contained in an antibody variable region represents the replacement of Asn at position 100b (according to Kabat numbering) with Leu. That is, the number indicates the position of the amino acid according to Kabat numbering, the one-letter or three-letter amino acid code written before the number indicates the amino acid before the replacement, and the one-letter or three-letter amino acid code written after the number indicates the amino acid after the replacement. Similarly, the modification P238D or Pro238Asp used in replacing an amino acid in the Fc region contained in an antibody constant region represents the replacement of Pro at position 238 (according to EU numbering) with Asp. That is, the number indicates the position of the amino acid according to the EU numbering system, the one-letter or three-letter amino acid code written before the number indicates the amino acid before substitution, and the one-letter or three-letter amino acid code written after the number indicates the amino acid after substitution.

ポリペプチド
本明細書で用いられる用語「ポリペプチド」は、アミド結合(ペプチド結合としても知られる)によって直鎖状に連結された単量体(アミノ酸)で構成される分子を指す。用語「ポリペプチド」は、2アミノ酸以上の任意の鎖を指し、特定の長さの産物を指すものではない。よって、ペプチド、ジペプチド、トリペプチド、オリゴペプチド、「タンパク質」、「アミノ酸鎖」、または2アミノ酸以上の鎖を指すために用いられる任意の他の用語は、「ポリペプチド」の定義内に含まれ、用語「ポリペプチド」は、これらの用語のいずれかの代わりにまたは相互に交換可能に用いられてもよい。用語「ポリペプチド」はまた、限定されないが、グリコシル化、アセチル化、リン酸化、アミド化、公知の保護基/ブロッキング基による誘導体化、タンパク質切断、または非天然アミノ酸による修飾を含む、ポリペプチドの発現後修飾の産物を指すことも意図する。ポリペプチドは、天然の生物学的供給源に由来してもよく、または組換え技術によって産生されてもよいが、必ずしも指定の核酸から翻訳される必要はない。それは、化学合成を含む、任意の方法で生成されてもよい。本明細書において記載されるポリペプチドは、約3アミノ酸以上、5アミノ酸以上、10アミノ酸以上、20アミノ酸以上、25アミノ酸以上、50アミノ酸以上、75アミノ酸以上、100アミノ酸以上、200アミノ酸以上、500アミノ酸以上、1,000アミノ酸以上、または2,000アミノ酸以上のサイズのものであってもよい。ポリペプチドは規定された三次元構造を有し得るが、それらは必ずしもそのような構造を有する必要はない。規定された三次元構造を有するポリペプチドは、折り畳まれたと称され、規定された三次元構造をもたないが多数の異なる立体構造をとり得るポリペプチドは、折り畳まれていないと称される。
Polypeptides The term "polypeptide" as used herein refers to a molecule composed of monomers (amino acids) linked in a linear chain by amide bonds (also known as peptide bonds). The term "polypeptide" refers to any chain of two or more amino acids and does not refer to a specific length of the product. Thus, peptides, dipeptides, tripeptides, oligopeptides, "proteins,""amino acid chains," or any other terms used to refer to a chain of two or more amino acids are included within the definition of "polypeptide," and the term "polypeptide" may be used in place of or interchangeably with any of these terms. The term "polypeptide" is also intended to refer to the products of post-expression modifications of the polypeptide, including, but not limited to, glycosylation, acetylation, phosphorylation, amidation, derivatization with known protecting/blocking groups, proteolytic cleavage, or modification with non-natural amino acids. A polypeptide may be derived from a natural biological source or produced by recombinant technology, but need not necessarily be translated from a specified nucleic acid. It may be generated in any manner, including chemical synthesis. The polypeptides described herein may be of a size of about 3 or more amino acids, 5 or more amino acids, 10 or more amino acids, 20 or more amino acids, 25 or more amino acids, 50 or more amino acids, 75 or more amino acids, 100 or more amino acids, 200 or more amino acids, 500 or more amino acids, 1,000 or more amino acids, or 2,000 or more amino acids. Polypeptides may have a defined three-dimensional structure, but they do not necessarily have to have such a structure. Polypeptides that have a defined three-dimensional structure are said to be folded, and polypeptides that do not have a defined three-dimensional structure but can adopt a number of different conformations are said to be unfolded.

パーセント (%) アミノ酸配列同一性
参照ポリペプチド配列に対する「パーセント (%) アミノ酸配列同一性」は、最大のパーセント配列同一性を得るように配列を整列させてかつ必要ならギャップを導入した後の、かつ、いかなる保存的置換も配列同一性の一部と考えないとしたときの、参照ポリペプチド配列中のアミノ酸残基と同一である候補配列中のアミノ酸残基の、百分率比として定義される。%アミノ酸配列同一性を決める目的のアラインメントは、当該技術分野における技術の範囲内にある種々の方法、例えば、BLAST、BLAST-2、ALIGN、またはMegalign (DNASTAR) ソフトウェアなどの、公に入手可能なコンピュータソフトウェアを使用することにより達成することができる。当業者は、比較される配列の全長にわたって最大のアラインメントを達成するために必要な任意のアルゴリズムを含む、配列のアラインメントをとるための適切なパラメーターを決定することができる。しかしながら、本明細書における目的のために、%アミノ酸配列同一性値は、配列比較コンピュータプログラムであるALIGN-2を使用して生成される。ALIGN-2配列比較コンピュータプログラムは、ジェネンテック社の著作であり、そのソースコードは米国著作権庁 (U.S. Copyright Office, Wasington D.C., 20559) に使用者用書類と共に提出され、米国著作権登録番号TXU510087として登録されている。ALIGN-2プログラムは、ジェネンテック社 (Genentech, Inc., South San Francisco, California) から公に入手可能であるし、ソースコードからコンパイルしてもよい。ALIGN-2プログラムは、Digital UNIX V4.0Dを含むUNIXオペレーティングシステム上での使用のためにコンパイルされる。すべての配列比較パラメーターは、ALIGN-2プログラムによって設定され、変動しない。アミノ酸配列比較にALIGN-2が用いられる状況では、所与のアミノ酸配列Aの、所与のアミノ酸配列Bへの、またはそれとの、またはそれに対する%アミノ酸配列同一性(あるいは、所与のアミノ酸配列Bへの、またはそれとの、またはそれに対する、ある%アミノ酸配列同一性を有するまたは含む所与のアミノ酸配列A、ということもできる)は、次のように計算される:分率X/Yの100倍。ここで、Xは配列アラインメントプログラムALIGN-2によって、当該プログラムのAおよびBのアラインメントにおいて同一である一致としてスコアされたアミノ酸残基の数であり、YはB中のアミノ酸残基の全数である。アミノ酸配列Aの長さがアミノ酸配列Bの長さと等しくない場合、AのBへの%アミノ酸配列同一性は、BのAへの%アミノ酸配列同一性と等しくないことが、理解されるであろう。別段特に明示しない限り、本明細書で用いられるすべての%アミノ酸配列同一性値は、直前の段落で述べたとおりALIGN-2コンピュータプログラムを用いて得られるものである。
Percent (%) Amino Acid Sequence Identity "Percent (%) Amino Acid Sequence Identity" to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical to amino acid residues in the reference polypeptide sequence after aligning the sequences to obtain the maximum percent sequence identity and introducing gaps, if necessary, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be accomplished by a variety of methods within the skill of the art, for example, using publicly available computer software such as BLAST, BLAST-2, ALIGN, or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms necessary to achieve maximum alignment over the entire length of the sequences being compared. However, for purposes herein, percent amino acid sequence identity values are generated using ALIGN-2, a sequence comparison computer program. The ALIGN-2 sequence comparison computer program is the copyright of Genentech, Inc., and its source code has been submitted with user documentation to the US Copyright Office, Washington DC, 20559, where it is registered under US Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available from Genentech, Inc., South San Francisco, California, or may be compiled from the source code. The ALIGN-2 program is compiled for use on UNIX operating systems, including Digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary. In the context of using ALIGN-2 for amino acid sequence comparison, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (alternatively, it can be said that a given amino acid sequence A has or contains a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y. where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in its alignment of A and B, and Y is the total number of amino acid residues in B. It will be understood that if the length of amino acid sequence A is not equal to the length of amino acid sequence B, then the % amino acid sequence identity of A to B will not be equal to the % amino acid sequence identity of B to A. Unless otherwise specified, all % amino acid sequence identity values used herein are obtained using the ALIGN-2 computer program as described in the immediately preceding paragraph.

組換えの方法および構成
例えば、米国特許第4,816,567号に記載されるとおり、抗体および抗原結合分子は組換えの方法や構成を用いて製造することができる。1つの態様において、本明細書に記載の抗体をコードする、単離された核酸が提供される。そのような核酸は、抗体のVLを含むアミノ酸配列および/またはVHを含むアミノ酸配列(例えば、抗体の軽鎖および/または重鎖)をコードしてもよい。さらなる態様において、このような核酸を含む1つまたは複数のベクター(例えば、発現ベクター)が提供される。さらなる態様において、このような核酸を含む宿主細胞が提供される。このような態様の1つでは、宿主細胞は、(1)抗体のVLを含むアミノ酸配列および抗体のVHを含むアミノ酸配列をコードする核酸を含むベクター、または、(2)抗体のVLを含むアミノ酸配列をコードする核酸を含む第1のベクターと抗体のVHを含むアミノ酸配列をコードする核酸を含む第2のベクターを含む(例えば、形質転換されている)。1つの態様において、宿主細胞は、真核性である(例えば、チャイニーズハムスター卵巣 (CHO) 細胞)またはリンパ系の細胞(例えば、Y0、NS0、Sp2/0細胞))。1つの態様において、抗体の発現に好適な条件下で、上述のとおり当該抗体をコードする核酸を含む宿主細胞を培養すること、および任意で、当該抗体を宿主細胞(または宿主細胞培養培地)から回収することを含む、本開示の多重特異性抗原結合分子を作製する方法が提供される。
Recombinant methods and constructs Antibodies and antigen-binding molecules can be produced using recombinant methods and constructs, for example, as described in U.S. Pat. No. 4,816,567. In one embodiment, an isolated nucleic acid is provided that encodes an antibody described herein. Such a nucleic acid may encode an amino acid sequence comprising the VL and/or an amino acid sequence comprising the VH of the antibody (e.g., the light and/or heavy chains of the antibody). In a further embodiment, one or more vectors (e.g., expression vectors) comprising such a nucleic acid are provided. In a further embodiment, a host cell comprising such a nucleic acid is provided. In one such embodiment, the host cell comprises (e.g., is transformed with) (1) a vector comprising a nucleic acid encoding an amino acid sequence comprising the VL of the antibody and an amino acid sequence comprising the VH of the antibody, or (2) a first vector comprising a nucleic acid encoding an amino acid sequence comprising the VL of the antibody and a second vector comprising a nucleic acid encoding an amino acid sequence comprising the VH of the antibody. In one embodiment, the host cell is eukaryotic (e.g., a Chinese hamster ovary (CHO) cell) or a lymphoid cell (e.g., a Y0, NS0, Sp2/0 cell)). In one embodiment, there is provided a method of making a multispecific antigen-binding molecule of the disclosure, comprising culturing a host cell comprising nucleic acid encoding said antibody as described above under conditions suitable for expression of said antibody, and optionally recovering said antibody from the host cell (or host cell culture medium).

本明細書において記載される抗体の組換え製造のために、(例えば、上述したものなどの)抗体をコードする核酸を単離し、さらなるクローニングおよび/または宿主細胞中での発現のために、1つまたは複数のベクターに挿入する。そのような核酸は、従来の手順を用いて容易に単離および配列決定されるだろう(例えば、抗体の重鎖および軽鎖をコードする遺伝子に特異的に結合することができるオリゴヌクレオチドプローブを用いることで)。 For recombinant production of the antibodies described herein, nucleic acid encoding the antibody (e.g., such as those described above) is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell. Such nucleic acid may be readily isolated and sequenced using conventional procedures (e.g., using oligonucleotide probes capable of specifically binding to genes encoding the antibody heavy and light chains).

抗体をコードするベクターのクローニングまたは発現に好適な宿主細胞は、本明細書に記載の原核細胞または真核細胞を含む。例えば、抗体は、特にグリコシル化およびFcエフェクター機能が必要とされない場合は、細菌で製造してもよい。細菌での抗体断片およびポリペプチドの発現に関して、例えば、米国特許第5,648,237号、第5,789,199号、および第5,840,523号を参照のこと。(加えて、大腸菌 (E. coli) における抗体断片の発現について記載したCharlton, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ, 2003), pp.245-254も参照のこと。)発現後、抗体は細菌細胞ペーストから可溶性フラクション中に単離されてもよく、またさらに精製することができる。 Suitable host cells for cloning or expressing antibody-encoding vectors include prokaryotic or eukaryotic cells as described herein. For example, antibodies may be produced in bacteria, particularly if glycosylation and Fc effector functions are not required. See, e.g., U.S. Patent Nos. 5,648,237, 5,789,199, and 5,840,523 for expression of antibody fragments and polypeptides in bacteria. (See also Charlton, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ, 2003), pp. 245-254, which describes the expression of antibody fragments in E. coli.) After expression, the antibody may be isolated in a soluble fraction from the bacterial cell paste and may be further purified.

原核生物に加え、部分的なまたは完全なヒトのグリコシル化パターンを伴う抗体の産生をもたらす、グリコシル化経路が「ヒト化」されている菌類および酵母の株を含む、糸状菌または酵母などの真核性の微生物は、抗体コードベクターの好適なクローニングまたは発現宿主である。Gerngross, Nat. Biotech. 22:1409-1414 (2004)および Li et al., Nat. Biotech. 24:210-215 (2006) を参照のこと。 In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast, including fungal and yeast strains in which the glycosylation pathway has been "humanized," resulting in the production of antibodies with partial or fully human glycosylation patterns, are suitable cloning or expression hosts for antibody-encoding vectors. See Gerngross, Nat. Biotech. 22:1409-1414 (2004) and Li et al., Nat. Biotech. 24:210-215 (2006).

多細胞生物(無脊椎生物および脊椎生物)に由来するものもまた、グリコシル化された抗体の発現のために好適な宿主細胞である。無脊椎生物細胞の例は、植物および昆虫細胞を含む。昆虫細胞との接合、特にSpodoptera frugiperda細胞の形質転換に用いられる、数多くのバキュロウイルス株が同定されている。 Host cells derived from multicellular organisms (invertebrate and vertebrate) are also suitable for expression of glycosylated antibodies. Examples of invertebrate cells include plant and insect cells. Numerous baculovirus strains have been identified for conjugation with insect cells, particularly for transformation of Spodoptera frugiperda cells.

植物細胞培養物も、宿主として利用することができる。例えば、米国特許第5,959,177号、第6,040,498号、第6,420,548号、第7,125,978号、および第6,417,429号(トランスジェニック植物で抗体を産生するための、PLANTIBODIES(商標)技術を記載)を参照のこと。 Plant cell cultures can also be used as hosts. See, e.g., U.S. Patent Nos. 5,959,177, 6,040,498, 6,420,548, 7,125,978, and 6,417,429 (describing PLANTIBODIES™ technology for producing antibodies in transgenic plants).

脊椎動物細胞もまた宿主として使用できる。例えば、浮遊状態で増殖するように適応された哺乳動物細胞株は、有用であろう。有用な哺乳動物宿主細胞株の他の例は、SV40で形質転換されたサル腎CV1株 (COS-7);ヒト胎児性腎株(Graham et al., J. Gen Virol. 36:59 (1977) などに記載の293または293細胞);仔ハムスター腎細胞 (BHK);マウスセルトリ細胞(Mather, Biol. Reprod. 23:243-251 (1980) などに記載のTM4細胞);サル腎細胞 (CV1);アフリカミドリザル腎細胞 (VERO-76);ヒト子宮頸部がん細胞 (HELA);イヌ腎細胞 (MDCK);Buffalo系ラット肝細胞 (BRL 3A);ヒト肺細胞 (W138);ヒト肝細胞 (Hep G2);マウス乳がん (MMT 060562);TRI細胞(例えば、Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982) に記載);MRC5細胞;および、FS4細胞などである。他の有用な哺乳動物宿主細胞株は、DHFR- CHO細胞 (Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)) を含むチャイニーズハムスター卵巣 (CHO) 細胞;およびY0、NS0、およびSp2/0などの骨髄腫細胞株を含む。抗体産生に好適な特定の哺乳動物宿主細胞株の総説として、例えば、Yazaki and Wu, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ), pp. 255-268 (2003) を参照のこと。 Vertebrate cells can also be used as hosts. For example, mammalian cell lines that have been adapted to grow in suspension may be useful. Other examples of useful mammalian host cell lines include SV40 transformed monkey kidney CV1 line (COS-7); human embryonic kidney line (293 or 293 cells, e.g., as described in Graham et al., J. Gen Virol. 36:59 (1977)); baby hamster kidney cells (BHK); mouse Sertoli cells (TM4 cells, e.g., as described in Mather, Biol. Reprod. 23:243-251 (1980)); monkey kidney cells (CV1); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK); Buffalo rat hepatocytes (BRL 3A); human lung cells (W138); human hepatocytes (Hep G2); mouse mammary carcinoma (MMT 060562); TRI cells (see, e.g., Mather et al., Annals NY Acad. Sci. 383:44-68 (1982); MRC5 cells; and FS4 cells. Other useful mammalian host cell lines include Chinese hamster ovary (CHO) cells, including DHFR - CHO cells (Urlaub et al., Proc. Natl. Acad. Sci. USA 77:4216 (1980)); and myeloma cell lines such as Y0, NS0, and Sp2/0. For a review of certain mammalian host cell lines suitable for antibody production, see, e.g., Yazaki and Wu, Methods in Molecular Biology, Vol. 248 (BKC Lo, ed., Humana Press, Totowa, NJ), pp. 255-268 (2003).

本明細書において記載される抗原結合分子の組換え産生は、抗原結合分子全体または抗原結合分子の一部を含むアミノ酸配列をコードする核酸を含む1つまたは複数のベクターを含む(例えば、それによって形質転換されている)宿主細胞を用いることによって、上記に記載されたものと同様の方法で行うことができる。 Recombinant production of the antigen-binding molecules described herein can be performed in a manner similar to that described above, by using a host cell that contains (e.g., is transformed by) one or more vectors that contain a nucleic acid encoding an amino acid sequence that includes the entire antigen-binding molecule or a portion of the antigen-binding molecule.

抗原結合分子および多重特異性抗原結合分子
本明細書で用いられる用語「抗原結合分子」は、抗原結合部位を含む任意の分子、または抗原に対する結合活性を有する任意の分子を指し、約5アミノ酸以上の長さを有するペプチドまたはタンパク質などの分子をさらに指し得る。ペプチドおよびタンパク質は、生物に由来するものに限定されず、例えば、それらは、人工的に設計された配列から産生されたポリペプチドであってもよい。それらは、天然ポリペプチド、合成ポリペプチド、組換えポリペプチド等のいずれかであってもよい。スキャフォールドとしてα/βバレルなどの公知の安定な立体構造を含み、分子の一部が抗原結合部位になる、スキャフォールド分子もまた、本明細書において記載される抗原結合分子の一態様である。
Antigen-binding molecules and multispecific antigen-binding molecules The term "antigen-binding molecule" as used herein refers to any molecule that contains an antigen-binding site or has binding activity to an antigen, and may further refer to molecules such as peptides or proteins having a length of about 5 amino acids or more. Peptides and proteins are not limited to those derived from organisms, for example, they may be polypeptides produced from artificially designed sequences. They may be either natural polypeptides, synthetic polypeptides, recombinant polypeptides, etc. Scaffold molecules that contain a known stable conformation such as an α/β barrel as a scaffold, and a part of the molecule becomes an antigen-binding site, are also an embodiment of the antigen-binding molecules described herein.

「多重特異性抗原結合分子」は、2つ以上の抗原に特異的に結合する抗原結合分子を指す。「多重特異性抗原結合分子」は、2つ以上の抗原に特異的に結合する抗体および抗体断片を含む。用語「二重特異性」は、抗原結合分子が、少なくとも2種類の異なる抗原決定基に特異的に結合することができることを意味する。用語「三重特異性」は、抗原結合分子が少なくとも3種類の異なる抗原決定基に特異的に結合することができることを意味する。 "Multispecific antigen-binding molecule" refers to an antigen-binding molecule that specifically binds to two or more antigens. "Multispecific antigen-binding molecule" includes antibodies and antibody fragments that specifically bind to two or more antigens. The term "bispecific" means that an antigen-binding molecule can specifically bind to at least two different antigenic determinants. The term "trispecific" means that an antigen-binding molecule can specifically bind to at least three different antigenic determinants.

特定の態様において、本開示の多重特異性抗原結合分子は、三重特異性抗原結合分子、すなわち、3種類の異なる抗原に特異的に結合することができる、つまり、CD3およびCD137に結合することができるが、両方の抗原に同時には結合せず、かつCLDN6に特異的に結合することができる、三重特異性抗原結合分子である。 In certain embodiments, the multispecific antigen-binding molecules of the present disclosure are trispecific antigen-binding molecules, i.e., trispecific antigen-binding molecules that can specifically bind to three different antigens, i.e., that can bind to CD3 and CD137, but not both antigens simultaneously, and that can specifically bind to CLDN6.

1つの局面において、本開示は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分;ならびに
(ii)クローディン6(CLDN6)、好ましくはヒトCLDN6に結合することができる第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む、抗がん剤を提供する。
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
The present invention provides an anti-cancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising: (i) a first antigen-binding moiety capable of binding to both CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), preferably human CLDN6.

1つの局面において、本開示は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分;および
(ii)クローディン6(CLDN6)、好ましくはヒトCLDN6に結合することができる第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む、少なくとも1つの他の抗がん剤と併用するための医薬組成物を提供する。
また、1つの局面において、本開示は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分;および
(ii)クローディン6(CLDN6)、好ましくはヒトCLDN6に結合することができる第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む、少なくとも1つのTGFβ誘導剤と併用するための医薬組成物を提供する。
また、1つの局面において、本開示は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分;および
(ii)クローディン6(CLDN6)、好ましくはヒトCLDN6に結合することができる第2の抗原結合部分
を含む、多重特異性抗原結合分子を有効成分として含む、少なくとも1つのCLDN6発現誘導剤と併用するための医薬組成物を提供する。
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
The present invention provides a pharmaceutical composition for use in combination with at least one other anti-cancer agent, comprising as an active ingredient a multispecific antigen-binding molecule comprising: (i) a first antigen-binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), preferably human CLDN6.
In one aspect, the present disclosure also provides a method for producing a cellular membrane comprising:
The present invention provides a pharmaceutical composition for use in combination with at least one TGFβ inducer, comprising as an active ingredient a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), preferably human CLDN6.
In one aspect, the present disclosure also provides a method for producing a cellular membrane comprising:
The present invention provides a pharmaceutical composition for use in combination with at least one CLDN6 expression inducer, comprising as an active ingredient a multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), preferably human CLDN6.

1つの局面において、本開示は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含み、かつ前記第1の抗原結合部分がCD3にのみ結合することができる抗原結合部分である場合と比較して細胞傷害活性が高い、多重特異性抗原結合分子
を有効成分として含む、抗がん剤を提供する。
また、1つの局面において、本開示は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含み、かつ前記第1の抗原結合部分がCD3にのみ結合することができる抗原結合部分である場合と比較して毒性が低い、多重特異性抗原結合分子
を有効成分として含む、抗がん剤を提供する。
また、1つの局面において、本開示は、
(1)T細胞受容体複合体に結合することができる第1の抗原結合部分、および(2)CLDN6に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子であって、配列番号:194のアミノ酸配列を含む重鎖および配列番号:192のアミノ酸配列を含む軽鎖を含むT細胞受容体複合体に結合することができる抗原結合部分ならびに配列番号:193のアミノ酸配列を含重鎖および配列番号:195のアミノ酸配列を含む軽鎖を含むCLDN6に結合することができる抗原結合部分を含む多重特異性抗体(CS3348)と比較して、T細胞傷害活性が同等またはそれ以上である、多重特異性抗原結合分子
を有効成分として含む、抗がん剤を提供する。
In one aspect, the present disclosure provides an anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to both CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), wherein the first antigen-binding moiety has higher cytotoxic activity than an antigen-binding moiety capable of binding only to CD3.
Furthermore, in one aspect, the present disclosure provides an anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to both CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), wherein the first antigen-binding moiety has lower toxicity compared to a case where the first antigen-binding moiety is an antigen-binding moiety capable of binding only to CD3.
In one aspect, the present disclosure also provides a method for producing a cellular membrane comprising:
The present invention provides an anticancer agent comprising, as an active ingredient, a multispecific antigen-binding molecule comprising (1) a first antigen-binding portion capable of binding to a T cell receptor complex, and (2) a second antigen-binding portion capable of binding to CLDN6, the multispecific antigen-binding molecule having equivalent or greater T cell toxic activity than a multispecific antibody (CS3348) comprising an antigen-binding portion capable of binding to a T cell receptor complex, the antigen-binding portion comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 194 and a light chain comprising the amino acid sequence of SEQ ID NO: 192, and an antigen-binding portion capable of binding to CLDN6, the antigen-binding portion comprising a heavy chain comprising the amino acid sequence of SEQ ID NO: 193 and a light chain comprising the amino acid sequence of SEQ ID NO: 195.

1つの局面において、本開示は、少なくとも1つの他の抗がん剤を有効成分として含む医薬組成物であって、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、と併用するための医薬組成物を提供する。 In one aspect, the present disclosure provides a pharmaceutical composition comprising at least one other anticancer agent as an active ingredient for use in combination with a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6).

1つの局面において、本開示は、
以下の多重特異性抗原結合分子、および、少なくとも1つの他の抗がん剤を組み合わせてなる、がんを治療または予防するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子
を提供する。
また、1つの局面において、本開示は、
以下の多重特異性抗原結合分子、および、少なくとも1つのTGFβを誘導する治療法を組み合わせてなる、がんを治療または予防するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子
を提供する。
また、1つの局面において、本開示は、
以下の多重特異性抗原結合分子、および、少なくとも1つのCLDN6発現誘導剤を組み合わせてなる、がんを治療または予防するための医薬組成物:
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子
を提供する。
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
A pharmaceutical composition for treating or preventing cancer, comprising a combination of the following multispecific antigen-binding molecule and at least one other anticancer agent:
Provided is a multispecific antigen-binding molecule comprising: (i) a first antigen-binding moiety capable of binding to CD3 and CD137, the first antigen-binding moiety binding to either CD3 or CD137; and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6).
In one aspect, the present disclosure also provides a method for producing a cellular membrane comprising:
A pharmaceutical composition for treating or preventing cancer, comprising in combination a multispecific antigen-binding molecule and at least one TGFβ-inducing therapy:
Provided is a multispecific antigen-binding molecule comprising: (i) a first antigen-binding moiety capable of binding to CD3 and CD137, the first antigen-binding moiety binding to either CD3 or CD137; and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6).
In one aspect, the present disclosure also provides a method for producing a cellular membrane comprising:
A pharmaceutical composition for treating or preventing cancer, comprising a combination of the following multispecific antigen-binding molecule and at least one CLDN6 expression inducer:
Provided is a multispecific antigen-binding molecule comprising: (i) a first antigen-binding moiety capable of binding to CD3 and CD137, the first antigen-binding moiety binding to either CD3 or CD137; and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6).

1つの局面において、本開示は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子と、少なくとも1つの他の抗がん剤との組み合わせを提供する。
また、1つの局面において、本開示は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子と、少なくとも1つのTGFβ誘導剤との組み合わせを提供する。
また、1つの局面において、本開示は、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子と、少なくとも1つのCLDN6発現誘導剤との組み合わせを提供する。
In one aspect, the present disclosure provides a combination of a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), and at least one other anti-cancer agent.
Also, in one aspect, the present disclosure provides a combination of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), and at least one TGFβ inducer.
Also, in one aspect, the present disclosure provides a combination of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), and at least one CLDN6 expression inducer.

1つの局面において、本開示は、有効量の、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、および有効量の少なくとも1つの他の抗がん剤を投与することを含む、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の少なくとも1つの他の抗がん剤を投与することを含む、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子と併用して、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の少なくとも1つの他の抗がん剤を投与することを含む、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子を投与することを含む、少なくとも1つの他の抗がん剤による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法を提供する。
In one aspect, the present disclosure provides a method of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering an effective amount of a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), and an effective amount of at least one other anti-cancer agent.
Also, in one aspect, the present disclosure provides a method of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering to the individual an effective amount of at least one other anti-cancer agent in combination with a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6).
Also, in one aspect, the present disclosure provides a method for enhancing the effect of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating immune response, treating cancer, or preventing cancer in an individual by a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), comprising administering to the individual an effective amount of at least one other anti-cancer agent.
Also, in one aspect, the present disclosure provides a method for enhancing the effect of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating immune response, treating cancer, or preventing cancer in an individual by at least one other anti-cancer agent, comprising administering to the individual an effective amount of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6).

また、1つの局面において、本開示は、有効量の、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、および有効量の少なくとも1つのTGFβ誘導剤を投与することを含む、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の少なくとも1つのTGFβ誘導剤を投与することを含む、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子と併用して、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の少なくとも1つのTGFβ誘導剤を投与することを含む、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法を提供する。
Also, in one aspect, the present disclosure provides a method of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering an effective amount of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), and an effective amount of at least one TGFβ inducer.
Also, in one aspect, the present disclosure provides a method of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating or preventing cancer in an individual comprising administering to the individual an effective amount of at least one TGFβ inducer in combination with a multispecific antigen binding molecule comprising (i) a first antigen binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen binding moiety capable of binding to claudin 6 (CLDN6).
Also, in one aspect, the present disclosure provides a method for enhancing the effect of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating immune response, treating cancer, or preventing cancer in an individual by a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), comprising administering to the individual an effective amount of at least one TGFβ inducer.

また、1つの局面において、本開示は、有効量の、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、および有効量の少なくとも1つのCLDN6発現誘導剤を投与することを含む、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の少なくとも1つのCLDN6発現誘導剤を投与することを含む、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子と併用して、個体における、細胞傷害を誘導する、細胞増殖を抑制する、細胞増殖を阻害する、免疫応答を活性化する、がんを治療する、またはがんを予防する方法を提供する。
また、1つの局面において、本開示は、個体に、有効量の少なくとも1つのCLDN6発現誘導剤を投与することを含む、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子による、個体における、細胞傷害誘導、細胞増殖抑制、細胞増殖阻害、免疫応答活性化、がんの治療、またはがんの予防の効果を増強させる方法を提供する。
Also, in one aspect, the present disclosure provides a method for inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering an effective amount of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), and an effective amount of at least one CLDN6 expression inducer.
Also, in one aspect, the present disclosure provides a method for inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating an immune response, treating cancer, or preventing cancer in an individual, comprising administering to the individual an effective amount of at least one CLDN6 expression inducer in combination with a multispecific antigen binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137 and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6).
Also, in one aspect, the present disclosure provides a method for enhancing the effect of inducing cytotoxicity, suppressing cell proliferation, inhibiting cell proliferation, activating immune response, treating cancer, or preventing cancer in an individual by a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), comprising administering to the individual an effective amount of at least one CLDN6 expression inducer.

1つの局面において、本開示は、がん細胞を、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、ならびに少なくとも1つの他の抗がん剤と接触させることにより、がん細胞もしくはがん細胞を含む腫瘍組織に傷害を引き起こす方法、または、がん細胞もしくはがん細胞を含む腫瘍組織の増殖を抑制する方法を提供する。
1つの局面において、本開示は、がん細胞を、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分を含む多重特異性抗原結合分子、ならびに少なくとも1つの他の抗がん剤と接触させることにより、該多重特異性抗原結合分子および少なくとも1つの他の抗がん剤が、がん細胞もしくはがん細胞を含む腫瘍組織に傷害を引き起こし、または、がん細胞もしくはがん細胞を含む腫瘍組織の増殖を抑制するかを確認する方法を提供する。
In one aspect, the present disclosure provides a method of causing damage to a cancer cell or a tumor tissue comprising a cancer cell, or a method of inhibiting the growth of a cancer cell or a tumor tissue comprising a cancer cell, by contacting the cancer cell with a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), and at least one other anti-cancer agent.
In one aspect, the present disclosure provides a method for determining whether a multispecific antigen-binding molecule and at least one other anti-cancer agent cause damage to or inhibit the growth of cancer cells or tumor tissue comprising cancer cells, by contacting cancer cells with (i) a multispecific antigen-binding molecule comprising a first antigen-binding moiety capable of binding to CD3 and CD137 and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety capable of binding to claudin 6 (CLDN6), and at least one other anti-cancer agent.

1つの局面において、本開示は、
(A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記多重特異性抗原結合分子と少なくとも一種の少なくとも1つの他の抗がん剤を組み合わせて個体に投与することを示す指示書またはラベル
を含むキットを提供する。
1つの局面において、本開示は、
(A)少なくとも1つの他の抗がん剤、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記少なくとも1つの他の抗がん剤と、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物とを組み合わせて個体に投与することを示す指示書またはラベル
を含むキットを提供する。
1つの局面において、本開示は、
(A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、および
(C)少なくとも1つの他の抗がん剤
を含むキットを提供する。
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
(A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity for claudin 6 (CLDN6);
(B) Containers, and
(C) A kit comprising instructions or a label for administering the multispecific antigen-binding molecule in combination with at least one other anti-cancer agent to an individual to treat or prevent cancer in the individual.
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
(A) at least one other anticancer agent;
(B) Containers, and
(C) A kit comprising instructions or a label indicating that the at least one other anti-cancer agent is administered in combination with a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion capable of binding to either CD3 or CD137, and a second antigen-binding portion having binding activity to claudin 6 (CLDN6) to treat or prevent cancer in an individual.
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
(A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity for claudin 6 (CLDN6);
(B) a container; and
(C) providing a kit that includes at least one other anticancer agent.

また1つの局面において、本開示は、
(A)少なくとも1つのTGFβ誘導剤、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記少なくとも1つの他の抗がん剤と、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物とを組み合わせて個体に投与することを示す指示書またはラベル
を含むキットを提供する。
1つの局面において、本開示は、
(A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、および
(C)少なくとも1つのTGFβ誘導剤
を含むキットを提供する。
In another aspect, the present disclosure provides a method for producing a liquid crystal display comprising:
(A) at least one TGFβ inducer;
(B) Containers, and
(C) A kit comprising instructions or a label indicating that the at least one other anti-cancer agent is administered in combination with a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion capable of binding to either CD3 or CD137, and a second antigen-binding portion having binding activity to claudin 6 (CLDN6) to treat or prevent cancer in an individual.
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
(A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity for claudin 6 (CLDN6);
(B) a container; and
(C) A kit is provided that includes at least one TGFβ inducer.

また1つの局面において、本開示は、
(A)少なくとも1つのCLDN6発現誘導剤、
(B)容器、ならびに
(C)個体におけるがんを治療または予防するために、前記少なくとも1つの他の抗がん剤と、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物とを組み合わせて個体に投与することを示す指示書またはラベル
を含むキットを提供する。
1つの局面において、本開示は、
(A) CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびにクローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を含む医薬組成物、
(B)容器、および
(C)少なくとも1つのCLDN6発現誘導剤
を含むキットを提供する。
In another aspect, the present disclosure provides a method for producing a liquid crystal display comprising:
(A) at least one CLDN6 expression inducer;
(B) Containers, and
(C) A kit comprising instructions or a label indicating that the at least one other anti-cancer agent is administered in combination with a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion capable of binding to either CD3 or CD137, and a second antigen-binding portion having binding activity to claudin 6 (CLDN6) to treat or prevent cancer in an individual.
In one aspect, the present disclosure provides a method for producing a cellular membrane comprising:
(A) a pharmaceutical composition comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137, the multispecific antigen-binding molecule comprising a first antigen-binding portion that binds to either CD3 or CD137, and a second antigen-binding portion that has binding activity for claudin 6 (CLDN6);
(B) a container; and
(C) A kit is provided that includes at least one CLDN6 expression inducer.

1つの局面において、本開示は、がんの治療における使用のための、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子を提供する。
また、1つの局面において、本開示は、がんの治療における使用のための、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む、多重特異性抗原結合分子と、他の抗がん剤、TGFβ誘導剤、及びCLDN6発現誘導剤から成る群から選択される少なくとも1つの剤との組み合わせを提供する。
In one aspect, the present disclosure provides a method for the treatment of cancer comprising:
Provided is a multispecific antigen-binding molecule that includes (i) a first antigen-binding portion capable of binding to CD3 and CD137, and that binds to either CD3 or CD137, and (ii) a second antigen-binding portion that has binding activity for claudin 6 (CLDN6).
Also, in one aspect, the present disclosure provides a combination of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding portion having binding activity to claudin 6 (CLDN6), and at least one agent selected from the group consisting of other anti-cancer agents, TGFβ inducers, and CLDN6 expression inducers, for use in treating cancer.

1つの局面において、本開示は、がんを治療するための医薬の製造における、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子の使用を提供する。
また、1つの局面において、本開示は、がんを治療するための医薬の製造における、(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分、ならびに(ii)クローディン6(CLDN6)に対する結合活性を有する第2の抗原結合部分を含む多重特異性抗原結合分子と、他の抗がん剤、TGFβ誘導剤、及びCLDN6発現誘導剤から成る群から選択される少なくとも1つの剤の組み合わせの使用を提供する。
In one aspect, the present disclosure provides the use of a multispecific antigen-binding molecule comprising (i) a first antigen-binding moiety capable of binding to CD3 and CD137, and which binds to either CD3 or CD137, and (ii) a second antigen-binding moiety having binding activity for claudin 6 (CLDN6), in the manufacture of a medicament for treating cancer.
Also, in one aspect, the present disclosure provides use of a combination of a multispecific antigen-binding molecule comprising (i) a first antigen-binding portion capable of binding to CD3 and CD137 and binding to either CD3 or CD137, and (ii) a second antigen-binding portion having binding activity to claudin 6 (CLDN6), and at least one agent selected from the group consisting of other anti-cancer agents, TGFβ inducers, and CLDN6 expression inducers, in the manufacture of a medicament for treating cancer.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメイン
をさらに含んでもよい。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
(iii) may further comprise an Fc domain that exhibits reduced binding affinity to human Fcγ receptors compared to a native human IgG1 Fc domain.

本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子の構成成分は、種々の構成において相互に融合させることができる。例示的な構成を図4に図示する。特定の態様において、多重特異性抗原結合分子は、安定に会合することができる第1のFc領域サブユニットおよび第2のFc領域サブユニットで構成されるFcドメインを含む。 The components of the multispecific antigen-binding molecules included in the anti-cancer agents, pharmaceutical compositions, combinations, kits, or used in the methods or uses of the present disclosure can be fused to each other in various configurations. Exemplary configurations are illustrated in FIG. 4. In certain embodiments, the multispecific antigen-binding molecules comprise an Fc domain comprised of a first Fc region subunit and a second Fc region subunit capable of stably associating.

上記態様のいずれかによれば、多重特異性抗原結合分子の構成成分(例えば、抗原結合部分、Fcドメイン)は、直接的に、または種々のリンカー、特に、本明細書において記載されているかまたは当技術分野において公知である1つもしくは複数のアミノ酸、典型的には約2~20個のアミノ酸を含むペプチドリンカーを通じて、融合させてもよい。適切な非免疫原性ペプチドリンカーには、例えば、(G4S)n、(SG4)n、(G4S)n、またはG4(SG4)nペプチドリンカーが含まれ、ここで、nは概して1~10、典型的には2~4の数である。 According to any of the above embodiments, the components of the multispecific antigen-binding molecule (e.g., antigen-binding portion, Fc domain) may be fused directly or through various linkers, particularly peptide linkers comprising one or more amino acids, typically about 2-20 amino acids, as described herein or known in the art. Suitable non-immunogenic peptide linkers include, for example, (G4S)n, (SG4)n, (G4S)n, or G4(SG4)n peptide linkers, where n is generally a number between 1 and 10, typically between 2 and 4.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分
を含む、多重特異性抗原結合分子であって、
第1の抗原結合部分の第1の抗体可変領域が第1の重鎖定常領域に融合されており、第1の抗原結合部分の第2の抗体可変領域が第1の軽鎖定常領域に融合されており、第2の抗原結合部分の第3の抗体可変領域が第2の重鎖定常領域に融合されており、第2の抗原結合部分の第4の抗体可変領域が第2の軽鎖定常領域に融合されている、多重特異性抗原結合分子であることができる。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, the first antigen-binding portion binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6),
It can be a multispecific antigen-binding molecule in which a first antibody variable region of a first antigen-binding moiety is fused to a first heavy chain constant region, a second antibody variable region of the first antigen-binding moiety is fused to a first light chain constant region, a third antibody variable region of the second antigen-binding moiety is fused to a second heavy chain constant region, and a fourth antibody variable region of the second antigen-binding moiety is fused to a second light chain constant region.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(i)CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、第1の抗原結合部分;および
(ii)クローディン6(CLDN6)に結合することができる第2の抗原結合部分
を含む、多重特異性抗原結合分子であって、第1の抗原結合部分の第1の抗体可変領域が第1の重鎖定常領域に融合されており、第1の抗原結合部分の第2の抗体可変領域が第1の軽鎖定常領域に融合されており、第2の抗原結合部分の第3の抗体可変領域が第2の重鎖定常領域に融合されており、第2の抗原結合部分の第4の抗体可変領域が第2の軽鎖定常領域に融合されており、該定常領域が、以下の(g1)~(g7):
(g1)配列番号:74のアミノ酸配列を含む第1の重鎖定常領域、配列番号:87のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:73のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:88のアミノ酸配列を含む第2の軽鎖定常領域;
(g2)配列番号:74のアミノ酸配列を含む第1の重鎖定常領域、配列番号:85のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:81のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:86のアミノ酸配列を含む第2の軽鎖定常領域;
(g3)配列番号:79のアミノ酸配列を含む第1の重鎖定常領域、配列番号:72のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:80のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:89のアミノ酸配列を含む第2の軽鎖定常領域;
(g4)配列番号:83のアミノ酸配列を含む第1の重鎖定常領域、配列番号:87のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:82のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:88のアミノ酸配列を含む第2の軽鎖定常領域;
(g5)配列番号:83のアミノ酸配列を含む第1の重鎖定常領域、配列番号:85のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:84のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:86のアミノ酸配列を含む第2の軽鎖定常領域;
(g6)配列番号:77のアミノ酸配列を含む第1の重鎖定常領域、配列番号:72のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:78のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:89のアミノ酸配列を含む第2の軽鎖定常領域;
(g7)配列番号:75のアミノ酸配列を含む第1の重鎖定常領域、配列番号:72のアミノ酸配列を含む第1の軽鎖定常領域、配列番号:76のアミノ酸配列を含む第2の重鎖定常領域、および配列番号:89のアミノ酸配列を含む第2の軽鎖定常領域
のいずれか1つである、多重特異性抗原結合分子であることができる。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
A multispecific antigen-binding molecule comprising: (i) a first antigen-binding portion capable of binding to CD3 and CD137, and binding to either CD3 or CD137; and (ii) a second antigen-binding portion capable of binding to claudin 6 (CLDN6), wherein a first antibody variable region of the first antigen-binding portion is fused to a first heavy chain constant region, a second antibody variable region of the first antigen-binding portion is fused to a first light chain constant region, a third antibody variable region of the second antigen-binding portion is fused to a second heavy chain constant region, and a fourth antibody variable region of the second antigen-binding portion is fused to a second light chain constant region, wherein the constant regions are selected from the group consisting of (g1) to (g7) below:
(g1) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 74, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 87, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 73, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 88;
(g2) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 74, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 85, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 81, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 86;
(g3) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 79, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 72, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 80, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 89;
(g4) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 83, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 87, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 82, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 88;
(g5) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 83, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 85, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 84, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 86;
(g6) a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 77, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 72, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 78, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 89;
(g7) A multispecific antigen-binding molecule comprising any one of a first heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 75, a first light chain constant region comprising the amino acid sequence of SEQ ID NO: 72, a second heavy chain constant region comprising the amino acid sequence of SEQ ID NO: 76, and a second light chain constant region comprising the amino acid sequence of SEQ ID NO: 89.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、4本のポリペプチド鎖を含む多重特異性抗原結合分子であって、該4本のポリペプチド鎖が、以下の(h01)~(h18):
(h01)配列番号:42のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h02)配列番号:41のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:54のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h03)配列番号:41のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:55のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h04)配列番号:42のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:57のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h05)配列番号:44のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:60のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h06)配列番号:44のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:61のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h07)配列番号:45のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:62のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h08)配列番号:45のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:63のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(h09)配列番号:46のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:64のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h10)配列番号:46のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:65のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(h11)配列番号:47のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:66のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h12)配列番号:47のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:67のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h13)配列番号:48のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h14)配列番号:48のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:57のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h15)配列番号:49のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:64のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h16)配列番号:49のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:65のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(h17)配列番号:43のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:58のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(h18)配列番号:43のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)、ならびに配列番号:59のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4)
のいずれか1つである、多重特異性抗原結合分子であることができる。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, or kit of the present disclosure, or used in the method or use of the present disclosure, is a multispecific antigen-binding molecule comprising four polypeptide chains, wherein the four polypeptide chains are selected from the group consisting of the following (h01) to (h18):
(h01) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 42 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h02) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 41 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 54 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h03) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 41 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 55 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h04) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 42 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 57 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h05) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 44 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 60 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h06) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 44 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 61 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h07) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 45 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 62 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h08) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 45 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 63 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(h09) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 46 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 64 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h10) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 46 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 65 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(h11) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 47 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 66 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h12) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 47 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 67 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h13) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 48 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h14) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 48 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 57 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h15) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 49 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 64 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h16) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 49 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 65 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(h17) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 43 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 58 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(h18) A heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 43 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52, and a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 59 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70.
The multispecific antigen-binding molecule may be any one of the following:

ピログルタミル化
抗体が細胞において発現した場合、抗体は翻訳後に修飾されることが知られている。翻訳後修飾の例としては、重鎖のC末端にあるリジンの、カルボキシペプチダーゼによる切断;重鎖および軽鎖のN末端にあるグルタミンまたはグルタミン酸の、ピログルタミル化によるピログルタミン酸への修飾;グリコシル化;酸化;脱アミド;および糖化が挙げられ、そのような翻訳後修飾は種々の抗体で生じることが公知である(Journal of Pharmaceutical Sciences, 2008, Vol. 97, p. 2426-2447)。
It is known that when pyroglutamylated antibody is expressed in cells, the antibody is modified after translation.Examples of post-translational modifications include cleavage of lysine at C-terminus of heavy chain by carboxypeptidase; modification of glutamine or glutamic acid at N-terminus of heavy chain and light chain to pyroglutamic acid by pyroglutamylation; glycosylation; oxidation; deamidation; and glycation, and such post-translational modifications are known to occur in various antibodies (Journal of Pharmaceutical Sciences, 2008, Vol. 97, p. 2426-2447).

本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子には、翻訳後修飾を受けている多重特異性抗体も含まれる。翻訳後修飾を受ける本開示のその多重特異性抗原結合分子の例としては、重鎖可変領域のN末端でのピログルタミル化および/または重鎖のC末端でのリジンの欠失を受けている多重特異性抗体が挙げられる。当分野において、N末端でのピログルタミル化およびC末端でのリジンの欠失によるそのような翻訳後修飾が、抗体の活性に何ら影響を有さないことは公知である(Analytical Biochemistry, 2006, Vol. 348, p. 24-39)。 The multispecific antigen-binding molecules contained in the anticancer agents, pharmaceutical compositions, combinations, kits, or used in the methods or uses of the present disclosure also include multispecific antibodies that have undergone post-translational modification. Examples of the multispecific antigen-binding molecules of the present disclosure that have undergone post-translational modification include multispecific antibodies that have undergone pyroglutamylation at the N-terminus of the heavy chain variable region and/or deletion of lysine at the C-terminus of the heavy chain. It is known in the art that such post-translational modifications by pyroglutamylation at the N-terminus and deletion of lysine at the C-terminus have no effect on the activity of the antibody (Analytical Biochemistry, 2006, Vol. 348, p. 24-39).

抗原結合部分
本明細書で用いられる用語「抗原結合部分」は、抗原に特異的に結合するポリペプチド分子を指す。1つの態様において、抗原結合部分は、それが結合している実体(例えば、第2の抗原結合部分)を、標的部位、例えばがん抗原(CLDN6)を発現する特定の種類の腫瘍細胞へと方向付けることができる。別の態様において、抗原結合部分は、その標的抗原、例えばT細胞受容体複合体抗原(CD3)または共刺激分子CD137を通じてシグナル伝達を活性化することができる。抗原結合部分には、本明細書においてさらに定義される抗体およびその断片が含まれる。具体的な抗原結合部分としては、抗体重鎖可変領域および抗体軽鎖可変領域を含む、抗体の抗原結合ドメインまたは抗体可変領域が挙げられる。特定の態様において、抗原結合部分は、本明細書においてさらに定義されかつ当技術分野において公知である抗体定常領域を含んでもよい。有用な重鎖定常領域には、5つのアイソタイプ:α、δ、ε、γ、またはμのいずれかが含まれる。有用な軽鎖定常領域には、2つのアイソタイプ:κおよびλのいずれかが含まれる。
Antigen-binding moiety The term "antigen-binding moiety" as used herein refers to a polypeptide molecule that specifically binds to an antigen. In one embodiment, an antigen-binding moiety can direct the entity to which it is bound (e.g., a second antigen-binding moiety) to a target site, such as a specific type of tumor cell expressing a cancer antigen (CLDN6). In another embodiment, an antigen-binding moiety can activate signaling through its target antigen, such as a T cell receptor complex antigen (CD3) or a costimulatory molecule CD137. Antigen-binding moieties include antibodies and fragments thereof as further defined herein. Specific antigen-binding moieties include the antigen-binding domain of an antibody or antibody variable region, including an antibody heavy chain variable region and an antibody light chain variable region. In certain embodiments, an antigen-binding moiety may include an antibody constant region as further defined herein and known in the art. Useful heavy chain constant regions include any of the five isotypes: alpha, delta, epsilon, gamma, or mu. Useful light chain constant regions include any of the two isotypes: kappa and lambda.

抗原結合部分等に関して、本明細書で用いられる用語「第1の」、「第2の」、「第3の」、および「第4の」は、2種類以上の種類別の部分等が存在する場合に区別するという利便性のために用いられる。これらの用語の使用は、別段明示しない限り、多重特異性抗原結合分子の特定の順序または向きを付与することを意図しない。 As used herein, the terms "first," "second," "third," and "fourth" in reference to antigen-binding moieties, etc., are used for convenience to distinguish when two or more types of moieties, etc. are present. The use of these terms is not intended to confer a particular order or orientation of the multispecific antigen-binding molecules, unless otherwise specified.

CD3およびCD137に結合することができる抗原結合部分
本明細書において記載される多重特異性抗原結合分子は、CD3およびCD137に結合することができる少なくとも1つの抗原結合部分(本明細書において「デュアル抗原結合部分」または「第1の抗原結合部分」または「Dual-Ig」または「Dual-Fab」とも称される)を含む。本明細書において記載される第1の抗原結合部分は、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する。すなわち、本明細書において記載される第1の抗原結合部分は、CD3に結合する。または、本明細書において記載される第1の抗原結合部分は、CD137に結合する。特定の態様において、多重特異性抗原結合分子は、CD3およびCD137に特異的に結合することができるが、CD3またはCD137のいずれかに結合する、2つ以下の抗原結合部分を含む。1つの態様において、多重特異性抗原結合分子は、CD3およびCD137に結合でき、CD3またはCD137のいずれかに結合する、一価の結合をもたらす。1つの態様において、第1の抗原結合部分は、CD3に対する結合活性を有し、CD137に対する結合活性を有するが、抗原に対して結合する際には、CD3またはCD137のいずれか一方に結合する。1つの態様において、第1の抗原結合部分は、CD3及びCD137に結合することができるが、CD3とCD137に同時には結合しない、抗原結合部分である。
Antigen-binding moiety capable of binding to CD3 and CD137 The multispecific antigen-binding molecule described herein comprises at least one antigen-binding moiety capable of binding to CD3 and CD137 (also referred to herein as "dual antigen-binding moiety" or "first antigen-binding moiety" or "Dual-Ig" or "Dual-Fab"). The first antigen-binding moiety described herein can bind to CD3 and CD137 and binds to either CD3 or CD137. That is, the first antigen-binding moiety described herein binds to CD3. Or, the first antigen-binding moiety described herein binds to CD137. In certain embodiments, the multispecific antigen-binding molecule comprises no more than two antigen-binding moieties capable of specifically binding to CD3 and CD137, but binds to either CD3 or CD137. In one embodiment, the multispecific antigen-binding molecule can bind to CD3 and CD137 and provides monovalent binding, binding to either CD3 or CD137. In one embodiment, the first antigen-binding moiety has binding activity for CD3 and has binding activity for CD137, but when binding to an antigen, it binds to either CD3 or CD137. In one embodiment, the first antigen-binding moiety is an antigen-binding moiety that can bind to CD3 and CD137, but does not bind to CD3 and CD137 simultaneously.

T細胞受容体複合体に結合することができる抗原結合部分
本明細書において記載される多重特異性抗原結合分子は、T細胞受容体複合体結合することができる少なくとも1つの抗原結合部分(本明細書において「第1の抗原結合部分」とも称される)を含む。本明細書において記載される第1の抗原結合部分は、T細胞受容体複合体に結合することができる。T細胞受容体複合体に結合することができる抗原結合部分とは、T細胞受容体複合体の一部または全部に特異的に結合し且つ相補的である領域を含んで成る抗T細胞受容体複合体抗体の部分をいう。T細胞受容体複合体は、T細胞受容体自身でもよいし、T細胞受容体とともにT細胞受容体複合体を構成するアダプター分子でもよい。アダプターとして好適なものはCD3である。
Antigen-binding moiety capable of binding to the T cell receptor complex The multispecific antigen-binding molecule described herein comprises at least one antigen-binding moiety capable of binding to the T cell receptor complex (also referred to herein as "first antigen-binding moiety"). The first antigen-binding moiety described herein is capable of binding to the T cell receptor complex. The antigen-binding moiety capable of binding to the T cell receptor complex refers to a portion of an anti-T cell receptor complex antibody comprising a region that specifically binds to and is complementary to a part or all of the T cell receptor complex. The T cell receptor complex may be the T cell receptor itself or an adapter molecule that constitutes the T cell receptor complex together with the T cell receptor. A suitable adapter is CD3.

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は概して、Fab分子、特に従来のFab分子である。特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、抗体軽鎖および重鎖可変領域(VLおよびVH)を含むドメインである。抗体軽鎖および重鎖可変領域を含むそのようなドメインの適切な例としては、「単鎖Fv(scFv)」、「単鎖抗体」、「Fv」、「単鎖Fv2(scFv2)」、「Fab」、「F(ab')2」等が挙げられる。 In certain embodiments, the dual antigen-binding portion ("first antigen-binding portion") is generally a Fab molecule, in particular a conventional Fab molecule. In certain embodiments, the dual antigen-binding portion ("first antigen-binding portion") is a domain comprising an antibody light chain and a heavy chain variable region (VL and VH). Suitable examples of such domains comprising an antibody light chain and a heavy chain variable region include "single chain Fv (scFv)", "single chain antibody", "Fv", "single chain Fv2 (scFv2)", "Fab", "F(ab')2", etc.

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、CD3の部分ペプチドの全体または一部に特異的に結合する。特定の態様において、CD3はヒトCD3またはカニクイザルCD3、特にヒトCD3である。特定の態様において、第1の抗原結合部分は、ヒトCD3およびカニクイザルCD3に対して交差反応性である(すなわち、それらに特異的に結合する)。いくつかの態様において、第1の抗原結合部分は、CD3のεサブユニット、特に、配列番号:170(NP_000724.1)(括弧内にRefSeq登録番号を示す)に示されるCD3のヒトCD3εサブユニットに特異的に結合することができる。いくつかの態様において、第1の抗原結合部分は、真核細胞の表面上に発現しているCD3ε鎖に特異的に結合することができる。いくつかの態様において、第1の抗原結合部分は、T細胞の表面上に発現しているCD3ε鎖に結合する。 In certain embodiments, the dual antigen-binding moiety ("first antigen-binding moiety") specifically binds to all or part of a partial peptide of CD3. In certain embodiments, the CD3 is human CD3 or cynomolgus CD3, particularly human CD3. In certain embodiments, the first antigen-binding moiety is cross-reactive with (i.e., specifically binds to) human CD3 and cynomolgus CD3. In some embodiments, the first antigen-binding moiety can specifically bind to the ε subunit of CD3, particularly the human CD3ε subunit of CD3 set forth in SEQ ID NO: 170 (NP_000724.1) (RefSeq accession number in parentheses). In some embodiments, the first antigen-binding moiety can specifically bind to the CD3ε chain expressed on the surface of a eukaryotic cell. In some embodiments, the first antigen-binding moiety binds to the CD3ε chain expressed on the surface of a T cell.

特定の態様において、CD137はヒトCD137である。いくつかの態様において、本開示の抗原結合分子の好適な例には、以下からなる群より選択される抗体によって結合されるヒトCD137エピトープと同じエピトープに結合する抗原結合分子が含まれる:
SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC配列(配列番号:182)を含む領域を認識する抗体、
DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC配列(配列番号:181)を含む領域を認識する抗体、
LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAEC配列(配列番号:183)を含む領域を認識する抗体、および
ヒトCD137タンパク質中のLQDPCSNCPAGTFCDNNRNQIC配列(配列番号:180)を含む領域を認識する抗体。
In certain embodiments, CD137 is human CD137. In some embodiments, suitable examples of antigen binding molecules of the present disclosure include antigen binding molecules that bind to the same epitope as the human CD137 epitope bound by an antibody selected from the group consisting of:
an antibody recognizing a region including the sequence SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC (SEQ ID NO: 182);
An antibody recognizing a region including the sequence DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC (SEQ ID NO: 181);
An antibody that recognizes a region including the sequence LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAEC (sequence number: 183), and an antibody that recognizes a region including the sequence LQDPCSNCPAGTFCDNNRNQIC (sequence number: 180) in human CD137 protein.

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、以下の抗体可変領域(a1)~(a4):
(a1)配列番号:9の相補性決定領域(CDR)1、配列番号:15のCDR 2、および配列番号:21のCDR 3を含む重鎖可変領域(第1の抗体可変領域)、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む軽鎖可変領域(第2の抗体可変領域);
(a2)配列番号:10の相補性決定領域(CDR)1、配列番号:16のCDR 2、および配列番号:22のCDR 3を含む重鎖可変領域(第1の抗体可変領域)、ならびに配列番号:31のCDR 1、配列番号:35のCDR 2、および配列番号:39のCDR 3を含む軽鎖可変領域(第2の抗体可変領域);
(a3)配列番号:11の相補性決定領域(CDR)1、配列番号:17のCDR 2、および配列番号:23のCDR 3を含む重鎖可変領域(第1の抗体可変領域)、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む軽鎖可変領域(第2の抗体可変領域);
(a4)配列番号:12の相補性決定領域(CDR)1、配列番号:18のCDR 2、および配列番号:24のCDR 3を含む重鎖可変領域(第1の抗体可変領域)、ならびに配列番号:32のCDR 1、配列番号:36のCDR 2、および配列番号:40のCDR 3を含む軽鎖可変領域(第2の抗体可変領域)
のいずれか1つを含む。
In certain embodiments, the dual antigen-binding moiety ("first antigen-binding moiety") comprises the following antibody variable regions (a1)-(a4):
(a1) a heavy chain variable region (first antibody variable region) comprising complementarity determining region (CDR) 1 of SEQ ID NO: 9, CDR 2 of SEQ ID NO: 15, and CDR 3 of SEQ ID NO: 21, and a light chain variable region (second antibody variable region) comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a2) a heavy chain variable region (first antibody variable region) comprising complementarity determining region (CDR) 1 of SEQ ID NO: 10, CDR 2 of SEQ ID NO: 16, and CDR 3 of SEQ ID NO: 22, and a light chain variable region (second antibody variable region) comprising CDR 1 of SEQ ID NO: 31, CDR 2 of SEQ ID NO: 35, and CDR 3 of SEQ ID NO: 39;
(a3) a heavy chain variable region (first antibody variable region) comprising complementarity determining region (CDR) 1 of SEQ ID NO: 11, CDR 2 of SEQ ID NO: 17, and CDR 3 of SEQ ID NO: 23, and a light chain variable region (second antibody variable region) comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40;
(a4) A heavy chain variable region (first antibody variable region) comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 12, a CDR 2 of SEQ ID NO: 18, and a CDR 3 of SEQ ID NO: 24, and a light chain variable region (second antibody variable region) comprising CDR 1 of SEQ ID NO: 32, CDR 2 of SEQ ID NO: 36, and CDR 3 of SEQ ID NO: 40.
Contains one of the following:

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、ヒト抗体フレームワークまたはヒト化抗体フレームワークを含む抗体可変領域を含む。 In certain embodiments, the dual antigen-binding portion ("first antigen-binding portion") comprises an antibody variable region comprising a human antibody framework or a humanized antibody framework.

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、以下の(c1)~(c4):
(c1)配列番号:3のアミノ酸配列を含む重鎖可変領域(第1の抗体可変領域)、および配列番号:27のアミノ酸配列を含む軽鎖可変領域(第2の抗体可変領域);
(c2)配列番号:4のアミノ酸配列を含む重鎖可変領域(第1の抗体可変領域)、および配列番号:27のアミノ酸配列を含む軽鎖可変領域(第2の抗体可変領域);
(c3)配列番号:5のアミノ酸配列を含む重鎖可変領域(第1の抗体可変領域)、および配列番号:28のアミノ酸配列を含む軽鎖可変領域(第2の抗体可変領域);
(c4)配列番号:6のアミノ酸配列を含む重鎖可変領域(第1の抗体可変領域)、および配列番号:28のアミノ酸配列を含む軽鎖可変領域(第2の抗体可変領域)
のいずれか1つを含む。
In certain embodiments, the dual antigen-binding moiety (the "first antigen-binding moiety") comprises one of the following (c1) to (c4):
(c1) a heavy chain variable region (first antibody variable region) comprising the amino acid sequence of SEQ ID NO: 3, and a light chain variable region (second antibody variable region) comprising the amino acid sequence of SEQ ID NO: 27;
(c2) a heavy chain variable region (first antibody variable region) comprising the amino acid sequence of SEQ ID NO: 4, and a light chain variable region (second antibody variable region) comprising the amino acid sequence of SEQ ID NO: 27;
(c3) a heavy chain variable region (first antibody variable region) comprising the amino acid sequence of SEQ ID NO: 5, and a light chain variable region (second antibody variable region) comprising the amino acid sequence of SEQ ID NO: 28;
(c4) A heavy chain variable region (first antibody variable region) comprising the amino acid sequence of SEQ ID NO: 6, and a light chain variable region (second antibody variable region) comprising the amino acid sequence of SEQ ID NO: 28.
Contains one of the following:

1つの態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、配列番号:3に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第1の抗体可変領域)配列、および配列番号:27に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第2の抗体可変領域)配列を含む。 In one embodiment, the dual antigen-binding portion ("first antigen-binding portion") comprises a heavy chain variable region (first antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:3, and a light chain variable region (second antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:27.

1つの態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、配列番号:4に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第1の抗体可変領域)配列、および配列番号:27に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第2の抗体可変領域)配列を含む。 In one embodiment, the dual antigen-binding portion ("first antigen-binding portion") comprises a heavy chain variable region (first antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:4, and a light chain variable region (second antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:27.

1つの態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、配列番号:5に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第1の抗体可変領域)配列、および配列番号:28に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第2の抗体可変領域)配列を含む。 In one embodiment, the dual antigen-binding portion ("first antigen-binding portion") comprises a heavy chain variable region (first antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:5, and a light chain variable region (second antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:28.

1つの態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、配列番号:6に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第1の抗体可変領域)配列、および配列番号:28に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第2の抗体可変領域)配列を含む。 In one embodiment, the dual antigen-binding portion ("first antigen-binding portion") comprises a heavy chain variable region (first antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:6, and a light chain variable region (second antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:28.

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、以下の(j01)~(j18):
(j01)配列番号:54のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(j02)配列番号:55のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(j03)配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(j04)配列番号:57のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(j05)配列番号:60のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(j06)配列番号:61のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(j07)配列番号:62のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(j08)配列番号:63のアミノ酸配列を含む重鎖(鎖3)および配列番号:68のアミノ酸配列を含む軽鎖(鎖4);
(j09)配列番号:64のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(j10)配列番号:65のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4);
(j11)配列番号:66のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(j12)配列番号:67のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(j13)配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(j14)配列番号:57のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(j15)配列番号:64のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(j16)配列番号:65のアミノ酸配列を含む重鎖(鎖3)および配列番号:71のアミノ酸配列を含む軽鎖(鎖4);
(j17)配列番号:58のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4);
(j18)配列番号:59のアミノ酸配列を含む重鎖(鎖3)および配列番号:70のアミノ酸配列を含む軽鎖(鎖4)
のいずれか1つを含む。
In certain embodiments, the dual antigen-binding moiety ("first antigen-binding moiety") is selected from the group consisting of (j01) to (j18) below:
(j01) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 54 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(j02) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 55 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(j03) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(j04) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 57 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(j05) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 60 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(j06) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 61 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(j07) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 62 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(j08) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 63 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 68;
(j09) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 64 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(j10) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 65 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69;
(j11) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 66 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(j12) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 67 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(j13) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(j14) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 57 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(j15) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 64 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(j16) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 65 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 71;
(j17) a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 58 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70;
(j18) A heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 59 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 70
Includes one of the following:

特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、抗体可変領域を含む。特定の態様において、デュアル抗原結合部分(「第1の抗原結合部分」)は、上述の第1の抗体可変領域および第2の抗体可変領域を含む。 In certain embodiments, the dual antigen-binding portion ("first antigen-binding portion") comprises an antibody variable region. In certain embodiments, the dual antigen-binding portion ("first antigen-binding portion") comprises a first antibody variable region and a second antibody variable region as described above.

本開示の多重特異性抗原結合分子には、翻訳後修飾を受けている多重特異性抗体も含まれる。翻訳後修飾を受ける本開示のその多重特異性抗原結合分子の例としては、重鎖可変領域のN末端でのピログルタミル化および/または重鎖のC末端でのリジンの欠失を受けている多重特異性抗原結合分子が挙げられる。当分野において、N末端でのピログルタミル化およびC末端でのリジンの欠失によるそのような翻訳後修飾が、抗体の活性に何ら影響を有さないことは公知である(Analytical Biochemistry, 2006, Vol. 348, p. 24-39)。 The multispecific antigen-binding molecules of the present disclosure also include multispecific antibodies that have been post-translationally modified. Examples of the multispecific antigen-binding molecules of the present disclosure that have been post-translationally modified include multispecific antigen-binding molecules that have been pyroglutamylated at the N-terminus of the heavy chain variable region and/or deleted lysine at the C-terminus of the heavy chain. It is known in the art that such post-translational modifications by pyroglutamylation at the N-terminus and deleted lysine at the C-terminus have no effect on the activity of the antibody (Analytical Biochemistry, 2006, Vol. 348, p. 24-39).

CLDN6に結合することができる抗原結合部分
本明細書において記載される多重特異性抗原結合分子は、CLDN6に結合することができる少なくとも1つの抗原結合部分を含む(本明細書において「CLDN6抗原結合部分」または「第2の抗原結合部分」とも称される)。特定の態様において、多重特異性抗原結合分子は、CLDN6に結合することができる1つの抗原結合部分を含む。
Antigen-binding moiety capable of binding to CLDN6 The multispecific antigen-binding molecule described herein comprises at least one antigen-binding moiety capable of binding to CLDN6 (also referred to herein as a "CLDN6 antigen-binding moiety" or a "second antigen-binding moiety"). In certain embodiments, the multispecific antigen-binding molecule comprises one antigen-binding moiety capable of binding to CLDN6.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は概して、Fab分子、特に従来のFab分子である。特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、抗体軽鎖および重鎖可変領域(VLおよびVH)を含むドメインである。抗体軽鎖および重鎖可変領域を含むそのようなドメインの適切な例としては、「単鎖Fv(scFv)」、「単鎖抗体」、「Fv」、「単鎖Fv2(scFv2)」、「Fab」、「F(ab')2」等が挙げられる。 In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") is generally a Fab molecule, in particular a conventional Fab molecule. In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") is a domain comprising an antibody light chain and heavy chain variable region (VL and VH). Suitable examples of such domains comprising an antibody light chain and heavy chain variable region include "single chain Fv (scFv)", "single chain antibody", "Fv", "single chain Fv2 (scFv2)", "Fab", "F(ab')2", etc.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、CLDN6の部分ペプチドの全体または一部に特異的に結合する。特定の態様において、CLDN6はヒトCLDN6またはカニクイザルCLDN6またはマウスCLDN6、特にヒトCLDN6である。特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、ヒトCLDN6およびカニクイザルCLDN6に対して交差反応性である(すなわち、それらに特異的に結合する)。 In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") specifically binds to all or a portion of a partial peptide of CLDN6. In certain embodiments, the CLDN6 is human CLDN6 or cynomolgus CLDN6 or mouse CLDN6, in particular human CLDN6. In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") is cross-reactive with (i.e., specifically binds to) human CLDN6 and cynomolgus CLDN6.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、CLDN6の第1の細胞外ドメイン(配列番号:196または197のアミノ酸29~81)またはCLDN6の第2の細胞外ドメイン(配列番号:196または197のアミノ酸138~159)に特異的に結合する。特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、真核細胞の表面上に発現しているヒトCLDN6に特異的に結合する。特定の態様において、CLDN6に対する結合活性は、がん細胞の表面上に発現しているCLDN6タンパク質に対する結合活性である。 In certain embodiments, the CLDN6 antigen binding portion ("second antigen binding portion") specifically binds to the first extracellular domain of CLDN6 (amino acids 29-81 of SEQ ID NO: 196 or 197) or the second extracellular domain of CLDN6 (amino acids 138-159 of SEQ ID NO: 196 or 197). In certain embodiments, the CLDN6 antigen binding portion ("second antigen binding portion") specifically binds to human CLDN6 expressed on the surface of a eukaryotic cell. In certain embodiments, the binding activity for CLDN6 is binding activity for a CLDN6 protein expressed on the surface of a cancer cell.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、ヒトCLDN9に実質的に結合しない。 In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") does not substantially bind to human CLDN9.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、ヒトCLDN4に実質的に結合しない。 In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") does not substantially bind to human CLDN4.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、ヒトCLDN3に実質的に結合しない。 In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") does not substantially bind to human CLDN3.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、配列番号:205に規定されるCLDN6変異体に実質的に結合しない。 In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") does not substantially bind to the CLDN6 variant set forth in SEQ ID NO:205.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、クロスオーバーFab分子、すなわち、Fab重鎖およびFab軽鎖の可変領域または定常領域のいずれかが交換されているFab分子である。 In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") is a crossover Fab molecule, i.e., a Fab molecule in which either the variable or constant regions of the Fab heavy and Fab light chains have been exchanged.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、以下の抗体可変領域(b1)または(b2):
(b1)配列番号:8の相補性決定領域(CDR)1、配列番号:14のCDR 2、および配列番号:20のCDR 3を含む重鎖可変領域(第3の抗体可変領域)、ならびに配列番号:30のCDR 1、配列番号:34のCDR 2、および配列番号:38のCDR 3を含む軽鎖可変領域(第4の抗体可変領域);
(b2)配列番号:7の相補性決定領域(CDR)1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む重鎖可変領域(第3の抗体可変領域)、ならびに配列番号:29のCDR 1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む軽鎖可変領域(第4の抗体可変領域)
(b3)配列番号:29の相補性決定領域(CDR)1、配列番号:33のCDR 2、および配列番号:37のCDR 3を含む重鎖可変領域(第3の抗体可変領域)、ならびに配列番号:7のCDR 1、配列番号:13のCDR 2、および配列番号:19のCDR 3を含む軽鎖可変領域(第4の抗体可変領域)
を含む。
In certain embodiments, the CLDN6 antigen binding portion (the "second antigen binding portion") comprises the following antibody variable region (b1) or (b2):
(b1) a heavy chain variable region (third antibody variable region) comprising complementarity determining region (CDR) 1 of SEQ ID NO: 8, CDR 2 of SEQ ID NO: 14, and CDR 3 of SEQ ID NO: 20, and a light chain variable region (fourth antibody variable region) comprising CDR 1 of SEQ ID NO: 30, CDR 2 of SEQ ID NO: 34, and CDR 3 of SEQ ID NO: 38;
(b2) A heavy chain variable region (third antibody variable region) comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 7, a CDR 2 of SEQ ID NO: 13, and a CDR 3 of SEQ ID NO: 19, and a light chain variable region (fourth antibody variable region) comprising CDR 1 of SEQ ID NO: 29, CDR 2 of SEQ ID NO: 33, and CDR 3 of SEQ ID NO: 37.
(b3) A heavy chain variable region (third antibody variable region) comprising a complementarity determining region (CDR) 1 of SEQ ID NO: 29, a CDR 2 of SEQ ID NO: 33, and a CDR 3 of SEQ ID NO: 37, and a light chain variable region (fourth antibody variable region) comprising CDR 1 of SEQ ID NO: 7, CDR 2 of SEQ ID NO: 13, and CDR 3 of SEQ ID NO: 19.
including.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、ヒト抗体フレームワークまたはヒト化抗体フレームワークを含む抗体可変領域を含む。 In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") comprises an antibody variable region comprising a human antibody framework or a humanized antibody framework.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、以下の(d1)または(d2):
(d1)配列番号:2のアミノ酸配列を含む重鎖可変領域(第3の抗体可変領域)、および配列番号:26のアミノ酸配列を含む軽鎖可変領域(第4の抗体可変領域);
(d2)配列番号:1のアミノ酸配列を含む重鎖可変領域(第3の抗体可変領域)、および配列番号:25のアミノ酸配列を含む軽鎖可変領域(第4の抗体可変領域)
(d3)配列番号:25のアミノ酸配列を含む重鎖可変領域(第3の抗体可変領域)、および配列番号:1のアミノ酸配列を含む軽鎖可変領域(第4の抗体可変領域)
を含む。
In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") is selected from the group consisting of (d1) or (d2) below:
(d1) a heavy chain variable region (third antibody variable region) comprising the amino acid sequence of SEQ ID NO: 2, and a light chain variable region (fourth antibody variable region) comprising the amino acid sequence of SEQ ID NO: 26;
(d2) a heavy chain variable region (third antibody variable region) comprising the amino acid sequence of SEQ ID NO: 1, and a light chain variable region (fourth antibody variable region) comprising the amino acid sequence of SEQ ID NO: 25.
(d3) A heavy chain variable region (third antibody variable region) comprising the amino acid sequence of SEQ ID NO: 25, and a light chain variable region (fourth antibody variable region) comprising the amino acid sequence of SEQ ID NO: 1.
including.

1つの態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、配列番号:2に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第3の抗体可変領域)配列、および配列番号:26に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第4の抗体可変領域)配列を含む。 In one embodiment, the CLDN6 antigen-binding portion ("second antigen-binding portion") comprises a heavy chain variable region (third antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:2, and a light chain variable region (fourth antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:26.

1つの態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、配列番号:1に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第3の抗体可変領域)配列、および配列番号:25に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第4の抗体可変領域)配列を含む。
1つの態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、配列番号:25に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である重鎖可変領域(第3の抗体可変領域)配列、および配列番号:1に対して少なくとも約95%、96%、97%、98%、99%、または100%同一である軽鎖可変領域(第4の抗体可変領域)配列を含む。
In one embodiment, the CLDN6 antigen binding portion ("second antigen binding portion") comprises a heavy chain variable region (third antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:1, and a light chain variable region (fourth antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:25.
In one embodiment, the CLDN6 antigen binding portion ("second antigen binding portion") comprises a heavy chain variable region (third antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:25, and a light chain variable region (fourth antibody variable region) sequence that is at least about 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO:1.

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、以下の(k01)~(k09):
(k01)配列番号:41のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2);
(k02)配列番号:42のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2);
(k03)配列番号:44のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2);
(k04)配列番号:45のアミノ酸配列を含む重鎖(鎖1)および配列番号:50のアミノ酸配列を含む軽鎖(鎖2);
(k05)配列番号:46のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2);
(k06)配列番号:47のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2);
(k07)配列番号:48のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2);
(k08)配列番号:49のアミノ酸配列を含む重鎖(鎖1)および配列番号:53のアミノ酸配列を含む軽鎖(鎖2);
(k09)配列番号:43のアミノ酸配列を含む重鎖(鎖1)および配列番号:52のアミノ酸配列を含む軽鎖(鎖2)
のいずれか1つを含む。
In certain embodiments, the CLDN6 antigen-binding portion (the "second antigen-binding portion") is selected from the group consisting of (k01) to (k09) below:
(k01) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 41 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50;
(k02) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 42 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51;
(k03) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 44 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52;
(k04) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 45 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 50;
(k05) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 46 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51;
(k06) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 47 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52;
(k07) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 48 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53;
(k08) a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 49 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 53;
(k09) A heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 43 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 52.
Includes one of the following:

特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、抗体可変領域を含む。特定の態様において、CLDN6抗原結合部分(「第2の抗原結合部分」)は、上述の第3の抗体可変領域および第4の抗体可変領域を含む。 In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") comprises an antibody variable region. In certain embodiments, the CLDN6 antigen-binding portion ("second antigen-binding portion") comprises the third antibody variable region and the fourth antibody variable region described above.

上記の多重特異性抗原結合分子において、重鎖及び軽鎖のCDR1、CDR2、CDR3、重鎖可変領域、軽鎖可変領域、重鎖全長、並びに軽鎖全長のアミノ酸配列は、CD3、CD137、T細胞受容体複合体、またはCLDN6に対する結合活性を有する限り、該アミノ酸配列に1または複数のアミノ酸が置換、欠失、付加及び/又は挿入されていてもよい。該アミノ酸配列において、1または複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を調製するための、当業者によく知られた方法としては、タンパク質に変異を導入する方法が知られている。例えば、当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275、Zoller, MJ, and Smith, M.(1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors.Methods Enzymol. 100, 468-500、Kramer,W, Drutsa,V, Jansen,HW, Kramer,B, Pflugfelder,M, and Fritz,HJ(1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456、Kramer W, and Fritz HJ(1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367、Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci U S A. 82, 488-492)などを用いて、CD3、CD137、T細胞受容体複合体、またはCLDN6に対する結合活性を有する抗体のアミノ酸配列に適宜変異を導入することにより、元の多重特異性抗原結合分子の抗体可変領域の組み合わせと機能的に同等な抗体可変領域の組み合わせを含む変異体多重特異性抗原結合分子を調製することができる。ここで、本発明において「機能的に同等」とは、抗原に対する結合親和性が同等である、あるいは、多重特異性抗原結合分子として用いられた場合に、クローディン6が発現している細胞又は当該細胞を含む組織に対する細胞傷害活性が同等であることを意味する。結合親和性および細胞傷害活性は、本明細書の記載に基づいて測定することができるが、詳細は後述する。 In the above multispecific antigen-binding molecule, the amino acid sequences of the heavy and light chain CDR1, CDR2, CDR3, heavy chain variable region, light chain variable region, full-length heavy chain, and full-length light chain may have one or more amino acids substituted, deleted, added, and/or inserted in the amino acid sequence, so long as they have binding activity to CD3, CD137, the T cell receptor complex, or CLDN6. A method for introducing mutations into a protein is well known to those skilled in the art for preparing an amino acid sequence in which one or more amino acids are substituted, deleted, added, and/or inserted. For example, those skilled in the art can easily perform site-directed mutagenesis by using methods such as site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152, 271-275; Zoller, MJ, and Smith, M. (1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 100, 468-500; Kramer, W, Drutsa, V, Jansen, HW, Kramer, B, Pflugfelder, M, and Fritz, HJ (1984) The gapped duplex DNA approach to oligonucleotide-directed mutation construction. Nucleic Acids Res. 12, 9441-9456; Kramer W, and Fritz HJ (1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154, 350-367, Kunkel,TA(1985) Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc Natl Acad Sci USA. 82, 488-492) or the like can be used to appropriately introduce mutations into the amino acid sequence of an antibody having binding activity to CD3, CD137, the T cell receptor complex, or CLDN6, thereby preparing a mutant multispecific antigen-binding molecule that includes a combination of antibody variable regions that is functionally equivalent to the combination of antibody variable regions of the original multispecific antigen-binding molecule. Here, in the present invention, "functionally equivalent" means that the binding affinity to the antigen is equivalent, or that when used as a multispecific antigen-binding molecule, the cytotoxic activity against cells expressing claudin 6 or tissues containing said cells is equivalent. The binding affinity and cytotoxic activity can be measured based on the description of this specification, and will be described in detail below.

改変するアミノ酸の個数に制限はないが、例えば、40個以内、30個以内、20個以内、好ましくは18個以内、16個以内、15個以内、12個以内、10個以内、9個以内、8個以内、7個以内、6個以内、5個以内、4個以内、3個以内、または2個以内であってよい。 There is no limit to the number of amino acids to be modified, but it may be, for example, 40 or less, 30 or less, 20 or less, preferably 18 or less, 16 or less, 15 or less, 12 or less, 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less.

アミノ酸残基を改変する場合には、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ酸(R、K、H)、及び、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。これらの各グループ内のアミノ酸の置換を保存的置換と称す。あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている(Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984)81:5662-6; Zoller, M. J. and Smith, M., Nucleic Acids Res.(1982)10:6487-500; Wang, A. et al., Science (1984) 224:1431-3; Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982)79:6409-13)。 When modifying an amino acid residue, it is desirable to mutate it to another amino acid that preserves the properties of the amino acid side chain. For example, the properties of the amino acid side chain can include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids with aliphatic side chains (G, A, V, L, I, P), amino acids with hydroxyl-containing side chains (S, T, Y), amino acids with sulfur atom-containing side chains (C, M), amino acids with carboxylic acid and amide-containing side chains (D, N, E, Q), amino acids with base-containing side chains (R, K, H), and amino acids with aromatic side chains (H, F, Y, W) (the characters in parentheses indicate the one-letter symbols of the amino acids). Substitution of amino acids within each of these groups is called conservative substitution. It is already known that a polypeptide having an amino acid sequence modified by deletion, addition, and/or substitution of one or more amino acid residues with other amino acids maintains its biological activity (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA (1984)81:5662-6; Zoller, M. J. and Smith, M., Nucleic Acids Res.(1982)10:6487-500; Wang, A. et al., Science (1984) 224:1431-3; Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982)79:6409-13).

抗原
本明細書で用いられる用語「抗原」は、抗原結合部分が結合するポリペプチド巨大分子上の部位(例えば、連続した一続きのアミノ酸、または非連続アミノ酸の別々の領域から構成される立体構造)を指し、抗原結合部分-抗原複合体を形成する。有用な抗原決定基は、例えば、腫瘍細胞の表面上に、ウイルス感染細胞の表面上に、他の疾患細胞の表面上に、免疫細胞の表面上に、血清中に遊離した状態で、および/または細胞外基質(ECM)中に見出すことができる。別段示さない限り、本明細書において抗原と称されるタンパク質(例えば、CD3、CD137、CLDN6)は、霊長類(例えば、ヒト)およびげっ歯類(例えば、マウスおよびラット)などの哺乳動物を含む、任意の脊椎動物供給源由来のタンパク質の任意の天然形態であり得る。特定の態様において、抗原はヒトCD3、ヒトCD137、またはヒトCLDN6である。本明細書において特定のタンパク質への言及がなされる場合、該用語は、「全長」の、プロセシングを受けていないタンパク質、ならびに細胞中でのプロセシングによって生じるタンパク質の任意の形態を包含する。該用語はまた、タンパク質の天然に存在するバリアント、例えば、スプライスバリアントまたは対立遺伝子バリアントも包含する。
Antigens The term "antigen" as used herein refers to a site on a polypeptide macromolecule to which an antigen-binding moiety binds (e.g., a three-dimensional structure composed of a continuous stretch of amino acids or a discrete region of non-contiguous amino acids) to form an antigen-binding moiety-antigen complex. Useful antigenic determinants can be found, for example, on the surface of tumor cells, on the surface of virus-infected cells, on the surface of other diseased cells, on the surface of immune cells, free in serum, and/or in the extracellular matrix (ECM). Unless otherwise indicated, the proteins (e.g., CD3, CD137, CLDN6) referred to herein as antigens can be any native form of the protein from any vertebrate source, including mammals such as primates (e.g., humans) and rodents (e.g., mice and rats). In certain embodiments, the antigen is human CD3, human CD137, or human CLDN6. When reference is made herein to a particular protein, the term encompasses the "full-length", unprocessed protein, as well as any form of the protein that results from processing in the cell. The term also encompasses naturally occurring variants of the protein, such as splice variants or allelic variants.

特定の態様において、本明細書において記載される多重特異性抗原結合分子は、異なる種のCD3、CD137、またはCLDN6の間で保存されているCD3、CD137、またはCLDN6のエピトープに結合する。特定の態様において、本出願の多重特異性抗原結合分子は、三重特異性抗原結合分子、すなわち、3種類の異なる抗原に特異的に結合することができる、つまり、CD3およびCD137に結合することができるが、両方の抗原に同時には結合せず、かつCLDN6に特異的に結合することができる、三重特異性抗原結合分子である。 In certain embodiments, the multispecific antigen-binding molecules described herein bind to epitopes of CD3, CD137, or CLDN6 that are conserved among different species of CD3, CD137, or CLDN6. In certain embodiments, the multispecific antigen-binding molecules of the present application are trispecific antigen-binding molecules, i.e., trispecific antigen-binding molecules that can specifically bind to three different antigens, i.e., can bind to CD3 and CD137, but not both antigens simultaneously, and can specifically bind to CLDN6.

クローディン6(CLDN6)および他のクローディンファミリータンパク質
本明細書で用いられる用語「CLDN6」は、別段示さない限り、霊長類(例えば、ヒト)およびげっ歯類(例えば、マウスおよびラット)などの哺乳動物を含む、任意の脊椎動物供給源由来の任意の天然型クローディン6を指す。ヒトCLDN6(hCLDN6)のアミノ酸配列は配列番号:196または197に示され、マウスCLDN6(mCLDN6)のアミノ酸配列は配列番号:201に示される。
Claudin 6 (CLDN6) and other claudin family proteins The term "CLDN6" as used herein refers to any native claudin 6 from any vertebrate source, including mammals such as primates (e.g., humans) and rodents (e.g., mice and rats), unless otherwise indicated. The amino acid sequence of human CLDN6 (hCLDN6) is shown in SEQ ID NO: 196 or 197, and the amino acid sequence of mouse CLDN6 (mCLDN6) is shown in SEQ ID NO: 201.

CLDN6以外のクローディンファミリーには、CLDN3、CLDN4、およびCLDN9などの多くの他のタンパク質が存在する。ヒトCLDN3(hCLDN3)、ヒトCLDN4(hCLDN4)、およびヒトCLDN9(hCLDN9)のアミノ酸配列はそれぞれ、配列番号:199、200、および198に示される。マウスCLDN3(mCLDN3)、マウスCLDN4(mCLDN4)、およびマウスCLDN9(mCLDN9)のアミノ酸配列はそれぞれ、配列番号:203、204、および202に示される。 Besides CLDN6, there are many other proteins in the claudin family, such as CLDN3, CLDN4, and CLDN9. The amino acid sequences of human CLDN3 (hCLDN3), human CLDN4 (hCLDN4), and human CLDN9 (hCLDN9) are shown in SEQ ID NOs: 199, 200, and 198, respectively. The amino acid sequences of mouse CLDN3 (mCLDN3), mouse CLDN4 (mCLDN4), and mouse CLDN9 (mCLDN9) are shown in SEQ ID NOs: 203, 204, and 202, respectively.

CD3
特定の態様において、多重特異性抗原結合分子は、CD3の部分ペプチドの全体または一部に特異的に結合する。特定の態様において、CD3はヒトCD3またはカニクイザルCD3、特にヒトCD3である。特定の態様において、多重特異性抗原結合分子は、ヒトCD3およびカニクイザルCD3に対して交差反応性である(すなわち、それらに特異的に結合する)。いくつかの態様において、多重特異性抗原結合分子は、CD3のεサブユニット、特に、配列番号:170(NP_000724.1)(括弧内にRefSeq登録番号を示す)に示されるCD3のヒトCD3εサブユニットに特異的に結合することができる。いくつかの態様において、多重特異性抗原結合分子は、真核細胞の表面上に発現しているCD3ε鎖に特異的に結合することができる。いくつかの態様において、多重特異性抗原結合分子は、T細胞の表面上に発現しているCD3ε鎖に結合する。
CD3
In certain embodiments, the multispecific antigen-binding molecule specifically binds to the whole or part of a partial peptide of CD3. In certain embodiments, the CD3 is human CD3 or cynomolgus CD3, particularly human CD3. In certain embodiments, the multispecific antigen-binding molecule is cross-reactive (i.e., specifically binds) to human CD3 and cynomolgus CD3. In some embodiments, the multispecific antigen-binding molecule can specifically bind to the ε subunit of CD3, particularly the human CD3ε subunit of CD3 as shown in SEQ ID NO: 170 (NP_000724.1) (RefSeq accession number in parentheses). In some embodiments, the multispecific antigen-binding molecule can specifically bind to the CD3ε chain expressed on the surface of eukaryotic cells. In some embodiments, the multispecific antigen-binding molecule binds to the CD3ε chain expressed on the surface of T cells.

CD137
特定の態様において、CD137はヒトCD137である。いくつかの態様において、本開示の抗原結合分子の好適な例には、以下からなる群より選択される抗体によって結合されるヒトCD137エピトープと同じエピトープに結合する抗原結合分子が含まれる:
SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC配列(配列番号:182)を含む領域を認識する抗体、
DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC配列(配列番号:181)を含む領域を認識する抗体、
LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAEC配列(配列番号:183)を含む領域を認識する抗体、および
ヒトCD137タンパク質中のLQDPCSNCPAGTFCDNNRNQIC配列(配列番号:180)を含む領域を認識する抗体。
CD137
In certain embodiments, CD137 is human CD137. In some embodiments, suitable examples of antigen binding molecules of the present disclosure include antigen binding molecules that bind to the same epitope as the human CD137 epitope bound by an antibody selected from the group consisting of:
an antibody recognizing a region including the sequence SPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMCEQDCKQGQELTKKGC (SEQ ID NO: 182);
An antibody recognizing a region including the sequence DCTPGFHCLGAGCSMCEQDCKQGQELTKKGC (SEQ ID NO: 181);
An antibody that recognizes a region including the sequence LQDPCSNCPAGTFCDNNRNQICSPCPPNSFSSAGGQRTCDICRQCKGVFRTRKECSSTSNAEC (sequence number: 183), and an antibody that recognizes a region including the sequence LQDPCSNCPAGTFCDNNRNQIC (sequence number: 180) in human CD137 protein.

抗原結合ドメイン
用語「抗原結合ドメイン」は、抗原の一部またはすべてに特異的に結合しかつそれに相補的である領域を含む抗体の一部を指す。抗原結合ドメインは、例えば、1つまたは複数の抗体可変ドメイン(抗体可変領域とも呼ばれる)によってもたらされてもよい。好ましくは、抗原結合ドメインは、抗体軽鎖可変領域(VL)および抗体重鎖可変領域(VH)の両方を含む。そのような好ましい抗原結合ドメインには、例えば、「単鎖Fv(scFv)」、「単鎖抗体」、「Fv」、「単鎖Fv2(scFv2)」、「Fab」、および「F(ab')2」が含まれる。抗原結合ドメインはまた、シングルドメイン抗体によってもたらされてもよい。
Antigen-binding domain The term "antigen-binding domain" refers to a portion of an antibody that comprises an area that specifically binds to and is complementary to a part or all of an antigen. An antigen-binding domain may, for example, be provided by one or more antibody variable domains (also called antibody variable regions). Preferably, an antigen-binding domain comprises both an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH). Such preferred antigen-binding domains include, for example, "single-chain Fv (scFv)", "single-chain antibody", "Fv", "single-chain Fv2 (scFv2)", "Fab", and "F(ab')2". An antigen-binding domain may also be provided by a single-domain antibody.

シングルドメイン抗体
本明細書において、用語「シングルドメイン抗体」は、該ドメインがそれ単独で抗原結合活性を発揮できる限りは、その構造によって限定されない。一般的な抗体、例えば、IgG抗体は、可変領域がVHおよびVLのペアリングによって形成されている状態で抗原結合活性を示すのに対して、シングルドメイン抗体のそれ自体のドメイン構造は、別のドメインとのペアリングなしにそれ単独で抗原結合活性を発揮できることが公知である。通常、シングルドメイン抗体は、比較的低い分子量を有し、単量体の形態で存在する。
As used herein, the term " single domain antibody" is not limited by its structure, as long as the domain can exhibit antigen-binding activity by itself. It is known that while a general antibody, for example an IgG antibody, exhibits antigen-binding activity when the variable region is formed by pairing VH and VL, the domain structure of a single domain antibody can exhibit antigen-binding activity by itself without pairing with another domain. Usually, a single domain antibody has a relatively low molecular weight and exists in the form of a monomer.

シングルドメイン抗体の例としては、これらに限定されないが、軽鎖を生来欠いているラクダ科の動物のVHHおよびサメVNARなどの抗原結合分子、および抗体VHドメインの全体もしくは一部または抗体VLドメインの全体もしくは一部を含有する抗体断片が挙げられる。抗体VHドメインまたは抗体VLドメインの全体または一部を含有する抗体断片であるシングルドメイン抗体の例としては、これらに限定されないが、米国特許第6,248,516号B1などに記載されているようなヒト抗体VHまたはヒト抗体VLを起源とする、人工的に調製したシングルドメイン抗体が挙げられる。本発明のいくつかの態様において、1つのシングルドメイン抗体は、3種類のCDR(CDR1、CDR2、およびCDR3)を有する。 Examples of single domain antibodies include, but are not limited to, antigen-binding molecules such as camelid VHH and shark VNAR that naturally lack light chains, and antibody fragments that contain all or part of an antibody VH domain or all or part of an antibody VL domain. Examples of single domain antibodies that are antibody fragments that contain all or part of an antibody VH domain or antibody VL domain include, but are not limited to, artificially prepared single domain antibodies originating from human antibody VH or human antibody VL, such as those described in U.S. Pat. No. 6,248,516 B1. In some embodiments of the present invention, a single domain antibody has three types of CDRs (CDR1, CDR2, and CDR3).

シングルドメイン抗体は、シングルドメイン抗体を産生できる動物から、またはシングルドメイン抗体を産生できる動物の免疫化によって、得ることができる。シングルドメイン抗体を産生できる動物の例としては、これらに限定されないが、ラクダ科の動物、およびシングルドメイン抗体を生じさせることができる遺伝子を保有するトランスジェニック動物が挙げられる。ラクダ科の動物には、ラクダ、ラマ、アルパカ、ヒトコブラクダ、およびグアナコ等が含まれる。シングルドメイン抗体を生じさせることができる遺伝子を保有するトランスジェニック動物の例としては、これらに限定されないが、国際公開公報番号WO2015/143414および米国特許公報番号US2011/0123527 A1に記載のトランスジェニック動物が挙げられる。該動物から得られたシングルドメイン抗体のフレームワーク配列は、ヒト化シングルドメイン抗体を得るために、ヒト生殖系列配列またはそれに類似する配列に変換されてもよい。ヒト化シングルドメイン抗体(例えば、ヒト化VHH)もまた、本発明のシングルドメイン抗体の一態様である。 Single domain antibodies can be obtained from animals capable of producing single domain antibodies or by immunization of animals capable of producing single domain antibodies. Examples of animals capable of producing single domain antibodies include, but are not limited to, camelids and transgenic animals carrying genes capable of producing single domain antibodies. Camelids include camels, llamas, alpacas, dromedaries, and guanacos. Examples of transgenic animals carrying genes capable of producing single domain antibodies include, but are not limited to, the transgenic animals described in International Publication No. WO2015/143414 and U.S. Patent Publication No. US2011/0123527 A1. The framework sequences of the single domain antibodies obtained from the animals may be converted to human germline sequences or sequences similar thereto to obtain humanized single domain antibodies. Humanized single domain antibodies (e.g., humanized VHHs) are also an embodiment of the single domain antibodies of the present invention.

あるいは、シングルドメイン抗体は、シングルドメイン抗体を含有するポリペプチドライブラリからELISAまたはパニング等によって得ることができる。シングルドメイン抗体を含有するポリペプチドライブラリの例としては、これらに限定されないが、種々の動物またはヒトから得られたナイーブ抗体ライブラリ(例えば、Methods in Molecular Biology 2012 911 (65-78);およびBiochimica et Biophysica Acta - Proteins and Proteomics 2006 1764: 8 (1307-1319))、種々の動物の免疫化によって得られた抗体ライブラリ(例えば、Journal of Applied Microbiology 2014 117: 2 (528-536))、および種々の動物またはヒトの抗体遺伝子から調製した合成抗体ライブラリ(例えば、Journal of Biomolecular Screening 2016 21: 1 (35-43); Journal of Biological Chemistry 2016 291:24 (12641-12657);およびAIDS 2016 30: 11 (1691-1701))が挙げられる。 Alternatively, single domain antibodies can be obtained by ELISA or panning, etc. from a polypeptide library containing single domain antibodies. Examples of polypeptide libraries containing single domain antibodies include, but are not limited to, naive antibody libraries obtained from various animals or humans (e.g., Methods in Molecular Biology 2012 911 (65-78); and Biochimica et Biophysica Acta - Proteins and Proteomics 2006 1764: 8 (1307-1319)), antibody libraries obtained by immunization of various animals (e.g., Journal of Applied Microbiology 2014 117: 2 (528-536)), and synthetic antibody libraries prepared from antibody genes of various animals or humans (e.g., Journal of Biomolecular Screening 2016 21: 1 (35-43); Journal of Biological Chemistry 2016 291:24 (12641-12657); and AIDS 2016 30: 11 (1691-1701)).

可変領域
用語「可変領域」または「可変ドメイン」は、抗体を抗原へと結合させることに関与する、抗体の重鎖または軽鎖のドメインを指す。天然型抗体の重鎖および軽鎖の可変ドメイン(それぞれVHおよびVL)は、通常、各ドメインが4つの保存されたフレームワーク領域 (FR) および3つの超可変領域 (HVR) を含む、類似の構造を有する。(例えば、Kindt et al. Kuby Immunology, 6th ed., W.H. Freeman and Co., page 91 (2007) 参照。)1つのVHまたはVLドメインで、抗原結合特異性を与えるに充分であろう。さらに、ある特定の抗原に結合する抗体は、当該抗原に結合する抗体からのVHまたはVLドメインを使ってそれぞれVLまたはVHドメインの相補的ライブラリをスクリーニングして、単離されてもよい。例えばPortolano et al., J. Immunol. 150:880-887 (1993); Clarkson et al., Nature 352:624-628 (1991) 参照。
The term "variable region " or "variable domain" refers to the domain of an antibody's heavy or light chain that is involved in binding the antibody to an antigen. The heavy and light chain variable domains (VH and VL, respectively) of natural antibodies usually have a similar structure, with each domain containing four conserved framework regions (FR) and three hypervariable regions (HVR). (See, for example, Kindt et al. Kuby Immunology, 6th ed., WH Freeman and Co., page 91 (2007).) One VH or VL domain may be sufficient to confer antigen-binding specificity. Furthermore, antibodies that bind to a particular antigen may be isolated by screening a complementary library of VL or VH domains, respectively, with a VH or VL domain from an antibody that binds to that antigen. See, e.g., Portolano et al., J. Immunol. 150:880-887 (1993); Clarkson et al., Nature 352:624-628 (1991).

HVRまたはCDR
本明細書で用いられる用語「超可変領域」または「HVR」は、配列において超可変であり(「相補性決定領域」または「CDR」(complementarity determining region))、および/または構造的に定まったループ(「超可変ループ」)を形成し、および/または抗原接触残基(「抗原接触」)を含む、抗体の可変ドメインの各領域を指す。超可変領域(HVR)は、「相補性決定領域」(CDR)とも称され、これらの用語は、本明細書では、抗原結合領域を形成する可変領域の部分に関して相互に交換可能に用いられる。通常、抗体は6つのHVRを含む:VHに3つ(H1、H2、H3)、およびVLに3つ(L1、L2、L3)である。本明細書での例示的なHVRは、以下のものを含む:
(a) アミノ酸残基26-32 (L1)、50-52 (L2)、91-96 (L3)、26-32 (H1)、53-55 (H2)、および96-101 (H3)のところで生じる超可変ループ (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987));
(b) アミノ酸残基24-34 (L1)、50-56 (L2)、89-97 (L3)、31-35b (H1)、50-65 (H2)、 および95-102 (H3)のところで生じるCDR (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991));
(c) アミノ酸残基27c-36 (L1)、46-55 (L2)、89-96 (L3)、30-35b (H1)、47-58 (H2)、および93-101 (H3) のところで生じる抗原接触 (MacCallum et al. J. Mol. Biol. 262: 732-745 (1996));ならびに、
(d) HVRアミノ酸残基46-56 (L2)、47-56 (L2)、48-56 (L2)、49-56 (L2)、26-35 (H1)、26-35b (H1)、49-65 (H2)、93-102 (H3)、および94-102 (H3)を含む、(a)、(b)、および/または(c)の組合せ。
HVR or CDR
The term "hypervariable region" or "HVR" as used herein refers to each region of an antibody variable domain that is hypervariable in sequence ("complementarity determining region" or "CDR") and/or forms structurally defined loops ("hypervariable loops") and/or contains antigen contact residues ("antigen contacts"). Hypervariable regions (HVRs) are also referred to as "complementarity determining regions" (CDRs), and these terms are used interchangeably herein with respect to the portions of the variable regions that form the antigen binding region. Typically, antibodies contain six HVRs: three in the VH (H1, H2, H3) and three in the VL (L1, L2, L3). Exemplary HVRs herein include the following:
(a) hypervariable loops occurring at amino acid residues 26-32 (L1), 50-52 (L2), 91-96 (L3), 26-32 (H1), 53-55 (H2), and 96-101 (H3) (Chothia and Lesk, J. Mol. Biol. 196:901-917 (1987));
(b) the CDRs occurring at amino acid residues 24-34 (L1), 50-56 (L2), 89-97 (L3), 31-35b (H1), 50-65 (H2), and 95-102 (H3) (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991));
(c) antigenic contacts occurring at amino acid residues 27c-36 (L1), 46-55 (L2), 89-96 (L3), 30-35b (H1), 47-58 (H2), and 93-101 (H3) (MacCallum et al. J. Mol. Biol. 262: 732-745 (1996)); and
(d) A combination of (a), (b), and/or (c), comprising HVR amino acid residues 46-56 (L2), 47-56 (L2), 48-56 (L2), 49-56 (L2), 26-35 (H1), 26-35b (H1), 49-65 (H2), 93-102 (H3), and 94-102 (H3).

別段示さない限り、HVR残基および可変ドメイン中の他の残基(例えば、FR残基)は、本明細書では上記のKabatらに従ってナンバリングされる。 Unless otherwise indicated, HVR residues and other residues in the variable domain (e.g., FR residues) are numbered herein according to Kabat et al., supra.

HVR-H1、HVR-H2、HVR-H3、HVR-L1、HVR-L2、およびHVR-L3は、それぞれ、「H-CDR1」、「H-CDR2」、「H-CDR3」、「L-CDR1」、「L-CDR2」、および「L-CDR3」とも記載される。 HVR-H1, HVR-H2, HVR-H3, HVR-L1, HVR-L2, and HVR-L3 are also referred to as "H-CDR1", "H-CDR2", "H-CDR3", "L-CDR1", "L-CDR2", and "L-CDR3", respectively.

CD3およびCD137に結合することができる
本開示の抗体可変領域が「CD3およびCD137に結合することができる」かどうかは、当技術分野において公知の方法によって判定することができる。
Whether an antibody variable region of the disclosure that is capable of binding to CD3 and CD137 is "capable of binding to CD3 and CD137" can be determined by methods known in the art.

これは、例えば、電気化学発光法(ECL法)によって判定することができる(BMC Research Notes 2011, 4:281)。 This can be determined, for example, by electrochemiluminescence (ECL) (BMC Research Notes 2011, 4:281).

具体的には、例えば、ビオチン標識された被験抗原結合分子の、CD3およびCD137に結合することができる領域、例えば、Fab領域から構成される低分子抗体、またはその一価抗体(通常の抗体が有する2つのFab領域のうち1つが欠けている抗体)を、sulfo-tag(Ru錯体)で標識されたCD3またはCD137と混合し、混合物をストレプトアビジン固定化プレート上に添加する。この操作において、ビオチン標識された被験抗原結合分子は、プレート上のストレプトアビジンに結合する。sulfo-tagから光を発生させ、その発光シグナルを、Sector Imager 600または2400(MSD K.K.)などを用いて検出し、それによって、CD3またはCD137に対する被験抗原結合分子の上述の領域の結合を確認することができる。 Specifically, for example, a region of a biotin-labeled test antigen-binding molecule capable of binding to CD3 and CD137, such as a low molecular weight antibody composed of the Fab region, or a monovalent antibody thereof (an antibody lacking one of the two Fab regions that a normal antibody has) is mixed with CD3 or CD137 labeled with a sulfo-tag (Ru complex), and the mixture is added onto a streptavidin-immobilized plate. In this operation, the biotin-labeled test antigen-binding molecule binds to the streptavidin on the plate. Light is generated from the sulfo-tag, and the luminescence signal is detected using a Sector Imager 600 or 2400 (MSD K.K.), etc., thereby allowing the binding of the above-mentioned region of the test antigen-binding molecule to CD3 or CD137 to be confirmed.

あるいは、このアッセイは、ELISA、FACS(蛍光活性化細胞選別)、ALPHAScreen(増幅発光近接ホモジニアスアッセイスクリーン)、表面プラズモン共鳴(SPR)現象に基づくBIACORE法などによって実施されてもよい(Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010)。 Alternatively, the assay may be performed by ELISA, FACS (fluorescence activated cell sorting), ALPHAScreen (amplified luminescence proximity homogeneous assay screen), BIACORE method based on the surface plasmon resonance (SPR) phenomenon, etc. (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).

具体的には、アッセイは、例えば、表面プラズモン共鳴(SPR)現象に基づく相互作用解析機器であるBiacore(GE Healthcare Japan Corp.)を用いて実施することができる。Biacore解析機器には、Biacore T100、T200、X100、A100、4000、3000、2000、1000、またはCなどの任意の機種が含まれる。CM7、CM5、CM4、CM3、C1、SA、NTA、L1、HPA、またはAuチップなどの任意のBiacore用センサーチップを、センサーチップとして用いることができる。プロテインA、プロテインG、プロテインL、抗ヒトIgG抗体、抗ヒトIgG-Fab、抗ヒトL鎖抗体、抗ヒトFc抗体、抗原タンパク質、または抗原ペプチドなどの、本開示の抗原結合分子を捕捉するためのタンパク質を、アミンカップリング、ジスルフィドカップリング、またはアルデヒドカップリングなどのカップリング法によって、センサーチップ上に固定化する。その上にCD3またはCD137をアナライトとしてインジェクトし、相互作用を測定してセンサーグラムを取得する。この操作において、CD3またはCD137の濃度は、アッセイサンプルの相互作用の強さ(例えば、KD)に従って数μMから数pMの範囲内で選択することができる。 Specifically, the assay can be performed using, for example, Biacore (GE Healthcare Japan Corp.), an interaction analysis instrument based on the surface plasmon resonance (SPR) phenomenon. Biacore analysis instruments include any model such as Biacore T100, T200, X100, A100, 4000, 3000, 2000, 1000, or C. Any Biacore sensor chip, such as CM7, CM5, CM4, CM3, C1, SA, NTA, L1, HPA, or Au chip, can be used as the sensor chip. Proteins for capturing the antigen-binding molecules of the present disclosure, such as protein A, protein G, protein L, anti-human IgG antibody, anti-human IgG-Fab, anti-human L chain antibody, anti-human Fc antibody, antigen protein, or antigen peptide, are immobilized on the sensor chip by a coupling method such as amine coupling, disulfide coupling, or aldehyde coupling. CD3 or CD137 is injected onto the sensor chip as an analyte, and the interaction is measured to obtain a sensorgram. In this procedure, the concentration of CD3 or CD137 can be selected within the range of several μM to several pM according to the strength of the interaction (e.g., KD) of the assay sample.

あるいは、CD3またはCD137を、抗原結合分子の代わりにセンサーチップ上に固定化して、次に、評価したい抗体サンプルを相互作用させてもよい。本開示の抗原結合分子の抗体可変領域がCD3またはCD137に対する結合活性を有するかどうかを、相互作用のセンサーグラムから算出された解離定数(KD)値に基づいて、または抗原結合分子サンプルの作用前のレベルを上回る、作用後のセンサーグラムの増加の程度に基づいて、確認することができる。いくつかの態様において、目的の抗原(すなわち、CD3またはCD137)に対する本開示の抗体可変領域の結合活性または親和性を、例えば、Biacore T200機器(GE Healthcare)またはBiacore 8K機器(GE Healthcare)を用いて、37℃(CD137について)または25℃(CD3について)で評価する。抗ヒトFc(例えば、GE Healthcare)を、アミンカップリングキット(例えば、GE Healthcare)を用いてCM4センサーチップのすべてのフローセル上に固定化する。抗原結合分子または抗体可変領域を、抗Fcセンサー表面上に捕捉し、次いで、抗原(CD3またはCD137)をフローセル上にインジェクトする。抗原結合分子または抗体可変領域の捕捉レベルは、200レゾナンスユニット(RU)を目指してもよい。組換えヒトCD3またはCD137を、2倍段階希釈によって調製した400~25 nMでインジェクトし、その後解離させてもよい。すべての抗原結合分子または抗体可変領域およびアナライトは、20 mM ACES、150 mM NaCl、0.05% Tween 20、0.005% NaN3を含有するACES pH 7.4において調製する。センサー表面は、サイクル毎に3M MgCl2で再生する。結合親和性は、例えば、Biacore T200 Evaluation software, version 2.0(GE Healthcare)またはBiacore 8K Evaluation software(GE Healthcare)を用いて、データをプロセシングし、1:1結合モデルにフィットさせることによって決定する。本開示の抗原結合ドメインの特異的結合活性または親和性を評価するために、KD値を算出する。 Alternatively, CD3 or CD137 may be immobilized on a sensor chip instead of an antigen-binding molecule, and then the antibody sample to be evaluated may be allowed to interact with it. Whether the antibody variable region of the antigen-binding molecule of the present disclosure has binding activity for CD3 or CD137 can be confirmed based on the dissociation constant (KD) value calculated from the sensorgram of the interaction, or based on the degree of increase in the sensorgram after the action of the antigen-binding molecule sample above the level before the action. In some embodiments, the binding activity or affinity of the antibody variable region of the present disclosure for the antigen of interest (i.e., CD3 or CD137) is evaluated at 37°C (for CD137) or 25°C (for CD3) using, for example, a Biacore T200 instrument (GE Healthcare) or a Biacore 8K instrument (GE Healthcare). Anti-human Fc (e.g., GE Healthcare) is immobilized on all flow cells of a CM4 sensor chip using an amine coupling kit (e.g., GE Healthcare). The antigen-binding molecules or antibody variable regions are captured on the anti-Fc sensor surface, and then the antigen (CD3 or CD137) is injected onto the flow cell. The capture level of the antigen-binding molecules or antibody variable regions may aim for 200 resonance units (RU). Recombinant human CD3 or CD137 may be injected at 400-25 nM prepared by two-fold serial dilution, followed by dissociation. All antigen-binding molecules or antibody variable regions and analytes are prepared in ACES pH 7.4 containing 20 mM ACES, 150 mM NaCl, 0.05% Tween 20, 0.005% NaN3. The sensor surface is regenerated with 3 M MgCl2 every cycle. The binding affinity is determined by processing the data and fitting to a 1:1 binding model, for example, using Biacore T200 Evaluation software, version 2.0 (GE Healthcare) or Biacore 8K Evaluation software (GE Healthcare). To evaluate the specific binding activity or affinity of the antigen-binding domain of the present disclosure, a KD value is calculated.

ALPHAScreenは、2種類のビーズ(ドナーおよびアクセプター)を用いるALPHAテクノロジーによって、以下の原理に基づいて実施される:ドナービーズに結合した分子とアクセプタービーズに結合した分子との間の生物学的相互作用によりこれら2つのビーズが近接して位置する時にのみ、発光シグナルが検出される。レーザーによって励起されたドナービーズ中のフォトセンシタイザーは、周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素は、ドナービーズ周辺に拡散し、それに近接して位置するアクセプタービーズに到達すると、それによってビーズにおける化学発光反応を引き起こし、最終的に光が放出される。ドナービーズに結合した分子とアクセプタービーズに結合した分子との間の相互作用がない場合には、ドナービーズによって産生される一重項酸素がアクセプタービーズに到達しない。したがって、化学発光反応は起きない。 ALPHAScreen is implemented by ALPHA technology using two types of beads (donor and acceptor) based on the following principle: a luminescence signal is detected only when a biological interaction between a molecule bound to a donor bead and a molecule bound to an acceptor bead brings these two beads into close proximity. A photosensitizer in the donor bead excited by a laser converts the surrounding oxygen into excited singlet oxygen. The singlet oxygen diffuses around the donor bead and reaches the acceptor bead located close to it, thereby triggering a chemiluminescence reaction in the bead, which ultimately emits light. In the absence of an interaction between the molecules bound to the donor bead and the molecules bound to the acceptor bead, the singlet oxygen produced by the donor bead does not reach the acceptor bead. Therefore, no chemiluminescence reaction occurs.

その間の相互作用を観察する物質の一方(リガンド)を、センサーチップの金薄膜上に固定する。金薄膜とガラスとの境界面で全反射するように、センサーチップの裏側から光を当てる。結果として、反射光の一部に、反射強度が低下した部位(SPRシグナル)が形成される。その間の相互作用を観察する物質の他方(アナライト)を、センサーチップの表面上にインジェクトする。アナライトがリガンドに結合すると、固定化されているリガンド分子の質量が増加して、センサーチップ表面上の溶媒の屈折率が変化する。この屈折率の変化により、SPRシグナルの位置がシフトする(逆に、結合した分子が解離すると、シグナルは元の位置に戻る)。Biacoreシステムは、シフトの量、すなわち、センサーチップ表面上の質量変化を縦座標にプロットし、質量の時間依存的変化をアッセイデータとして表示する(センサーグラム)。センサーチップ表面上に捕捉されたリガンドに結合したアナライトの量(アナライトを相互作用させた前後でのセンサーグラム上でのレスポンスの変化の量)を、センサーグラムから決定することができる。しかし、結合量はリガンドの量にも依存するため、比較は、実質的に同じ量のリガンドの量を用いる条件下で行わなければならない。キネティクス、すなわち、会合速度定数(ka)および解離速度定数(kd)は、センサーグラムの曲線から決定することができ、一方、親和性(KD)は、これらの定数の比から決定することができる。阻害アッセイもまた、BIACORE法において好適に用いられる。阻害アッセイの例は、Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010に記載されている。 One of the substances (ligand) whose interaction is to be observed is immobilized on the gold film of the sensor chip. Light is applied from the back of the sensor chip so that total reflection occurs at the interface between the gold film and the glass. As a result, a region of reduced reflection intensity (SPR signal) is formed in part of the reflected light. The other substance (analyte) whose interaction is to be observed is injected onto the surface of the sensor chip. When the analyte binds to the ligand, the mass of the immobilized ligand molecule increases, changing the refractive index of the solvent on the sensor chip surface. This change in refractive index shifts the position of the SPR signal (conversely, when the bound molecule dissociates, the signal returns to its original position). The Biacore system plots the amount of shift, i.e., the change in mass on the sensor chip surface, on the ordinate, and displays the time-dependent change in mass as assay data (sensorgram). The amount of analyte bound to the ligand captured on the sensor chip surface (the amount of change in response on the sensorgram before and after the analyte is allowed to interact) can be determined from the sensorgram. However, the amount of binding also depends on the amount of ligand, so comparisons must be made under conditions using substantially the same amount of ligand. Kinetics, i.e., the association rate constant (ka) and dissociation rate constant (kd), can be determined from the curve of the sensorgram, while affinity (KD) can be determined from the ratio of these constants. Inhibition assays are also suitable for use in the BIACORE method. Examples of inhibition assays are described in Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010.

CD3とCD137(4-1BB)に同時には結合しない
上述の通り、CD3またはCD137のいずれかに結合するということは、CD3とCD137(4-1BB)に同時には結合しないということを含む。用語「CD3とCD137(4-1BB)に同時(at the same time)には結合しない」または「CD3とCD137(4-1BB)に同時(simultaneously)には結合しない」は、本開示の抗原結合部分または抗体可変領域が、CD3と結合している状態ではCD137に結合できず、逆に、抗原結合部分または抗体可変領域が、CD137と結合している状態ではCD3に結合できないことを意味する。ここで、「CD3とCD137に同時には結合しない」という句には、CD3を発現する細胞とCD137を発現する細胞とを架橋しないこと、または、各々が異なる細胞上で発現しているCD3とCD137に同時には結合しないことも含まれる。そのような抗体可変領域は、これらの機能を有している限り、特に限定されない。その例には、所望の抗原に結合するようにそのアミノ酸の一部を改変した、IgG型の抗体可変領域に由来する可変領域が含まれ得る。改変されるアミノ酸は、例えば、CD3またはCD137に結合する抗体可変領域における、その改変が抗原に対する結合を喪失させないアミノ酸から選択される。
As described above, binding to either CD3 or CD137 includes not binding to CD3 and CD137 (4-1BB) simultaneously. The term "not binding to CD3 and CD137 (4-1BB ) at the same time" or "not binding to CD3 and CD137 (4-1BB) simultaneously" means that the antigen-binding portion or antibody variable region of the present disclosure cannot bind to CD137 when bound to CD3, and conversely, the antigen-binding portion or antibody variable region cannot bind to CD3 when bound to CD137. Here, the phrase "not binding to CD3 and CD137 simultaneously" also includes not crosslinking cells expressing CD3 and cells expressing CD137, or not binding to CD3 and CD137 simultaneously, each of which is expressed on a different cell. Such antibody variable regions are not particularly limited as long as they have these functions. Examples of such antibodies include a variable region derived from an IgG antibody variable region, in which some of the amino acids have been modified to bind to a desired antigen. The modified amino acids are selected from, for example, amino acids in an antibody variable region that binds to CD3 or CD137, whose modification does not abolish the binding to the antigen.

ここで、「異なる細胞上で発現している」という句は、単に、抗原が別々の細胞上で発現していることを意味する。そのような細胞の組み合わせは、例えば、T細胞と別のT細胞のように同じ種類の細胞であってもよいし、またはT細胞とNK細胞のように異なる種類の細胞であってもよい。 Here, the phrase "expressed on different cells" simply means that the antigens are expressed on separate cells. Such a combination of cells may be of the same type of cell, such as, for example, a T cell and another T cell, or may be of different types of cell, such as, for example, a T cell and an NK cell.

本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子が、抗原結合時には「CD3またはCD137のいずれかに結合する」かどうかは、抗原結合分子がCD3およびCD137の両方に対する結合活性を有することを確認すること;次いで、この結合活性を有する可変領域を含む抗原結合分子に、CD3またはCD137のいずれかを予め結合させること;および次いで、上述の方法によってもう1つのものに対するその結合活性の有無を判定すること、によって確認することができる。あるいは、これはまた、ELISAプレート上またはセンサーチップ上に固定化されたCD3またはCD137のいずれかに対する抗原結合分子の結合が、溶液中へのもう1つのものの添加によって阻害されるかどうかを判定することによって、確認することもできる。いくつかの態様において、本開示の抗原結合分子のCD3またはCD137のいずれかに対する結合は、もう1つに対する抗原結合分子の結合によって、少なくとも50%、好ましくは60%以上、より好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、またはいっそうより好ましくは95%以上阻害される。 Whether or not the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, or kit of the present disclosure, or used in the method or use of the present disclosure, "binds to either CD3 or CD137" upon antigen binding can be confirmed by confirming that the antigen-binding molecule has binding activity to both CD3 and CD137; then, pre-binding either CD3 or CD137 to an antigen-binding molecule containing a variable region having this binding activity; and then determining the presence or absence of its binding activity to the other by the above-mentioned method. Alternatively, this can also be confirmed by determining whether the binding of the antigen-binding molecule to either CD3 or CD137 immobilized on an ELISA plate or a sensor chip is inhibited by the addition of the other in the solution. In some embodiments, the binding of the antigen-binding molecule of the present disclosure to either CD3 or CD137 is inhibited by the binding of the antigen-binding molecule to the other by at least 50%, preferably 60% or more, more preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, or even more preferably 95% or more.

1つの局面において、1つの抗原(例えば、CD3)を固定化している間に、CD3に対する抗原結合分子の結合の阻害を、先行技術において公知の方法(すなわち、ELISA、BIACOREなど)によって、他の抗原(例えば、CD137)の存在下で決定することができる。別の局面において、CD137を固定化している間に、CD137に対する抗原結合分子の結合の阻害もまた、CD3の存在下で決定することができる。上述の2つの局面のうちのいずれか1つが実施される時に、結合が、少なくとも50%、好ましくは60%以上、好ましくは70%以上、さらに好ましくは80%以上、さらに好ましくは90%以上、またはいっそうより好ましくは95%以上阻害されるならば、本開示の抗原結合分子は、CD3とCD137に同時には結合しないと判定される。 In one aspect, while one antigen (e.g., CD3) is immobilized, inhibition of binding of the antigen-binding molecule to CD3 can be determined in the presence of another antigen (e.g., CD137) by a method known in the prior art (i.e., ELISA, BIACORE, etc.). In another aspect, while CD137 is immobilized, inhibition of binding of the antigen-binding molecule to CD137 can also be determined in the presence of CD3. If, when any one of the above two aspects is performed, binding is inhibited by at least 50%, preferably 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, or even more preferably 95% or more, it is determined that the antigen-binding molecule of the present disclosure does not bind to CD3 and CD137 simultaneously.

いくつかの態様において、アナライトとしてインジェクトされる抗原の濃度は、固定化される他の抗原の濃度よりも少なくとも1倍、2倍、5倍、10倍、30倍、50倍、または100倍高い。 In some embodiments, the concentration of the antigen injected as the analyte is at least 1-fold, 2-fold, 5-fold, 10-fold, 30-fold, 50-fold, or 100-fold higher than the concentration of the other antigen that is immobilized.

好ましい様式において、アナライトとしてインジェクトされる抗原の濃度は、固定化される他の抗原の濃度よりも100倍高く、結合は、少なくとも80%阻害される。 In a preferred mode, the concentration of the antigen injected as the analyte is 100 times higher than the concentration of the other antigen immobilized, and binding is inhibited by at least 80%.

1つの態様において、抗原結合分子のCD137(固定化)結合活性についてのKD値に対する抗原結合分子のCD3(アナライト)結合活性についてのKD値の比(KD(CD3)/ KD(CD137))を算出し、CD137(固定化)濃度よりもKD値の比(KD(CD3)/ KD(CD137))の10倍、50倍、100倍、または200倍高い、CD3(アナライト)濃度を、上記の競合測定のために用いることができる。(例えば、KD値の比が0.1である場合は、1倍、5倍、10倍、または20倍高い濃度を選択することができる。さらに、KD値の比が10である場合は、100倍、500倍、1000倍、または2000倍高い濃度を選択することができる。) In one embodiment, the ratio of the KD value for the CD3 (analyte) binding activity of the antigen-binding molecule to the KD value for the CD137 (immobilized) binding activity of the antigen-binding molecule (KD(CD3)/KD(CD137)) is calculated, and a CD3 (analyte) concentration that is 10 times, 50 times, 100 times, or 200 times higher than the CD137 (immobilized) concentration can be used for the above competitive measurement. (For example, when the KD value ratio is 0.1, a concentration that is 1 times, 5 times, 10 times, or 20 times higher can be selected. Furthermore, when the KD value ratio is 10, a concentration that is 100 times, 500 times, 1000 times, or 2000 times higher can be selected.)

1つの局面において、1つの抗原(例えば、CD3)を固定化している間に、CD3に対する抗原結合分子の結合シグナルの減弱を、先行技術において公知の方法(すなわち、ELISA、ECLなど)によって、他の抗原(例えば、CD137)の存在下で決定することができる。別の局面において、CD137を固定化している間に、CD137に対する抗原結合分子の結合シグナルの減弱もまた、CD3の存在下で決定することができる。上述の2つの局面のうちのいずれか1つが実施される時に、結合シグナルが、少なくとも50%、好ましくは60%以上、好ましくは70%以上、さらに好ましくは80%以上、さらに好ましくは90%以上、またはいっそうより好ましくは95%以上減弱されるならば、本開示の抗原結合分子は、CD3とCD137に同時には結合しないと判定される。 In one aspect, while one antigen (e.g., CD3) is immobilized, the attenuation of the binding signal of the antigen-binding molecule to CD3 can be determined in the presence of another antigen (e.g., CD137) by a method known in the prior art (i.e., ELISA, ECL, etc.). In another aspect, while CD137 is immobilized, the attenuation of the binding signal of the antigen-binding molecule to CD137 can also be determined in the presence of CD3. If the binding signal is attenuated by at least 50%, preferably 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, or even more preferably 95% or more when any one of the above two aspects is performed, it is determined that the antigen-binding molecule of the present disclosure does not bind to CD3 and CD137 simultaneously.

いくつかの態様において、アナライトとしてインジェクトされる抗原の濃度は、固定化される他の抗原の濃度よりも少なくとも1倍、2倍、5倍、10倍、30倍、50倍、または100倍高い。 In some embodiments, the concentration of the antigen injected as the analyte is at least 1-fold, 2-fold, 5-fold, 10-fold, 30-fold, 50-fold, or 100-fold higher than the concentration of the other antigen that is immobilized.

好ましい様式において、アナライトとしてインジェクトされる抗原の濃度は、固定化される他の抗原の濃度よりも100倍高く、結合は、少なくとも80%阻害される。 In a preferred mode, the concentration of the antigen injected as the analyte is 100 times higher than the concentration of the other antigen immobilized, and binding is inhibited by at least 80%.

1つの態様において、抗原結合分子のCD137(固定化)結合活性についてのKD値に対する抗原結合分子のCD3(アナライト)結合活性についてのKD値の比(KD(CD3)/ KD(CD137))を算出し、CD137(固定化)濃度よりもKD値の比(KD(CD3)/ KD(CD137))の10倍、50倍、100倍、または200倍高い、CD3(アナライト)濃度を、上記の測定のために用いることができる。(例えば、KD値の比が0.1である場合は、1倍、5倍、10倍、または20倍高い濃度を選択することができる。さらに、KD値の比が10である場合は、100倍、500倍、1000倍、または2000倍高い濃度を選択することができる。) In one embodiment, the ratio of the KD value for the CD3 (analyte) binding activity of the antigen-binding molecule to the KD value for the CD137 (immobilized) binding activity of the antigen-binding molecule (KD(CD3)/KD(CD137)) is calculated, and a CD3 (analyte) concentration that is 10 times, 50 times, 100 times, or 200 times higher than the CD137 (immobilized) concentration can be used for the above measurement. (For example, when the KD value ratio is 0.1, a concentration that is 1 times, 5 times, 10 times, or 20 times higher can be selected. Furthermore, when the KD value ratio is 10, a concentration that is 100 times, 500 times, 1000 times, or 2000 times higher can be selected.)

具体的には、例えば、ECL法を用いる場合、ビオチン標識された被験抗原結合分子、sulfo-tag(Ru錯体)で標識されたCD3、および標識されていないCD137を準備する。被験抗原結合分子が、CD3およびCD137に結合することができ、CD3またはCD137のいずれか結合する場合、被験抗原結合分子と標識されたCD3との混合物をストレプトアビジン固定化プレート上に添加すること、およびその後の発光によって、sulfo-tagの発光シグナルが、標識されていないCD137の非存在下で検出される。対照的に、発光シグナルは、標識されていないCD137の存在下で減少する。この発光シグナルの減少を定量して、相対的な結合活性を決定することができる。この解析は、標識されたCD137および標識されていないCD3を用いて、同様に実施され得る。 Specifically, for example, when using the ECL method, a biotin-labeled test antigen-binding molecule, CD3 labeled with a sulfo-tag (Ru complex), and unlabeled CD137 are prepared. If the test antigen-binding molecule can bind to CD3 and CD137 and binds to either CD3 or CD137, a mixture of the test antigen-binding molecule and labeled CD3 is added onto a streptavidin-immobilized plate, and the luminescence signal of the sulfo-tag is detected in the absence of unlabeled CD137 by subsequent light emission. In contrast, the luminescence signal decreases in the presence of unlabeled CD137. This decrease in the luminescence signal can be quantified to determine the relative binding activity. This analysis can be performed similarly using labeled CD137 and unlabeled CD3.

ALPHAScreenの場合、被験抗原結合分子は、競合するCD137の非存在下でCD3と相互作用して、520~620 nmのシグナルを生成する。タグ付けされていないCD137は、被験抗原結合分子との相互作用についてCD3と競合する。競合の結果として引き起こされる蛍光の減少を定量し、それによって相対的な結合活性を決定することができる。スルホ-NHS-ビオチンなどを用いたポリペプチドのビオチン化は、当技術分野において公知である。例えば、CD3をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドとをインフレームで融合すること;および、結果として生じた融合遺伝子を、その発現が可能なベクターを保有する細胞などによって発現させ、その後グルタチオンカラムを用いて精製することを含む、適宜採用される方法によって、CD3をGSTでタグ付けすることができる。得られたシグナルは、好ましくは、例えば、非線形回帰解析に基づく一部位競合(one-site competition)モデルに適合したソフトウェアGRAPHPAD PRISM(GraphPad Software, Inc., San Diego)用いて解析される。この解析は、タグ付けされたCD137およびタグ付けされていないCD3を用いて、同様に解析され得る。 In the case of ALPHAScreen, the test antigen-binding molecule interacts with CD3 in the absence of competing CD137 to generate a signal at 520-620 nm. Untagged CD137 competes with CD3 for interaction with the test antigen-binding molecule. The decrease in fluorescence caused as a result of the competition can be quantified, thereby determining the relative binding activity. Biotinylation of polypeptides using sulfo-NHS-biotin or the like is known in the art. For example, CD3 can be tagged with GST by any suitable method, including fusing a polynucleotide encoding CD3 with a polynucleotide encoding GST in frame; and expressing the resulting fusion gene, such as by a cell carrying a vector capable of expressing it, followed by purification using a glutathione column. The resulting signal is preferably analyzed using, for example, the software GRAPHPAD PRISM (GraphPad Software, Inc., San Diego) fitted to a one-site competition model based on nonlinear regression analysis. This analysis can be performed similarly using tagged CD137 and untagged CD3.

あるいは、蛍光共鳴エネルギー移動(FRET)を用いた方法が用いられてもよい。FRETとは、励起エネルギーが、近接して位置する2つの蛍光分子の間で互いに、電子共鳴によって直接移動する現象である。FRETが起こると、ドナー(励起状態を有する蛍光分子)の励起エネルギーがアクセプター(ドナーの近くに位置するもう1つの蛍光分子)に移動するため、ドナーから放射される蛍光が消失し(正確には、蛍光の寿命が短縮し)、代わりにアクセプターから蛍光が放射される。この現象の使用によって、CD3とCD137に同時に結合するか否かを解析することができる。例えば、蛍光ドナーを有するCD3および蛍光アクセプターを有するCD137が、被験抗原結合分子に同時に結合すると、ドナーの蛍光は消失し、一方、アクセプターから蛍光が放射される。そのため、蛍光波長の変化が観察される。そのような抗体は、CD3とCD137に同時に結合するものと確認される。他方で、CD3、CD137、および被験抗原結合分子の混合が、CD3と結合した蛍光ドナーの蛍光波長を変化させないならば、この被験抗原結合分子は、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する抗原結合ドメインとみなすことができる。 Alternatively, a method using fluorescence resonance energy transfer (FRET) may be used. FRET is a phenomenon in which excitation energy is transferred directly between two fluorescent molecules located in close proximity to each other through electronic resonance. When FRET occurs, the excitation energy of the donor (a fluorescent molecule having an excited state) is transferred to the acceptor (another fluorescent molecule located near the donor), so that the fluorescence emitted from the donor is quenched (more precisely, the fluorescence lifetime is shortened) and instead, fluorescence is emitted from the acceptor. By using this phenomenon, it is possible to analyze whether or not an antibody binds to CD3 and CD137 simultaneously. For example, when CD3 having a fluorescent donor and CD137 having a fluorescent acceptor simultaneously bind to a test antigen-binding molecule, the fluorescence of the donor is quenched, while fluorescence is emitted from the acceptor. Therefore, a change in the fluorescence wavelength is observed. Such an antibody is confirmed to bind to CD3 and CD137 simultaneously. On the other hand, if mixing CD3, CD137, and the test antigen-binding molecule does not change the fluorescence wavelength of the fluorescent donor bound to CD3, the test antigen-binding molecule can bind to CD3 and CD137 and can be considered as an antigen-binding domain that binds to either CD3 or CD137.

例えば、ビオチン標識された被験抗原結合分子を、ドナービーズ上のストレプトアビジンに結合させ、一方、グルタチオンSトランスフェラーゼ(GST)でタグ付けされたCD3を、アクセプタービーズに結合させる。被験抗原結合分子は、競合する第2の抗原の非存在下でCD3と相互作用して、520~620 nmのシグナルを生成する。タグ付けされていない第2の抗原は、被験抗原結合分子との相互作用についてCD3と競合する。競合の結果として引き起こされる蛍光の減少を定量し、それによって相対的な結合活性を決定することができる。スルホ-NHS-ビオチンなどを用いたポリペプチドのビオチン化は、当技術分野において公知である。例えば、CD3をコードするポリヌクレオチドとGSTをコードするポリヌクレオチドとをインフレームで融合すること;および、結果として生じた融合遺伝子を、その発現が可能なベクターを保有する細胞などによって発現させ、その後グルタチオンカラムを用いて精製することを含む、適宜採用される方法によって、CD3をGSTでタグ付けすることができる。得られたシグナルは、好ましくは、例えば、非線形回帰解析に基づく一部位競合モデルに適合したソフトウェアGRAPHPAD PRISM(GraphPad Software, Inc., San Diego)を用いて解析される。 For example, a biotin-labeled test antigen-binding molecule is bound to streptavidin on donor beads, while CD3 tagged with glutathione S-transferase (GST) is bound to acceptor beads. The test antigen-binding molecule interacts with CD3 in the absence of a competing second antigen to generate a signal at 520-620 nm. The untagged second antigen competes with CD3 for interaction with the test antigen-binding molecule. The decrease in fluorescence caused as a result of the competition can be quantified, thereby determining the relative binding activity. Biotinylation of polypeptides using sulfo-NHS-biotin or the like is known in the art. For example, CD3 can be tagged with GST by any suitable method, including fusing a polynucleotide encoding CD3 with a polynucleotide encoding GST in frame; and expressing the resulting fusion gene, such as by a cell carrying a vector capable of expressing it, followed by purification using a glutathione column. The resulting signals are preferably analyzed using, for example, the software GRAPHPAD PRISM (GraphPad Software, Inc., San Diego) fitted to a one-site competition model based on nonlinear regression analysis.

タグ付けは、GSTタグ付けに限定されず、ヒスチジンタグ、MBP、CBP、Flagタグ、HAタグ、V5タグ、c-mycタグなどであるがそれらに限定されない、任意のタグで実施されてもよい。被験抗原結合分子のドナービーズへの結合は、ビオチン-ストレプトアビジン反応を用いた結合に限定されない。特に、被験抗原結合分子がFcを含む場合、可能な方法には、ドナービーズ上のプロテインAまたはプロテインGなどのFc認識タンパク質を介して被験抗原結合分子を結合させることが含まれる。 Tagging is not limited to GST tagging, and may be performed with any tag, including but not limited to histidine tag, MBP, CBP, Flag tag, HA tag, V5 tag, c-myc tag, etc. Binding of the test antigen-binding molecule to the donor beads is not limited to binding using a biotin-streptavidin reaction. In particular, when the test antigen-binding molecule contains Fc, possible methods include binding the test antigen-binding molecule via an Fc-recognizing protein, such as protein A or protein G, on the donor beads.

異なる細胞上で発現しているCD3とCD137に同時には結合することができない場合もまた、当技術分野において公知の方法によってアッセイすることができる。 The inability to simultaneously bind to CD3 and CD137 expressed on different cells can also be assayed by methods known in the art.

具体的には、CD3およびCD137に対する同時の結合を検出するためのECL-ELISAにおいて陽性であると確認されている被験抗原結合分子をまた、CD3を発現する細胞およびCD137を発現する細胞と混合する。被験抗原結合分子は、抗原結合分子およびこれらの細胞が互いに同時に結合しない限り、異なる細胞上で発現しているCD3とCD137に同時には結合することができないことが示され得る。このアッセイは、例えば、細胞ベースのECL-ELISAによって実施することができる。CD3を発現する細胞を、予めプレート上に固定化する。被験抗原結合分子をそれに結合させた後に、CD137を発現する細胞をプレートに添加する。CD137を発現する細胞上でのみ発現している異なる抗原は、この抗原に対するsulfo-tagで標識された抗体を用いて検出される。抗原結合分子が、それぞれ2つの細胞上で発現している2つの抗原に同時に結合する場合は、シグナルが観察される。抗原結合分子がこれらの抗原に同時には結合しない場合は、いかなるシグナルも観察されない。 Specifically, a test antigen-binding molecule that has been confirmed to be positive in an ECL-ELISA for detecting simultaneous binding to CD3 and CD137 is also mixed with cells expressing CD3 and cells expressing CD137. It can be shown that the test antigen-binding molecule cannot simultaneously bind to CD3 and CD137 expressed on different cells unless the antigen-binding molecule and these cells simultaneously bind to each other. This assay can be performed, for example, by cell-based ECL-ELISA. Cells expressing CD3 are immobilized on a plate in advance. After the test antigen-binding molecule is bound to it, cells expressing CD137 are added to the plate. A different antigen expressed only on cells expressing CD137 is detected using an antibody labeled with a sulfo-tag against this antigen. If the antigen-binding molecule simultaneously binds to two antigens expressed on two cells, respectively, a signal is observed. If the antigen-binding molecule does not simultaneously bind to these antigens, no signal is observed.

あるいは、このアッセイは、ALPHAScreen法によって実施されてもよい。被験抗原結合分子を、ドナービーズに結合したCD3を発現する細胞およびアクセプタービーズに結合したCD137を発現する細胞と混合する。抗原結合分子が、それぞれ2つの細胞上で発現している2つの抗原に同時に結合する場合は、シグナルが観察される。抗原結合分子がこれらの抗原に同時には結合しない場合は、シグナルは観察されない。 Alternatively, this assay may be performed by the ALPHAScreen method. A test antigen-binding molecule is mixed with cells expressing CD3 bound to donor beads and cells expressing CD137 bound to acceptor beads. If the antigen-binding molecule simultaneously binds to two antigens expressed on two cells, respectively, a signal is observed. If the antigen-binding molecule does not simultaneously bind to these antigens, no signal is observed.

あるいは、このアッセイは、Octet相互作用解析法によって実施されてもよい。最初に、ペプチドタグを付加したCD3を発現する細胞を、ペプチドタグを認識するバイオセンサーに結合させる。CD137を発現する細胞および被験抗原結合分子を、ウェルに入れて、相互作用について解析する。抗原結合分子が、それぞれ2つの細胞上で発現している2つの抗原に同時に結合する場合は、被験抗原結合分子およびCD137を発現する細胞のバイオセンサーへの結合によって引き起こされる大きな波長シフトが観察される。抗原結合分子がこれらの抗原に同時には結合しない場合は、被験抗原結合分子のみのバイオセンサーへの結合によって引き起こされる小さな波長シフトが観察される。 Alternatively, this assay may be performed by the Octet interaction analysis method. First, cells expressing peptide-tagged CD3 are bound to a biosensor that recognizes the peptide tag. Cells expressing CD137 and the test antigen-binding molecule are placed in a well and analyzed for interaction. If the antigen-binding molecule simultaneously binds to two antigens expressed on two cells, respectively, a large wavelength shift caused by the binding of the test antigen-binding molecule and the cells expressing CD137 to the biosensor is observed. If the antigen-binding molecule does not simultaneously bind to these antigens, a small wavelength shift caused by the binding of only the test antigen-binding molecule to the biosensor is observed.

結合活性に基づくこれらの方法の代わりに、生物活性に基づくアッセイが実施されてもよい。例えば、CD3を発現する細胞およびCD137を発現する細胞を、被験抗原結合分子と混合して培養する。それぞれ2つの細胞上で発現している2つの抗原は、抗原結合分子がこれらの2つの抗原に同時に結合する場合は、被験抗原結合分子を介して相互に活性化される。そのため、抗原のそれぞれの下流のリン酸化レベルの増加などの活性化シグナルの変化を、検出することができる。あるいは、サイトカインの産生が、活性化の結果として誘導される。そのため、産生されるサイトカインの量を測定し、それによって、2つの細胞に同時に結合するか否かを確認することができる。あるいは、CD137を発現する細胞に対する細胞傷害活性が、活性化の結果として誘導される。あるいは、レポーター遺伝子の発現が、活性化の結果として、CD137またはCD3のシグナル伝達経路の下流で活性化されるプロモーターによって誘導される。そのため、細胞傷害活性または産生されるレポータータンパク質の量を測定し、それによって、2つの細胞に同時に結合するか否かを確認することができる。 Instead of these methods based on binding activity, an assay based on biological activity may be performed. For example, cells expressing CD3 and cells expressing CD137 are mixed and cultured with a test antigen-binding molecule. Two antigens expressed on the two cells, respectively, are mutually activated via the test antigen-binding molecule when the antigen-binding molecule simultaneously binds to these two antigens. Therefore, a change in activation signal, such as an increase in phosphorylation level downstream of each of the antigens, can be detected. Alternatively, the production of cytokines is induced as a result of activation. Therefore, the amount of cytokines produced can be measured, and thereby it can be confirmed whether or not they bind to the two cells simultaneously. Alternatively, cytotoxic activity against cells expressing CD137 is induced as a result of activation. Alternatively, the expression of a reporter gene is induced by a promoter that is activated downstream of the signaling pathway of CD137 or CD3 as a result of activation. Therefore, it can be confirmed whether or not they bind to the two cells simultaneously by measuring the cytotoxic activity or the amount of reporter protein produced.

本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、CD3およびCD137への抗原結合分子の結合は同時ではない(すなわち、CD3とCD137に同時には結合しない)ことから、同じ抗原結合分子による、異なる免疫細胞(例えば、T細胞)上に発現しているCD3および/またはCD137への同時結合は生じず、それによって、T細胞上に発現しているCD3および第2の分子(例えば、CD137)に同時に結合することができる従来の多重特異性抗原結合分子をin vivoで投与した場合に有害反応を担うと考えられる異なる免疫細胞間の望ましくない架橋を原因とする毒性が回避される。多重特異性抗原結合分子をin vivoで投与した場合の毒性は、サイトカインの産生等により測定することができる。毒性が低いとは、対照となる多重特異性抗体と比較した場合に、CLDN6非依存的なサイトカインの産生などの免疫活性化誘導がない場合のことをいう。 The multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, or kit of the present disclosure, or used in the method or use of the present disclosure, does not bind to CD3 and CD137 simultaneously (i.e., does not bind to CD3 and CD137 simultaneously), so that the same antigen-binding molecule does not bind to CD3 and/or CD137 expressed on different immune cells (e.g., T cells) simultaneously, thereby avoiding toxicity caused by undesirable cross-linking between different immune cells that is thought to be responsible for adverse reactions when a conventional multispecific antigen-binding molecule that can simultaneously bind to CD3 and a second molecule (e.g., CD137) expressed on T cells is administered in vivo. The toxicity of the multispecific antigen-binding molecule when administered in vivo can be measured by cytokine production, etc. Low toxicity refers to the absence of immune activation induction, such as CLDN6-independent cytokine production, compared to a control multispecific antibody.

Fab分子
「Fab分子」は、免疫グロブリンの重鎖のVHおよびCH1ドメイン(「Fab重鎖」)ならびに軽鎖のVLおよびCLドメイン(「Fab軽鎖」)からなるタンパク質を指す。
Fab Molecule "Fab molecule" refers to a protein consisting of the VH and CH1 domains of an immunoglobulin heavy chain (a "Fab heavy chain") and the VL and CL domains of a light chain (a "Fab light chain").

融合される
「融合される」は、構成成分(例えば、Fab分子およびFcドメインサブユニット)が、直接的に、または1つもしくは複数のペプチドリンカーを介して、ペプチド結合によって連結されることを意味する。
Fused "Fused" means that the components (e.g., a Fab molecule and an Fc domain subunit) are linked by a peptide bond, either directly or via one or more peptide linkers.

「クロスオーバー」Fab
「クロスオーバー」Fab分子(「Crossfab」とも呼ばれる)は、Fab重鎖およびFab軽鎖の可変領域または定常領域のいずれかが交換されている、Fab分子を意味し、すなわち、クロスオーバーFab分子は、軽鎖可変領域および重鎖定常領域で構成されたペプチド鎖と、重鎖可変領域および軽鎖定常領域で構成されたペプチド鎖とを含む。明確にするために記すと、Fab軽鎖およびFab重鎖の可変領域が交換されているクロスオーバーFab分子では、重鎖定常領域を含むペプチド鎖が、本明細書において、クロスオーバーFab分子の「重鎖」と称される。反対に、Fab軽鎖およびFab重鎖の定常領域が交換されているクロスオーバーFab分子では、重鎖可変領域を含むペプチド鎖が、本明細書において、クロスオーバーFab分子の「重鎖」と称される。
"Crossover" Fab
A "crossover" Fab molecule (also called "Crossfab") refers to a Fab molecule in which either the variable or constant regions of the Fab heavy and Fab light chains are exchanged, i.e., the crossover Fab molecule comprises a peptide chain composed of a light chain variable region and a heavy chain constant region, and a peptide chain composed of a heavy chain variable region and a light chain constant region. For clarity, in a crossover Fab molecule in which the variable regions of the Fab light and Fab heavy chains are exchanged, the peptide chain comprising the heavy chain constant region is referred to herein as the "heavy chain" of the crossover Fab molecule. Conversely, in a crossover Fab molecule in which the constant regions of the Fab light and Fab heavy chains are exchanged, the peptide chain comprising the heavy chain variable region is referred to herein as the "heavy chain" of the crossover Fab molecule.

「従来の」Fab
それに対して、「従来の」Fab分子は、その天然の形式でのFab分子、すなわち、重鎖の可変領域および定常領域で構成された重鎖(VH-CH1)、ならびに軽鎖の可変領域および定常領域で構成された軽鎖(VL-CL)を含むFab分子を意味する。用語「免疫グロブリン分子」は、天然に存在する抗体の構造を有するタンパク質を指す。例えば、IgGクラスの免疫グロブリンは、ジスルフィド結合で結合された2つの軽鎖および2つの重鎖で構成された、約150,000ダルトンのヘテロ四量体糖タンパク質である。各重鎖は、N末端からC末端へ、可変重鎖ドメインまたは重鎖可変ドメインとも呼ばれる可変領域(VH)と、その後に続く重鎖定常領域とも呼ばれる3種類の定常ドメイン(CH1、CH2、およびCH3)とを有する。同様に、各軽鎖は、N末端からC末端へ、可変軽鎖ドメインまたは軽鎖可変ドメインとも呼ばれる可変領域(VL)と、その後に続く軽鎖定常領域とも呼ばれる定常軽鎖(CL)ドメインとを有する。免疫グロブリンの重鎖は、α(IgA)、δ(IgD)、ε(IgE)、γ(IgG)、またはμ(IgM)と呼ばれる5つのタイプのうちの1つに割り当てられてもよく、それらの一部は、サブタイプ、例えば、γ1(IgG1)、γ2(IgG2)、γ3(IgG3)、γ4(IgG4)、α1(IgA1)、およびα2(IgA2)にさらに分類されてもよい。免疫グロブリンの軽鎖は、その定常ドメインのアミノ酸配列に基づき、κおよびλと呼ばれる2つのタイプのうちの1つに割り当てられもよい。免疫グロブリンは、免疫グロブリンヒンジ領域を介して連結された、2つのFab分子およびFcドメインから本質的になる。
"Traditional" Fab
In contrast, a "conventional" Fab molecule refers to a Fab molecule in its native form, i.e., a Fab molecule that includes a heavy chain (VH-CH1) composed of the variable and constant regions of the heavy chain, and a light chain (VL-CL) composed of the variable and constant regions of the light chain. The term "immunoglobulin molecule" refers to a protein that has the structure of a naturally occurring antibody. For example, immunoglobulins of the IgG class are heterotetrameric glycoproteins of about 150,000 daltons, composed of two light chains and two heavy chains linked by disulfide bonds. Each heavy chain has, from the N-terminus to the C-terminus, a variable region (VH), also called the variable heavy chain domain or the heavy chain variable domain, followed by three constant domains (CH1, CH2, and CH3), also called the heavy chain constant region. Similarly, each light chain has, from the N-terminus to the C-terminus, a variable region (VL), also called the variable light chain domain or the light chain variable domain, followed by a constant light chain (CL) domain, also called the light chain constant region. The heavy chains of immunoglobulins may be assigned to one of five types, called α (IgA), δ (IgD), ε (IgE), γ (IgG), or μ (IgM), some of which may be further classified into subtypes, e.g., γ1 (IgG1), γ2 (IgG2), γ3 (IgG3), γ4 (IgG4), α1 (IgA1), and α2 (IgA2). The light chains of immunoglobulins may be assigned to one of two types, called κ and λ, based on the amino acid sequence of their constant domains. Immunoglobulins essentially consist of two Fab molecules and an Fc domain linked via an immunoglobulin hinge region.

親和性
「親和性」は、分子(例えば、抗原結合分子または抗体)の結合部位1個と、分子の結合パートナー(例えば、抗原)との間の、非共有結合的な相互作用の合計の強度を指す。別段示さない限り、本明細書で用いられる「結合親和性」は、ある結合対のメンバー(例えば、抗原結合分子と抗原、または抗体と抗原)の間の1:1相互作用を反映する、固有の結合親和性を指す。分子Xの、そのパートナーYに対する親和性は、一般的に、解離速度定数と会合速度定数(それぞれkoffおよびkon)との比である、解離定数(KD)により表すことができる。したがって、速度定数の比が同じままである限り、等価の親和性は異なる速度定数を含んでもよい。親和性は、本明細書に記載のものを含む、当技術分野において公知の確立した方法によって測定することができる。親和性を測定するための具体的な方法は、表面プラズモン共鳴(SPR)である。
Affinity "Affinity" refers to the strength of the total non-covalent interactions between one binding site of a molecule (e.g., an antigen-binding molecule or an antibody) and the binding partner of the molecule (e.g., an antigen). Unless otherwise indicated, "binding affinity" as used herein refers to the inherent binding affinity that reflects a 1:1 interaction between members of a binding pair (e.g., an antigen-binding molecule and an antigen, or an antibody and an antigen). The affinity of a molecule X for its partner Y can generally be expressed by the dissociation constant (KD), which is the ratio of the dissociation rate constant to the association rate constant (koff and kon, respectively). Thus, equivalent affinities may involve different rate constants, as long as the ratio of the rate constants remains the same. Affinity can be measured by established methods known in the art, including those described herein. A specific method for measuring affinity is surface plasmon resonance (SPR).

親和性を決定する方法
特定の態様において、本明細書で提供される抗原結合分子または抗体は、その抗原に対して、≦1μM、≦120nM、≦100nM、≦80nM、≦70nM、≦50nM、≦40nM、≦30nM、≦20nM、≦10nM、≦2nM、≦1nM、≦0.1nM、≦0.01nMまたは≦0.001nM(例えば、10-8M以下、10-8M~10-13M、10-9M~10-13M)の解離定数 (KD) を有する。特定の態様において、CD3、CD137、またはCLDN6に対する、抗体/抗原結合分子のKD値は、1~40、1~50、1~70、1~80、30~50、30~70、30~80、40~70、40~80、または60~80nMの範囲内に入る。
Methods for Determining Affinity In certain embodiments, an antigen-binding molecule or antibody provided herein has a dissociation constant (KD) for its antigen of ≦1 μM, ≦120 nM, ≦100 nM, ≦80 nM, ≦70 nM, ≦50 nM, ≦40 nM, ≦30 nM, ≦20 nM, ≦10 nM, ≦2 nM, ≦1 nM, ≦0.1 nM, ≦0.01 nM or ≦0.001 nM (e.g., 10 −8 M or less, 10 −8 M to 10 −13 M, 10 −9 M to 10 −13 M). In certain embodiments, the KD value of the antibody/antigen binding molecule for CD3, CD137, or CLDN6 falls within the range of 1-40, 1-50, 1-70, 1-80, 30-50, 30-70, 30-80, 40-70, 40-80, or 60-80 nM.

1つの態様において、KDは、放射性標識抗原結合測定法 (radiolabeled antigen binding assay: RIA) によって測定される。1つの態様において、RIAは、目的の抗体のFabバージョンおよびその抗原を用いて実施される。例えば、抗原に対するFabの溶液中結合親和性は、非標識抗原の漸増量系列の存在下で最小濃度の (125I) 標識抗原によりFabを平衡化させ、次いで結合した抗原を抗Fab抗体でコーティングされたプレートにより捕捉することによって測定される。(例えば、Chen et al., J. Mol. Biol. 293:865-881(1999) を参照のこと)。測定条件を構築するために、MICROTITER(登録商標)マルチウェルプレート (Thermo Scientific) を50mM炭酸ナトリウム (pH9.6) 中5μg/mlの捕捉用抗Fab抗体 (Cappel Labs) で一晩コーティングし、その後に室温(およそ23℃)で2~5時間、PBS中2% (w/v) ウシ血清アルブミンでブロックする。非吸着プレート (Nunc #269620) において、100 pMまたは26 pMの [125I]-抗原を、(例えば、Presta et al., Cancer Res. 57:4593-4599 (1997) における抗VEGF抗体、Fab-12の評価と同じように)目的のFabの段階希釈物と混合する。次いで、目的のFabを一晩インキュベートするが、このインキュベーションは、平衡が確実に達成されるよう、より長時間(例えば、約65時間)継続され得る。その後、混合物を、室温でのインキュベーション(例えば、1時間)のために捕捉プレートに移す。次いで溶液を除去し、プレートをPBS中0.1%のポリソルベート20(TWEEN-20(登録商標))で8回洗浄する。プレートが乾燥したら、150μl/ウェルのシンチラント(MICROSCINT-20(商標)、Packard)を添加し、TOPCOUNT(商標)ガンマカウンター (Packard) においてプレートを10分間カウントする。最大結合の20%以下を与える各Fabの濃度を、競合結合アッセイにおいて使用するために選択する。 In one embodiment, KD is measured by radiolabeled antigen binding assay (RIA). In one embodiment, RIA is performed using a Fab version of the antibody of interest and its antigen. For example, the solution binding affinity of a Fab to an antigen is measured by equilibrating the Fab with a minimal concentration of ( 125 I)-labeled antigen in the presence of an increasing series of unlabeled antigens, and then capturing the bound antigen with a plate coated with an anti-Fab antibody. (See, e.g., Chen et al., J. Mol. Biol. 293:865-881(1999)). To establish the measurement conditions, MICROTITER® multi-well plates (Thermo Scientific) are coated overnight with 5 μg/ml of capture anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and then blocked with 2% (w/v) bovine serum albumin in PBS for 2-5 hours at room temperature (approximately 23° C.). In a non-adsorbent plate (Nunc #269620), 100 pM or 26 pM of [ 125 I]-antigen is mixed with serial dilutions of the Fab of interest (e.g., as in the evaluation of the anti-VEGF antibody, Fab-12, in Presta et al., Cancer Res. 57:4593-4599 (1997)). The Fab of interest is then incubated overnight, although the incubation can be continued for longer (e.g., about 65 hours) to ensure that equilibrium is reached. The mixture is then transferred to a capture plate for incubation (e.g., 1 hour) at room temperature. The solution is then removed and the plate is washed 8 times with 0.1% polysorbate 20 (TWEEN-20®) in PBS. Once the plate has dried, 150 μl/well of scintillant (MICROSCINT-20™, Packard) is added and the plate is counted for 10 minutes in a TOPCOUNT™ gamma counter (Packard). Concentrations of each Fab that give 20% or less of maximal binding are selected for use in competitive binding assays.

別の態様によれば、Kdは、BIACORE(登録商標)表面プラズモン共鳴アッセイを用いて測定される。例えば、BIACORE(登録商標)-2000またはBIACORE(登録商標)-3000 (BIAcore, Inc., Piscataway, NJ) を用いる測定法が、およそ10反応単位 (response unit: RU) の抗原が固定されたCM5チップを用いて25℃で実施される。1つの態様において、カルボキシメチル化デキストランバイオセンサーチップ (CM5、BIACORE, Inc.) は、供給元の指示に従いN-エチル-N'-(3-ジメチルアミノプロピル)-カルボジイミドヒドロクロリド (EDC) およびN-ヒドロキシスクシンイミド (NHS) を用いて活性化される。抗原は、およそ10反応単位 (RU) のタンパク質の結合を達成するよう、5μl/分の流速で注入される前に、10mM酢酸ナトリウム、pH4.8を用いて5μg/ml(およそ0.2μM)に希釈される。抗原の注入後、未反応基をブロックするために1Mエタノールアミンが注入される。キネティクスの測定のために、25℃、およそ25μl/分の流速で、0.05%ポリソルベート20(TWEEN-20(商標))界面活性剤含有PBS (PBST) 中のFabの2倍段階希釈物 (0.78nM~500nM) が注入される。会合速度 (kon) および解離速度 (koff) は、単純な1対1ラングミュア結合モデル(BIACORE(登録商標)評価ソフトウェアバージョン3.2)を用いて、会合および解離のセンサーグラムを同時にフィッティングすることによって計算される。平衡解離定数 (Kd) は、koff/kon比として計算される。例えば、Chen et al., J. Mol. Biol. 293:865-881 (1999) を参照のこと。上記の表面プラズモン共鳴アッセイによってオン速度が106M-1s-1を超える場合、オン速度は、分光計(例えばストップフロー式分光光度計 (Aviv Instruments) または撹拌キュベットを用いる8000シリーズのSLM-AMINCO(商標)分光光度計 (ThermoSpectronic))において測定される、漸増濃度の抗原の存在下でのPBS、pH7.2中20nMの抗抗原抗体(Fab形態)の25℃での蛍光発光強度(励起=295nm;発光=340nm、バンドパス16nm)の増加または減少を測定する蛍光消光技術を用いることによって決定され得る。 In another embodiment, Kd is measured using a BIACORE® surface plasmon resonance assay. For example, measurements using a BIACORE®-2000 or BIACORE®-3000 (BIAcore, Inc., Piscataway, NJ) are performed at 25° C. using a CM5 chip with approximately 10 response units (RU) of antigen immobilized. In one embodiment, a carboxymethylated dextran biosensor chip (CM5, BIACORE, Inc.) is activated with N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's instructions. The antigen is diluted to 5 μg/ml (approximately 0.2 μM) with 10 mM sodium acetate, pH 4.8, before being injected at a flow rate of 5 μl/min to achieve approximately 10 response units (RU) of protein binding. After injection of antigen, 1 M ethanolamine is injected to block unreacted groups. For kinetic measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS containing 0.05% polysorbate 20 (TWEEN-20™) detergent (PBST) at 25° C. and a flow rate of approximately 25 μl/min. Association rates (k on ) and dissociation rates (k off ) are calculated by simultaneously fitting the association and dissociation sensorgrams with a simple one-to-one Langmuir binding model (BIACORE® Evaluation Software Version 3.2). The equilibrium dissociation constant (Kd) is calculated as the ratio k off /k on . See, e.g., Chen et al., J. Mol. Biol. 293:865-881 (1999). If the on-rate exceeds 10 6 M -1 s -1 by the surface plasmon resonance assay described above, the on-rate can be determined by using a fluorescence quenching technique to measure the increase or decrease in fluorescence emission intensity (excitation = 295 nm; emission = 340 nm, band pass 16 nm) of 20 nM anti-antigen antibody (Fab form) in PBS, pH 7.2 at 25°C in the presence of increasing concentrations of antigen, as measured in a spectrometer (e.g. a stopped-flow spectrophotometer (Aviv Instruments) or an 8000 series SLM-AMINCO (trademark) spectrophotometer (ThermoSpectronic) using a stirred cuvette).

抗原結合分子または抗体の親和性を測定する上記の方法に従って、当業者は、様々な抗原に対する他の抗原結合分子または抗体の親和性測定を行うことができる。 Following the above-described methods for measuring the affinity of an antigen-binding molecule or antibody, one skilled in the art can perform affinity measurements of other antigen-binding molecules or antibodies for various antigens.

抗体
本明細書で用語「抗体」は、最も広い意味で使用され、所望の抗原結合活性を示す限りは、これらに限定されるものではないが、モノクローナル抗体、ポリクローナル抗体、多重特異性抗体(例えば、二重特異性抗体、三重特異性抗体)および抗体断片を含む、種々の抗体構造を包含する。
Antibodies The term "antibody" is used herein in the broadest sense and encompasses a variety of antibody structures, including, but not limited to, monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies, trispecific antibodies), and antibody fragments, so long as they exhibit the desired antigen-binding activity.

特定の態様において、本明細書において記載される多重特異性抗体は、異なる種のCD3、CD137、またはCLDN6の間で保存されているCD3、CD137、またはCLDN6のエピトープに結合する。特定の態様において、本開示の多重特異性抗体は、三重特異性抗体であり、3種類の異なる抗原に特異的に結合することができる抗体である。つまり、特定の態様において、本開示の多重特異性抗体は、CD3およびCD137に結合することができ、CD3またはCD137のいずれかに結合する、すなわち、CD3とCD137の両方の抗原に同時には結合せず、かつCLDN6に特異的に結合することができる、三重特異性抗体である。 In certain embodiments, the multispecific antibodies described herein bind to epitopes of CD3, CD137, or CLDN6 that are conserved among CD3, CD137, or CLDN6 of different species. In certain embodiments, the multispecific antibodies of the present disclosure are trispecific antibodies, antibodies that can specifically bind to three different antigens. That is, in certain embodiments, the multispecific antibodies of the present disclosure are trispecific antibodies that can bind to CD3 and CD137, and can bind to either CD3 or CD137, i.e., do not simultaneously bind to both CD3 and CD137 antigens, and can specifically bind to CLDN6.

抗体のクラス
抗体の「クラス」は、抗体の重鎖に備わる定常ドメインまたは定常領域のタイプを指す。抗体には5つの主要なクラスがある:IgA、IgD、IgE、IgG、およびIgMである。そして、このうちいくつかはさらにサブクラス(アイソタイプ)に分けられてもよい。例えば、IgG1、IgG2、IgG3、IgG4、IgA1、およびIgA2である。異なるクラスの免疫グロブリンに対応する重鎖定常ドメインを、それぞれ、α、δ、ε、γ、およびμと呼ぶ。
Antibody ClassesAn antibody "class" refers to the type of constant domain or constant region present in the antibody's heavy chain. There are five major classes of antibodies: IgA, IgD, IgE, IgG, and IgM. Some of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. The heavy chain constant domains corresponding to the different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively.

別段示さない限り、軽鎖定常領域中のアミノ酸残基は、本明細書ではKabatらに従ってナンバリングされ、重鎖定常領域中のアミノ酸残基のナンバリングは、Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991に記載されているような、EUインデックスとも呼ばれる、EUナンバリングシステムに従う。 Unless otherwise indicated, amino acid residues in the light chain constant region are numbered herein according to Kabat et al., and numbering of amino acid residues in the heavy chain constant region is according to the EU numbering system, also known as the EU index, as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991.

フレームワーク
「フレームワーク」または「FR」は、超可変領域 (HVR) 残基以外の、可変ドメイン残基を指す。可変ドメインのFRは、通常4つのFRドメイン:FR1、FR2、FR3、およびFR4からなる。それに応じて、HVRおよびFRの配列は、通常次の順序でVH(またはVL)に現れる:FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4。
Framework "Framework" or "FR" refers to variable domain residues other than the hypervariable region (HVR) residues. The FR of a variable domain typically consists of four FR domains: FR1, FR2, FR3, and FR4. Accordingly, the sequences of the HVRs and FRs typically appear in the VH (or VL) in the following order: FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4.

ヒトコンセンサスフレームワーク
「ヒトコンセンサスフレームワーク」は、ヒト免疫グロブリンVLまたはVHフレームワーク配列の選択群において最も共通して生じるアミノ酸残基を示すフレームワークである。通常、ヒト免疫グロブリンVLまたはVH配列の選択は、可変ドメイン配列のサブグループからである。通常、配列のサブグループは、Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda MD (1991), vols. 1-3におけるサブグループである。1つの態様において、VLについて、サブグループは上記のKabatらによるサブグループκIである。1つの態様において、VHについて、サブグループは上記のKabatらによるサブグループIIIである。
Human consensus framework "Human consensus framework" is a framework that represents the most commonly occurring amino acid residues in a selection of human immunoglobulin VL or VH framework sequences. Usually, the selection of human immunoglobulin VL or VH sequences is from a subgroup of variable domain sequences. Usually, the subgroup of sequences is a subgroup in Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda MD (1991), vols. 1-3. In one embodiment, for VL, the subgroup is subgroup kappa I according to Kabat et al., supra. In one embodiment, for VH, the subgroup is subgroup III according to Kabat et al., supra.

キメラ抗体
用語「キメラ」抗体は、重鎖および/または軽鎖の一部分が特定の供給源または種に由来する一方で、重鎖および/または軽鎖の残りの部分が異なった供給源または種に由来する抗体を指す。同様に、用語「キメラ抗体可変ドメイン」は、重鎖および/または軽鎖可変領域の一部分が特定の供給源または種に由来する一方で、重鎖および/または軽鎖可変領域の残りの部分が異なった供給源または種に由来する抗体可変領域を指す。
Chimeric Antibodies The term "chimeric" antibody refers to an antibody in which a portion of the heavy and/or light chain is derived from a particular source or species, while the remaining portions of the heavy and/or light chain are derived from a different source or species. Similarly, the term "chimeric antibody variable domain" refers to an antibody variable region in which a portion of the heavy and/or light chain variable region is derived from a particular source or species, while the remaining portions of the heavy and/or light chain variable region are derived from a different source or species.

ヒト化抗体
「ヒト化」抗体は、非ヒトHVRからのアミノ酸残基およびヒトFRからのアミノ酸残基を含む、キメラ抗体を指す。ある態様では、ヒト化抗体は、少なくとも1つ、典型的には2つの可変ドメインの実質的にすべてを含み、当該可変領域においては、すべてのもしくは実質的にすべてのHVR(例えばCDR)は非ヒト抗体のものに対応し、かつ、すべてのもしくは実質的にすべてのFRはヒト抗体のものに対応する。ヒト化抗体は、任意で、ヒト抗体に由来する抗体定常領域の少なくとも一部分を含んでもよい。抗体(例えば、非ヒト抗体)の「ヒト化された形態」は、ヒト化を経た抗体を指す。「ヒト化抗体可変領域」は、ヒト化抗体の可変領域を指す。
Humanized Antibody A "humanized" antibody refers to a chimeric antibody that contains amino acid residues from non-human HVRs and amino acid residues from human FRs. In certain embodiments, a humanized antibody contains substantially all of at least one, and typically two, variable domains, in which all or substantially all HVRs (e.g., CDRs) correspond to those of a non-human antibody, and all or substantially all FRs correspond to those of a human antibody. A humanized antibody may optionally contain at least a portion of an antibody constant region derived from a human antibody. A "humanized form" of an antibody (e.g., a non-human antibody) refers to an antibody that has undergone humanization. A "humanized antibody variable region" refers to the variable region of a humanized antibody.

ヒト抗体
「ヒト抗体」は、ヒトもしくはヒト細胞によって産生された抗体またはヒト抗体レパートリーもしくは他のヒト抗体コード配列を用いる非ヒト供給源に由来する抗体のアミノ酸配列に対応するアミノ酸配列を備える抗体である。このヒト抗体の定義は、非ヒトの抗原結合残基を含むヒト化抗体を、明確に除外するものである。「ヒト抗体可変領域」は、ヒト抗体の可変領域を指す。
Human antibody A "human antibody" is an antibody with an amino acid sequence that corresponds to that of an antibody produced by a human or human cell, or from a non-human source that uses a human antibody repertoire or other human antibody coding sequence. This definition of a human antibody specifically excludes humanized antibodies, which contain non-human antigen-binding residues. "Human antibody variable region" refers to the variable region of a human antibody.

ポリヌクレオチド(核酸)
本明細書で相互に交換可能に使用される「ポリヌクレオチド」または「核酸」は、任意の長さのヌクレオチドのポリマーを指し、DNAおよびRNAを含む。ヌクレオチドは、デオキシリボヌクレオチド、リボヌクレオチド、修飾ヌクレオチドもしくは塩基、および/またはそれらのアナログ、またはDNAもしくはRNAポリメラーゼによってまたは合成反応によってポリマーに組み込まれ得る任意の物質であり得る。ポリヌクレオチドは、メチル化ヌクレオチドおよびそれらのアナログなどの修飾ヌクレオチドを含み得る。ヌクレオチドの配列に、非ヌクレオチド成分が割り込んでいてもよい。ポリヌクレオチドは、標識へのコンジュゲーションなどの、合成後になされる修飾を含み得る。他のタイプの修飾は、例えば、「キャップ」、1つまたは複数の天然に存在するヌクレオチドとアナログとの置換、ヌクレオチド間修飾、例えば、非荷電連結(例えば、メチルホスホネート、ホスホトリエステル、ホスホロアミド酸、カルバメート等)および荷電連結(例えば、ホスホロチオエート、ホスホロジチオエート等)を伴うもの、例えばタンパク質(例えば、ヌクレアーゼ、毒素、抗体、シグナルペプチド、ポリ-L-リジン等)などのペンダント部分を含むもの、インターカレート剤(例えば、アクリジン、ソラレン等)を伴うもの、キレート剤(例えば、金属、放射性金属、ホウ素、酸化金属等)を含むもの、アルキル化剤を含むもの、修飾連結(例えば、アルファアノマー核酸等)や非修飾形態のポリヌクレオチドを伴うものを含む。さらに、通常糖に存在する任意のヒドロキシル基は、例えば、ホスホネート基、ホスフェート基によって置き換えられ得、標準的な保護基によって保護され得、もしくはさらなるヌクレオチドへのさらなる連結を生成するよう活性化され得、または固体もしくは半固体支持体にコンジュゲートされ得る。5’および3’末端のOHは、リン酸化またはアミンもしくは1~20炭素原子の有機キャップ基部分で置換され得る。他のヒドロキシルもまた、標準的な保護基に誘導体化され得る。ポリヌクレオチドはまた、例えば以下のものを含む、当技術分野で一般に公知となっているリボースまたはデオキシリボース糖の類似形態を含み得る:2'-O-メチル-、2'-O-アリル-、2'-フルオロ-、または2'-アジド-リボース、炭素環式糖アナログ、α-アノマー糖、アラビノースまたはキシロースまたはリキソースなどのエピマー糖、ピラノース糖、フラノース糖、セドヘプツロース、非環式アナログ、およびメチルリボシドなどの塩基性ヌクレオシドアナログ。1つまたは複数のホスホジエステル結合は、代替の連結基によって置き換えられ得る。これらの代替の連結基は、これらに限定されるものではないが、ホスフェートが以下のものによって置き換えられている態様を含む:P(O)S(「チオエート」)、P(S)S(「ジチオエート」)、(O)NR2(「アミデート」)、P(O)R、P(O)OR'、CO、またはCH2(「ホルムアセタール」)、ここで、各RまたはR'は独立してH、または、任意でエーテル(-O-)連結、アリール、アルケニル、シクロアルキル、シクロアルケニル、もしくはアラルジルを含む置換もしくは非置換アルキル(1~20C)である。ポリヌクレオチド中のすべての連結が同一である必要はない。上記の説明は、RNAおよびDNAを含む本明細書で言及されるすべてのポリヌクレオチドに適用される。
Polynucleotides (nucleic acids)
"Polynucleotide" or "nucleic acid", as used interchangeably herein, refers to a polymer of nucleotides of any length, including DNA and RNA. Nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substance that can be incorporated into a polymer by DNA or RNA polymerase or by a synthetic reaction. Polynucleotides can include modified nucleotides, such as methylated nucleotides and their analogs. The sequence of nucleotides can be interrupted by non-nucleotide components. Polynucleotides can include modifications made after synthesis, such as conjugation to a label. Other types of modifications include, for example, "caps", substitution of one or more naturally occurring nucleotides with analogs, internucleotide modifications, such as those with uncharged linkages (e.g., methylphosphonates, phosphotriesters, phosphoramidates, carbamates, etc.) and charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties such as proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalating agents (e.g., acridine, psoralen, etc.), those containing chelating agents (e.g., metals, radioactive metals, boron, metal oxides, etc.), those containing alkylating agents, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.) and unmodified forms of polynucleotides. Additionally, any hydroxyl groups normally present on the sugar can be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to generate additional linkages to additional nucleotides, or conjugated to solid or semi-solid supports. The 5' and 3' terminal OH may be phosphorylated or substituted with amines or organic capping group moieties of 1-20 carbon atoms. Other hydroxyls may also be derivatized to standard protecting groups. Polynucleotides may also contain analogous forms of ribose or deoxyribose sugars commonly known in the art, including, for example, 2'-O-methyl-, 2'-O-allyl-, 2'-fluoro-, or 2'-azido-ribose, carbocyclic sugar analogs, α-anomeric sugars, epimeric sugars such as arabinose or xylose or lyxose, pyranose sugars, furanose sugars, sedoheptulose, acyclic analogs, and basic nucleoside analogs such as methyl riboside. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments in which the phosphate is replaced by: P(O)S ("thioate"), P(S)S ("dithioate"), (O) NR2 ("amidate"), P(O)R, P(O)OR', CO, or CH2 ("formacetal"), where each R or R' is independently H or substituted or unsubstituted alkyl (1-20C), optionally including an ether (-O-) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl, or araldyl. Not all linkages in a polynucleotide need be identical. The above description applies to all polynucleotides referred to herein, including RNA and DNA.

単離された(核酸)
「単離された」核酸分子は、そのもともとの環境の成分から分離されたものを指す。単離された核酸分子はさらに、その核酸分子を通常含む細胞の中に含まれた核酸分子を含むが、その核酸分子は染色体外に存在しているかまたは本来の染色体上の位置とは異なる染色体上の位置に存在している。
Isolated (nucleic acid)
An "isolated" nucleic acid molecule refers to one that is separated from a component of its original environment. Isolated nucleic acid molecules further include nucleic acid molecules contained in cells that normally contain the nucleic acid molecule, but where the nucleic acid molecule is present extrachromosomally or in a chromosomal location that is different from its natural chromosomal location.

ベクター
本明細書で用いられる用語「ベクター」は、それが連結されたもう1つの核酸を増やすことができる、核酸分子を指す。この用語は、自己複製核酸構造としてのベクター、および、それが導入された宿主細胞のゲノム中に組み入れられるベクターを含む。あるベクターは、自身が動作的に連結された核酸の、発現をもたらすことができる。そのようなベクターは、本明細書では「発現ベクター」とも称される。ベクターは、ウイルスまたはエレクトロポレーションを用いて宿主細胞に導入することができる。しかしながら、ベクターの導入は、in vitroでの方法に限定されない。例えば、ベクターは、インビボでの方法を用いて対象に直接導入することもできる。
Vector The term "vector" as used herein refers to a nucleic acid molecule that can propagate another nucleic acid to which it is linked. This term includes vectors as self-replicating nucleic acid structures and vectors that are integrated into the genome of a host cell to which it is introduced. A vector can cause the expression of a nucleic acid to which it is operatively linked. Such vectors are also referred to herein as "expression vectors." A vector can be introduced into a host cell using a virus or electroporation. However, the introduction of a vector is not limited to in vitro methods. For example, a vector can also be directly introduced into a subject using in vivo methods.

宿主細胞
用語「宿主細胞」、「宿主細胞株」、および「宿主細胞培養物」は、相互に交換可能に用いられ、外来核酸を導入された細胞(そのような細胞の子孫を含む)を指す。宿主細胞は「形質転換体」および「形質転換細胞」を含み、これには初代の形質転換細胞および継代数によらずその細胞に由来する子孫を含む。子孫は、親細胞と核酸の内容において完全に同一でなくてもよく、変異を含んでいてもよい。オリジナルの形質転換細胞がスクリーニングされたまたは選択された際に用いられたものと同じ機能または生物学的活性を有する変異体子孫も、本明細書では含まれる。
Host Cells The terms "host cell,""host cell line," and "host cell culture" are used interchangeably and refer to cells into which exogenous nucleic acid has been introduced, including the progeny of such cells. Host cells include "transformants" and "transformed cells," which include the originally transformed cell and progeny derived from that cell regardless of the number of passages. The progeny may not be completely identical in nucleic acid content to the parent cell, and may contain mutations. Mutant progeny that have the same function or biological activity as that for which the original transformed cell was screened or selected are also included herein.

特異性
「特異的」とは、1つまたは複数の結合パートナーに特異的に結合する分子が、該パートナー以外の分子に対して何ら有意な結合を示さないことを意味する。さらに、「特異的」はまた、抗原結合部位が、抗原中に含まれる複数のエピトープのうちの特定のエピトープに特異的である場合にも用いられる。抗原結合分子が抗原に特異的に結合する場合、それは「抗原結合分子が、抗原に/抗原に対して特異性を有する/示す」とも記載される。抗原結合部位が結合するエピトープが複数の異なる抗原中に含まれる場合、該抗原結合部位を含む抗原結合分子は、該エピトープを有する様々な抗原に結合し得る。
Specificity "Specific" means that a molecule that specifically binds to one or more binding partners does not show any significant binding to molecules other than the partners. Furthermore, "specific" is also used when an antigen-binding site is specific to a particular epitope among multiple epitopes contained in an antigen. When an antigen-binding molecule specifically binds to an antigen, it is also described as "an antigen-binding molecule has/shows specificity to/for an antigen". When the epitope that an antigen-binding site binds to is contained in multiple different antigens, an antigen-binding molecule that contains the antigen-binding site can bind to various antigens that have the epitope.

抗体断片
「抗体断片」は、完全抗体が結合する抗原に結合する当該完全抗体の一部分を含む、当該完全抗体以外の分子を指す。抗体断片の例は、これらに限定されるものではないが、Fv、Fab、Fab'、Fab’-SH、F(ab')2、ダイアボディ、線状抗体、単鎖抗体分子(例えば、scFv)、およびシングルドメイン抗体を含む。特定の抗体断片についての総説として、Hudson et al., Nat Med 9, 129-134 (2003) を参照のこと。scFv断片の総説として、例えば、Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp.269-315 (1994);加えて、WO93/16185;ならびに米国特許第5,571,894号および第5,587,458号を参照のこと。サルベージ受容体結合エピトープ残基を含みin vivoにおける半減期の長くなったFabおよびF(ab')2断片についての論説として、米国特許第5,869,046号を参照のこと。ダイアボディは、二価または二重特異的であってよい、抗原結合部位を2つ伴う抗体断片である。例えば、EP404,097; WO1993/01161; Hudson et al., Nat Med 9, 129-134 (2003); Hollinger et al., Proc Natl Acad Sci USA 90, 6444-6448 (1993) 参照。トリアボディ (triabody) やテトラボディ (tetrabody) も、Hudson et al., Nat Med 9, 129-134 (2003) に記載されている。シングルドメイン抗体は、抗体の重鎖可変ドメインのすべてもしくは一部分、または軽鎖可変ドメインのすべてもしくは一部分を含む、抗体断片である。特定の態様において、シングルドメイン抗体は、ヒトシングルドメイン抗体である(Domantis, Inc., Waltham, MA;例えば、米国特許第6,248,516号B1参照)。抗体断片は、これらに限定されるものではないが、本明細書に記載の、完全抗体のタンパク質分解的消化、組換え宿主細胞(例えば、大腸菌またはファージ)による産生を含む、種々の手法により作ることができる。
Antibody Fragment "Antibody fragment" refers to a molecule other than a complete antibody that contains a portion of the complete antibody that binds to the antigen to which the complete antibody binds. Examples of antibody fragments include, but are not limited to, Fv, Fab, Fab', Fab'-SH, F(ab')2, diabodies, linear antibodies, single-chain antibody molecules (e.g., scFv), and single-domain antibodies. For a review of specific antibody fragments, see Hudson et al., Nat Med 9, 129-134 (2003). For a review of scFv fragments, see, e.g., Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp.269-315 (1994); in addition, WO93/16185; and U.S. Patent Nos. 5,571,894 and 5,587,458. See U.S. Patent No. 5,869,046 for a discussion of Fab and F(ab') 2 fragments that contain salvage receptor binding epitope residues and have increased half-life in vivo. Diabodies are antibody fragments with two antigen binding sites that may be bivalent or bispecific. See, e.g., EP 404,097; WO 1993/01161; Hudson et al., Nat Med 9, 129-134 (2003); Hollinger et al., Proc Natl Acad Sci USA 90, 6444-6448 (1993). Triabodies and tetrabodies are also described in Hudson et al., Nat Med 9, 129-134 (2003). Single domain antibodies are antibody fragments that contain all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody. In certain embodiments, the single domain antibody is a human single domain antibody (Domantis, Inc., Waltham, MA; see, e.g., U.S. Patent No. 6,248,516 B1). Antibody fragments can be produced by a variety of techniques, including, but not limited to, proteolytic digestion of whole antibodies, production by recombinant host cells (e.g., E. coli or phage), as described herein.

可変断片(Fv)
本明細書において、用語「可変断片(Fv)」は、抗体の軽鎖可変領域(VL)と抗体の重鎖可変領域(VH)とのペアから構成される抗体由来の抗原結合部位の最小単位を指す。1988年にSkerraとPluckthunは、細菌のシグナル配列の下流に抗体遺伝子を挿入し大腸菌中で当該遺伝子の発現を誘導することによって、均一でかつ活性な抗体が大腸菌のペリプラズム画分から調製され得ることを見出した(Science (1988) 240 (4855), 1038-1041)。ペリプラズム画分から調製されたFvにおいては、抗原に結合するような様式でVHとVLが会合している。
Fragment variable (Fv)
As used herein, the term "variable fragment (Fv)" refers to the minimum unit of an antibody-derived antigen-binding site consisting of a pair of an antibody light chain variable region (VL) and an antibody heavy chain variable region (VH). In 1988, Skerra and Pluckthun found that a homogeneous and active antibody can be prepared from the periplasmic fraction of E. coli by inserting an antibody gene downstream of a bacterial signal sequence and inducing expression of the gene in E. coli (Science (1988) 240 (4855), 1038-1041). In the Fv prepared from the periplasmic fraction, VH and VL are associated in such a manner that they bind to antigens.

scFv、単鎖抗体、およびsc(Fv) 2
本明細書において、用語「scFv」、「単鎖抗体」、および「sc(Fv)2」はいずれも、重鎖および軽鎖に由来する可変領域を含むが、定常領域を含まない、単一ポリペプチド鎖の抗体断片を指す。一般に、単鎖抗体は、抗原結合を可能にすると思われる所望の構造の形成を可能にする、VHドメインとVLドメインの間のポリペプチドリンカーをさらに含む。単鎖抗体は、「The Pharmacology of Monoclonal Antibodies, Vol. 113, Rosenburg and Moore, eds., Springer-Verlag, New York, 269-315 (1994)」においてPluckthunによって詳細に考察されている。同様に、国際公開公報WO1988/001649、米国特許第4,946,778号および同第5,260,203号を参照のこと。特定の態様において、単鎖抗体は、二重特異性でありかつ/またはヒト化され得る。
scFv, single chain antibodies, and sc(Fv) 2
As used herein, the terms "scFv", "single-chain antibody" and "sc(Fv) 2 " all refer to a single polypeptide chain antibody fragment that contains variable regions derived from heavy and light chains but does not contain a constant region. Generally, single-chain antibodies further contain a polypeptide linker between the VH and VL domains that allows the formation of a desired structure that may allow antigen binding. Single-chain antibodies are discussed in detail by Pluckthun in "The Pharmacology of Monoclonal Antibodies, Vol. 113, Rosenburg and Moore, eds., Springer-Verlag, New York, 269-315 (1994)". See also International Publication WO1988/001649, U.S. Patent Nos. 4,946,778 and 5,260,203. In certain embodiments, single-chain antibodies can be bispecific and/or humanized.

scFvはFvを形成するVHとVLとがペプチドリンカーによって共に連結された単鎖低分子量抗体である(Proc. Natl. Acad. Sci. U.S.A. (1988) 85 (16), 5879-5883)。当該ペプチドリンカーによってVHとVLとが近接した状態に保持され得る。
sc(Fv)2は、2つのVLと2つのVHの4つの可変領域がペプチドリンカー等のリンカーによって連結され一本鎖を形成する単鎖抗体である(J Immunol. Methods (1999) 231 (1-2), 177-189)。この2つのVHと2つのVLは異なるモノクローナル抗体に由来してもよい。そのようなsc(Fv)2としては、例えば、Journal of Immunology (1994) 152 (11), 5368-5374に開示されるような、単一抗原中に存在する2つのエピトープを認識する二重特異性sc(Fv)2が好適に挙げられる。sc(Fv)2は、当業者に公知の方法によって製造され得る。例えば、sc(Fv)2は、scFvをペプチドリンカー等のリンカーで連結することによって製造され得る。
scFvs are single-chain low molecular weight antibodies in which the VH and VL that form the Fv are linked together by a peptide linker (Proc. Natl. Acad. Sci. USA (1988) 85 (16), 5879-5883), which allows the VH and VL to be held in close proximity.
sc(Fv) 2 is a single-chain antibody in which four variable regions, two VL and two VH, are linked by a linker such as a peptide linker to form a single chain (J Immunol. Methods (1999) 231 (1-2), 177-189). The two VH and two VL may be derived from different monoclonal antibodies. Suitable examples of such sc(Fv) 2 include bispecific sc(Fv) 2 that recognizes two epitopes present in a single antigen, as disclosed in Journal of Immunology (1994) 152 (11), 5368-5374. sc(Fv) 2 can be produced by methods known to those skilled in the art. For example, sc(Fv) 2 can be produced by linking scFvs with a linker such as a peptide linker.

本明細書において、sc(Fv)2は、一本鎖ポリペプチドのN末端を基点としてVH、VL、VH、VL([VH]-リンカー-[VL]-リンカー-[VH]-リンカー-[VL])の順に並んでいる2つのVH単位および2つのVL単位を含む。2つのVH単位と2つのVL単位の順序は上記の構成に限定されず、どのような順序で並べられていてもよい。構成の例を以下に列挙する。
[VL]-リンカー-[VH]-リンカー-[VH]-リンカー-[VL]
[VH]-リンカー-[VL]-リンカー-[VL]-リンカー-[VH]
[VH]-リンカー-[VH]-リンカー-[VL]-リンカー-[VL]
[VL]-リンカー-[VL]-リンカー-[VH]-リンカー-[VH]
[VL]-リンカー-[VH]-リンカー-[VL]-リンカー-[VH]
As used herein, sc(Fv) 2 comprises two VH units and two VL units arranged in the following order, starting from the N-terminus of a single-chain polypeptide: VH, VL, VH, VL ([VH]-linker-[VL]-linker-[VH]-linker-[VL]). The order of the two VH units and the two VL units is not limited to the above configuration, and they may be arranged in any order. Examples of configurations are listed below.
[VL]-linker-[VH]-linker-[VH]-linker-[VL]
[VH]-linker-[VL]-linker-[VL]-linker-[VH]
[VH]-linker-[VH]-linker-[VL]-linker-[VL]
[VL]-linker-[VL]-linker-[VH]-linker-[VH]
[VL]-linker-[VH]-linker-[VL]-linker-[VH]

sc(Fv)2の分子形態についてはWO2006/132352においても詳細に記載されている。当業者であればこれらの記載に従って、本明細書で開示されるポリペプチド複合体を製造するために所望のsc(Fv)2を適宜調製することが可能である。
さらに本開示の抗原結合分子または抗体に、PEG等の担体高分子や抗がん剤等の有機化合物をコンジュゲートしてもよい。あるいは、糖鎖が所望の効果をもたらすように、糖鎖付加配列が抗原結合分子または抗体に好適に挿入される。
The molecular form of sc(Fv) 2 is also described in detail in WO2006/132352. Those skilled in the art can follow these descriptions to appropriately prepare a desired sc(Fv) 2 for producing the polypeptide complex disclosed herein.
Furthermore, a carrier polymer such as PEG or an organic compound such as an anticancer drug may be conjugated to the antigen-binding molecule or antibody of the present disclosure. Alternatively, a glycosylation sequence is suitably inserted into the antigen-binding molecule or antibody so that the glycosylation exerts the desired effect.

抗体の可変領域の連結に使用するリンカーは、遺伝子工学により導入され得る任意のペプチドリンカー、合成リンカー、および例えばProtein Engineering, 9 (3), 299-305, 1996に開示されるリンカーを含む。しかしながら、本開示においてはペプチドリンカーが好ましい。ペプチドリンカーの長さは特に限定されず、目的に応じて当業者が適宜選択することが可能である。長さは、好ましくは5アミノ酸以上(特に限定されないが、上限は通常、30アミノ酸以下、好ましくは20アミノ酸以下)であり、特に好ましくは15アミノ酸である。sc(Fv)2に3つのペプチドリンカーが含まれる場合には、それらの長さはすべて同じであってもよいし異なってもよい。 Linkers used to link the variable regions of antibodies include any peptide linker that can be introduced by genetic engineering, synthetic linkers, and linkers disclosed in, for example, Protein Engineering, 9 (3), 299-305, 1996. However, in the present disclosure, peptide linkers are preferred. The length of the peptide linker is not particularly limited, and can be appropriately selected by those skilled in the art depending on the purpose. The length is preferably 5 amino acids or more (although not particularly limited, the upper limit is usually 30 amino acids or less, preferably 20 amino acids or less), and is particularly preferably 15 amino acids. When sc(Fv) 2 contains three peptide linkers, their lengths may all be the same or different.

例えば、そのようなペプチドリンカーには以下のものが含まれる:
Ser、
Gly-Ser、
Gly-Gly-Ser、
Ser-Gly-Gly、
Gly-Gly-Gly-Ser(配列番号:171)、
Ser-Gly-Gly-Gly(配列番号:172)、
Gly-Gly-Gly-Gly-Ser(配列番号:173)、
Ser-Gly-Gly-Gly-Gly(配列番号:174)、
Gly-Gly-Gly-Gly-Gly-Ser(配列番号:175)、
Ser-Gly-Gly-Gly-Gly-Gly(配列番号:176)、
Gly-Gly-Gly-Gly-Gly-Gly-Ser(配列番号:177)、
Ser-Gly-Gly-Gly-Gly-Gly-Gly(配列番号:178)、
(Gly-Gly-Gly-Gly-Ser(配列番号:173))n、および
(Ser-Gly-Gly-Gly-Gly(配列番号:174))n。
ここでnは1以上の整数である。ペプチドリンカーの長さや配列は目的に応じて当業者が適宜選択することができる。
For example, such peptide linkers include:
Ser,
Gly-Ser,
Gly-Gly-Ser,
Ser-Gly-Gly,
Gly-Gly-Gly-Ser (SEQ ID NO: 171),
Ser-Gly-Gly-Gly (SEQ ID NO: 172),
Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 173),
Ser-Gly-Gly-Gly-Gly (SEQ ID NO: 174),
Gly-Gly-Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 175),
Ser-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 176),
Gly-Gly-Gly-Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 177),
Ser-Gly-Gly-Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 178),
(Gly-Gly-Gly-Gly-Ser (SEQ ID NO: 173)), and
(Ser-Gly-Gly-Gly-Gly (SEQ ID NO: 174))n.
Here, n is an integer equal to or greater than 1. The length and sequence of the peptide linker can be appropriately selected by those skilled in the art depending on the purpose.

合成リンカー(化学架橋剤)は、ペプチドの架橋に通常用いられており、例としては、N-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスベレート(DSS)、ビス(スルホスクシンイミジル)スベレート(BS3)、ジチオビス(スクシンイミジルプロピオネート)(DSP)、ジチオビス(スルホスクシンイミジルプロピオネート)(DTSSP)、エチレングリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホスクシンイミジルスクシネート)(スルホ-EGS)、ジスクシンイミジル酒石酸塩(DST)、ジスルホスクシンイミジル酒石酸塩(スルホ-DST)、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン(BSOCOES)、およびビス[2-(スルホスクシンイミドオキシカルボニルオキシ)エチル]スルホン(スルホ-BSOCOES)が挙げられる。これらの架橋剤は市販されている。 Synthetic linkers (chemical cross-linkers) are commonly used to cross-link peptides, including N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bis(sulfosuccinimidyl)suberate (BS3), dithiobis(succinimidyl propionate) (DSP), dithiobis(sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis(succinimidyl succinate) (EGS), ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (sulfo-DST), bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone (BSOCOES), and bis[2-(sulfosuccinimidooxycarbonyloxy)ethyl]sulfone (sulfo-BSOCOES). These cross-linkers are commercially available.

4つの抗体可変領域を連結するには、通常、3つのリンカーが必要となる。用いられるリンカーは、同じ種類のものであっても異なる種類のものであってもよい。 Three linkers are usually required to link four antibody variable regions. The linkers used may be of the same type or different types.

Fab、F(ab') 2 、およびFab'
「Fab」は、1本の軽鎖、ならびに1本の重鎖のCH1ドメインおよび可変領域からなる。Fab分子の重鎖は、別の重鎖分子とジスルフィド結合を形成できない。
Fab, F(ab') 2 , and Fab'
"Fab" consists of one light chain and the CH1 domain and variable region of one heavy chain. The heavy chain of a Fab molecule cannot form disulfide bonds with another heavy chain molecule.

「F(ab')2」または「Fab」は、免疫グロブリン(モノクローナル抗体)をペプシンおよびパパイン等のプロテアーゼで処理することにより製造され、免疫グロブリン(モノクローナル抗体)を2本の各H鎖のヒンジ領域間に存在するジスルフィド結合の近くで消化することによって生成される抗体断片を指す。例えばパパインは、IgGを、2本の各H鎖のヒンジ領域間に存在するジスルフィド結合の上流で切断し、VL(L鎖可変領域)およびCL(L鎖定常領域)を含むL鎖がVH(H鎖可変領域)およびCHγ1(H鎖定常領域中のγ1領域)を含むH鎖断片とそれらのC末端領域でジスルフィド結合により連結されている、相同な2つの抗体断片を生成する。これら2つの相同な抗体断片はそれぞれFab'と呼ばれる。 "F(ab') 2 " or "Fab" refers to an antibody fragment produced by treating an immunoglobulin (monoclonal antibody) with a protease such as pepsin or papain, and digesting the immunoglobulin (monoclonal antibody) near the disulfide bond between the hinge regions of the two H chains. For example, papain cleaves IgG upstream of the disulfide bond between the hinge regions of the two H chains, producing two homologous antibody fragments in which the L chain containing VL (light chain variable region) and CL (light chain constant region) is linked to the H chain fragment containing VH (light chain variable region) and CHγ1 (γ1 region in the heavy chain constant region) by disulfide bonds at their C-terminal regions. Each of these two homologous antibody fragments is called Fab'.

「F(ab')2」は、2本の軽鎖、ならびにジスルフィド結合が2本の重鎖間で形成されるようにCH1ドメインおよびCH2ドメインの一部分の定常領域を含む2本の重鎖からなる。本明細書において開示されるF(ab')2は、次のように好適に製造され得る。所望の抗原結合部位を含むモノクローナル全部抗体等を、ペプシン等のプロテアーゼで部分消化し、Fc断片をプロテインAカラムに吸着させることにより除去する。プロテアーゼは、pH等の適切な設定酵素反応条件下で選択的にF(ab')2をもたらすように全部抗体を切断し得るものである限り、特に限定はされない。例えば、そのようなプロテアーゼにはペプシンおよびフィシンが含まれる。 "F(ab') 2 " consists of two light chains and two heavy chains containing constant regions of the CH1 domain and a part of the CH2 domain such that a disulfide bond is formed between the two heavy chains. The F(ab') 2 disclosed herein can be suitably produced as follows. A monoclonal whole antibody or the like containing a desired antigen-binding site is partially digested with a protease such as pepsin, and the Fc fragment is removed by adsorption onto a protein A column. The protease is not particularly limited as long as it can cleave the whole antibody so as to selectively produce F(ab') 2 under appropriately set enzyme reaction conditions such as pH. For example, such proteases include pepsin and ficin.

Fc領域
本発明において、用語「Fc領域」または「Fcドメイン」は、抗体分子中の、ヒンジまたはその一部、ならびにCH2およびCH3ドメインからなる断片を含む領域を指す。IgGクラスのFc領域は、例えば、システイン226(EU ナンバリング(本明細書においてEUインデックスとも称される))からC末端まで、またはプロリン230(EUナンバリング)からC末端までの領域を意味するが、それに限定されない。Fc領域は、好ましくは、例えば、IgG1、IgG2、IgG3、またはIgG4モノクローナル抗体を、ペプシンなどのタンパク質分解酵素で部分消化した後に、プロテインAカラムまたはプロテインGカラムに吸着された画分を再溶出することによって取得することができる。そのようなタンパク質分解酵素は、適宜設定される酵素の反応条件(例えば、pH)の下で制限的にFabまたはF(ab')2を形成するように全長抗体を消化することができる限り、特に限定されない。その例には、ペプシンおよびパパインが含まれ得る。
Fc Region In the present invention, the term "Fc region" or "Fc domain" refers to a region in an antibody molecule that includes a hinge or a part thereof, and a fragment consisting of the CH2 and CH3 domains. The Fc region of the IgG class refers to, for example, but is not limited to, a region from cysteine 226 (EU numbering (also referred to herein as EU index)) to the C-terminus, or from proline 230 (EU numbering) to the C-terminus. The Fc region can be obtained, for example, by partially digesting an IgG1, IgG2, IgG3, or IgG4 monoclonal antibody with a protease such as pepsin, and then re-eluting the fraction adsorbed to a protein A column or a protein G column. Such a protease is not particularly limited as long as it can digest a full-length antibody to form Fab or F(ab') 2 in a limited manner under appropriately set enzyme reaction conditions (e.g., pH). Examples of such proteases include pepsin and papain.

本発明において、例えば、天然型IgGに由来するFc領域を、本開示の「Fc領域」として用いることができる。ここで、天然型IgGとは、天然に見出されるIgGと同一のアミノ酸配列を含有し、免疫グロブリンγ遺伝子により実質的にコードされる抗体のクラスに属するポリペプチドを意味する。天然型ヒトIgGとは、例えば、天然型ヒトIgG1、天然型ヒトIgG2、天然型ヒトIgG3、または天然型ヒトIgG4を意味する。天然型IgGにはまた、自然発生的にそれに由来するバリアントなども含まれる。遺伝子多型に基づく複数のアロタイプ配列が、ヒトIgG1、ヒトIgG2、ヒトIgG3、およびヒトIgG4抗体の定常領域としてSequences of proteins of immunological interest, NIH Publication No.91-3242に記載されており、それらはいずれも、本開示において用いることができる。特に、ヒトIgG1の配列は、EUナンバリング356~358位のアミノ酸配列として、DELまたはEEMを有してもよい。 In the present invention, for example, an Fc region derived from a natural IgG can be used as the "Fc region" of the present disclosure. Here, natural IgG means a polypeptide that contains the same amino acid sequence as IgG found in nature and belongs to the class of antibodies substantially encoded by the immunoglobulin gamma gene. Natural human IgG means, for example, natural human IgG1, natural human IgG2, natural human IgG3, or natural human IgG4. Natural IgG also includes naturally occurring variants thereof. Multiple allotype sequences based on genetic polymorphisms are described in Sequences of proteins of immunological interest, NIH Publication No. 91-3242 as the constant regions of human IgG1, human IgG2, human IgG3, and human IgG4 antibodies, and any of them can be used in the present disclosure. In particular, the sequence of human IgG1 may have DEL or EEM as the amino acid sequence at positions 356 to 358 of the EU numbering system.

いくつかの態様において、多重特異性抗原結合分子のFcドメインは、免疫グロブリン分子の重鎖ドメインを含むポリペプチド鎖の対からなる。例えば、免疫グロブリンG(IgG)分子のFcドメインは、その各サブユニットがCH2およびCH3 IgG重鎖定常ドメインを含む、二量体である。Fcドメインの2つのサブユニットは、相互に安定的に会合することができる。1つの態様において、本明細書において記載される多重特異性抗原結合分子は、1つ以下のFcドメインを含む。 In some embodiments, the Fc domain of a multispecific antigen-binding molecule consists of a pair of polypeptide chains comprising the heavy chain domains of an immunoglobulin molecule. For example, the Fc domain of an immunoglobulin G (IgG) molecule is a dimer, each subunit of which comprises the CH2 and CH3 IgG heavy chain constant domains. The two subunits of the Fc domain can stably associate with each other. In one embodiment, the multispecific antigen-binding molecules described herein comprise no more than one Fc domain.

本明細書において記載される1つの態様において、多重特異性抗原結合分子のFcドメインはIgG Fcドメインである。特定の態様において、FcドメインはIgG1 Fcドメインである。別の態様において、FcドメインはIgG1 Fcドメインである。さらなる特定の態様において、FcドメインはヒトIgG1 Fc領域である。 In one embodiment described herein, the Fc domain of the multispecific antigen-binding molecule is an IgG Fc domain. In a particular embodiment, the Fc domain is an IgG1 Fc domain. In another embodiment, the Fc domain is an IgG1 Fc domain. In a further particular embodiment, the Fc domain is a human IgG1 Fc region.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメイン
をさらに含む多重特異性抗原結合分子であって、該Fcドメインが、安定に会合することができる第1のFc領域サブユニットおよび第2のFc領域サブユニットで構成される。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
(iii) A multispecific antigen-binding molecule further comprising an Fc domain that exhibits reduced binding affinity to a human Fcγ receptor compared to a native human IgG1 Fc domain, wherein the Fc domain is composed of a first Fc region subunit and a second Fc region subunit that are capable of stably associating.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメイン
をさらに含む多重特異性抗原結合分子であって、該Fcドメインが、以下の(e1)または(e2):
(e1)349位にCys、366位にSer、368位にAla、および407位にValを含む、第1のFc領域サブユニット、ならびに354位にCysおよび366位にTrpを含む第2のFc領域;
(e2)439位にGluを含む第1のFc領域サブユニット、および356位にLysを含む第2のFc領域
を含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、多重特異性抗原結合分子である。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
(iii) A multispecific antigen-binding molecule further comprising an Fc domain that exhibits reduced binding affinity to a human Fcγ receptor compared to a native human IgG1 Fc domain, wherein the Fc domain is selected from the following (e1) or (e2):
(e1) a first Fc region subunit comprising a Cys at position 349, a Ser at position 366, an Ala at position 368, and a Val at position 407, and a second Fc region comprising a Cys at position 354 and a Trp at position 366;
(e2) A multispecific antigen-binding molecule comprising a first Fc region subunit comprising Glu at position 439 and a second Fc region comprising Lys at position 356, wherein the amino acid positions are numbered according to the EU index.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメイン
をさらに含む多重特異性抗原結合分子であって、該Fcドメインに含まれる第1および/または第2のFc領域サブユニットが、以下の(f1)または(f2):
(f1)234位にAlaおよび235位にAla;
(f2)234位にAla、235位にAla、および297位にAla
を含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、多重特異性抗原結合分子である。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
(iii) A multispecific antigen-binding molecule further comprising an Fc domain that exhibits reduced binding affinity to a human Fcγ receptor compared to a native human IgG1 Fc domain, wherein the first and/or second Fc region subunits comprised in the Fc domain are selected from the group consisting of (f1) and (f2) below:
(f1) Ala at position 234 and Ala at position 235;
(f2) Ala at 234th position, Ala at 235th position, and Ala at 297th position
wherein the amino acid positions are numbered according to the EU index.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメイン
をさらに含む多重特異性抗原結合分子であって、該Fcドメインが、天然型ヒトIgG1 Fcドメインと比較して、ヒトFcRnに対するより強力なFcRn結合親和性をさらに示す、多重特異性抗原結合分子である。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
(iii) A multispecific antigen-binding molecule further comprising an Fc domain that exhibits reduced binding affinity to human Fcγ receptors compared to a native human IgG1 Fc domain, wherein the Fc domain further exhibits stronger FcRn-binding affinity to human FcRn compared to a native human IgG1 Fc domain.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、
(iii)天然型ヒトIgG1 Fcドメインと比較して、ヒトFcγ受容体に対する低下した結合親和性を示すFcドメイン
をさらに含む多重特異性抗原結合分子であって、該Fcドメインに含まれる第1および/または第2のFc領域サブユニットが、428位にLeu、434位にAla、438位にArg、および440位にGluを含み、該アミノ酸位置が、EUインデックスによりナンバリングされる、多重特異性抗原結合分子である。
In one aspect, the multispecific antigen-binding molecule contained in the anticancer agent, pharmaceutical composition, combination, kit, or used in the method or use of the present disclosure is
(iii) A multispecific antigen-binding molecule further comprising an Fc domain that exhibits reduced binding affinity to a human Fcγ receptor compared to a native human IgG1 Fc domain, wherein the first and/or second Fc region subunit comprise Leu at position 428, Ala at position 434, Arg at position 438, and Glu at position 440, and said amino acid positions are numbered according to the EU index.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キット、方法、または使用において、化学療法剤と前述の多重特異性抗原結合分子とが併用される。ある態様において、プラチナ製剤と前述の多重特異性抗原結合分子とが併用される。ある特定の態様において、カルボプラチンまたはシスプラチンと前述の多重特異性抗原結合分子とが併用される。ある態様において、アルカロイドと前述の多重特異性抗原結合分子とが併用される。ある態様において、植物アルカロイドと前述の多重特異性抗原結合分子とが併用される。ある態様において、トポイソメラーゼ阻害剤と前述の多重特異性抗原結合分子とが併用される。ある特定の態様において、イリノテカンと前述の多重特異性抗原結合分子とが併用される。ある態様において、代謝拮抗薬と前述の多重特異性抗原結合分子とが併用される。ある特定の態様において、ゲムシタビンと前述の多重特異性抗原結合分子とが併用される。 In one aspect, in the anticancer agent, pharmaceutical composition, combination, kit, method, or use of the present disclosure, a chemotherapeutic agent is used in combination with the multispecific antigen-binding molecule. In one embodiment, a platinum agent is used in combination with the multispecific antigen-binding molecule. In a particular embodiment, carboplatin or cisplatin is used in combination with the multispecific antigen-binding molecule. In one embodiment, an alkaloid is used in combination with the multispecific antigen-binding molecule. In one embodiment, a plant alkaloid is used in combination with the multispecific antigen-binding molecule. In one embodiment, a topoisomerase inhibitor is used in combination with the multispecific antigen-binding molecule. In one embodiment, irinotecan is used in combination with the multispecific antigen-binding molecule. In one embodiment, an antimetabolite is used in combination with the multispecific antigen-binding molecule. In one embodiment, gemcitabine is used in combination with the multispecific antigen-binding molecule.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キット、方法、または使用において、免疫チェックポイント阻害剤と前述の多重特異性抗原結合分子とが併用される。ある態様において、抗PD-L1抗体と前述の多重特異性抗原結合分子とが併用される。 In one aspect, in the anticancer agent, pharmaceutical composition, combination, kit, method, or use of the present disclosure, an immune checkpoint inhibitor is used in combination with the multispecific antigen-binding molecule described above. In one embodiment, an anti-PD-L1 antibody is used in combination with the multispecific antigen-binding molecule described above.

1つの局面において、本開示の抗がん剤、医薬組成物、組み合わせ、キット、方法、または使用において、PARP阻害剤と前述の多重特異性抗原結合分子とが併用される。ある態様において、オラパリプと前述の多重特異性抗原結合分子とが併用される。 In one aspect, in the anticancer agent, pharmaceutical composition, combination, kit, method, or use of the present disclosure, a PARP inhibitor is used in combination with the multispecific antigen-binding molecule described above. In one embodiment, olaparip is used in combination with the multispecific antigen-binding molecule described above.

低下したFc受容体(Fcγ受容体)結合活性を有するFc領域
特定の態様において、本明細書において記載される多重特異性抗原結合分子のFcドメインは、天然型IgG1 Fcドメインと比較して、Fc受容体に対する低下した結合親和性を示す。1つのそのような態様において、Fcドメイン(または該Fcドメインを含む多重特異性抗原結合分子)は、天然型IgG1 Fcドメイン(または天然型IgG1 Fcドメインを含む多重特異性抗原結合分子)と比較して、50%未満、好ましくは20%未満、より好ましくは10%未満、および最も好ましくは5%未満のFc受容体に対する結合親和性を示す。1つの態様において、Fcドメイン(または該Fcドメインを含む多重特異性抗原結合分子)は、Fc受容体に実質的に結合しない。特定の態様において、Fc受容体はFcγ受容体である。1つの態様において、Fc受容体はヒトFc受容体である。1つの態様において、Fc受容体は活性化Fc受容体である。特定の態様において、Fc受容体は、活性化ヒトFcγ受容体、より具体的にはヒトFcγ RIIIa、Fcγ RI、またはFcγ RIIa、最も具体的にはヒトFcγ RIIIaである。
Fc domain with reduced Fc receptor (Fc gamma receptor) binding activity In certain embodiments, the Fc domain of the multispecific antigen-binding molecule described herein exhibits reduced binding affinity to Fc receptors compared to native IgG1 Fc domains. In one such embodiment, the Fc domain (or the multispecific antigen-binding molecule comprising the Fc domain) exhibits less than 50%, preferably less than 20%, more preferably less than 10%, and most preferably less than 5% of the binding affinity to Fc receptors compared to native IgG1 Fc domains (or the multispecific antigen-binding molecule comprising the native IgG1 Fc domains). In one embodiment, the Fc domain (or the multispecific antigen-binding molecule comprising the Fc domain) does not substantially bind to Fc receptors. In certain embodiments, the Fc receptor is an Fc gamma receptor. In one embodiment, the Fc receptor is a human Fc receptor. In one embodiment, the Fc receptor is an activating Fc receptor. In a particular embodiment, the Fc receptor is an activating human Fcγ receptor, more specifically human Fcγ RIIIa, Fcγ RI, or Fcγ RIIa, most specifically human Fcγ RIIIa.

特定の態様において、多重特異性抗原結合分子のFcドメインは、Fc受容体に対するFcドメインの結合親和性を低下させる1つまたは複数のアミノ酸変異を含む。典型的には、同じ1つまたは複数のアミノ酸変異が、Fcドメインの2つのサブユニットの各々に存在する。1つの態様において、アミノ酸変異は、Fc受容体に対するFcドメインの結合親和性を低下させる。1つの態様において、アミノ酸変異は、Fc受容体に対するFcドメインの結合親和性を少なくとも2分の1、少なくとも5分の1、または少なくとも10分の1に低下させる。Fc受容体に対するFcドメインの結合親和性を低下させる2つ以上のアミノ酸変異が存在する態様において、これらのアミノ酸変異の組み合わせは、Fc受容体に対するFcドメインの結合親和性を少なくとも10分の1、少なくとも20分の1、またはさらには少なくとも50分の1に低下させ得る。1つの態様において、エンジニアリングされたFcドメインを含む多重特異性抗原結合分子は、エンジニアリングされていないFcドメインを含む多重特異性抗原結合分子と比較して、20%未満、具体的には10%未満、より具体的には5%未満のFc受容体に対する結合親和性を示す。特定の態様において、Fc受容体はFcγ受容体である。いくつかの態様において、Fc受容体はヒトFc受容体である。いくつかの態様において、Fc受容体は活性化Fc受容体である。特定の態様において、Fc受容体は活性化ヒトFcγ受容体、より具体的にはヒトFcγ RIIIa、Fcγ RI、または Fcγ RIIa、最も具体的にはヒトFcγ RIIIaである。好ましくは、これらの受容体の各々に対する結合が低下する。 In certain embodiments, the Fc domain of the multispecific antigen-binding molecule comprises one or more amino acid mutations that reduce the binding affinity of the Fc domain to the Fc receptor. Typically, the same one or more amino acid mutations are present in each of the two subunits of the Fc domain. In one embodiment, the amino acid mutations reduce the binding affinity of the Fc domain to the Fc receptor. In one embodiment, the amino acid mutations reduce the binding affinity of the Fc domain to the Fc receptor by at least 2-fold, at least 5-fold, or at least 10-fold. In an embodiment in which there are two or more amino acid mutations that reduce the binding affinity of the Fc domain to the Fc receptor, the combination of these amino acid mutations may reduce the binding affinity of the Fc domain to the Fc receptor by at least 10-fold, at least 20-fold, or even at least 50-fold. In one embodiment, the multispecific antigen-binding molecule comprising the engineered Fc domain exhibits less than 20%, particularly less than 10%, more particularly less than 5% of the binding affinity to the Fc receptor compared to the multispecific antigen-binding molecule comprising the non-engineered Fc domain. In certain embodiments, the Fc receptor is an Fcγ receptor. In some embodiments, the Fc receptor is a human Fc receptor. In some embodiments, the Fc receptor is an activating Fc receptor. In certain embodiments, the Fc receptor is an activating human Fcγ receptor, more specifically human Fcγ RIIIa, Fcγ RI, or Fcγ RIIa, most specifically human Fcγ RIIIa. Preferably, binding to each of these receptors is reduced.

1つの態様において、Fc受容体に対するFcドメインの結合親和性を低下させるアミノ酸変異はアミノ酸置換である。1つの態様において、Fcドメインは、E233、L234、L235、N297、P331、およびP329の群より選択される位置でのアミノ酸置換を含む。より特定の態様において、Fcドメインは、L234、L235、およびP329の群より選択される位置でのアミノ酸置換を含む。いくつかの態様において、Fcドメインはアミノ酸置換L234AおよびL235Aを含む。1つのそのような態様において、Fcドメインは、IgG1 Fcドメイン、特にヒトIgG1 Fcドメインである。1つの態様において、Fcドメインは、P329位でのアミノ酸置換を含む。より特定の態様において、アミノ酸置換は、P329AまたはP329G、特にP329Gである。1つの態様において、Fcドメインは、P329位でのアミノ酸置換、およびE233、L234、L235、N297、およびP331から選択される位置でのさらなるアミノ酸置換を含む。より特定の態様において、さらなるアミノ酸置換は、E233P、L234A、L235A、L235E、N297A、N297D、またはP331Sである。特定の態様において、Fcドメインは、P329位、L234位、およびL235位でのアミノ酸置換を含む。より特定の態様において、Fcドメインは、アミノ酸変異L234A、L235A、およびP329G(「P329G LALA」)を含む。1つのそのような態様において、Fcドメインは、IgG1 Fcドメイン、特にヒトIgG1 Fcドメインである。アミノ酸置換の「P329G LALA」の組み合わせは、PCT公報番号WO2012/130831に記載されているように、ヒトIgG1 FcドメインのFcγ受容体(ならびに補体)結合をほぼ完全に消失させる。WO2012/130831はまた、そのような変異Fcドメインを調製する方法、およびFc受容体結合またはエフェクター機能などのその特性を判定するための方法も記載している。 In one embodiment, the amino acid mutation that reduces the binding affinity of the Fc domain to the Fc receptor is an amino acid substitution. In one embodiment, the Fc domain comprises an amino acid substitution at a position selected from the group of E233, L234, L235, N297, P331, and P329. In a more particular embodiment, the Fc domain comprises an amino acid substitution at a position selected from the group of L234, L235, and P329. In some embodiments, the Fc domain comprises the amino acid substitutions L234A and L235A. In one such embodiment, the Fc domain is an IgG1 Fc domain, particularly a human IgG1 Fc domain. In one embodiment, the Fc domain comprises an amino acid substitution at position P329. In a more particular embodiment, the amino acid substitution is P329A or P329G, particularly P329G. In one embodiment, the Fc domain comprises an amino acid substitution at position P329 and a further amino acid substitution at a position selected from E233, L234, L235, N297, and P331. In a more particular embodiment, the further amino acid substitution is E233P, L234A, L235A, L235E, N297A, N297D, or P331S. In a particular embodiment, the Fc domain comprises amino acid substitutions at positions P329, L234, and L235. In a more particular embodiment, the Fc domain comprises the amino acid mutations L234A, L235A, and P329G ("P329G LALA"). In one such embodiment, the Fc domain is an IgG1 Fc domain, in particular a human IgG1 Fc domain. The "P329G LALA" combination of amino acid substitutions almost completely abolishes Fcγ receptor (as well as complement) binding of human IgG1 Fc domains, as described in PCT Publication No. WO2012/130831. WO2012/130831 also describes methods for preparing such mutant Fc domains and for determining their properties, such as Fc receptor binding or effector function.

IgG4抗体は、IgG1抗体と比較して、Fc受容体に対する低下した結合親和性および低下したエフェクター機能を示す。したがって、いくつかの態様において、本明細書において記載されるT細胞を活性化する二重特異性抗原結合分子のFcドメインは、IgG4 Fcドメイン、特にヒトIgG4 Fcドメインである。1つの態様において、IgG4 Fcドメインは、S228位でのアミノ酸置換、特にアミノ酸置換S228Pを含む。Fc受容体に対するその結合親和性および/またはそのエフェクター機能をさらに低下させるために、1つの態様において、IgG4 Fcドメインは、L235位でのアミノ酸置換、特にアミノ酸置換L235Eを含む。別の態様において、IgG4 Fcドメインは、P329位でのアミノ酸置換、特にアミノ酸置換P329Gを含む。特定の態様において、IgG4 Fcドメインは、S228位、L235位、およびP329位でのアミノ酸置換、特にアミノ酸置換S228P、L235E、およびP329Gを含む。そのようなIgG4 Fcドメイン変異体およびそれらのFcγ受容体結合特性は、PCT公報番号WO2012/130831に記載されている。 IgG4 antibodies exhibit reduced binding affinity to Fc receptors and reduced effector function compared to IgG1 antibodies. Thus, in some embodiments, the Fc domain of the bispecific antigen-binding molecule that activates T cells described herein is an IgG4 Fc domain, in particular a human IgG4 Fc domain. In one embodiment, the IgG4 Fc domain comprises an amino acid substitution at position S228, in particular the amino acid substitution S228P. To further reduce its binding affinity to Fc receptors and/or its effector function, in one embodiment, the IgG4 Fc domain comprises an amino acid substitution at position L235, in particular the amino acid substitution L235E. In another embodiment, the IgG4 Fc domain comprises an amino acid substitution at position P329, in particular the amino acid substitution P329G. In a particular embodiment, the IgG4 Fc domain comprises amino acid substitutions at positions S228, L235, and P329, in particular the amino acid substitutions S228P, L235E, and P329G. Such IgG4 Fc domain mutants and their Fcγ receptor binding properties are described in PCT Publication No. WO2012/130831.

特定の態様において、FcドメインのN-グリコシル化は除去されている。1つのそのような態様において、Fcドメインは、N297位でのアミノ酸変異、特に、アスパラギンをアラニン(N297A)またはアスパラギン酸(N297D)によって置換するアミノ酸置換を含む。 In certain embodiments, the N-glycosylation of the Fc domain is removed. In one such embodiment, the Fc domain comprises an amino acid mutation at position N297, in particular an amino acid substitution replacing asparagine with alanine (N297A) or aspartic acid (N297D).

特に好ましい態様において、天然型IgG1 Fcドメインと比較して、Fc受容体に対する低下した結合親和性を示すFcドメインは、アミノ酸置換L234A、L235A、およびN297Aを含むヒトIgG1 Fcドメインである。 In a particularly preferred embodiment, the Fc domain exhibiting reduced binding affinity to an Fc receptor compared to a native IgG1 Fc domain is a human IgG1 Fc domain comprising the amino acid substitutions L234A, L235A, and N297A.

変異体Fcドメインは、当技術分野において周知の遺伝学的方法または化学的方法を用いて、アミノ酸の欠失、置換、挿入、または改変によって調製することができる。遺伝学的方法には、コードDNA配列の部位特異的変異誘発、PCR、および遺伝子合成等が含まれ得る。正確なヌクレオチドの変化は、例えば配列決定によって検証することができる。 Mutant Fc domains can be prepared by amino acid deletion, substitution, insertion, or modification using genetic or chemical methods well known in the art. Genetic methods can include site-directed mutagenesis of the coding DNA sequence, PCR, gene synthesis, and the like. The exact nucleotide changes can be verified, for example, by sequencing.

Fc受容体への結合は、例えば、ELISAによって、またはBIAcore機器(GE Healthcare)などの標準的な機器装置を用いる表面プラズモン共鳴(SPR)によって容易に決定することができ、Fc受容体等は、組換え発現によって得られてもよい。適切なそのような結合アッセイが本明細書において記載される。あるいは、Fc受容体に対するFcドメインの結合親和性またはFcドメインを含む細胞活性化二重特異性抗原結合分子の結合親和性は、特定のFc受容体を発現することが公知の細胞株、例えばFcγ IIIa受容体を発現するヒトNK細胞を用いて評価され得る。 Binding to Fc receptors can be readily determined, for example, by ELISA or by surface plasmon resonance (SPR) using standard instrumentation such as a BIAcore instrument (GE Healthcare), and Fc receptors etc. may be obtained by recombinant expression. Suitable such binding assays are described herein. Alternatively, the binding affinity of an Fc domain or a cell-activating bispecific antigen-binding molecule comprising an Fc domain to an Fc receptor can be assessed using a cell line known to express a particular Fc receptor, for example human NK cells expressing the FcγIIIa receptor.

Fc受容体
用語「Fc受容体」または「FcR」は、抗体のFc領域に結合する受容体を指す。いくつかの態様において、FcRは、天然型ヒトFcRである。いくつかの態様において、FcRは、IgG抗体に結合するもの(ガンマ受容体)であり、FcγRI、FcγRII、およびFcγRIIIサブクラスの受容体を、これらの受容体の対立遺伝子バリアントおよび選択的スプライシングによる形態を含めて、含む。FcγRII受容体は、FcγRIIA(「活性化受容体」)およびFcγRIIB(「阻害受容体」)を含み、これらは主としてその細胞質ドメインにおいて相違する類似のアミノ酸配列を有する。活性化受容体FcγRIIAは、その細胞質ドメインに免疫受容体チロシン活性化モチーフ (immunoreceptor tyrosine-based activation motif: ITAM) を含む。阻害受容体FcγRIIBは、その細胞質ドメインに免疫受容体チロシン阻害モチーフ(immunoreceptor tyrosine-based inhibition motif: ITIM)を含む。(例えば、Daeron, Annu. Rev. Immunol. 15:203-234 (1997) を参照のこと。)FcRは、例えば、Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991);Capel et al., Immunomethods 4:25-34 (1994);およびde Haas et al., J. Lab. Clin. Med 126:330-41 (1995)において総説されている。将来同定されるものを含む他のFcRも、本明細書の用語「FcR」に包含される。
Fc Receptor The term "Fc receptor" or "FcR" refers to a receptor that binds to the Fc region of an antibody. In some embodiments, the FcR is a native human FcR. In some embodiments, the FcR is one that binds IgG antibodies (gamma receptors) and includes receptors of the FcγRI, FcγRII, and FcγRIII subclasses, including allelic variants and alternatively spliced forms of these receptors. FcγRII receptors include FcγRIIA ("activating receptor") and FcγRIIB ("inhibiting receptor"), which have similar amino acid sequences that differ primarily in their cytoplasmic domains. Activating receptor FcγRIIA contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. Inhibiting receptor FcγRIIB contains an immunoreceptor tyrosine-based inhibition motif (ITIM) in its cytoplasmic domain. (See, e.g., Daeron, Annu. Rev. Immunol. 15:203-234 (1997).) FcRs are reviewed, e.g., in Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods 4:25-34 (1994); and de Haas et al., J. Lab. Clin. Med 126:330-41 (1995). Other FcRs, including those identified in the future, are also encompassed by the term "FcR" herein.

用語「Fc受容体」または「FcR」はまた、母体のIgGの胎児への移動(Guyer et al., J. Immunol. 117:587 (1976)およびKim et al., J. Immunol. 24:249 (1994))ならびに免疫グロブリンのホメオスタシスの調節を担う、新生児型受容体FcRnを含む。FcRnへの結合を測定する方法は公知である(例えば、Ghetie and Ward., Immunol. Today 18(12):592-598 (1997); Ghetie et al., Nature Biotechnology, 15(7):637-640 (1997); Hinton et al., J. Biol. Chem. 279(8):6213-6216 (2004); WO2004/92219 (Hinton et al.)を参照のこと)。 The term "Fc receptor" or "FcR" also includes the neonatal receptor FcRn, which is responsible for regulating maternal IgG transfer to the fetus (Guyer et al., J. Immunol. 117:587 (1976) and Kim et al., J. Immunol. 24:249 (1994)) and immunoglobulin homeostasis. Methods for measuring binding to FcRn are known (see, e.g., Ghetie and Ward., Immunol. Today 18(12):592-598 (1997); Ghetie et al., Nature Biotechnology, 15(7):637-640 (1997); Hinton et al., J. Biol. Chem. 279(8):6213-6216 (2004); WO2004/92219 (Hinton et al.)).

in vivoでのヒトFcRnへの結合およびヒトFcRn高親和性結合ポリペプチドの血漿半減期は、例えばヒトFcRnを発現するトランスジェニックマウスもしくはトランスフェクトされたヒト細胞株においてまたはバリアントFc領域を伴うポリペプチドが投与される霊長類において測定され得る。WO2000/42072 (Presta) は、FcRに対する結合が増加したまたは減少した抗体バリアントを記載している。例えば、Shields et al. J. Biol. Chem. 9(2):6591-6604 (2001) も参照のこと。 Binding to human FcRn in vivo and plasma half-life of human FcRn high affinity binding polypeptides can be measured, for example, in transgenic mice or transfected human cell lines expressing human FcRn or in primates to which the polypeptide with the variant Fc region is administered. WO2000/42072 (Presta) describes antibody variants with increased or decreased binding to FcR. See also, e.g., Shields et al. J. Biol. Chem. 9(2):6591-6604 (2001).

Fcγ受容体
Fcγ受容体は、IgG1、IgG2、IgG3、またはIgG4モノクローナル抗体のFcドメインに結合し得る受容体を指し、これにはFcγ受容体遺伝子によって実質的にコードされるタンパク質のファミリーに属するすべてのメンバーが含まれる。ヒトにおいて、このファミリーには、アイソフォームFcγRIa、FcγRIb、およびFcγRIcを含むFcγRI (CD64);アイソフォームFcγRIIa(アロタイプH131およびR131を含む)、FcγRIIb(FcγRIIb-1およびFcγRIIb-2を含む)、およびFcγRIIcを含むFcγRII (CD32);ならびにアイソフォームFcγRIIIa(アロタイプV158およびF158を含む)およびFcγRIIIb(アロタイプFcγRIIIb-NA1およびFcγRIIIb-NA2を含む)を含むFcγRIII (CD16);ならびに未同定のヒトFcγ受容体、Fcγ受容体アイソフォーム、およびそれらのアロタイプのすべてが含まれる。しかしながら、Fcγ受容体はこれらの例に限定されない。Fcγ受容体には、これらに限定されないが、ヒト、マウス、ラット、ウサギ、およびサルに由来するものが含まれる。Fcγ受容体は任意の生物に由来してよい。マウスFcγ受容体には、これらに限定されないが、FcγRI (CD64)、FcγRII (CD32)、FcγRIII (CD16)、およびFcγRIII-2 (CD16-2)、ならびに未同定のマウスFcγ受容体、Fcγ受容体アイソフォーム、およびそれらのアロタイプのすべてが含まれる。そのような好ましいFcγ受容体には、例えば、ヒトFcγRI (CD64)、FcγRIIA (CD32)、FcγRIIB (CD32)、FcγRIIIA (CD16)、および/またはFcγRIIIB (CD16) が含まれる。FcγRIのポリヌクレオチド配列およびアミノ酸配列は、それぞれRefSeq登録番号NM_000566.3およびRefSeq登録番号NP_000557.1に示され;FcγRIIAのポリヌクレオチド配列およびアミノ酸配列は、それぞれRefSeq登録番号BC020823.1およびRefSeq登録番号AAH20823.1に示され;FcγRIIBのポリヌクレオチド配列およびアミノ酸配列は、それぞれRefSeq登録番号BC146678.1およびRefSeq登録番号AAI46679.1に示され;FcγRIIIAのポリヌクレオチド配列およびアミノ酸配列は、それぞれRefSeq登録番号BC033678.1およびRefSeq登録番号AAH33678.1に示され;ならびにFcγRIIIBのポリヌクレオチド配列およびアミノ酸配列は、それぞれRefSeq登録番号BC128562.1およびRefSeq登録番号AAI28563.1に示される。Fcγ受容体がIgG1、IgG2、IgG3、またはIgG4モノクローナル抗体のFcドメインに対する結合活性を有するかどうかは、上記のFACSおよびELISAフォーマットに加えて、ALPHAスクリーン(増幅発光近接ホモジニアスアッセイ)、表面プラズモン共鳴 (SPR) ベースのBIACORE法、およびその他によって評価することができる (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010)。
Fcγ receptors
Fcγ receptor refers to the receptor that can bind to the Fc domain of IgG1, IgG2, IgG3, or IgG4 monoclonal antibody, and includes all members of the family of proteins substantially encoded by Fcγ receptor genes.In humans, this family includes FcγRI (CD64), including isoforms FcγRIa, FcγRIb, and FcγRIc; FcγRII (CD32), including isoforms FcγRIIa (including allotypes H131 and R131), FcγRIIb (including FcγRIIb-1 and FcγRIIb-2), and FcγRIIc; and FcγRIII (CD16), including isoforms FcγRIIIa (including allotypes V158 and F158) and FcγRIIIb (including allotypes FcγRIIIb-NA1 and FcγRIIIb-NA2); and all unidentified human Fcγ receptors, Fcγ receptor isoforms, and their allotypes. However, Fcγ receptors are not limited to these examples. Fcγ receptors include, but are not limited to, those derived from humans, mice, rats, rabbits, and monkeys. Fcγ receptors may be derived from any organism. Mouse Fcγ receptors include, but are not limited to, FcγRI (CD64), FcγRII (CD32), FcγRIII (CD16), and FcγRIII-2 (CD16-2), as well as all unidentified mouse Fcγ receptors, Fcγ receptor isoforms, and allotypes thereof. Such preferred Fcγ receptors include, for example, human FcγRI (CD64), FcγRIIA (CD32), FcγRIIB (CD32), FcγRIIIA (CD16), and/or FcγRIIIB (CD16). The polynucleotide and amino acid sequences of FcγRI are set forth in RefSeq Accession Nos. NM_000566.3 and NP_000557.1, respectively; the polynucleotide and amino acid sequences of FcγRIIA are set forth in RefSeq Accession Nos. BC020823.1 and AAH20823.1, respectively; the polynucleotide and amino acid sequences of FcγRIIB are set forth in RefSeq Accession Nos. BC146678.1 and AAI46679.1, respectively; the polynucleotide and amino acid sequences of FcγRIIIA are set forth in RefSeq Accession Nos. BC033678.1 and AAH33678.1, respectively; and the polynucleotide and amino acid sequences of FcγRIIIB are set forth in RefSeq Accession Nos. BC128562.1 and AAI28563.1, respectively. Whether an Fcγ receptor has binding activity to the Fc domain of an IgG1, IgG2, IgG3, or IgG4 monoclonal antibody can be assessed by ALPHA screens (amplified luminescence proximity homogeneous assays), surface plasmon resonance (SPR)-based BIACORE methods, and others, in addition to the FACS and ELISA formats described above (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).

その一方で、「Fcリガンド」または「エフェクターリガンド」は、抗体Fcドメインに結合してFc/Fcリガンド複合体を形成する分子、および好ましくはポリペプチドを指す。該分子は任意の生物に由来してよい。FcリガンドのFcへの結合は、好ましくは1つまたは複数のエフェクター機能を誘導する。そのようなFcリガンドには、Fc受容体、Fcγ受容体、Fcα受容体、Fcβ受容体、FcRn、C1q、およびC3、マンナン結合レクチン、マンノース受容体、スタフィロコッカス(Staphylococcus)プロテインA、スタフィロコッカスプロテインG、ならびにウイルスFcγ受容体が含まれるが、これらに限定されない。Fcリガンドには、Fcγ受容体と相同なFc受容体のファミリーであるFc受容体相同体 (FcRH) (Davis et al., (2002) Immunological Reviews 190, 123-136) もまた含まれる。Fcリガンドには、Fcに結合する未同定の分子もまた含まれる。 On the other hand, "Fc ligand" or "effector ligand" refers to a molecule, and preferably a polypeptide, that binds to an antibody Fc domain to form an Fc/Fc ligand complex. The molecule may be from any organism. Binding of the Fc ligand to Fc preferably induces one or more effector functions. Such Fc ligands include, but are not limited to, Fc receptors, Fcγ receptors, Fcα receptors, Fcβ receptors, FcRn, C1q, and C3, mannan-binding lectin, mannose receptor, Staphylococcus protein A, Staphylococcus protein G, and viral Fcγ receptors. Fc ligands also include Fc receptor homologs (FcRH), a family of Fc receptors that are homologous to Fcγ receptors (Davis et al., (2002) Immunological Reviews 190, 123-136). Fc ligands also include unidentified molecules that bind to Fc.

Fcγ受容体結合活性
FcγRI、FcγRIIA、FcγRIIB、FcγRIIIA、および/またはFcγRIIIBのいずれかのFcγ受容体に対するFcドメインの結合活性が損なわれていることは、上記のFACSおよびELISAフォーマット、ならびにALPHAスクリーン(増幅発光近接ホモジニアスアッセイ)および表面プラズモン共鳴 (SPR) ベースのBIACORE法を用いることによって評価することができる (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010)。
Fcγ receptor binding activity
Impaired binding activity of the Fc domain to any of the Fcγ receptors FcγRI, FcγRIIA, FcγRIIB, FcγRIIIA, and/or FcγRIIIB can be assessed using the FACS and ELISA formats described above, as well as ALPHA screens (amplified luminescent proximity homogeneous assays) and surface plasmon resonance (SPR)-based BIACORE methods (Proc. Natl. Acad. Sci. USA (2006) 103 (11), 4005-4010).

ALPHAスクリーンは、2種類のビーズ:ドナービーズおよびアクセプタービーズを用いる、下記の原理に基づいたALPHA技術によって実施される。ドナービーズに連結された分子がアクセプタービーズに連結された分子と生物学的に相互作用し、かつ2つのビーズが近接して位置する場合にのみ、発光シグナルが検出される。ドナービーズ内の光増感剤は、レーザー光によって励起されて、ビーズ周辺の酸素を励起状態の一重項酸素に変換する。一重項酸素がドナービーズ周辺に拡散し、近接して位置するアクセプタービーズに到達すると、アクセプタービーズ内の化学発光反応が誘導される。この反応によって最終的に光が放出される。ドナービーズに連結された分子がアクセプタービーズに連結された分子と相互作用しないのであれば、ドナービーズによって生成される一重項酸素はアクセプタービーズに到達せず、化学発光反応は起こらない。 The ALPHA screen is carried out by ALPHA technology, which uses two types of beads: donor beads and acceptor beads, and is based on the following principle: A luminescence signal is detected only if the molecule linked to the donor bead interacts biologically with the molecule linked to the acceptor bead and the two beads are located in close proximity. A photosensitizer in the donor bead is excited by laser light and converts oxygen around the bead into excited singlet oxygen. When the singlet oxygen diffuses around the donor bead and reaches the nearby acceptor bead, it induces a chemiluminescence reaction in the acceptor bead. This reaction ultimately produces light. If the molecule linked to the donor bead does not interact with the molecule linked to the acceptor bead, the singlet oxygen generated by the donor bead will not reach the acceptor bead and the chemiluminescence reaction will not occur.

例えば、ビオチン標識された抗原結合分子または抗体をドナービーズに固定化し、グルタチオンSトランスフェラーゼ (GST) でタグ付けされたFcγ受容体をアクセプタービーズに固定化する。競合的変異Fcドメインを含む抗原結合分子または抗体の非存在下では、Fcγ受容体は、野生型Fcドメインを含む抗原結合分子または抗体と相互作用し、結果として520~620 nmのシグナルを誘導する。タグ付けされていない変異Fcドメインを有する抗原結合分子または抗体は、野生型Fcドメインを含む抗原結合分子または抗体と、Fcγ受容体との相互作用に関して競合する。競合の結果としての蛍光の減少を定量化することによって、相対的結合親和性を決定することができる。Sulfo-NHS-ビオチンなどを用いて抗体などの抗原結合分子または抗体をビオチン化する方法は公知である。GSTタグをFcγ受容体に付加するための適切な方法には、Fcγ受容体をコードするポリペプチドとGSTをコードするポリペプチドをインフレームで融合し、該融合遺伝子を保有するベクターが導入された細胞を用いて該遺伝子を発現させ、次いでグルタチオンカラムを用いて精製することを伴う方法が含まれる。誘導されたシグナルは好ましくは、例えば、GRAPHPAD PRISM(GraphPad;San Diego)などのソフトウェアを用いて非線形回帰分析に基づく一部位競合モデルに適合させることにより、解析することができる。 For example, a biotin-labeled antigen-binding molecule or antibody is immobilized on donor beads, and an Fcγ receptor tagged with glutathione S-transferase (GST) is immobilized on acceptor beads. In the absence of an antigen-binding molecule or antibody containing a competitive mutant Fc domain, the Fcγ receptor interacts with an antigen-binding molecule or antibody containing a wild-type Fc domain, resulting in a signal at 520 to 620 nm. An antigen-binding molecule or antibody with an untagged mutant Fc domain competes with an antigen-binding molecule or antibody containing a wild-type Fc domain for interaction with the Fcγ receptor. Relative binding affinity can be determined by quantifying the decrease in fluorescence as a result of the competition. Methods for biotinylating antigen-binding molecules or antibodies such as antibodies using Sulfo-NHS-biotin or the like are known. Suitable methods for adding a GST tag to an Fcγ receptor include those involving fusing a polypeptide encoding an Fcγ receptor in frame with a polypeptide encoding GST, expressing the gene using cells transfected with a vector carrying the fusion gene, and then purifying the gene using a glutathione column. The induced signal can be preferably analyzed by fitting to a one-site competition model based on nonlinear regression analysis using software such as, for example, GRAPHPAD PRISM (GraphPad; San Diego).

相互作用を観察するための物質の一方を、リガンドとしてセンサーチップの金薄膜上に固定化する。金薄膜とガラスとの境界面で全反射が起こるようにセンサーチップの裏面から光を当てると、ある特定の部位において反射光の強度が部分的に低下する(SPRシグナル)。相互作用を観察するための他方の物質を、分析物としてセンサーチップの表面上に注入する。分析物がリガンドに結合すると、固定化リガンド分子の質量が増加する。これにより、センサーチップの表面上の溶媒の屈折率が変化する。屈折率の変化は、SPRシグナルの位置のシフトを引き起こす(逆に、解離するとシグナルは元の位置にシフトして戻る)。Biacoreシステムでは、上記のシフトの量(すなわち、センサーチップ表面上での質量の変化)を縦軸にプロットし、そのようにして経時的な質量の変化を測定データとして表示する(センサーグラム)。センサーグラムの曲線から動態パラメーター(会合速度定数 (ka) および解離速度定数 (kd))が決定され、これら2つの定数の比率から親和性 (KD) が決定される。BIACORE法では、阻害アッセイが好ましく用いられる。そのような阻害アッセイの例は、Proc. Natl. Acad. Sci. USA (2006) 103(11), 4005-4010に記載されている。 One of the substances for observing the interaction is immobilized on the gold film of the sensor chip as a ligand. When light is applied from the back of the sensor chip so that total reflection occurs at the interface between the gold film and the glass, the intensity of the reflected light is partially reduced at a certain site (SPR signal). The other substance for observing the interaction is injected onto the surface of the sensor chip as an analyte. When the analyte binds to the ligand, the mass of the immobilized ligand molecule increases. This changes the refractive index of the solvent on the surface of the sensor chip. The change in refractive index causes a shift in the position of the SPR signal (conversely, when dissociated, the signal shifts back to its original position). In the Biacore system, the amount of the above shift (i.e., the change in mass on the sensor chip surface) is plotted on the vertical axis, and the change in mass over time is displayed as measurement data (sensorgram). The kinetic parameters (association rate constant (ka) and dissociation rate constant (kd)) are determined from the curve of the sensorgram, and the affinity (KD) is determined from the ratio of these two constants. In the BIACORE method, an inhibition assay is preferably used. An example of such an inhibition assay is described in Proc. Natl. Acad. Sci. USA (2006) 103(11), 4005-4010.

多重特異性抗原結合分子の産生および精製
いくつかの態様において、多重特異性抗原結合分子は、単離された多重特異性抗原結合分子である。
本明細書において記載される多重特異性抗原結合分子は、Fcドメインの2つのサブユニットの一方またはもう一方に融合された、2種類の異なる抗原結合部分(例えば、「第1の抗原結合部分」および「第2の抗原結合部分」)を含み、よって、Fcドメインの2つのサブユニットは典型的には、2本の同一でないポリペプチド鎖に含まれる。これらのポリペプチドの組換え同時発現および続いての二量体化は、2つのポリペプチドの複数の組み合わせの可能性をもたらす。よって、組換え産生における多重特異性抗原結合分子の収量および純度を改善するために、所望のポリペプチドの会合を促進する改変を多重特異性抗原結合分子のFcドメイン中に導入することは有利となる。
Production and purification of multispecific antigen-binding molecules In some embodiments, the multispecific antigen-binding molecule is an isolated multispecific antigen-binding molecule.
The multispecific antigen-binding molecules described herein comprise two different antigen-binding moieties (e.g., a "first antigen-binding moiety" and a "second antigen-binding moiety") fused to one or the other of the two subunits of the Fc domain, and thus the two subunits of the Fc domain are typically contained in two non-identical polypeptide chains. Recombinant co-expression of these polypeptides and subsequent dimerization provide multiple combination possibilities for the two polypeptides. Thus, in order to improve the yield and purity of the multispecific antigen-binding molecules in recombinant production, it is advantageous to introduce modifications into the Fc domain of the multispecific antigen-binding molecules that promote the association of the desired polypeptides.

したがって、特定の態様において、本明細書において記載される多重特異性抗原結合分子のFcドメインは、Fcドメインの第1のサブユニットと第2のサブユニットの会合を促進する改変を含む。ヒトIgG Fcドメインの2つのサブユニット間での最も広範囲のタンパク質-タンパク質相互作用の部位は、FcドメインのCH3ドメイン中にある。したがって、1つの態様において、該改変はFcドメインのCH3ドメイン中にある。 Thus, in certain embodiments, the Fc domain of the multispecific antigen-binding molecules described herein comprises a modification that promotes association of the first and second subunits of the Fc domain. The site of the most extensive protein-protein interaction between the two subunits of the human IgG Fc domain is in the CH3 domain of the Fc domain. Thus, in one embodiment, the modification is in the CH3 domain of the Fc domain.

特定の態様において、該改変は、Fcドメインの2つサブユニットの一方における「ノブ」改変と、Fcドメインの2つのサブユニットのもう一方における「ホール」改変とを含む、いわゆる「ノブ-イントゥ-ホール」改変である。ノブ-イントゥ-ホールテクノロジーは、例えば、米国特許第5,731,168号;米国特許第7,695,936号;Ridgway et al., Prot Eng 9, 617-621 (1996);およびCarter, J Immunol Meth 248, 7-15 (2001)に記載されている。一般に、方法は、突起(「ノブ」)が空隙(「ホール」)中に位置し、ヘテロ二量体の形成を促進しかつホモ二量体の形成を妨げることができるように、突起を第1のポリペプチドの界面に、および対応する空隙を第2のポリペプチドの界面に導入する段階を伴う。突起は、第1のポリペプチドの界面の小さなアミノ酸側鎖を、より大きな側鎖(例えば、チロシンまたはトリプトファン)で置き換えることによって構築される。突起と同じまたは同様のサイズの補償的な空隙は、大きなアミノ酸側鎖をより小さなもの(例えば、アラニンまたはスレオニン)で置き換えることによって第2のポリペプチドの界面に作出される。 In certain embodiments, the modification is a so-called "knob-into-hole" modification, which includes a "knob" modification in one of the two subunits of the Fc domain and a "hole" modification in the other of the two subunits of the Fc domain. Knob-into-hole technology is described, for example, in U.S. Pat. No. 5,731,168; U.S. Pat. No. 7,695,936; Ridgway et al., Prot Eng 9, 617-621 (1996); and Carter, J Immunol Meth 248, 7-15 (2001). In general, the method involves introducing a protrusion ("knob") into the interface of a first polypeptide and a corresponding cavity ("hole") into the interface of a second polypeptide, such that the protrusion ("knob") can be located in the cavity ("hole"), promoting the formation of heterodimers and preventing the formation of homodimers. The protuberances are constructed by replacing small amino acid side chains at the interface of the first polypeptide with larger side chains (e.g., tyrosine or tryptophan). Compensatory cavities of the same or similar size as the protuberances are created at the interface of the second polypeptide by replacing the large amino acid side chains with smaller ones (e.g., alanine or threonine).

したがって、特定の態様においては、多重特異性抗原結合分子のFcドメインの第1のサブユニットのCH3ドメインにおいて、アミノ酸残基は、より大きな側鎖体積を有するアミノ酸残基で置き換えられ、それによって、第2のサブユニットのCH3ドメイン内の空隙中に位置することができる第1のサブユニットのCH3ドメイン内の突起が生成され、Fcドメインの第2のサブユニットのCH3ドメインにおいて、アミノ酸残基は、より小さな側鎖体積を有するアミノ酸残基で置き換えられ、それによって、第1のサブユニットのCH3ドメイン内の突起が位置することができる第2のサブユニットのCH3ドメイン内の空隙が生成される。 Thus, in a particular embodiment, in the CH3 domain of a first subunit of an Fc domain of a multispecific antigen-binding molecule, an amino acid residue is replaced with an amino acid residue having a larger side chain volume, thereby generating a protrusion in the CH3 domain of the first subunit that can be positioned in a cavity in the CH3 domain of the second subunit, and in the CH3 domain of a second subunit of an Fc domain, an amino acid residue is replaced with an amino acid residue having a smaller side chain volume, thereby generating a cavity in the CH3 domain of the second subunit in which the protrusion in the CH3 domain of the first subunit can be positioned.

突起および空隙は、ポリペプチドをコードする核酸を例えば部位特異的変異誘発によって変更することによって、またはペプチド合成によって、作ることができる。 The protrusions and gaps can be created by modifying the nucleic acid encoding the polypeptide, for example by site-directed mutagenesis, or by peptide synthesis.

特定の態様において、Fcドメインの第1のサブユニットのCH3ドメインにおいて、366位のスレオニン残基は、トリプトファン残基で置き換えられ(T366W)、Fcドメインの第2のサブユニットのCH3ドメインにおいて、407位のチロシン残基は、バリン残基で置き換えられる(Y407V)。1つの態様において、Fcドメインの第2のサブユニットにおいて、さらに、366位のスレオニン残基は、セリン残基で置き換えられ(T366S)、368位のロイシン残基は、アラニン残基で置き換えられる(L368A)。 In a particular embodiment, in the CH3 domain of the first subunit of the Fc domain, the threonine residue at position 366 is replaced with a tryptophan residue (T366W), and in the CH3 domain of the second subunit of the Fc domain, the tyrosine residue at position 407 is replaced with a valine residue (Y407V). In one embodiment, in the second subunit of the Fc domain, furthermore, the threonine residue at position 366 is replaced with a serine residue (T366S), and the leucine residue at position 368 is replaced with an alanine residue (L368A).

なおさらなる態様において、Fcドメインの第1のサブユニットにおいて、さらに、354位のセリン残基は、システイン残基で置き換えられ(S354C)、Fcドメインの第2のサブユニットにおいて、さらに、349位のチロシン残基は、システイン残基によって置き換えられる(Y349C)。これらの2つのシステイン残基の導入は、Fcドメインの2つのサブユニット間にジスルフィド架橋の形成をもたらし、二量体をさらに安定化する(Carter, J Immunol Methods 248, 7-15 (2001))。 In yet a further embodiment, in the first subunit of the Fc domain, the serine residue at position 354 is further replaced by a cysteine residue (S354C), and in the second subunit of the Fc domain, the tyrosine residue at position 349 is further replaced by a cysteine residue (Y349C). The introduction of these two cysteine residues results in the formation of a disulfide bridge between the two subunits of the Fc domain, further stabilizing the dimer (Carter, J Immunol Methods 248, 7-15 (2001)).

他の態様において、本開示の多重特異性抗原結合分子には、所望の組合せを有するH鎖間およびL鎖H鎖間の会合を促進するための他の技術を適用することができる。 In other embodiments, other techniques can be applied to the multispecific antigen-binding molecules of the present disclosure to promote association between H chains and L chains having the desired combinations.

例えば、多重特異性抗体の会合には、抗体H鎖の第2の定常領域または第3の定常領域(CH2またはCH3)の界面に静電気的反発を導入することにより望ましくないH鎖会合を抑制する技術を適用することができる(WO2006/106905)。 For example, in the case of multispecific antibody association, a technique can be applied that suppresses undesired heavy chain association by introducing electrostatic repulsion to the interface of the second or third constant region (CH2 or CH3) of the antibody heavy chain (WO2006/106905).

CH2またはCH3の界面に静電気的反発を導入することにより意図しないH鎖会合を抑制する技術において、H鎖の他方の定常領域の界面で接触するアミノ酸残基の例には、CH3領域におけるEUナンバリング位置356位、439位、357位、370位、399位、および409位の残基に対応する領域が含まれる。 In a technique for suppressing unintended H-chain association by introducing electrostatic repulsion at the CH2 or CH3 interface, examples of amino acid residues that contact the interface of the other constant region of the H-chain include regions corresponding to residues at EU numbering positions 356, 439, 357, 370, 399, and 409 in the CH3 region.

より具体的には、2種のH鎖CH3領域を含む抗体であって、第1のH鎖CH3領域における、以下の(1)~(3)に示すアミノ酸残基の対から選択される1~3対のアミノ酸残基が同種の電荷を有する抗体が、例として挙げられる:(1)H鎖CH3領域に含まれる、EUナンバリング位置356位および439位のアミノ酸残基、(2)H鎖CH3領域に含まれる、EUナンバリング位置357位および370位のアミノ酸残基、ならびに(3)H鎖CH3領域に含まれる、EUナンバリング位置399位および409位のアミノ酸残基。 More specifically, examples include antibodies that contain two types of H chain CH3 regions, in which one to three pairs of amino acid residues selected from the pairs of amino acid residues shown in (1) to (3) below in the first H chain CH3 region have the same type of charge: (1) amino acid residues at EU numbering positions 356 and 439 in the H chain CH3 region, (2) amino acid residues at EU numbering positions 357 and 370 in the H chain CH3 region, and (3) amino acid residues at EU numbering positions 399 and 409 in the H chain CH3 region.

さらに、該抗体は、上記第1のH鎖CH3領域とは異なる第2のH鎖CH3領域におけるアミノ酸残基の対が、前記(1)~(3)のアミノ酸残基の対から選択され、前記第1のH鎖CH3領域において同種の電荷を有する前記(1)~(3)のアミノ酸残基の対に対応する1~3対のアミノ酸残基が、前記第1のH鎖CH3領域における対応するアミノ酸残基とは反対の電荷を有する抗体であってもよい。 Furthermore, the antibody may be an antibody in which pairs of amino acid residues in a second H chain CH3 region different from the first H chain CH3 region are selected from the pairs of amino acid residues (1) to (3) above, and 1 to 3 pairs of amino acid residues corresponding to the pairs of amino acid residues (1) to (3) having the same charge in the first H chain CH3 region have an opposite charge to the corresponding amino acid residues in the first H chain CH3 region.

上記(1)~(3)に示されるそれぞれのアミノ酸残基は、会合した際に互いに接近している。当業者であれば、所望のH鎖CH3領域またはH鎖定常領域において、市販のソフトウェアを用いたホモロジーモデリング等により、上記(1)~(3)のアミノ酸残基に対応する位置を見出すことができ、適宜、これらの位置のアミノ酸残基を改変に供することが可能である。 The amino acid residues shown in (1) to (3) above are close to each other when associated. A person skilled in the art can find positions corresponding to the amino acid residues in (1) to (3) above in the desired H chain CH3 region or H chain constant region by homology modeling using commercially available software, and can appropriately modify the amino acid residues at these positions.

上記抗体において、「電荷を有するアミノ酸残基」は、例えば、以下の群のいずれか1つに含まれるアミノ酸残基から選択されることが好ましい:
(a) グルタミン酸(E)およびアスパラギン酸(D)、ならびに
(b) リジン(K)、アルギニン(R)、およびヒスチジン(H)。
In the above-mentioned antibody, the "charged amino acid residue" is preferably selected from amino acid residues included in any one of the following groups:
(a) glutamic acid (E) and aspartic acid (D), and
(b) Lysine (K), arginine (R), and histidine (H).

上記抗体において、語句「同じ電荷を有する」とは、例えば、2つ以上のアミノ酸残基のいずれもが、上記の群(a)および(b)のうちいずれか1つに含まれるアミノ酸残基から選択されることを意味する。語句「反対の電荷を有する」とは、例えば、2つ以上のアミノ酸残基のうちの少なくとも1つのアミノ酸残基が、上記の群(a)および(b)のうちいずれか1つに含まれるアミノ酸残基から選択される場合に、残りのアミノ酸残基が他の群に含まれるアミノ酸残基から選択されることを意味する。 In the above antibody, the phrase "having the same charge" means, for example, that two or more amino acid residues are all selected from amino acid residues included in any one of the above groups (a) and (b). The phrase "having opposite charges" means, for example, that when at least one amino acid residue out of two or more amino acid residues is selected from amino acid residues included in any one of the above groups (a) and (b), the remaining amino acid residue is selected from amino acid residues included in the other group.

好ましい態様において上記抗体は、その第1のH鎖CH3領域と第2のH鎖CH3領域がジスルフィド結合により架橋されていてもよい。 In a preferred embodiment, the first H chain CH3 region and the second H chain CH3 region of the antibody may be cross-linked by a disulfide bond.

本開示において、改変に供するアミノ酸残基は、上述した抗体可変領域または抗体定常領域のアミノ酸残基に限られない。当業者であれば、変異ポリペプチドまたは異種多量体において、市販のソフトウェアを用いたホモロジーモデリング等により、界面を形成するアミノ酸残基を同定することができ、次いでこれらの位置のアミノ酸残基を、会合を制御するように改変に供することが可能である。 In the present disclosure, the amino acid residues to be modified are not limited to those in the antibody variable region or antibody constant region described above. A person skilled in the art can identify amino acid residues that form an interface in a mutant polypeptide or heteromultimer by homology modeling using commercially available software, and can then modify the amino acid residues at these positions to control the association.

加えて、本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子の形成には他の公知技術を用いることもできる。抗体の一方のH鎖CH3の一部を対応するIgA由来の配列に変え、対応するIgA由来の配列を他方のH鎖CH3の相補的な部分に導入することにより生成された鎖交換エンジニアリングドメインCH3(strand-exchange engineered domain CH3)を用いて、異なる配列を有するポリペプチドの会合をCH3の相補的な会合によって効率的に誘導することができる (Protein Engineering Design & Selection, 23; 195-202, 2010)。この公知技術を用いて効率的に目的の多重特異性抗原結合分子を形成させることもできる。 In addition, other known techniques can be used to form the multispecific antigen-binding molecules contained in the anticancer agents, pharmaceutical compositions, combinations, and kits of the present disclosure, or used in the methods or uses of the present disclosure. A strand-exchange engineered domain CH3, which is generated by changing a portion of one H chain CH3 of an antibody to a corresponding IgA-derived sequence and introducing the corresponding IgA-derived sequence into the complementary portion of the other H chain CH3, can be used to efficiently induce association of polypeptides having different sequences through complementary association of CH3 (Protein Engineering Design & Selection, 23; 195-202, 2010). This known technique can also be used to efficiently form the desired multispecific antigen-binding molecules.

加えて、多重特異性抗原結合分子の形成には、WO2011/028952、WO2014/018572およびNat Biotechnol. 2014 Feb;32(2):191-8に記載されるような抗体のCH1とCLの会合およびVHとVLの会合を利用した抗体製造技術、WO2008/119353およびWO2011/131746に記載されるような別々に調製したモノクローナル抗体を組み合わせて使用して二重特異性抗体を製造する技術(Fab Arm Exchange)、WO2012/058768およびWO2013/063702に記載されるような抗体重鎖CH3間の会合を制御する技術、WO2012/023053に記載されるような2種類の軽鎖と1種類の重鎖とから構成される多重特異性抗体を製造する技術、Christophら(Nature Biotechnology Vol. 31, p 753-758 (2013))によって記載されるような1本のH鎖と1本のL鎖を含む抗体の片鎖をそれぞれ発現する2つの細菌細胞株を利用した多重特異性抗体を製造する技術等を用いてもよい。 In addition, for the formation of multispecific antigen-binding molecules, there are various techniques, such as those described in WO2011/028952, WO2014/018572 and Nat Biotechnol. 2014 Feb;32(2):191-8 for producing antibodies using the association of CH1 and CL and the association of VH and VL, those described in WO2008/119353 and WO2011/131746 for producing bispecific antibodies by combining monoclonal antibodies prepared separately (Fab Arm Exchange), those described in WO2012/058768 and WO2013/063702 for controlling the association between antibody heavy chain CH3, those described in WO2012/023053 for producing multispecific antibodies composed of two types of light chains and one type of heavy chain, those described in Christoph et al. (Nature Biotechnology Vol. 31, p 753-758 (2013)) may be used to produce multispecific antibodies using two bacterial cell lines each expressing one half of an antibody chain, including one heavy chain and one light chain.

あるいは、目的の多重特異性抗原結合分子を効率的に形成させることができない場合であっても、産生された分子から目的の多重特異性抗原結合分子を分離し精製することによって、本開示の多重特異性抗原結合分子を得ることが可能である。例えば、2種類のH鎖の可変領域にアミノ酸置換を導入することにより等電点の差を付与することで、2種類のホモ体と目的のヘテロ抗体をイオン交換クロマトグラフィーで精製することを可能にする方法が報告されている(WO2007114325)。ヘテロ抗体を精製する方法として、これまでに、プロテインAに結合するマウスIgG2aのH鎖とプロテインAに結合しないラットIgG2bのH鎖とを含むヘテロ二量化抗体を、プロテインAを用いて精製する方法が報告されている(WO98050431およびWO95033844)。さらに、IgGとプロテインAの結合部位であるEUナンバリング位置435位および436位のアミノ酸残基を、異なるプロテインA親和性をもたらすアミノ酸であるTyr、Hisなどに置換したH鎖を用いて、あるいは、異なるプロテインA親和性を有するH鎖を用いて、各H鎖とプロテインAとの相互作用を変化させ、次いでプロテインAカラムを用いることにより、ヘテロ二量化抗体のみを効率的に精製することができる。 Alternatively, even if the desired multispecific antigen-binding molecule cannot be efficiently formed, it is possible to obtain the multispecific antigen-binding molecule of the present disclosure by separating and purifying the desired multispecific antigen-binding molecule from the produced molecules. For example, a method has been reported in which an amino acid substitution is introduced into the variable regions of two types of H chains to impart a difference in isoelectric point, thereby enabling the purification of two types of homobodies and the desired heteroantibody by ion exchange chromatography (WO2007114325). As a method for purifying a heteroantibody, a method has been reported in which a heterodimerized antibody containing a mouse IgG2a H chain that binds to protein A and a rat IgG2b H chain that does not bind to protein A is purified using protein A (WO98050431 and WO95033844). Furthermore, by using an H chain in which the amino acid residues at EU numbering positions 435 and 436, which are the binding sites between IgG and Protein A, are replaced with amino acids such as Tyr and His that confer different Protein A affinities, or by using H chains with different Protein A affinities, the interaction between each H chain and Protein A can be changed, and then using a Protein A column, it is possible to efficiently purify only the heterodimerized antibody.

さらに、本開示のFc領域として、Fc領域のC末端のヘテロジェニティーが改善されたFc領域が適宜使用され得る。より具体的には、本開示は、IgG1、IgG2、IgG3またはIgG4由来のFc領域を構成する2つのポリペプチドのアミノ酸配列のうちEUナンバリングによって特定される446位のグリシンおよび447位のリジンを欠失させることにより生成されたFc領域を提供する。 Furthermore, as the Fc region of the present disclosure, an Fc region with improved C-terminal heterogeneity may be appropriately used. More specifically, the present disclosure provides an Fc region generated by deleting glycine at position 446 and lysine at position 447, as specified by EU numbering, from the amino acid sequences of two polypeptides constituting an Fc region derived from IgG1, IgG2, IgG3, or IgG4.

本明細書において記載されるように調製された多重特異性抗原結合分子は、例えば、高速液体クロマトグラフィー、イオン交換クロマトグラフィー、ゲル電気泳動、アフィニティークロマトグラフィー、およびサイズ排除クロマトグラフィー等の当技術分野において公知の技術によって精製されてもよい。特定のタンパク質を精製するために用いられる実際の条件は、正味電荷、疎水性、親水性等の因子に一部依存し、当業者に明らかである。アフィニティークロマトグラフィー精製では、多重特異性抗原結合分子が結合する、抗体、リガンド、受容体、または抗原を用いることができる。例えば、本発明の多重特異性抗原結合分子のアフィニティークロマトグラフィー精製では、プロテインAまたはプロテインGを有するマトリックスが用いられてもよい。多重特異性抗原結合分子を単離するために、連続したプロテインAまたはGアフィニティークロマトグラフィーおよびサイズ排除クロマトグラフィーを用いることができる。多重特異性抗原結合分子の純度は、ゲル電気泳動および高圧液体クロマトグラフィー等を含む、さまざまな周知の分析方法のいずれかによって決定することができる。 The multispecific antigen-binding molecules prepared as described herein may be purified by techniques known in the art, such as, for example, high performance liquid chromatography, ion exchange chromatography, gel electrophoresis, affinity chromatography, and size exclusion chromatography. The actual conditions used to purify a particular protein will depend in part on factors such as net charge, hydrophobicity, hydrophilicity, and the like, and will be apparent to one of skill in the art. Affinity chromatography purification can use an antibody, ligand, receptor, or antigen to which the multispecific antigen-binding molecule binds. For example, affinity chromatography purification of the multispecific antigen-binding molecules of the invention can use a matrix with protein A or protein G. Sequential protein A or G affinity chromatography and size exclusion chromatography can be used to isolate the multispecific antigen-binding molecules. The purity of the multispecific antigen-binding molecules can be determined by any of a variety of well-known analytical methods, including, for example, gel electrophoresis and high pressure liquid chromatography.

抗体依存性細胞媒介性細胞傷害
「抗体依存性細胞媒介性細胞傷害」または「ADCC」は、分泌されたIgが特定の細胞傷害性細胞(例えば、NK細胞、好中球およびマクロファージ)上に存在するFc受容体 (FcR) に結合しそれによってこれらの細胞傷害性エフェクター細胞が抗原を有する標的細胞に特異的に結合することができそしてその後にその標的細胞を細胞毒によって殺傷することができるようになる、細胞傷害の一形態を指す。ADCCを媒介するプライマリ細胞であるNK細胞はFcγRIIIのみを発現し、単球はFcγRI、FcγRII、およびFcγRIIIを発現する。造血細胞上のFcRの発現は、Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991) の第464頁の表3にまとめられている。目的の分子のADCC活性を評価するために、in vitro ADCC測定法、例えば米国特許第5,500,362号もしくは第5,821,337号または米国特許第6,737,056号 (Presta) に記載のものが実施され得る。そのような測定法に有用なエフェクター細胞は、PBMCおよびNK細胞を含む。あるいはまたは加えて、目的の分子のADCC活性は、例えばClynes et al. PNAS (USA) 95:652-656 (1998)に開示される動物モデルのような動物モデルにおいて、in vivoで評価されてもよい。
Antibody-Dependent Cell-Mediated Cytotoxicity "Antibody-Dependent Cell-Mediated Cytotoxicity" or "ADCC" refers to a form of cytotoxicity in which secreted Ig binds to Fc receptors (FcR) present on certain cytotoxic cells (e.g., NK cells, neutrophils, and macrophages), thereby enabling these cytotoxic effector cells to specifically bind to antigen-bearing target cells and subsequently kill the target cells with cytotoxins. NK cells, the primary cells mediating ADCC, express only FcγRIII, whereas monocytes express FcγRI, FcγRII, and FcγRIII. Expression of FcRs on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol 9:457-92 (1991). To assess the ADCC activity of a molecule of interest, an in vitro ADCC assay can be performed, such as those described in U.S. Patent Nos. 5,500,362 or 5,821,337 or U.S. Patent No. 6,737,056 (Presta). Useful effector cells for such assays include PBMCs and NK cells. Alternatively or additionally, the ADCC activity of a molecule of interest can be assessed in vivo in an animal model, such as the animal model disclosed in Clynes et al. PNAS (USA) 95:652-656 (1998).

補体依存性細胞傷害
「補体依存性細胞傷害」または「CDC」は、補体の存在下での標的細胞の溶解を指す。古典的補体経路の活性化は、(適切なサブクラスの)抗体(対応する抗原に結合している)への補体系の第1要素(C1q)の結合によって開始される。補体活性化を評価するため、例えばGazzano-Santoro et al., J. Immunol. Methods 202:163 (1996) に記載のCDC測定法が実施され得る。改変されたFc領域アミノ酸配列を伴うポリペプチドバリアント(バリアントFc領域を伴うポリペプチド)および増加または減少したC1q結合能は、例えば、米国特許第6,194,551号B1およびWO1999/51642に記載されている。例えば、Idusogie et al. J. Immunol. 164: 4178-4184 (2000) も参照のこと。
Complement-dependent cytotoxicity "Complement-dependent cytotoxicity" or "CDC" refers to the lysis of target cells in the presence of complement. Activation of the classical complement pathway is initiated by the binding of the first component of the complement system (C1q) to antibodies (of the appropriate subclass) that are bound to the corresponding antigen. To assess complement activation, a CDC assay can be performed, for example, as described in Gazzano-Santoro et al., J. Immunol. Methods 202:163 (1996). Polypeptide variants with altered Fc region amino acid sequences (polypeptides with variant Fc regions) and increased or decreased C1q binding capacity are described, for example, in U.S. Patent No. 6,194,551 B1 and WO1999/51642. See also, for example, Idusogie et al. J. Immunol. 164: 4178-4184 (2000).

T細胞依存性細胞傷害
「T細胞依存性細胞傷害」または「TDCC」は、標的細胞に対する細胞傷害がT細胞により誘導されるように、抗原結合分子が、標的細胞上に発現している抗原とT細胞上に発現している別の抗原との両方に結合し、T細胞を標的細胞の近くにリダイレクティングする、細胞傷害の形態を指す。T細胞依存性細胞傷害を評価するための方法である、in vitro TDCCアッセイは、本明細書の「T細胞依存性細胞傷害の測定」のセクションでも説明される。
T cell dependent cytotoxicity "T cell dependent cytotoxicity" or "TDCC" refers to a form of cytotoxicity in which an antigen binding molecule binds to both an antigen expressed on a target cell and another antigen expressed on a T cell, redirecting the T cell to the vicinity of the target cell, such that cytotoxicity against the target cell is induced by the T cell. A method for assessing T cell dependent cytotoxicity, the in vitro TDCC assay, is also described in the "Measurement of T cell dependent cytotoxicity" section of this specification.

T細胞依存性細胞傷害の測定
抗原結合分子がCLDN6およびCD3/CD137の両方に結合する態様において、本開示の抗原結合分子を、本開示の抗原結合分子における抗原結合部位が結合するCLDN6発現細胞と接触させることによって引き起こされるT細胞依存性細胞傷害(TDCC)を評価または決定するための方法として、好ましくは、以下に記載する方法が用いられる。細胞傷害活性をin vitroで評価または決定するための方法には、細胞傷害性T細胞等の活性を決定するための方法が含まれる。T細胞媒介性細胞傷害を誘導する活性を本開示の抗原結合分子が有するかどうかは、公知の方法によって決定することができる(例えば、Current protocols in Immunology, Chapter 7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc., (1993)を参照)。細胞傷害アッセイにおいて、CLDN6と異なりかつ細胞において発現していない抗原と、CD3/CD137とに結合することができる抗原結合分子が、対照抗原結合分子として用いられる。対照抗原結合分子は同じようにアッセイされる。次いで、活性は、本開示の抗原結合分子が、対照抗原結合分子のものより強い細胞傷害活性を示すかどうかを試験することによって評価される。
一方、in vivo抗腫瘍効果は、例えば、以下の手法によって、評価または決定される。本開示の抗原結合分子における抗原結合部位が結合する抗原を発現する細胞は、非ヒト動物対象に皮内または皮下移植される。次いで、移植の日からまたはその後、被験抗原結合分子が、静脈内または腹膜腔内に毎日または数日間隔で投与される。腫瘍サイズは経時的に測定される。腫瘍サイズの変化の差は細胞傷害活性として定義することができる。in vitroアッセイと同様に、対照抗原結合分子が投与される。腫瘍サイズが、対照抗原結合分子を投与された群のものより、本開示の抗原結合分子を投与された群で小さい場合に、本開示の抗原結合分子は、細胞傷害活性を有すると判断することができる。
抗原結合分子の抗原結合部位が結合する抗原を発現する細胞の増殖を抑制する本開示の抗原結合分子との接触の作用を評価または決定するために、好ましくは、MTT法および細胞内へのアイソトープ標識チミジン取り込みの測定が用いられる。一方、in vivoで細胞増殖を抑制する活性を評価または決定するために、好ましくは、in vivo細胞傷害活性を評価または決定するための上記に記載の同じ方法を用いることができる。
本開示の抗体または抗原結合分子のTDCCは、当技術分野で公知の任意の適切な方法によって評価することができる。例えば、TDCCは、乳酸脱水素酵素 (LDH) 放出アッセイによって測定することができる。このアッセイでは、標的細胞(例えば、CLDN6発現細胞)を被験抗体または抗原結合分子の存在下でT細胞(例えば、PBMC)と共にインキュベートし、T細胞によって殺傷された標的細胞から放出されたLDHの活性を、適切な試薬を用いて測定する。典型的には、細胞傷害活性は、(例えば、Triton-Xでの処理によって溶解された)標的細胞の100%の死滅によって生じたLDH活性に対する、抗体または抗原結合分子とのインキュベーションによって生じたLDH活性の割合として算出される。上述のように算出された細胞傷害活性がより高い場合、被験抗体または抗原結合分子は、より高いTDCCを有すると判定される。
Measurement of T-cell-dependent cytotoxicity In an embodiment in which an antigen-binding molecule binds to both CLDN6 and CD3/CD137, the following method is preferably used to evaluate or determine T-cell-dependent cytotoxicity (TDCC) caused by contacting an antigen-binding molecule of the present disclosure with a CLDN6-expressing cell to which the antigen-binding site in the antigen-binding molecule of the present disclosure binds. Methods for evaluating or determining cytotoxic activity in vitro include methods for determining the activity of cytotoxic T cells, etc. Whether an antigen-binding molecule of the present disclosure has the activity of inducing T-cell-mediated cytotoxicity can be determined by a known method (see, for example, Current protocols in Immunology, Chapter 7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc., (1993)). In the cytotoxicity assay, an antigen-binding molecule capable of binding to an antigen different from CLDN6 and not expressed in cells, and to CD3/CD137, is used as a control antigen-binding molecule. The control antigen-binding molecule is assayed in the same manner. Activity is then evaluated by testing whether an antigen-binding molecule of the present disclosure exhibits stronger cytotoxic activity than that of a control antigen-binding molecule.
Meanwhile, the in vivo antitumor effect is evaluated or determined, for example, by the following method. Cells expressing an antigen to which the antigen-binding site in the antigen-binding molecule of the present disclosure binds are intradermally or subcutaneously implanted into a non-human animal subject. Then, from the day of implantation or thereafter, the test antigen-binding molecule is administered intravenously or intraperitoneally every day or at intervals of several days. The tumor size is measured over time. The difference in the change in tumor size can be defined as cytotoxic activity. As in the in vitro assay, a control antigen-binding molecule is administered. If the tumor size is smaller in the group administered with the antigen-binding molecule of the present disclosure than in the group administered with the control antigen-binding molecule, it can be determined that the antigen-binding molecule of the present disclosure has cytotoxic activity.
For evaluating or determining the effect of contact with the antigen-binding molecule of the present disclosure that suppresses the proliferation of cells expressing the antigen that the antigen-binding site of the antigen-binding molecule binds to, preferably, the MTT method and measurement of the incorporation of isotope-labeled thymidine into cells are used.On the other hand, for evaluating or determining the activity of suppressing cell proliferation in vivo, preferably, the same method described above for evaluating or determining in vivo cytotoxicity can be used.
The TDCC of the antibody or antigen-binding molecule of the present disclosure can be evaluated by any suitable method known in the art. For example, TDCC can be measured by lactate dehydrogenase (LDH) release assay. In this assay, target cells (e.g., CLDN6-expressing cells) are incubated with T cells (e.g., PBMCs) in the presence of the test antibody or antigen-binding molecule, and the activity of LDH released from the target cells killed by the T cells is measured using a suitable reagent. Typically, the cytotoxic activity is calculated as the ratio of the LDH activity generated by incubation with the antibody or antigen-binding molecule to the LDH activity generated by 100% killing of the target cells (e.g., lysed by treatment with Triton-X). If the cytotoxic activity calculated as described above is higher, the test antibody or antigen-binding molecule is determined to have a higher TDCC.

加えてまたはその代わりに、例えば、TDCCは、リアルタイム細胞増殖阻害アッセイによって測定することもできる。このアッセイでは、96ウェルプレートにおいて、標的細胞(例えば、CLDN6発現細胞)を被験抗体または抗原結合分子の存在下でT細胞(例えば、PBMC)と共にインキュベートし、当技術分野で公知の方法によって、例えば適切な分析機器(例えば、xCELLigenceリアルタイム細胞分析装置)を用いることによって、標的細胞の増殖をモニターする。細胞増殖阻害率 (CGI:%) を、CGI (%) = 100 - (CIAb×100 / CINoAb) として与えられる式に従って、Cell Indexから決定する。「CIAb」は、特定の実験時間における、抗体または抗原結合分子ありのウェルのCell Indexを表し、「CINoAb」は、抗体または抗原結合分子なしのウェルの平均Cell Indexを表す。抗体または抗原結合分子のCGI率が高い、すなわち有意な正の値を有する場合、その抗体または抗原結合分子はTDCC活性を有するということができる。
1つの局面において、本開示の抗体または抗原結合分子はT細胞活性化活性を有する。T細胞活性化は、その活性化に応答してレポーター遺伝子(例えば、ルシフェラーゼ)を発現する改変T細胞株(例えば、Jurkat / NFAT-REレポーター細胞株(T細胞活性化バイオアッセイ、Promega))を用いる方法などの、当技術分野で公知の方法によってアッセイすることができる。この方法では、標的細胞(例えば、CLDN6発現細胞)を被験抗体または抗原結合分子の存在下でT細胞と共に培養し、次いでレポーター遺伝子の発現産物のレベルまたは活性を、T細胞活性化の指標として適切な方法によって測定する。レポーター遺伝子がルシフェラーゼ遺伝子である場合、ルシフェラーゼとその基質との反応によって生じた発光を、T細胞活性化の指標として測定することができる。上記のように測定されたT細胞活性化がより高い場合、被験抗体または抗原結合分子は、より高いT細胞活性化活性を有すると判定される。
Additionally or alternatively, for example, TDCC can be measured by a real-time cell proliferation inhibition assay. In this assay, target cells (e.g., CLDN6-expressing cells) are incubated with T cells (e.g., PBMCs) in the presence of a test antibody or antigen-binding molecule in a 96-well plate, and the proliferation of the target cells is monitored by methods known in the art, for example, by using a suitable analytical instrument (e.g., xCELLigence real-time cell analysis device). The cell proliferation inhibition rate (CGI:%) is determined from the Cell Index according to the formula given as CGI (%) = 100 - (CIAb x 100 / CINoAb). "CIAb" represents the Cell Index of wells with an antibody or antigen-binding molecule at a particular experimental time, and "CINoAb" represents the average Cell Index of wells without an antibody or antigen-binding molecule. If the CGI rate of an antibody or antigen-binding molecule is high, i.e., has a significant positive value, the antibody or antigen-binding molecule can be said to have TDCC activity.
In one aspect, the antibody or antigen-binding molecule of the present disclosure has T cell activation activity. T cell activation can be assayed by methods known in the art, such as using a modified T cell line (e.g., Jurkat/NFAT-RE reporter cell line (T cell activation bioassay, Promega)) that expresses a reporter gene (e.g., luciferase) in response to its activation. In this method, target cells (e.g., CLDN6-expressing cells) are cultured with T cells in the presence of a test antibody or antigen-binding molecule, and then the level or activity of the expression product of the reporter gene is measured by a suitable method as an indicator of T cell activation. When the reporter gene is a luciferase gene, the luminescence generated by the reaction of luciferase with its substrate can be measured as an indicator of T cell activation. If the T cell activation measured as above is higher, the test antibody or antigen-binding molecule is determined to have higher T cell activation activity.

1つの局面において、本開示の多重特異性抗原結合分子または抗体は、対照となる多重特異性抗体と比較して、同等またはより高い(すなわちそれ以上の)細胞傷害活性を示す。細胞傷害活性の測定および比較、ならびに同等またはより高い(すなわちそれ以上の)細胞傷害活性を示すかどうかの判定は、上記「T細胞依存性細胞傷害の測定」のセクションに記載されたとおり行うことができる。特定の態様において、対照となる多重特異性抗体は、本開示の多重特異性抗原結合分子または抗体と、第1の抗原結合部分がCD3にのみ結合することができる点を除いて、構造が同一である多重特異性抗体である。特定の態様において、対照となる多重特異性抗体は、配列番号:194のアミノ酸配列を含む重鎖および配列番号:192のアミノ酸配列を含む軽鎖を含むT細胞受容体複合体に結合することができる抗原結合部分ならびに配列番号:193のアミノ酸配列を含重鎖および配列番号:195のアミノ酸配列を含む軽鎖を含むCLDN6に結合することができる抗原結合部分を含む多重特異性抗体(CS3348)である。 In one aspect, the multispecific antigen-binding molecule or antibody of the present disclosure exhibits the same or higher (i.e., greater) cytotoxic activity compared to a control multispecific antibody. Measurement and comparison of cytotoxic activity and determination of whether the antibody exhibits the same or higher (i.e., greater) cytotoxic activity can be performed as described in the "Measurement of T-cell-dependent cytotoxicity" section above. In a particular embodiment, the control multispecific antibody is a multispecific antibody that is structurally identical to the multispecific antigen-binding molecule or antibody of the present disclosure, except that the first antigen-binding portion can only bind to CD3. In a particular embodiment, the control multispecific antibody is a multispecific antibody (CS3348) that includes an antigen-binding portion capable of binding to a T cell receptor complex that includes a heavy chain that includes the amino acid sequence of SEQ ID NO: 194 and a light chain that includes the amino acid sequence of SEQ ID NO: 192, and an antigen-binding portion capable of binding to CLDN6 that includes a heavy chain that includes the amino acid sequence of SEQ ID NO: 193 and a light chain that includes the amino acid sequence of SEQ ID NO: 195.

医薬組成物
1つの局面において、本開示は、本開示の多重特異性抗原結合分子または抗体を含む医薬組成物を提供する。特定の態様において、本開示の医薬組成物は、T細胞依存性細胞傷害を誘導し、言い換えると、本開示の医薬組成物は、細胞傷害を誘導するための治療剤である。特定の態様において、本開示の医薬組成物は、がんの治療および/または予防に用いられる医薬組成物である。特定の態様において、本開示の医薬組成物は、卵巣がん、非小細胞肺がん、胃がん、肝臓がん、子宮内膜がん、胚細胞性腫瘍、精巣がん、乳がん、子宮頸がん、食道がん、膵臓がん、胆管がん、腎臓がん、頭頚部がん、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍(AT/RT)を含む、CLDN6陽性がんまたはCLDN6発現がん;および他のCLDN6陽性がんまたはCLDN6発現がんの治療および/または予防に用いられる医薬組成物である。特定の態様において、本開示の医薬組成物は、細胞増殖抑制剤(細胞増殖阻害剤)である。特定の態様において、本開示の医薬組成物は抗がん剤である。特定の態様において、本開示の医薬組成物は、細胞傷害誘導剤、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫応答活性化剤、がん治療剤またはがん予防剤である。
Pharmaceutical Compositions
In one aspect, the present disclosure provides a pharmaceutical composition comprising the multispecific antigen-binding molecule or antibody of the present disclosure. In certain embodiments, the pharmaceutical composition of the present disclosure induces T cell-dependent cytotoxicity, in other words, the pharmaceutical composition of the present disclosure is a therapeutic agent for inducing cytotoxicity. In certain embodiments, the pharmaceutical composition of the present disclosure is a pharmaceutical composition used for the treatment and/or prevention of cancer. In certain embodiments, the pharmaceutical composition of the present disclosure is a pharmaceutical composition used for the treatment and/or prevention of CLDN6-positive or CLDN6-expressing cancer, including ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, testicular cancer, breast cancer, cervical cancer, esophageal cancer, pancreatic cancer, bile duct cancer, kidney cancer, head and neck cancer, colorectal cancer, bladder cancer, or atypical teratoid rhabdoid tumor (AT/RT); and other CLDN6-positive or CLDN6-expressing cancer. In certain embodiments, the pharmaceutical composition of the present disclosure is a cell proliferation inhibitor (cell proliferation inhibitor). In certain embodiments, the pharmaceutical composition of the present disclosure is an anticancer agent. In certain embodiments, the pharmaceutical composition of the present disclosure is a cytotoxicity inducer, an immune response activator against cancer cells or tumor tissues containing cancer cells, a cancer therapeutic agent, or a cancer preventive agent.

本開示の医薬組成物、本開示の細胞傷害を誘導するための治療剤、細胞増殖抑制剤、細胞傷害誘導剤、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫応答活性化剤、がん治療剤、がん予防剤、または抗がん剤は、必要に応じて、さまざまな種類の抗原結合分子または抗体と共に製剤化することができる。例えば、本開示の複数の多重特異性抗原結合分子または抗体のカクテルによって、抗原を発現する細胞に対する細胞傷害作用を増強させることができる。 The pharmaceutical composition of the present disclosure, the therapeutic agent for inducing cytotoxicity of the present disclosure, the cell proliferation inhibitor, the cytotoxicity inducer, the immune response activator against cancer cells or tumor tissue containing cancer cells, the cancer therapeutic agent, the cancer preventive agent, or the anticancer agent can be formulated with various types of antigen-binding molecules or antibodies as necessary. For example, a cocktail of multiple multispecific antigen-binding molecules or antibodies of the present disclosure can enhance the cytotoxic effect against cells expressing an antigen.

本明細書に記載の多重特異性抗原結合分子または抗体を含む医薬組成物は、所望の純度を有する抗原結合分子または抗体を、1つまたは複数の任意の薬学的に許容される担体 (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)) と混合することによって、凍結乾燥製剤または水溶液の形態で、調製される。薬学的に許容される担体は、概して、用いられる際の投与量および濃度ではレシピエントに対して非毒性であり、これらに限定されるものではないが、以下のものを含む:リン酸塩、クエン酸塩、および他の有機酸などの緩衝液;アスコルビン酸およびメチオニンを含む、抗酸化剤;保存料(オクタデシルジメチルベンジル塩化アンモニウム;塩化ヘキサメトニウム;塩化ベンザルコニウム;塩化ベンゼトニウム;フェノール、ブチル、またはベンジルアルコール;メチルまたはプロピルパラベンなどのアルキルパラベン;カテコール;レソルシノール;シクロヘキサノール;3-ペンタノール;およびm-クレゾールなど);低分子(約10残基未満)ポリペプチド;血清アルブミン、ゼラチン、または免疫グロブリンなどのタンパク質;ポリビニルピロリドンなどの親水性ポリマー;グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン、またはリジンなどのアミノ酸;グルコース、マンノース、またはデキストリンを含む、単糖、二糖、および他の炭水化物;EDTAなどのキレート剤;スクロース、マンニトール、トレハロース、ソルビトールなどの、砂糖類;ナトリウムなどの塩形成対イオン類;金属錯体(例えば、Zn-タンパク質錯体);および/またはポリエチレングリコール (PEG) などの非イオン系表面活性剤。本明細書の例示的な薬学的に許容される担体は、さらに、可溶性中性活性型ヒアルロニダーゼ糖タンパク質 (sHASEGP)(例えば、rHuPH20 (HYLENEX(登録商標)、Baxter International, Inc.) などのヒト可溶性PH-20ヒアルロニダーゼ糖タンパク質)などの間質性薬剤分散剤を含む。特定の例示的sHASEGPおよびその使用方法は(rHuPH20を含む)、米国特許出願公開第2005/0260186号および第2006/0104968号に記載されている。1つの局面において、sHASEGPは、コンドロイチナーゼなどの1つまたは複数の追加的なグリコサミノグリカナーゼと組み合わせられる。
例示的な凍結乾燥抗体製剤は、米国特許第6,267,958号に記載されている。水溶液抗体製剤は、米国特許第6,171,586号およびWO2006/044908に記載のものを含み、後者の製剤はヒスチジン-アセテート緩衝液を含んでいる。
Pharmaceutical compositions comprising the multispecific antigen-binding molecules or antibodies described herein are prepared in the form of a lyophilized formulation or aqueous solution by mixing the antigen-binding molecules or antibodies having the desired purity with any one or more pharma- ceutically acceptable carriers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980)). Pharmaceutically acceptable carriers are generally non-toxic to recipients at the dosages and concentrations employed, and include, but are not limited to, the following: buffers such as phosphate, citrate, and other organic acids; antioxidants, including ascorbic acid and methionine; preservatives (octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl, or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); small (less than about 10 residues) polypeptides; proteins such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates, including glucose, mannose, or dextrin; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose, sorbitol; salt-forming counterions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as polyethylene glycol (PEG). Exemplary pharmacologic carriers herein further include interstitial drug dispersing agents, such as soluble neutral activated hyaluronidase glycoproteins (sHASEGPs) (e.g., human soluble PH-20 hyaluronidase glycoproteins, such as rHuPH20 (HYLENEX®, Baxter International, Inc.)). Certain exemplary sHASEGPs and methods of their use (including rHuPH20) are described in U.S. Patent Application Publication Nos. 2005/0260186 and 2006/0104968. In one aspect, the sHASEGP is combined with one or more additional glycosaminoglycanases, such as chondroitinases.
Exemplary lyophilized antibody formulations are described in U.S. Patent No. 6,267,958. Aqueous antibody formulations include those described in U.S. Patent No. 6,171,586 and WO2006/044908, the latter formulations including a histidine-acetate buffer.

本明細書の製剤は、治療される特定の適応症のために必要であれば1つより多くの有効成分を含んでもよい。互いに悪影響を与えあわない相補的な活性を伴うものが好ましい。このような有効成分は、意図された目的のために有効である量で、好適に組み合わせられて存在する。 The formulations herein may contain more than one active ingredient as necessary for the particular indication being treated, preferably with complementary activities that do not adversely affect each other. Such active ingredients are present in any suitable combination and in amounts that are effective for the intended purpose.

必要に応じて、本開示の抗原結合分子または抗体は、マイクロカプセル(ヒドロキシメチルセルロース、ゼラチン、ポリ[メチルメタクリレート]などから作製されたマイクロカプセル)中に封入してもよく、コロイド薬物送達系(リポソーム、アルブミンマイクロスフェア、マイクロエマルジョン、ナノ粒子、およびナノカプセル)の構成成分としてもよい(例えば、「Remington's Pharmaceutical Science 16th edition」、Oslo Ed. (1980)を参照)。さらに、薬剤を徐放性薬剤として調製するための方法も公知であり、これらは本開示の抗原結合分子に適用することができる(J. Biomed. Mater. Res. (1981) 15, 267-277; Chemtech. (1982) 12, 98-105;米国特許第3773719号;欧州特許出願 (EP)番号EP58481およびEP133988;Biopolymers (1983) 22, 547-556)。 If necessary, the antigen-binding molecules or antibodies of the present disclosure may be encapsulated in microcapsules (microcapsules made of hydroxymethylcellulose, gelatin, poly[methyl methacrylate], etc.) or may be components of colloidal drug delivery systems (liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules) (see, for example, "Remington's Pharmaceutical Science 16th edition", Oslo Ed. (1980)). In addition, methods for preparing drugs as sustained-release drugs are also known and can be applied to the antigen-binding molecules of the present disclosure (J. Biomed. Mater. Res. (1981) 15, 267-277; Chemtech. (1982) 12, 98-105; U.S. Patent No. 3,773,719; European Patent Application (EP) Nos. EP58481 and EP133988; Biopolymers (1983) 22, 547-556).

必要に応じて、本開示の多重特異性抗原結合分子または抗体を対象内で直接発現させるために、本開示の抗原結合分子または抗体をコードする核酸分子を含むベクターを、対象に導入してもよい。使用することが可能なベクターの例としては、アデノウイルスであるが、これに限定されない。本開示の抗原結合分子または抗体をコードする核酸分子を対象に直接投与すること、またはエレクトロポレーションを介して本開示の抗原結合分子または抗体をコードする核酸分子を対象に移入すること、または発現および分泌させるべき本開示の抗原結合分子または抗体をコードする核酸分子を含む細胞を対象に投与して、対象において本開示の抗原結合分子または抗体を連続的に発現および分泌させることも可能である。
本開示の医薬組成物、細胞増殖抑制剤、または抗がん剤は、経口または非経口のいずれかで患者に投与され得る。好ましくは、非経口投与で患者に投与され、具体的には、そのような投与法には、注射、経鼻投与、経肺投与、および経皮投与が含まれる。注射には、例えば、静脈内注射、筋肉内注射、腹腔内注射、および皮下注射が含まれる。例えば、本開示の医薬組成物、細胞傷害を誘導するための治療剤、細胞増殖抑制剤、または抗がん剤は、注射により局所的にまたは全身的に投与することができる。さらに、適切な投与方法が患者の年齢および症状に応じて選択することができる。投与用量は、例えば、各投与につき体重1 kgあたり0.0001 mg~1,000 mgの範囲から選択することができる。あるいは、用量は、例えば、1患者あたり0.001 mg~100,000 mgの範囲から選択することができる。しかしながら、本開示の医薬組成物の用量は、これらの用量に限定されない。
If necessary, a vector containing a nucleic acid molecule encoding the antigen-binding molecule or antibody of the present disclosure may be introduced into a subject to directly express the multispecific antigen-binding molecule or antibody of the present disclosure in the subject.An example of a vector that can be used is, but is not limited to, an adenovirus.It is also possible to directly administer the nucleic acid molecule encoding the antigen-binding molecule or antibody of the present disclosure to a subject, or to transfer the nucleic acid molecule encoding the antigen-binding molecule or antibody of the present disclosure to a subject via electroporation, or to administer cells containing a nucleic acid molecule encoding the antigen-binding molecule or antibody of the present disclosure to be expressed and secreted to a subject, thereby allowing the antigen-binding molecule or antibody of the present disclosure to be continuously expressed and secreted in the subject.
The pharmaceutical composition, cytostatic agent, or anticancer agent of the present disclosure may be administered to a patient either orally or parenterally. Preferably, the pharmaceutical composition is administered to a patient parenterally, and specifically, such administration methods include injection, nasal administration, pulmonary administration, and transdermal administration. Injection includes, for example, intravenous injection, intramuscular injection, intraperitoneal injection, and subcutaneous injection. For example, the pharmaceutical composition, therapeutic agent for inducing cytotoxicity, cytostatic agent, or anticancer agent of the present disclosure may be administered locally or systemically by injection. Furthermore, an appropriate administration method may be selected according to the age and symptoms of the patient. The administration dose may be selected, for example, from the range of 0.0001 mg to 1,000 mg per kg of body weight for each administration. Alternatively, the dose may be selected, for example, from the range of 0.001 mg to 100,000 mg per patient. However, the dose of the pharmaceutical composition of the present disclosure is not limited to these doses.

好ましくは、本開示の医薬組成物は、本明細書において記載されるような多重特異性抗原結合分子または抗体を含む。1つの局面において、組成物は、細胞傷害を誘導することにおいて使用するための医薬組成物である。別の局面において、組成物は、がんを治療または予防することにおいて使用するための医薬組成物である。好ましくは、がんはCLDN6発現がんである。本開示の医薬組成物は、がんを治療または予防するために用いることができる。したがって、本開示は、その必要がある患者に本願明細書に記載される多重特異性抗原結合分子または抗体が投与される、がんを治療または予防するための方法を提供する。 Preferably, the pharmaceutical composition of the present disclosure comprises a multispecific antigen-binding molecule or antibody as described herein. In one aspect, the composition is a pharmaceutical composition for use in inducing cytotoxicity. In another aspect, the composition is a pharmaceutical composition for use in treating or preventing cancer. Preferably, the cancer is a CLDN6-expressing cancer. The pharmaceutical composition of the present disclosure can be used to treat or prevent cancer. Thus, the present disclosure provides a method for treating or preventing cancer, in which a multispecific antigen-binding molecule or antibody described herein is administered to a patient in need thereof.

本開示はまた、CLDN6を発現する細胞を、CLDN6に結合する本開示の抗原結合分子と接触させることによって、CLDN6を発現する細胞またはCLDN6陽性がんを損傷するための、または細胞増殖を抑制するための方法も提供する。本開示の抗原結合分子が結合する細胞は、それがCLDN6を発現する限り、特に限定されない。具体的には、本開示において、好ましいCLDN6発現がんまたはCLDN6陽性がんには、卵巣がん、非小細胞肺がん、胃がん、肝臓がん、子宮内膜がん、胚細胞性腫瘍、精巣がん、乳がん、子宮頸がん、食道がん、膵臓がん、胆管がん、腎臓がん、頭頚部がん、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍(AT/RT)が含まれる。 The present disclosure also provides a method for damaging a cell expressing CLDN6 or a CLDN6-positive cancer or for suppressing cell proliferation by contacting the cell expressing CLDN6 with an antigen binding molecule of the present disclosure that binds to CLDN6. The cell to which the antigen binding molecule of the present disclosure binds is not particularly limited as long as it expresses CLDN6. Specifically, in the present disclosure, preferred CLDN6-expressing or CLDN6-positive cancers include ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, testicular cancer, breast cancer, cervical cancer, esophageal cancer, pancreatic cancer, bile duct cancer, kidney cancer, head and neck cancer, colon cancer, bladder cancer, or atypical teratoid rhabdoid tumor (AT/RT).

本開示において、「接触」は、例えば、in vitroで培養されたCLDN6を発現する細胞の培地に本開示の抗原結合分子を添加することによって行うことができる。この場合、添加すべき抗原結合分子は、溶液、または凍結乾燥等によって調製された固体などの適切な形態で用いることができる。本開示の抗原結合分子を水溶液として添加する場合、該溶液は、抗原結合分子を単独で含有する純粋な水溶液、または例えば上記の界面活性剤、賦形剤、着色剤、着香剤、保存剤、安定化剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、および矯味剤を含有する溶液であってよい。添加濃度は特に限定されない;しかしながら、培地中の最終濃度は、好ましくは1 pg/ml~1 g/mlの範囲内、より好ましくは1 ng/ml~1 mg/ml、およびさらにより好ましくは1μg/ml~1 mg/mlの範囲内である。 In the present disclosure, "contact" can be performed, for example, by adding the antigen-binding molecule of the present disclosure to the culture medium of cells expressing CLDN6 cultured in vitro. In this case, the antigen-binding molecule to be added can be used in an appropriate form, such as a solution or a solid prepared by lyophilization or the like. When the antigen-binding molecule of the present disclosure is added as an aqueous solution, the solution may be a pure aqueous solution containing the antigen-binding molecule alone, or a solution containing, for example, the above-mentioned surfactants, excipients, colorants, flavoring agents, preservatives, stabilizers, buffers, suspending agents, isotonicity agents, binders, disintegrants, lubricants, flow enhancers, and flavoring agents. The concentration of the added agent is not particularly limited; however, the final concentration in the culture medium is preferably within the range of 1 pg/ml to 1 g/ml, more preferably 1 ng/ml to 1 mg/ml, and even more preferably 1 μg/ml to 1 mg/ml.

本開示の別の態様において、「接触」はまた、in vivoでCLDN6発現細胞を移植された非ヒト動物、またはCLDN6を内因的に発現するがん細胞を有する動物に投与することによって行うこともできる。投与方法は、経口または非経口であってよく、非経口投与が特に好ましい。具体的には、非経口投与方法には、注射、経鼻投与、経肺投与、および経皮投与が含まれる。注射には、例えば、静脈内注射、筋肉内注射、腹腔内注射、および皮下注射が含まれる。例えば、本開示の医薬組成物、細胞傷害を誘導するための治療剤、細胞増殖抑制剤、または抗がん剤は、注射によって局所投与または全身投与することができる。さらに、適切な投与方法は、動物対象の年齢および症状に応じて選択することができる。抗原結合分子を水溶液として投与する場合、該溶液は、抗原結合分子を単独で含有する純粋な水溶液、または例えば上記の界面活性剤、賦形剤、着色剤、着香剤、保存剤、安定化剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、および矯味剤を含有する溶液であってよい。投与用量は、例えば、各投与につき体重1 kgあたり0.0001~1,000 mgの範囲から選択することができる。あるいは、用量は、例えば、各患者につき0.001~100,000 mgの範囲から選択することができる。しかしながら、本開示の抗原結合分子の用量は、これらの例に限定されない。 In another embodiment of the present disclosure, the "contact" can also be performed by administering to a non-human animal transplanted with CLDN6-expressing cells in vivo or to an animal having cancer cells that endogenously express CLDN6. The administration method may be oral or parenteral, with parenteral administration being particularly preferred. Specifically, parenteral administration methods include injection, intranasal administration, pulmonary administration, and transdermal administration. Injection includes, for example, intravenous injection, intramuscular injection, intraperitoneal injection, and subcutaneous injection. For example, the pharmaceutical composition of the present disclosure, the therapeutic agent for inducing cytotoxicity, the cell proliferation inhibitor, or the anticancer agent can be administered locally or systemically by injection. Furthermore, the appropriate administration method can be selected according to the age and symptoms of the animal subject. When the antigen-binding molecule is administered as an aqueous solution, the solution may be a pure aqueous solution containing the antigen-binding molecule alone, or a solution containing, for example, the above-mentioned surfactants, excipients, colorants, flavorings, preservatives, stabilizers, buffers, suspending agents, isotonicity agents, binders, disintegrants, lubricants, flow enhancers, and flavoring agents. The dosage can be selected, for example, from the range of 0.0001 to 1,000 mg per kg of body weight per administration. Alternatively, the dosage can be selected, for example, from the range of 0.001 to 100,000 mg per patient. However, the dosage of the antigen-binding molecule of the present disclosure is not limited to these examples.

医薬製剤、医薬組成物
用語「医薬製剤」または「医薬組成物」は、その中に含まれた有効成分の生物学的活性が効果を発揮し得るような形態にある調製物であって、かつ製剤が投与される対象に許容できない程度に毒性のある追加の要素を含んでいない、調製物を指す。
Pharmaceutical Formulations, Pharmaceutical Compositions The terms "pharmaceutical formulation" or "pharmaceutical composition" refer to a preparation in a form such that the biological activity of the active ingredients contained therein can be exerted, and which does not contain additional components that are unacceptably toxic to the subject to which the formulation is administered.

薬学的に許容される担体
「薬学的に許容される担体」は、対象に対して無毒な、医薬製剤中の有効成分以外の成分を指す。薬学的に許容される担体は、これらに限定されるものではないが、緩衝液、賦形剤、安定化剤、または保存剤を含む。
Pharmaceutically acceptable carrier : A "pharmaceutically acceptable carrier" refers to an ingredient, other than an active ingredient, in a pharmaceutical formulation that is non-toxic to a subject. Pharmaceutically acceptable carriers include, but are not limited to, buffers, excipients, stabilizers, or preservatives.

治療
本明細書で用いられる「治療」(および、その文法上の派生語、例えば「治療する」、「治療すること」など)は、治療される個体の自然経過を改変することを企図した臨床的介入を意味し、予防のためにも、臨床的病態の経過の間にも実施され得る。治療の望ましい効果は、これらに限定されるものではないが、疾患の発生または再発の防止、症状の軽減、疾患による任意の直接的または間接的な病理的影響の減弱、転移の防止、疾患の進行速度の低減、疾患状態の回復または緩和、および寛解または改善された予後を含む。いくつかの態様において、本開示の抗原結合分子または抗体は、疾患の発症を遅らせる、または疾患の進行を遅くするために用いられる。
Treatment As used herein, "treatment" (and its grammatical derivatives, such as "treat", "treating", etc.) refers to a clinical intervention intended to modify the natural course of the individual being treated, and may be performed for prophylaxis or during the course of a clinical condition. Desirable effects of treatment include, but are not limited to, prevention of disease onset or recurrence, relief of symptoms, attenuation of any direct or indirect pathological effects of the disease, prevention of metastasis, reduction in the rate of disease progression, amelioration or alleviation of the disease state, and remission or improved prognosis. In some embodiments, the antigen binding molecules or antibodies of the present disclosure are used to delay the onset of disease or slow the progression of disease.

いくつかの態様において、本発明は、本発明の方法によってがんを治療することを含む、特にがん治療中またはがん治療後の、がん化学療法耐性、がん再発またはがん転移を予防する方法に関する。いくつかの実施態様において、本発明における「治療」は、本発明の抗がん剤または医薬組成物を用いた単剤投与あるいは併用療法によって、個体のがん細胞数が減少すること、がん細胞の増殖が抑制されること、腫瘍のサイズが減少すること、末梢器官へのがん細胞の浸潤を抑制すること、がん細胞の転移を抑制すること、またはがんに起因する様々な症状が改善されることを意味する。また、いくつかの実施態様において、本発明における「予防」は、減少したがん細胞が再度増殖することによるがん細胞数の増加を防止すること、増殖が抑制されたがん細胞の再増殖を防止すること、減少した腫瘍のサイズが再度増大することを防止すること、を意味する。 In some embodiments, the present invention relates to a method for preventing cancer chemotherapy resistance, cancer recurrence, or cancer metastasis, particularly during or after cancer treatment, including treating cancer with the method of the present invention. In some embodiments, "treatment" in the present invention means that the number of cancer cells in an individual is reduced, the proliferation of cancer cells is inhibited, the size of a tumor is reduced, the infiltration of cancer cells into peripheral organs is inhibited, the metastasis of cancer cells is inhibited, or various symptoms caused by cancer are improved, by single agent administration or combination therapy using the anticancer agent or pharmaceutical composition of the present invention. In some embodiments, "prevention" in the present invention means preventing an increase in the number of cancer cells due to the re-proliferation of reduced cancer cells, preventing the re-proliferation of cancer cells whose proliferation has been inhibited, and preventing a re-increase in the size of a reduced tumor.

がん
用語「がん」および「がん性」は、調節されない細胞成長/増殖によって典型的に特徴づけられる哺乳動物における生理学的状態を指すまたは説明するものである。
本明細書に記載の「がん」は、卵巣癌、胃癌等の上皮性の悪性腫瘍のみならず、慢性リンパ性白血病やホジキンリンパ腫等の造血器がんを含む非上皮性の悪性腫瘍も意味するものとし、本明細書において、「がん(cancer)」、「癌(carcinoma)」、「腫瘍(tumor)」、「新生物(neoplasm)」等の用語は互いに区別されず、相互に交換可能である。また、本明細書の一実施形態において、原発がん、進行がん、転移がん、再発がんまたはそれらの組合せを含む。
Cancer The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
The term "cancer" as used herein refers not only to epithelial malignant tumors such as ovarian cancer and gastric cancer, but also to non-epithelial malignant tumors including hematopoietic cancers such as chronic lymphocytic leukemia and Hodgkin's lymphoma, and the terms "cancer,""carcinoma,""tumor," and "neoplasm" are not distinguished from one another and are interchangeable. In one embodiment of the present specification, the term includes primary cancer, advanced cancer, metastatic cancer, recurrent cancer, or a combination thereof.

特定の態様において、がんは、卵巣がん、非小細胞肺がん、胃がん、肝臓がん、子宮内膜がん、胚細胞性腫瘍、精巣がん、乳がん、子宮頸がん、食道がん、膵臓がん、胆管がん、腎臓がん、頭頚部がん、大腸がん、膀胱がん、非定型奇形腫様ラブドイド腫瘍(AT/RT)を含むCLDN6発現がんまたはCLDN6陽性がん;および他のCLDN6陽性がんまたはCLDN6発現がんである。 In certain embodiments, the cancer is a CLDN6-expressing or CLDN6-positive cancer, including ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumors, testicular cancer, breast cancer, cervical cancer, esophageal cancer, pancreatic cancer, bile duct cancer, renal cancer, head and neck cancer, colorectal cancer, bladder cancer, atypical teratoid rhabdoid tumor (AT/RT); and other CLDN6-positive or CLDN6-expressing cancers.

腫瘍
用語「腫瘍」は、悪性か良性かによらず、すべての新生物性細胞成長および増殖ならびにすべての前がん性およびがん性細胞および組織を指す。用語「がん」、「がん性」、「細胞増殖性障害」、「増殖性障害」および「腫瘍」は、本明細書でいう場合、相互に排他的でない。
The term " tumor " refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. The terms "cancer,""cancerous,""cell proliferative disorder,""proliferativedisorder," and "tumor" are not mutually exclusive as used herein.

転移
「転移」とは、がん細胞が最初に発生した場所から、血管やリンパ管に入り込み、血液やリンパ液の流れに乗って別の臓器や器官へ移動し、そこで増えることを指す。「播種」とは、がんのできた臓器からがん細胞がはがれ落ち、近接する体内の空間、例えば胸腔や腹腔に広がることを指す。特定の態様においては、「腹膜に転移した」とは、腹腔内を覆う腹膜にがん細胞が腹膜播種して広がったことをいう。例えば、「卵巣がんが腹膜に転移した」とは卵巣から骨盤外での腹膜播種性転移により卵巣がん細胞が腹膜に進展しばらまかれたように広がっていることを意味する。腹膜に転移したがんのがん細胞は、例えば患者の腹水中に存在する。
特定の態様において、がんは腹膜に転移したがんである。また、特定の態様において、がんは腹膜播種したがんである。
Metastasis "Metastasis" refers to the process in which cancer cells enter blood vessels or lymphatic vessels from the site where they first originate, travel with the flow of blood or lymph to another organ or organs, and multiply there. "Seeding" refers to the process in which cancer cells peel off from the organ in which the cancer originated and spread to nearby spaces in the body, such as the thoracic cavity or abdominal cavity. In a specific embodiment, "metastasized to the peritoneum" refers to the process in which cancer cells spread by peritoneal seeding to the peritoneum that lines the abdominal cavity. For example, "ovarian cancer metastasized to the peritoneum" means that ovarian cancer cells have progressed from the ovaries to the peritoneum by peritoneal seeding outside the pelvis and spread as if scattered. Cancer cells of cancer that have metastasized to the peritoneum are present, for example, in the ascites of the patient.
In certain embodiments, the cancer is a cancer that has metastasized to the peritoneum, and in certain embodiments, the cancer is a cancer that has disseminated to the peritoneum.

併用療法
上述した多重特異性抗原結合分子は、治療において1つまたは複数の他の剤との組み合わせで投与されてもよい。例えば、本明細書において記載される多重特異性抗原結合分子は、少なくとも1つの追加の治療剤と同時投与されてもよい。また、本明細書において記載される多重特異性抗原結合分子は、少なくとも1つの追加の治療剤の前後に投与されてもよい。
Combination therapy The multispecific antigen-binding molecule described above may be administered in combination with one or more other agents in therapy.For example, the multispecific antigen-binding molecule described herein may be administered simultaneously with at least one additional therapeutic agent.Also, the multispecific antigen-binding molecule described herein may be administered before or after at least one additional therapeutic agent.

本明細書で使用される場合、療法の投与に関連して「併用」という用語は、1つより多い療法または治療薬の使用を指す。「組み合わせて」という用語の使用は、療法または治療薬を対象に投与する順序を限定しない。療法または治療薬は、2番目の療法または治療薬の対象への投与の前、投与と同時または投与後に投与することができる。好ましくは、療法または治療薬を、療法または治療薬が一緒に作用することができるような順序、量および/または時間間隔内で対象に投与する。特定の実施形態では、療法または治療薬を、それらを別の方法で、特に互いに独立して投与した場合よりも高い利益を提供するような順序、量および/または時間間隔内で対象に投与する。好ましくは、高い利益は相乗効果である。 As used herein, the term "combination" in relation to the administration of a therapy refers to the use of more than one therapy or therapeutic. The use of the term "in combination" does not limit the order in which the therapies or therapeutics are administered to a subject. A therapy or therapeutic can be administered prior to, simultaneously with, or after the administration of a second therapy or therapeutic to a subject. Preferably, the therapies or therapeutics are administered to a subject in an order, amount, and/or time interval that allows the therapies or therapeutics to act together. In certain embodiments, the therapies or therapeutics are administered to a subject in an order, amount, and/or time interval that provides a greater benefit than if they were administered otherwise, particularly independently of each other. Preferably, the greater benefit is synergistic.

用語「治療剤」は、そのような治療の必要がある個体において症状または疾患を治療するために投与される任意の剤を包含する。そのような追加治療剤は、治療される特定の適応症に適している任意の有効成分、好ましくは、互いに悪影響を与えあわない相補的な活性を伴うものを含み得る。特定の態様において、追加治療剤は、免疫調節剤、細胞分裂阻害剤、細胞接着の阻害剤、細胞傷害剤、細胞アポトーシスの活性化剤、またはアポトーシス誘導因子に対する細胞の感受性を増加させる剤である。特定の態様において、追加治療剤は、抗がん剤、例えば、微小管破壊剤、抗代謝剤、トポイソメラーゼ阻害剤、DNAインターカレート剤、アルキル化剤、ホルモン療法、キナーゼ阻害剤、受容体アンタゴニスト、腫瘍細胞アポトーシスの活性化剤、または抗血管新生剤である。 The term "therapeutic agent" encompasses any agent administered to treat a condition or disease in an individual in need of such treatment. Such additional therapeutic agents may include any active ingredients that are appropriate for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. In certain embodiments, the additional therapeutic agent is an immunomodulatory agent, a cell division inhibitor, an inhibitor of cell adhesion, a cytotoxic agent, an activator of cell apoptosis, or an agent that increases the sensitivity of cells to apoptosis inducers. In certain embodiments, the additional therapeutic agent is an anti-cancer agent, e.g., a microtubule disrupting agent, an antimetabolite, a topoisomerase inhibitor, a DNA intercalating agent, an alkylating agent, a hormone therapy, a kinase inhibitor, a receptor antagonist, an activator of tumor cell apoptosis, or an anti-angiogenic agent.

そのような他の剤は、意図された目的のために有効である量で、好適に組み合わせられて存在する。そのような他の剤の有効量は、用いられる多重特異性抗原結合分子の量、障害または治療の種類、および上で論じた他の要因に依存する。多重特異性抗原結合分子は概して、本明細書に記載されるものと同じ投与量および投与経路で、または本明細書に記載される投与量の約1から99%で、または経験的/臨床的に適切と判断される任意の投与量および任意の経路で用いられる。 Such other agents are present in suitable combinations in amounts that are effective for the intended purpose. The effective amount of such other agents will depend on the amount of multispecific antigen-binding molecule used, the type of disorder or treatment, and other factors discussed above. Multispecific antigen-binding molecules are generally used in the same dosages and routes of administration as described herein, or at about 1 to 99% of the dosages described herein, or at any dosage and by any route determined empirically/clinically appropriate.

本発明における非限定のー態様において、本発明の併用療法は、上述した多重特異性抗原結合分子と少なくとも1つの他の抗がん剤の有効量を投与することを含む、細胞を傷害する、細胞増殖を抑制する、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫を活性化する、がんを治療する、またはがんを予防する方法を提供する。いくつかの実施態様において、本発明の併用療法は、上述した多重特異性抗原結合分子または他の抗がん剤の単独療法と比較して、細胞を傷害する、細胞増殖を抑制する、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫を活性化する、がんを治療する、またはがんを予防する効果が高い。別の実施態様において、本発明の併用療法は、細胞を傷害する、細胞増殖を抑制する、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫を活性化する、がんを治療する、またはがんを予防する相乗効果または相加効果を有する。 In a non-limiting embodiment of the present invention, the combination therapy of the present invention provides a method for damaging cells, inhibiting cell proliferation, activating immunity against cancer cells or tumor tissues containing cancer cells, treating cancer, or preventing cancer, comprising administering an effective amount of the multispecific antigen-binding molecule described above and at least one other anticancer drug. In some embodiments, the combination therapy of the present invention has a higher effect of damaging cells, inhibiting cell proliferation, activating immunity against cancer cells or tumor tissues containing cancer cells, treating cancer, or preventing cancer, compared to a monotherapy of the multispecific antigen-binding molecule or another anticancer drug described above. In another embodiment, the combination therapy of the present invention has a synergistic or additive effect of damaging cells, inhibiting cell proliferation, activating immunity against cancer cells or tumor tissues containing cancer cells, treating cancer, or preventing cancer.

いくつかの実施態様において、本発明における「有効量」は、個体における疾患を治療または予防するために有効な上述した多重特異性抗原結合分子および/または他の治療剤の用量を意味する。前記疾患は特に限定されないが、好ましくはがんである。がんの種類は特に限定されないが、好ましくはCLDN6を発現したがん細胞を含む腫瘍である。
なお、「有効量の少なくとも1つのTGFβ誘導剤の投与」とは、対象とする細胞においてTGFβを誘導するのに十分な量のTGFβ誘導剤を投与することを意味する。
また、「有効量の少なくとも1つのCLDN6発現誘導剤の投与」とは、対象とする細胞においてCLDN6発現を誘導するのに十分な量のCLDN6発現誘導剤を投与することを意味する。
In some embodiments, the term "effective amount" in the present invention refers to a dose of the multispecific antigen-binding molecule and/or other therapeutic agent that is effective for treating or preventing a disease in an individual. The disease is not particularly limited, but is preferably cancer. The type of cancer is not particularly limited, but is preferably a tumor containing cancer cells expressing CLDN6.
The phrase "administration of an effective amount of at least one TGFβ inducer" means administration of an amount of the TGFβ inducer sufficient to induce TGFβ in the target cells.
Furthermore, "administration of an effective amount of at least one CLDN6 expression inducer" means administration of a sufficient amount of the CLDN6 expression inducer to induce CLDN6 expression in target cells.

上記のそのような併用療法は、併用投与(2種類以上の治療剤が同じまたは別々の組成物中に含まれている)、および個別投与を包含する。個別投与の場合、本明細書に記載される多重特異性抗原結合分子の投与が、追加治療剤および/またはアジュバントの投与と同時でもよく、異なってもよい。すなわち、多重特異性抗原結合分子の投与が追加治療剤および/またはアジュバントに先立って行われてもよく、多重特異性抗原結合分子の投与が、追加治療剤および/またはアジュバントの投与と同時に行われてもよく、多重特異性抗原結合分子の投与が、追加治療剤および/またはアジュバントの投与に続いて行われてもよい。本明細書において記載される多重特異性抗原結合分子はまた、放射線療法との組み合わせで用いることができる。 Such combination therapy as described above includes combined administration (two or more therapeutic agents are contained in the same or separate compositions) and separate administration. In the case of separate administration, the administration of the multispecific antigen-binding molecule described herein may be simultaneous with the administration of the additional therapeutic agent and/or adjuvant, or may be different. That is, the administration of the multispecific antigen- binding molecule may be prior to the administration of the additional therapeutic agent and/or adjuvant, the administration of the multispecific antigen-binding molecule may be simultaneous with the administration of the additional therapeutic agent and/or adjuvant, or the administration of the multispecific antigen-binding molecule may be subsequent to the administration of the additional therapeutic agent and/or adjuvant. The multispecific antigen-binding molecule described herein may also be used in combination with radiation therapy.

いくつかの実施態様において、本発明の併用療法は、上述した多重特異性抗原結合分子を使用することにより、少なくとも1つの他の抗がん剤によるがんの治療または予防に際して、当該少なくとも1つの他の抗がん剤の治療効果または予防効果を増強する方法を提供する。別の実施態様において、本発明の併用療法は、他の抗がん剤、TGFβ誘導剤、およびCLDN6発現誘導剤からなる群から選択された少なくとも1つの剤を使用することにより、上述した多重特異性抗原結合分子によるがんの治療または予防に際して、当該多重特異性抗原結合分子の治療効果または予防効果を増強する方法を提供する。ここで、治療効果または予防効果の増強とは、例えば、治療の奏功率が上昇すること、治療のために投与される抗がん剤の量が低減すること、および/または、抗がん剤による治療期間が短くなることが挙げられるが、これらに限定されない。別の実施態様においては、本発明の併用療法は、上述した多重特異性抗原結合分子、ならびに、他の抗がん剤、TGFβ誘導剤、およびCLDN6発現誘導剤からなる群から選択された少なくとも1つの剤の、有効量を投与することを含む、個体において無増悪生存期間を増加させる方法を提供する。 In some embodiments, the combination therapy of the present invention provides a method for enhancing the therapeutic or preventive effect of at least one other anticancer agent in the treatment or prevention of cancer with the multispecific antigen-binding molecule described above by using the multispecific antigen-binding molecule. In another embodiment, the combination therapy of the present invention provides a method for enhancing the therapeutic or preventive effect of the multispecific antigen-binding molecule in the treatment or prevention of cancer with the multispecific antigen-binding molecule described above by using at least one agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers. Here, examples of enhancement of the therapeutic or preventive effect include, but are not limited to, an increase in the success rate of treatment, a reduction in the amount of anticancer agent administered for treatment, and/or a shortened treatment period with the anticancer agent. In another embodiment, the combination therapy of the present invention provides a method for increasing progression-free survival in an individual, comprising administering an effective amount of the multispecific antigen-binding molecule described above and at least one agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers.

いくつかの実施態様において、本発明の併用療法は、上述した多重特異性抗原結合分子と少なくとも1つの他の抗がん剤の投与を含む。該多重特異性抗原結合分子と少なくとも1つの他の抗がん剤は、当技術分野で公知の任意の適切な方法で投与することができる。例えば、該多重特異性抗原結合分子及び少なくとも1つの他の抗がん剤を、並行して(すなわち同時に)、および/または、連続して(すなわち異なる時点で)投与することができる。例えば、該多重特異性抗原結合分子と2種類以上の他の抗がん剤(例えば、第1の他の抗がん剤と第2の他の抗がん剤)が組み合わされて用いられる場合、該多重特異性抗原結合分子と2種類以上の他の抗がん剤は任意の順序で投与される。例えば、該多重特異性抗原結合分子と2種類以上の他の抗がん剤はそれぞれ連続して(すなわちすべて異なる時点で)投与されてもよく;該多重特異性抗原結合分子と第1の他の抗がん剤が同時に投与され、その前にまたはその後に第2の他の抗がん剤が投与されてもよく;あるいは第1と第2の他の抗がん剤が同時に投与され、その前にまたはその後に該多重特異性抗原結合分子が投与されてもよい。いくつかの実施態様において、該多重特異性抗原結合分子及び少なくとも1つの他の抗がん剤を連続して(すなわち異なる時点で)投与する場合、該多重特異性抗原結合分子と少なくとも1つの他の抗がん剤の投与間隔は特に限定されず、投与経路や剤型等の要因が考慮されて設定され得る。例えば、投与間隔は、0時間~168時間であり、好ましくは0時間~72時間であり、また好ましくは0~24時間であり、さらに好ましくは0時間~12時間であるが、これらに限定されない。 In some embodiments, the combination therapy of the present invention includes administration of the multispecific antigen-binding molecule and at least one other anti-cancer agent described above. The multispecific antigen-binding molecule and at least one other anti-cancer agent can be administered in any suitable manner known in the art. For example, the multispecific antigen-binding molecule and at least one other anti-cancer agent can be administered in parallel (i.e., simultaneously) and/or sequentially (i.e., at different times). For example, when the multispecific antigen-binding molecule and two or more other anti-cancer agents (e.g., a first other anti-cancer agent and a second other anti-cancer agent) are used in combination, the multispecific antigen-binding molecule and the two or more other anti-cancer agents can be administered in any order. For example, the multispecific antigen-binding molecule and the two or more other anti-cancer agents can be administered sequentially (i.e., all at different times); the multispecific antigen-binding molecule and the first other anti-cancer agent can be administered simultaneously, before or after which the second other anti-cancer agent can be administered; or the first and second other anti-cancer agents can be administered simultaneously, before or after which the multispecific antigen-binding molecule can be administered. In some embodiments, when the multispecific antigen-binding molecule and at least one other anticancer agent are administered consecutively (i.e., at different times), the administration interval between the multispecific antigen-binding molecule and at least one other anticancer agent is not particularly limited and can be set taking into consideration factors such as the administration route and dosage form. For example, the administration interval is 0 to 168 hours, preferably 0 to 72 hours, also preferably 0 to 24 hours, and further preferably 0 to 12 hours, but is not limited thereto.

また、いくつかの実施態様において、本発明の併用療法は、上述した多重特異性抗原結合分子と少なくとも1つのTGFβ誘導剤の投与を含む。該多重特異性抗原結合分子と少なくとも1つのTGFβ誘導剤は、当技術分野で公知の任意の適切な方法で投与することができる。また、いくつかの実施態様において、本発明の併用療法は、上述した多重特異性抗原結合分子と少なくとも1つのCLDN6発現誘導剤の投与を含む。。該多重特異性抗原結合分子と少なくとも1つのCLDN6発現誘導剤は、当技術分野で公知の任意の適切な方法で投与することができる。 In some embodiments, the combination therapy of the present invention includes administration of the multispecific antigen-binding molecule described above and at least one TGFβ inducer. The multispecific antigen-binding molecule and at least one TGFβ inducer can be administered by any suitable method known in the art. In some embodiments, the combination therapy of the present invention includes administration of the multispecific antigen-binding molecule described above and at least one CLDN6 expression inducer. The multispecific antigen-binding molecule and at least one CLDN6 expression inducer can be administered by any suitable method known in the art.

いくつかの実施態様では、上述した多重特異性抗原結合分子と少なくとも1つの他の抗がん剤は同時投与される。いくつかの実施態様では、該多重特異性抗原結合分子は間欠的に(すなわち断続的に)投与される。いくつかの実施態様では、該多重特異性抗原結合分子は、少なくとも1つの他の抗がん剤の投与前に投与される。いくつかの実施形態では、該多重特異性抗原結合分子は、少なくとも1つの他の抗がん剤の投与後に投与される。 In some embodiments, the multispecific antigen-binding molecule and at least one other anti-cancer agent are administered simultaneously. In some embodiments, the multispecific antigen-binding molecule is administered intermittently (i.e., intermittently). In some embodiments, the multispecific antigen-binding molecule is administered prior to administration of at least one other anti-cancer agent. In some embodiments, the multispecific antigen-binding molecule is administered after administration of at least one other anti-cancer agent.

いくつかの実施態様では、少なくとも1つの他の抗がん剤は間欠的に(すなわち断続的に)投与される。いくつかの実施態様では、少なくとも1つの他の抗がん剤は、該多重特異性抗原結合分子の投与前に投与される。いくつかの実施態様では、少なくとも1つの他の抗がん剤は、該多重特異性抗原結合分子の投与後に投与される。 In some embodiments, the at least one other anti-cancer agent is administered intermittently (i.e., intermittently). In some embodiments, the at least one other anti-cancer agent is administered prior to administration of the multispecific antigen-binding molecule. In some embodiments, the at least one other anti-cancer agent is administered after administration of the multispecific antigen-binding molecule.

いくつかの実施態様において、本明細書に記載の多重特異性抗原結合分子、および公知または本明細書に記載の抗がん剤が、上記多重特異性抗原結合分子と少なくとも1つの他の抗がん剤の併用療法に使用され得る。
また、いくつかの実施態様において、本明細書に記載の多重特異性抗原結合分子、および公知または本明細書に記載のTGFβ誘導剤が、上記多重特異性抗原結合分子と少なくとも1つの他のTGFβ誘導剤の併用療法に使用され得る。
また、いくつかの実施態様において、本明細書に記載の多重特異性抗原結合分子、および公知または本明細書に記載のCLDN6発現誘導剤が、上記多重特異性抗原結合分子と少なくとも1つの他のCLDN6発現誘導剤の併用療法に使用され得る。
In some embodiments, the multispecific antigen-binding molecules described herein and known or described herein anti-cancer agents may be used in combination therapy of the multispecific antigen-binding molecules and at least one other anti-cancer agent.
In some embodiments, the multispecific antigen-binding molecules described herein and TGFβ inducers known or described herein may be used in combination therapy with the multispecific antigen-binding molecules and at least one other TGFβ inducer.
Furthermore, in some embodiments, the multispecific antigen-binding molecules described herein and known or described herein CLDN6 expression inducers may be used in combination therapy of the multispecific antigen-binding molecules and at least one other CLDN6 expression inducer.

いくつかの実施態様においては、上述した多重特異性抗原結合分子および少なくとも1つの他の抗がん剤の併用療法に加えて、さらに追加療法を行うことができる。いくつかの実施態様において、本発明の併用療法に追加する療法には、追加の該多重特異性抗原結合分子および/または少なくとも1つの他の抗がん剤の投与を含んでもよい。 In some embodiments, in addition to the combination therapy of the multispecific antigen-binding molecule and at least one other anticancer agent described above, an additional therapy can be performed. In some embodiments, the additional therapy to the combination therapy of the present invention may include administration of an additional multispecific antigen-binding molecule and/or at least one other anticancer agent.

本発明の非限定のー態様として、本発明は、上述した多重特異性抗原結合分子、少なくとも1つの他の抗がん剤、または該多重特異性抗原結合分子と少なくとも1つの他の抗がん剤を組み合わせてなる医薬組成物等を提供する。本医薬組成物は、細胞傷害誘導剤、細胞増殖抑制剤(細胞増殖阻害剤)、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫応答活性化剤、がん治療剤またはがん予防剤である。いくつかの実施態様において、本発明の医薬組成物等は、本発明の併用療法に用いられ得る。いくつかの実施態様において、本発明の医薬組成物等は、上述した多重特異性抗原結合分子と少なくとも1つの他の抗がん剤が併用されることにより、これらの単独療法と比較して、細胞を傷害する、細胞増殖を抑制する、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫を活性化する、またはがんを治療もしくは予防する効果が高い。別の実施態様において、本発明の医薬組成物は、上述した多重特異性抗原結合分子と少なくとも1つの他の抗がん剤が併用されることにより、細胞を傷害する、細胞増殖を抑制する、がん細胞もしくはがん細胞を含む腫瘍組織に対する免疫を活性化する、またはがんを治療もしくは予防する相乗効果または相加効果を有する。ある特定の態様において、少なくとも1つの他の抗がん剤の投与により、上述した多重特異性抗原結合分子による抗腫瘍効果が増強される。また、ある特定の態様において、上述した多重特異性抗原結合分子の投与により、少なくとも1つの他の抗がん剤による抗腫瘍効果が増強される。 As a non-limiting embodiment of the present invention, the present invention provides a pharmaceutical composition or the like comprising the above-mentioned multispecific antigen-binding molecule, at least one other anticancer drug, or a combination of the multispecific antigen-binding molecule and at least one other anticancer drug. The pharmaceutical composition is a cytotoxicity inducer, a cell proliferation inhibitor (cell proliferation inhibitor), an immune response activator against cancer cells or tumor tissues containing cancer cells, a cancer treatment agent, or a cancer prevention agent. In some embodiments, the pharmaceutical composition or the like of the present invention can be used in the combination therapy of the present invention. In some embodiments, the pharmaceutical composition or the like of the present invention is more effective in damaging cells, inhibiting cell proliferation, activating immunity against cancer cells or tumor tissues containing cancer cells, or treating or preventing cancer, compared to monotherapy, by combining the above-mentioned multispecific antigen-binding molecule with at least one other anticancer drug. In another embodiment, the pharmaceutical composition of the present invention has a synergistic or additive effect of damaging cells, inhibiting cell proliferation, activating immunity against cancer cells or tumor tissues containing cancer cells, or treating or preventing cancer, by combining the above-mentioned multispecific antigen-binding molecule with at least one other anticancer drug. In certain embodiments, the antitumor effect of the multispecific antigen-binding molecule described above is enhanced by administration of at least one other anticancer agent. In certain embodiments, the antitumor effect of the multispecific antigen-binding molecule described above is enhanced by administration of at least one other anticancer agent.

いくつかの実施態様において、本発明における「多重特異性抗原結合分子と少なくとも1つの他の抗がん剤を組み合わせてなる」医薬組成物等とは、上述した多重特異性抗原結合分子および少なくとも1つの他の抗がん剤を、疾患の治療または予防において同時に、別々に、および/または、順次に投与するために組み合わせた医薬組成物等を意味する。例えば、本発明の医薬組成物等は、多重特異性抗原結合分子および少なくとも1つの他の抗がん剤が共に含有される配合剤の形で提供することができる。また、例えば、本発明の医薬組成物等は、多重特異性抗原結合分子を含有する薬剤と少なくとも1つの他の抗がん剤を含有する薬剤とが別々に提供され、これらの薬剤が、同時に、または順次に使用されてもよい。前記疾患は特に限定されないが、好ましくはがんである。 In some embodiments, the pharmaceutical composition etc. of the present invention "combining a multispecific antigen-binding molecule with at least one other anticancer drug" refers to a pharmaceutical composition etc. in which the above-mentioned multispecific antigen-binding molecule and at least one other anticancer drug are combined for simultaneous, separate, and/or sequential administration in the treatment or prevention of a disease. For example, the pharmaceutical composition etc. of the present invention can be provided in the form of a combination drug containing both the multispecific antigen-binding molecule and at least one other anticancer drug. In addition, for example, the pharmaceutical composition etc. of the present invention may be provided as a drug containing a multispecific antigen-binding molecule and a drug containing at least one other anticancer drug separately, and these drugs may be used simultaneously or sequentially. The disease is not particularly limited, but is preferably cancer.

いくつかの実施態様において、本発明は、上述した多重特異性抗原結合分子を有効成分として含む、他の抗がん剤、TGFβ誘導剤、およびCLDN6発現誘導剤からなる群から選択された少なくとも1つの他の剤と併用するための医薬組成物等を提供する。いくつかの実施態様において、本発明は、少なくとも1つの他の抗がん剤を有効成分として含む、上述した多重特異性抗原結合分子と併用するための医薬組成物等を提供する。 In some embodiments, the present invention provides a pharmaceutical composition, etc., which contains the above-mentioned multispecific antigen-binding molecule as an active ingredient and is used in combination with at least one other agent selected from the group consisting of other anticancer agents, TGFβ inducers, and CLDN6 expression inducers. In some embodiments, the present invention provides a pharmaceutical composition, etc., which contains at least one other anticancer agent as an active ingredient and is used in combination with the above-mentioned multispecific antigen-binding molecule.

いくつかの実施態様において、本発明は、上述した多重特異性抗原結合分子を他の抗がん剤と組み合わせることにより、少なくとも1つの他の抗がん剤によるがんの治療に際して、当該少なくとも1つの他の抗がん剤の治療効果を増強するための医薬組成物等を提供する。
いくつかの実施態様において、本発明は、他の抗がん剤を上述した多重特異性抗原結合分子と組み合わせることにより、多重特性抗体によるがんの治療に際して、当該多重特異性抗原結合分子の治療効果を増強するための医薬組成物等を提供する。
In some embodiments, the present invention provides pharmaceutical compositions and the like for enhancing the therapeutic effect of at least one other anticancer drug in treating cancer with at least one other anticancer drug by combining the above-mentioned multispecific antigen-binding molecule with the other anticancer drug.
In some embodiments, the present invention provides pharmaceutical compositions and the like for enhancing the therapeutic effect of the multispecific antigen-binding molecule in treating cancer with a multispecific antibody by combining another anticancer agent with the multispecific antigen-binding molecule described above.

いくつかの実施態様において、本発明は、上述した多重特異性抗原結合分子および/または少なくとも1つの他抗がん剤を有効成分として含む医薬組成物等を製造するための該多重特異性抗原結合分子および/またはその他の抗がん剤の使用を提供する。 In some embodiments, the present invention provides use of the multispecific antigen-binding molecule and/or at least one other anticancer agent for producing a pharmaceutical composition or the like comprising the multispecific antigen-binding molecule and/or at least one other anticancer agent as an active ingredient.

なお、本発明において、上述した多重特異性抗原結合分子および/または少なくとも1つの他の抗がん剤を有効成分として含むとは、該多重特異性抗原結合分子および/または少なくとも1つの他の抗がん剤を主要な活性成分として含むという意味であって、該多重特異性抗原結合分子および/または少なくとも1つの他の抗がん剤の含有率を制限するものではない。 In the present invention, "containing the above-mentioned multispecific antigen-binding molecule and/or at least one other anticancer drug as an active ingredient" means that the multispecific antigen-binding molecule and/or at least one other anticancer drug is contained as the main active ingredient, and does not limit the content of the multispecific antigen-binding molecule and/or at least one other anticancer drug.

いくつかの実施態様において、本明細書に記載の多重特異性抗原結合分子および公知または本明細書に記載の少なくとも1つの他の抗がん剤が、上記医薬組成物等に使用され得る。 In some embodiments, the multispecific antigen-binding molecule described herein and at least one other anticancer agent known or described herein may be used in the pharmaceutical composition or the like.

本明細書において、「少なくとも1つの他の抗がん剤」とは、1種、2種、3種、4種、5種、またはそれ以上の抗がん剤である。
なお、本明細書において、「少なくとも1つの他の抗がん剤」または「他の抗がん剤」とは、当該抗がん剤が、本明細書に記載の多重特異性抗原結合分子とは異なる物を有効成分とする抗がん剤であることを意味している。すなわち「他の抗がん剤」とある場合、当該抗がん剤が当該多重特異性抗原結合分子とは異なる物を有効成分とする抗がん剤であることを特定しているに過ぎず、少なくとも1つの他の抗がん剤と併用される当該多重特異性抗原結合分子が抗がん剤として用いられるものに限定されるものではない。例えば、多重特異性抗原結合分子と少なくとも1つの他の抗がん剤とを併用する(組み合わせて用いる)ことを特徴とする、抗がん剤、医薬組成物、組合せ、キット、方法、または使用は、当該少なくとも1つの他の抗がん剤以外の抗がん剤を用いない態様も包含され、その場合、当該多重特異性抗原結合分子は、例えば当該少なくとも1つの他の抗がん剤の増強剤、併用剤、または添加剤などとして用いる態様が包含される。
As used herein, "at least one other anti-cancer agent" refers to one, two, three, four, five, or more anti-cancer agents.
In the present specification, "at least one other anticancer agent" or "another anticancer agent" means that the anticancer agent contains as an active ingredient a substance other than the multispecific antigen-binding molecule described herein. In other words, when there is "another anticancer agent", it merely specifies that the anticancer agent contains as an active ingredient a substance other than the multispecific antigen-binding molecule, and is not limited to the use of the multispecific antigen-binding molecule in combination with at least one other anticancer agent as an anticancer agent. For example, an anticancer agent, pharmaceutical composition, combination, kit, method, or use characterized by the use of a multispecific antigen-binding molecule in combination with at least one other anticancer agent also includes an embodiment in which no anticancer agent other than the at least one other anticancer agent is used, and in that case, the multispecific antigen-binding molecule is used, for example, as an enhancer, a co-agent, or an additive for the at least one other anticancer agent.

本発明における非限定のー態様において、前記少なくとも1つの他の抗がん剤としては、ナイトロジェンマスタードアナログ(Nitrogen mustard analogues)、スルホン酸アルキル(Alkyl suIfonates)、エチレンイミン(Ethylene imines)、二トロソウレア(Nitrosoureas)、エポキシ化合物(Epoxides)、その他アルキル化剤、葉酸アナログ(Folic acid analogues)、プリンアナログ(Purine analogues)、ピリミジンアナログ(Pyrimidine analogues)、その他代謝拮抗剤、ビンカアルカロイド若しくはそのアナログ(Vinca alkaloids or analogues)、ポドフィロトキシン誘導体(PodophyIlotoxin derivatives)、カンプトテシンアナログ(Camptothecin analogs)、コルヒチン誘導体(CoIchicine derivatives)、タキサン(Taxanes)、その他アルカロイド若しくは植物アルカロイド若しくは天然物質、トポイソメラーゼ阻害剤、アクチノマイシン(Actinomycines)、アントラサイクリン若しくはその関連物質(AnthracycIines or related substances)、その他の細胞傷害性抗生物質、プラチナ製剤(Platinum compounds)、メチルヒドラジン(Methylhydrazines)、キナーゼ阻害剤(Kinase inhibitors)、血管新生阻害剤、ホルモン剤、DNA修飾酵素阻害剤、免疫賦活剤、プロテオソー厶阻害剤、酵素(Enzymes)、ヒストンデアセチラーゼ阻害剤(Histone Deacetylase Inhibitors)、DNA修飾酵素阻害剤、サイトカイン製剤、レチノイド(Retinoids)、免疫チェックポイント阻害剤、Indoleamine 2, 3-Dioxygenase (IDO)阻害剤、co-stimulatory分子活性化剤、ナチュラルキラー細胞活性化剤、ポリADP-リボースポリメラーゼ(PARP)阻害剤、モノクローナル抗体、その他分子標的薬、またはそれ以外の抗がん剤が挙げられるが、これらに限定されることはない。非限定のー態様として、本発明における少なくとも1つの他の抗がん剤の例としては、WO2015/174439やWO2015/156268に記載されている抗体等を挙げることができるが、これに限定されることはない。 In a non-limiting embodiment of the present invention, the at least one other anticancer drug may be selected from the group consisting of nitrogen mustard analogues, alkyl sulfonates, ethylene imines, nitrosoureas, epoxides, other alkylating agents, folic acid analogues, purine analogues, pyrimidine analogues, other metabolic antagonists, vinca alkaloids or analogues, podophyllotoxin derivatives, camptothecin analogues, colchicine derivatives, and the like. derivatives, Taxanes, other alkaloids or plant alkaloids or natural substances, Topoisomerase inhibitors, Actinomycins, AnthracycIines or related substances, other cytotoxic antibiotics, Platinum compounds, Methylhydrazines, Kinase inhibitors, Angiogenesis inhibitors, Hormones, DNA modifying enzyme inhibitors, Immunostimulants, Proteosome inhibitors, Enzymes, Histone Deacetylase Inhibitors, DNA modifying enzyme inhibitors, Cytokine preparations, Retinoids, Immune checkpoint inhibitors, Indoleamine 2, 3-Dioxygenase Examples of the anticancer agent include, but are not limited to, an anti-cancer drug such as an immunoglobulin D (IDO) inhibitor, a co-stimulatory molecule activator, a natural killer cell activator, a poly ADP-ribose polymerase (PARP) inhibitor, a monoclonal antibody, other molecular targeting drugs, or other anticancer drugs. In a non-limiting embodiment, examples of the at least one other anticancer drug in the present invention include, but are not limited to, antibodies described in WO2015/174439 and WO2015/156268.

いくつかの実施態様において、本発明における「免疫チェックポイント分子」とは、免疫担当細胞(T細胞を含む)またはがん細胞上に発現し、リガンドと結合することによって、当該免疫担当細胞に対し免疫応答を阻害するシグナルを伝達する分子をいう。免疫チェックポイント分子およびそのリガンドには、例えば、PD-1、CTLA-4、TIM3、LAG3、PD-L1、PD-L2、BTNL2、B7-H3、B7-H4、CD48、CD80、2B4、BTLA、CD160、CD60、CD86i、またはVISTA等の分子が含まれるが、これらに限定されない。いくつかの実施態様において、本発明における「免疫チェックポイント阻害剤」とは、免疫チェックポイント分子とそのリガンドとの結合を阻害することにより、当該免疫チェックポイント分子によるシグナル伝達を阻害する薬剤をいう。 In some embodiments, the term "immune checkpoint molecule" in the present invention refers to a molecule that is expressed on an immunocompetent cell (including a T cell) or a cancer cell, and transmits a signal that inhibits an immune response to the immunocompetent cell by binding to a ligand. Examples of immune checkpoint molecules and their ligands include, but are not limited to, molecules such as PD-1, CTLA-4, TIM3, LAG3, PD-L1, PD-L2, BTNL2, B7-H3, B7-H4, CD48, CD80, 2B4, BTLA, CD160, CD60, CD86i, or VISTA. In some embodiments, the term "immune checkpoint inhibitor" in the present invention refers to a drug that inhibits signal transduction by an immune checkpoint molecule by inhibiting the binding between the immune checkpoint molecule and its ligand.

いくつかの実施例において、本発明における「PARP阻害」とは、ポリ(ADP-リボース)ポリメラーゼ(PARP)、特にPARP-1及びPARP-2を阻害することにより、一本鎖切断の修復を妨げることをいう。PARP阻害剤とは、PARPを阻害することにより、一本鎖切断の修復を妨げる機能を有する薬剤である。乳がんや卵巣がん等の一部のがんでは、BRCA遺伝子変異により二本鎖切断の修復に異常があることが知られており、PARP阻害剤は、これらのがんに対し、合成致死による抗腫瘍効果を有する薬剤を言う。 In some embodiments, "PARP inhibition" in the present invention refers to preventing the repair of single-strand breaks by inhibiting poly(ADP-ribose) polymerase (PARP), particularly PARP-1 and PARP-2. A PARP inhibitor is a drug that has the function of preventing the repair of single-strand breaks by inhibiting PARP. It is known that some cancers, such as breast cancer and ovarian cancer, have abnormalities in the repair of double-strand breaks due to BRCA gene mutations, and a PARP inhibitor is a drug that has an antitumor effect against these cancers by synthetic lethality.

本発明の非限定のー態様として、前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、PARP阻害剤、T細胞活性化アゴニスト剤、および/または血管新生阻害剤、である、すなわち前記少なくとも1つの他の抗がん剤が、化学療法剤、免疫チェックポイント阻害剤、PARP阻害剤、T細胞活性化アゴニスト剤、および血管新生阻害剤からなる群より選択される1種または複数種の抗がん剤である、医薬組成物等が提供される。なお、他の抗がん剤が複数である場合、同一タイプの抗がん剤から複数種選択されてもよく、異なるタイプの抗がん剤について複数種選択されてもよい。例えば、化学療法剤から複数種選択されてもよく、化学療法剤と免疫チェックポイント阻害剤からそれぞれ1種以上選択されてもよい。他のタイプの抗がん剤から複数種選択する場合においても同様である。 As a non-limiting embodiment of the present invention, a pharmaceutical composition, etc. is provided in which the at least one other anticancer agent is a chemotherapeutic agent, an immune checkpoint inhibitor, a PARP inhibitor, a T cell activation agonist agent, and/or an angiogenesis inhibitor, i.e., the at least one other anticancer agent is one or more anticancer agents selected from the group consisting of a chemotherapeutic agent, an immune checkpoint inhibitor, a PARP inhibitor, a T cell activation agonist agent, and an angiogenesis inhibitor. When there are multiple other anticancer agents, multiple types may be selected from the same type of anticancer agent, or multiple types of anticancer agents of different types may be selected. For example, multiple types may be selected from chemotherapeutic agents, or one or more types each may be selected from chemotherapeutic agents and immune checkpoint inhibitors. The same applies to the case of selecting multiple types of other types of anticancer agents.

本発明の非限定のー態様として、前記少なくとも1つの他の抗がん剤は、細胞のCLDN6の発現を増強する剤を含む。CLDN6の発現が増強される細胞としてはがん細胞、腫瘍組織中の細胞、及び/又は腫瘍組織付近の細胞が挙げられる。すなわち、前記少なくとも1つの他の抗がん剤としては、投与によって、がん細胞、腫瘍組織中の細胞、及び/又は腫瘍組織付近の細胞のCLDN6の発現が、誘導または増強されるものが含まれる。 In one non-limiting embodiment of the present invention, the at least one other anticancer agent includes an agent that enhances CLDN6 expression in cells. Cells in which CLDN6 expression is enhanced include cancer cells, cells in tumor tissue, and/or cells near tumor tissue. In other words, the at least one other anticancer agent includes an agent that, upon administration, induces or enhances CLDN6 expression in cancer cells, cells in tumor tissue, and/or cells near tumor tissue.

細胞のCLDN6の発現を増強する剤は、対象の細胞株への剤の投与前後のCLDN6発現変化を解析することで確認することができる。例えば、qPCR、FACS、Western Blotting解析といった一般的な手法により、対象の細胞株への剤の投与前後のCLDN6発現量の変化を解析し、CLDN6の発現量が増加している場合には、細胞のCLDN6の発現を増強する剤であることが確認される。 Agents that enhance CLDN6 expression in cells can be identified by analyzing changes in CLDN6 expression before and after administration of the agent to a target cell line. For example, common techniques such as qPCR, FACS, and Western blotting analysis can be used to analyze changes in CLDN6 expression levels before and after administration of the agent to a target cell line, and if there is an increase in CLDN6 expression, the agent is identified as enhancing CLDN6 expression in cells.

具体的には、例えばがん細胞株に剤を添加し、回収した細胞からRNAを精製し、続いてcDNA合成を行い、これを鋳型にしてCLDN6特異的なプライマーによりリアルタイムPCRを行い、CLDN6の発現を非添加細胞と比較し解析する。また、例えばがん細胞株に剤を添加し、抗CLDN6抗体で細胞を染色して、Flow cytometerで細胞膜上に発現するCLDN6を非添加細胞と比較し解析する。また、例えばがん細胞株に剤を添加し、細胞のlysateを用いて、抗CLDN6抗体を用いたウェスタンブロットによりCLDN6の発現を非添加細胞と比較し解析する。なお、これらの手法はそれぞれ一般的に知られたプロトコールにより実施可能である(https://www.cellsignal.jp/learn-and-support/protocols/protocol-western(CST)、https://www.takara-bio.co.jp/research/prt/pdfs/prt2.pdf(タカラバイオ)、https://www.thermofisher.com/jp/ja/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/flow-cytometry-basics/flow-cytometry-fundamentals/how-flow-cytometer-works.html(ThermoFisher))。 Specifically, for example, a drug is added to a cancer cell line, RNA is purified from the collected cells, followed by cDNA synthesis, which is used as a template for real-time PCR with CLDN6-specific primers, and the expression of CLDN6 is compared and analyzed with cells that have not been treated. Alternatively, for example, a drug is added to a cancer cell line, the cells are stained with an anti-CLDN6 antibody, and the CLDN6 expressed on the cell membrane is analyzed with a flow cytometer, compared with cells that have not been treated. Alternatively, for example, a drug is added to a cancer cell line, and cell lysates are used to analyze the expression of CLDN6 by Western blotting with an anti-CLDN6 antibody, compared with cells that have not been treated. These techniques can be performed according to commonly known protocols (https://www.cellsignal.jp/learn-and-support/protocols/protocol-western (CST), https://www.takara-bio.co.jp/research/prt/pdfs/prt2.pdf (Takara Bio), https://www.thermofisher.com/jp/ja/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/flow-cytometry-basics/flow-cytometry-fundamentals/how-flow-cytometer-works.html (ThermoFisher)).

がん細胞のCLDN6の発現を増強する剤として、例えば、カルボプラチン、シスプラチン、イリノテカン、ゲムシタビンなどの化学療法剤が挙げられる。 Examples of agents that enhance CLDN6 expression in cancer cells include chemotherapy agents such as carboplatin, cisplatin, irinotecan, and gemcitabine.

本発明の非限定のー態様として、前記少なくとも1つの他の抗がん剤は、細胞のTGFβの発現を誘導する剤を含む。TGFβの発現は誘導される細胞としてはがん細胞、腫瘍組織中の細胞、及び/又は腫瘍組織付近の細胞が挙げられる。すなわち、前記少なくとも1つの他の抗がん剤としては、投与によって、がん細胞、腫瘍組織中の細胞、及び/又は腫瘍組織付近の細胞のTGFβの発現が、誘導または増強されるものが含まれる。例えば、前記少なくとも1つの他の抗がん剤は、がん細胞のTGFβ1の発現を誘導する。また、例えば、前記少なくとも1つの他の抗がん剤の投与により、腫瘍組織中のTGFβ1の発現が誘導される。また、例えば、前記少なくとも1つの他の抗がん剤の投与により、腫瘍組織付近のTGFβ1の発現が誘導される。 In a non-limiting embodiment of the present invention, the at least one other anticancer agent includes an agent that induces the expression of TGFβ in cells. Cells in which the expression of TGFβ is induced include cancer cells, cells in tumor tissue, and/or cells near tumor tissue. That is, the at least one other anticancer agent includes an agent that induces or enhances the expression of TGFβ in cancer cells, cells in tumor tissue, and/or cells near tumor tissue upon administration. For example, the at least one other anticancer agent induces the expression of TGFβ1 in cancer cells. Also, for example, the administration of the at least one other anticancer agent induces the expression of TGFβ1 in tumor tissue. Also, for example, the administration of the at least one other anticancer agent induces the expression of TGFβ1 near tumor tissue.

がん細胞のTGFβの発現を増強する剤は、例えば、がん細胞株に剤を添加し、TGFβの発現変化について解析することで確認することができる。例えば、qPCRや細胞上清中に分泌されたTGFβ濃度のELISA測定といった一般的な手法により、対象の細胞株への剤の投与前後のTGFβ発現量の変化を解析し、TGFβ発現量が増加している場合には、細胞のTGFβの発現を増強する剤であることが確認される。 Agents that enhance the expression of TGFβ in cancer cells can be confirmed, for example, by adding the agent to a cancer cell line and analyzing changes in TGFβ expression. For example, changes in the expression level of TGFβ before and after administration of the agent to the target cell line can be analyzed using common techniques such as qPCR or ELISA measurement of the concentration of TGFβ secreted into the cell supernatant, and if the expression level of TGFβ has increased, it can be confirmed that the agent enhances the expression of TGFβ in cells.

具体的には、がん細胞株に剤を添加し、回収した細胞からRNAを精製し、続いてcDNA合成を行い、これを鋳型にしてTGFβ特異的なプライマーによりリアルタイムPCRを行い、TGFβの発現を非添加細胞と比較し解析する。また、がん細胞株に剤を添加し、がん細胞の培養上清中に分泌されたTGFBの濃度をELISAで測定し、非添加細胞と比較し解析する。なお、これらの手法はそれぞれ一般的に知られたプロトコールにより実施可能であり、公知の手法である(例えば、https://www.cellsignal.jp/learn-and-support/protocols/protocol-western(CST)、Human/Mouse/Rat/Porcine/Canine TGF-beta 1 Quantikine ELISA (https://www.rndsystems.com/products/human-mouse-rat-porcine-canine-tgf-beta-1-quantikine-elisa_db100b(R & D system)))。 Specifically, a drug is added to a cancer cell line, RNA is purified from the collected cells, cDNA is synthesized, and real-time PCR is performed using this as a template with TGFβ-specific primers to analyze the expression of TGFβ in comparison with cells that have not been treated. In addition, a drug is added to a cancer cell line, and the concentration of TGFB secreted into the culture supernatant of the cancer cells is measured by ELISA and analyzed in comparison with cells that have not been treated. Note that these methods can be performed using generally known protocols and are publicly known methods (e.g., https://www.cellsignal.jp/learn-and-support/protocols/protocol-western (CST), Human/Mouse/Rat/Porcine/Canine TGF-beta 1 Quantikine ELISA (https://www.rndsystems.com/products/human-mouse-rat-porcine-canine-tgf-beta-1-quantikine-elisa_db100b (R & D system))).

がん細胞のTGFβ1の発現を誘導する剤として、例えば、ドキソルビシン、パクリタキセル、カルボプラチン、シスプラチン、イリノテカン、ゲムシタビンなどの化学療法剤や、放射線照射が挙げられる。 Examples of agents that induce the expression of TGFβ1 in cancer cells include chemotherapy agents such as doxorubicin, paclitaxel, carboplatin, cisplatin, irinotecan, and gemcitabine, as well as radiation exposure.

本発明における非限定のー態様として、化学療法剤としては、代謝拮抗剤、アルカロイド、アンスラサイクリン、又はプラチナ製剤が挙げられるが、これらに限定されることはない。
代謝拮抗剤の好適な例として、エノシタビン、カペシタビン、カルモフール、ゲムシタビン、シタラビン、テガフール、テガフール・ウラシル、ネララビン、フルオロウラシル、フルダラビン、ペメトレキセド、ペントスタチン、メトトレキサートが挙げられるが、これに限定されることはない。特に好ましい代謝拮抗剤の例としては、ゲムシタビンが挙げられる。
アルカロイドの一例としては植物アルカロイドが挙げられる。植物アルカロイドの好適な例として、イリノテカン、エトポシド、ソブゾ キサン ドセタキセル、ノギテカン、パクリタキセル、ビノレルビン、ビンク リスチン、ビンデシン、ビンブラスチンが挙げられるが、これに限定されることはない。特に好ましい植物アルカロイドの例としては、トポイソメラーゼ阻害剤が挙げられる。特に好ましい植物アルカロイドの例としては、パクリタキセル、イリノテカンが挙げられる。
プラチナ製剤の好適な例として、オキサリプラチン、カルボプラチン、シスプラチン、ネダプラチンが挙げられるが、これに限定されることはない。特に好ましいプラチナ製剤の例として、カルボプラチン、シスプラチンが挙げられる。
In one non-limiting embodiment of the present invention, the chemotherapeutic agent includes, but is not limited to, antimetabolites, alkaloids, anthracyclines, or platinum agents.
Suitable examples of antimetabolites include, but are not limited to, enocitabine, capecitabine, carmofur, gemcitabine, cytarabine, tegafur, tegafur-uracil, nelarabine, fluorouracil, fludarabine, pemetrexed, pentostatin, and methotrexate. A particularly preferred example of antimetabolites is gemcitabine.
An example of an alkaloid is a plant alkaloid. Suitable examples of plant alkaloids include, but are not limited to, irinotecan, etoposide, sobuzoxane docetaxel, nogitecan, paclitaxel, vinorelbine, vincristine, vindesine, and vinblastine. Particularly preferred examples of plant alkaloids include topoisomerase inhibitors. Particularly preferred examples of plant alkaloids include paclitaxel and irinotecan.
Suitable examples of platinum agents include, but are not limited to, oxaliplatin, carboplatin, cisplatin, and nedaplatin. Particularly preferred examples of platinum agents include carboplatin and cisplatin.

本発明における非限定のー態様として、免疫チェックポイント阻害剤の好適な例としては、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗TIM3抗体又は抗LAG3抗体が挙げられるが、これに限定されることはない。例えば、抗PD-1抗体の例としては、PembroIizumab (CAS登録番号:1374853-91-4)、Nivolumab (CAS登録番号:946414-94-4)、MEDI0680、PDR001、BGB-A317、REGN2810、SHR-1210、 PF-06801591や種々の公知の抗PD-1抗体を挙げることができる。抗PD-L1抗体の例としては、AtezoIizumab (CAS登録番号:1380723-44-3)、Avelumab (CAS登録番号:1537032-82-8)、Durvalumab (CAS登録番号:1428935-60-7)、MDX-11 05や種々の公知の抗PD-L1抗体を挙げることができる。抗CTLA-4抗体の例としては、Ipilimumab (CAS 登録番号:477202-00-9)、Tremelimumab (CAS 登録番号:745013-59-6)や種々の公知の抗CTLA-4抗体を挙げることができる。抗TIM3抗体の例としては、MBG452や種々の公知の抗TIM3抗体を挙げることができる。抗LAG3抗体の例としては、BMS-986016s LAG525や種々の公知の抗LAG3抗体を挙げることができる。特に好ましい免疫チェックポイント阻害剤の例として、抗PD-L1抗体が挙げられる。 In a non-limiting embodiment of the present invention, suitable examples of immune checkpoint inhibitors include, but are not limited to, anti-PD-1 antibodies, anti-PD-L1 antibodies, anti-CTLA-4 antibodies, anti-TIM3 antibodies, or anti-LAG3 antibodies. For example, examples of anti-PD-1 antibodies include PembroIizumab (CAS Registry Number: 1374853-91-4), Nivolumab (CAS Registry Number: 946414-94-4), MEDI0680, PDR001, BGB-A317, REGN2810, SHR-1210, PF-0680159 1 , and various known anti-PD-1 antibodies. Examples of anti-PD-L1 antibodies include AtezoIizumab (CAS Registry Number: 1380723-44-3), Avelumab (CAS Registry Number: 1537032-82-8), Durvalumab (CAS Registry Number: 1428935-60-7), MDX-11 05, and various known anti-PD-L1 antibodies. Examples of anti-CTLA-4 antibodies include Ipilimumab (CAS Registry Number: 477202-00-9), Tremel imumab (CAS Registry Number: 745013-59-6), and various known anti-CTLA-4 antibodies. Examples of anti-TIM3 antibodies include MBG452 and various known anti-TIM3 antibodies. Examples of anti-LAG3 antibodies include BMS-986016s LAG525 and various known anti-LAG3 antibodies. Particularly preferred examples of immune checkpoint inhibitors include anti-PD-L1 antibodies.

本発明における非限定のー態様として、PARP阻害剤の好適な例としては、PARP阻害剤が、オラパリブ、ルカパリブ、ニラパリブ、ベリパリブ、パミパリブ、若しくはタラゾパリブを挙げることができる。特に好ましいPARP阻害剤の例として、オラパリブが挙げられる。 In a non-limiting embodiment of the present invention, suitable examples of PARP inhibitors include olaparib, rucaparib, niraparib, veliparib, pamiparib, and talazoparib. A particularly preferred example of a PARP inhibitor is olaparib.

本発明における非限定のー態様として、T細胞活性化アゴニスト剤としては、TNF受容体スーパーファミリー (TNFRSF)のアゴニスト抗体、あるいはco-stimulatory分子のアゴニスト抗体が挙げられるが、これらに限定されることはない。「TNF受容体スーパーファミリーのアゴニスト抗体」の標的分子としては、TNF受容体スーパーファミリーを発現する細胞(例えば、T細胞やNK細胞など)を活性化する因子である限り特に制限されないが、好ましくは、「ΤNFスーパーファミリー」又は「TNF受容体スーパーファミリー」に属する因子である。「TNFスーパーファミリー」又は「TNF受容体スーパーファミリー」に属する因子としては、様々な免疫細胞の活性化に寄与する、3量体構造を有するリガンドと当該リガンドが結合する3量体構造のレセプターが知られている(Nat. Rev. Immunol., 2012,12, 339-51)。TNFスーパーファミリー又はTNF受容体スーパーファミリーに属する因子としては、例えば、CD137、CD137L、CD40、CD40L、0X40、OX40L、CD27、CD70、HVEM、LIGHT、RANK、RANKL、CD30、CD153、GITR、GITRL、TNFRSF25、TL1Aが挙げられる。好ましい因子としては、例えばCD137が挙げられる。例えば、CD137アゴニスト抗体の例としては、Urelumab (CAS登録番号:934823-49-1)、PF-05082566や種々の公知の CD137アゴニスト抗体を挙げることができる。
co-stimulatory 分子に属する因子としては、TMIGD2、HHLA2、ICOS、ICOS Ligand、CD28、CD80、CD86などが挙げられる。OX40アゴニスト抗体の例としては、MOXR0916、 MEDI6469、MEDI0562、MEDI6383、 PF-04518600s GSK-3174998 や種々の公知のOX40アゴニスト抗体を挙げることができる。CD40アゴニスト抗体の例としては、RG-7876、ADC-1013、SEA-CD40、APX005M、Dacetuzumabや 種々の公知のCD40アゴニスト抗体を挙げることができる。GITRアゴニスト抗 体の例としては、AMG228、AMK-1248、MK-4166、BMS-986156s TRX518や種々の公知のGITRアゴニスト抗体を挙げることができる。CD27アゴニスト抗体の例としては、Varlilumab (CAS登録番号:1393344-72-3)や種々の公知のCD27アゴニスト抗体を挙げることができる。
In a non-limiting embodiment of the present invention, the T cell activation agonist agent may be, but is not limited to, an agonist antibody of the TNF receptor superfamily (TNFRSF) or an agonist antibody of a costimulatory molecule. The target molecule of the "agonist antibody of the TNF receptor superfamily" is not particularly limited as long as it is a factor that activates cells expressing the TNF receptor superfamily (e.g., T cells, NK cells, etc.), but is preferably a factor belonging to the "TNF superfamily" or "TNF receptor superfamily". As factors belonging to the "TNF superfamily" or "TNF receptor superfamily", a ligand having a trimer structure and a receptor having a trimer structure to which the ligand binds, which contribute to the activation of various immune cells, are known (Nat. Rev. Immunol., 2012,12,339-51). Examples of factors belonging to the TNF superfamily or TNF receptor superfamily include CD137, CD137L, CD40, CD40L, OX40, OX40L, CD27, CD70, HVEM, LIGHT, RANK, RANKL, CD30, CD153, GITR, GITRL, TNFRSF25, and TL1A. Preferred factors include CD137. Examples of CD137 agonist antibodies include Urelumab (CAS registration number: 934823-49-1), PF-05082566, and various known CD137 agonist antibodies.
Factors belonging to the co-stimulatory molecule include TMIGD2, HHLA2, ICOS, ICOS Ligand, CD28, CD80, CD86, etc. Examples of OX40 agonist antibodies include MOXR0916, MEDI6469, MEDI0562, MEDI6383, PF-04518600s GSK-3174998, and various known OX40 agonist antibodies. Examples of CD40 agonist antibodies include RG-7876, ADC-1013, SEA-CD40, APX005M, Dacetuzumab, and various known CD40 agonist antibodies. Examples of GITR agonist antibodies include AMG228, AMK-1248, MK-4166, BMS-986156s TRX518, and various known GITR agonist antibodies. Examples of the CD27 agonist antibody include Varlilumab (CAS registration number: 1393344-72-3) and various known CD27 agonist antibodies.

本発明における非限定のー態様として、血管新生阻害剤の好適な例としては、VEGFR2抗体を挙げることができるが、これに限定されることはない。いくつかの実施例において、本発明における血管新生阻害剤は、腫瘍が生存するのに必要な血管の広範囲の成長(血管新生)を防止する。例えば腫瘍細胞の栄養および酸素要求の増大を満たすために腫瘍細胞によって促進される血管新生は、種々の分子を標的とすることによってブロックすることができる。例えば、血管新生阻害剤の例としては、ベバシズマブ、ソラフェニブ、エベロリムス、テムシロリムスや種々の公知の血管新生阻害剤を挙げることができる。 As a non-limiting embodiment of the present invention, suitable examples of angiogenesis inhibitors include, but are not limited to, VEGFR2 antibodies. In some embodiments, the angiogenesis inhibitors of the present invention prevent the extensive growth of blood vessels (angiogenesis) necessary for tumor survival. For example, angiogenesis promoted by tumor cells to meet the increased nutritional and oxygen demands of tumor cells can be blocked by targeting various molecules. For example, examples of angiogenesis inhibitors include bevacizumab, sorafenib, everolimus, temsirolimus, and various known angiogenesis inhibitors.

本明細書において、「TGFβを誘導する方法」とは細胞のTGFβを誘導する方法を意味する。具体的には、投与により細胞のTGFβ1、TGFβ2、及び/又はTGFB3を誘導する方法である。「TGFβを誘導する方法」は「TGFβ誘導剤」の投与を含む。「TGFβを誘導する方法」は、細胞株に該方法を行うことにより、TGFβの発現を増強させる。
「TGFβ誘導剤」とは、細胞のTGFβを誘導する剤を意味する。具体的には、投与により細胞のTGFβ1、TGFβ2、及び/又はTGFB3を誘導する剤である。TGFβ誘導剤は、細胞株に剤を添加することにより、TGFβの発現が増強する。
TGFβ誘導剤は、例えば、細胞株に剤を添加し、TGFβの発現変化について解析することで確認することができる。例えば、qPCRや細胞上清中に分泌されたTGFβ濃度のELISA測定といった一般的な手法により、対象の細胞株への剤の投与前後のTGFβ発現量の変化を解析し、TGFβ発現量が増加している場合には、細胞のTGFβの発現を増強する剤であることが確認される。
具体的には、細胞株に剤を添加し、回収した細胞からRNAを精製し、続いてcDNA合成を行い、これを鋳型にしてTGFβ特異的なプライマーによりリアルタイムPCRを行い、TGFβの発現を非添加細胞と比較し解析する。また、細胞株に剤を添加し、細胞の培養上清中に分泌されたTGFBの濃度をELISAで測定し、非添加細胞と比較し解析する。なお、これらの手法はそれぞれ一般的に知られたプロトコールにより実施可能であり、公知の手法である。(例えば、https://www.cellsignal.jp/learn-and-support/protocols/protocol-western(CST)、Human/Mouse/Rat/Porcine/Canine TGF-beta 1 Quantikine ELISA (https://www.rndsystems.com/products/human-mouse-rat-porcine-canine-tgf-beta-1-quantikine-elisa_db100b)(R & D system))
As used herein, "method of inducing TGFβ" refers to a method of inducing TGFβ in cells. Specifically, it is a method of inducing TGFβ1, TGFβ2, and/or TGFβ3 in cells by administration. "Method of inducing TGFβ" includes administration of a "TGFβ inducer.""Method of inducing TGFβ" enhances expression of TGFβ by carrying out the method on a cell line.
The term "TGFβ inducer" refers to an agent that induces TGFβ in cells. Specifically, it is an agent that induces TGFβ1, TGFβ2, and/or TGFβ3 in cells when administered. The TGFβ inducer enhances the expression of TGFβ when added to a cell line.
A TGFβ inducer can be confirmed, for example, by adding the agent to a cell line and analyzing changes in TGFβ expression. For example, by analyzing changes in the amount of TGFβ expression before and after administration of the agent to a target cell line using common techniques such as qPCR or ELISA measurement of the concentration of TGFβ secreted into the cell supernatant, if the amount of TGFβ expression is increased, the agent is confirmed to enhance the expression of TGFβ in cells.
Specifically, a drug is added to a cell line, RNA is purified from the collected cells, and then cDNA synthesis is performed. This is used as a template for real-time PCR using TGFβ-specific primers, and the expression of TGFβ is compared and analyzed with that of non-added cells. In addition, a drug is added to a cell line, and the concentration of TGFB secreted into the cell culture supernatant is measured by ELISA, and the expression of TGFβ is compared and analyzed with that of non-added cells. Note that these methods can be performed using generally known protocols and are publicly known methods. (For example, https://www.cellsignal.jp/learn-and-support/protocols/protocol-western (CST), Human/Mouse/Rat/Porcine/Canine TGF-beta 1 Quantikine ELISA (https://www.rndsystems.com/products/human-mouse-rat-porcine-canine-tgf-beta-1-quantikine-elisa_db100b) (R & D system))

本明細書において、「CLDN6発現誘導剤」とは細胞のCLDN6発現を誘導する剤を意味する。具体的には、投与により細胞のCLDN6を増強する方法である。
具体的には、例えば細胞株に剤を添加し、回収した細胞からRNAを精製し、続いてcDNA合成を行い、これを鋳型にしてCLDN6特異的なプライマーによりリアルタイムPCRを行い、CLDN6の発現を非添加細胞と比較し解析する。また、例えば細胞株に剤を添加し、抗CLDN6抗体で細胞を染色して、Flow cytometerで細胞膜上に発現するCLDN6を非添加細胞と比較し解析する。また、例えば細胞株に剤を添加し、細胞のlysateを用いて、抗CLDN6抗体を用いたウェスタンブロットによりCLDN6の発現を非添加細胞と比較し解析する。なお、これらの手法はそれぞれ一般的に知られたプロトコールにより実施可能である(例えば、https://www.cellsignal.jp/learn-and-support/protocols/protocol-western(CST)、https://www.takara-bio.co.jp/research/prt/pdfs/prt2.pdf(タカラバイオ)、https://www.thermofisher.com/jp/ja/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/flow-cytometry-basics/flow-cytometry-fundamentals/how-flow-cytometer-works.html(ThermoFisher))。
As used herein, the term "CLDN6 expression inducer" refers to an agent that induces CLDN6 expression in cells. Specifically, the method is a method for enhancing CLDN6 in cells by administering the agent.
Specifically, for example, a drug is added to a cell line, RNA is purified from the collected cells, followed by cDNA synthesis, which is used as a template to perform real-time PCR using CLDN6-specific primers, and the expression of CLDN6 is compared and analyzed with non-added cells. Alternatively, for example, a drug is added to a cell line, the cells are stained with an anti-CLDN6 antibody, and the CLDN6 expressed on the cell membrane is compared and analyzed with non-added cells using a flow cytometer. Alternatively, for example, a drug is added to a cell line, and the expression of CLDN6 is compared and analyzed with non-added cells by Western blotting using an anti-CLDN6 antibody using a cell lysate. These techniques can be carried out according to commonly known protocols (e.g., https://www.cellsignal.jp/learn-and-support/protocols/protocol-western (CST), https://www.takara-bio.co.jp/research/prt/pdfs/prt2.pdf (Takara Bio), https://www.thermofisher.com/jp/ja/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/flow-cytometry-basics/flow-cytometry-fundamentals/how-flow-cytometer-works.html (ThermoFisher)).

CLDN6発現誘導剤としては、例えば、カルボプラチン、シスプラチン、イリノテカン、ゲムシタビンなどの化学療法剤が挙げられるが、これに限られるものではない。 Examples of CLDN6 expression inducers include, but are not limited to, chemotherapeutic agents such as carboplatin, cisplatin, irinotecan, and gemcitabine.

いくつかの実施態様において、本発明における少なくとも1つの他の抗がん剤は、本発明の多重特異性抗原結合分子と併用した場合に、当該他の抗がん剤の治療もしくは予防効果が増強されるもの、または当該多重特異性抗原結合分子の治療もしくは予防効果が増強されるものであればいずれも使用することができ、特に限定されない。ある特定の態様において、該治療もしくは予防効果は、抗腫瘍効果である。 In some embodiments, the at least one other anticancer agent in the present invention is not particularly limited, and any agent that enhances the therapeutic or preventive effect of the other anticancer agent or enhances the therapeutic or preventive effect of the multispecific antigen-binding molecule of the present invention when used in combination with the multispecific antigen-binding molecule of the present invention can be used. In a particular embodiment, the therapeutic or preventive effect is an antitumor effect.

本発明における非限定のー態様として、本発明の併用療法は、上述した多重特異性抗原結合分子と、少なくとも1つの他の治療薬、免疫調節薬、がん治療ワクチン、養子T細胞療法、Treg除去などを含んでもよいが、これらに限定されない。好適ながん治療ワクチンとしては、全腫瘍細胞ワクチン、腫瘍抗原ワクチン、ベクターベースのワクチン、腫瘍溶解性ウィルスワクチンおよび樹状細胞ワクチンが挙げられるが、これらに限定されない。上述した療法の他に、外科的手術、放射線療法等を併用する集学的治療が行われてもよい。 As a non-limiting embodiment of the present invention, the combination therapy of the present invention may include, but is not limited to, the multispecific antigen-binding molecule described above and at least one other therapeutic agent, immunomodulatory agent, cancer treatment vaccine, adoptive T cell therapy, Treg depletion, etc. Suitable cancer treatment vaccines include, but are not limited to, whole tumor cell vaccines, tumor antigen vaccines, vector-based vaccines, oncolytic virus vaccines, and dendritic cell vaccines. In addition to the above-mentioned therapies, multimodal therapy may be performed in combination with surgery, radiation therapy, etc.

本発明における非限定のー態様として、本発明の併用療法は、上述した多重特異性抗原結合分子と、抗腫瘍免疫応答増強薬としてサイトカインを使用したサイトカイン療法と併せて行われてもよく、このような療法としては、IL-2,IL-7,IL-12,IL-15,IL-17,IL-18,IL-21,IL-21,IL-23,IL-27,GM-CSF,IFNα(インターフェロン-α)、IFNα-2b,IFNβ、IFNγなどのサイトカインが挙げられるが、これらに限定されない。 As a non-limiting embodiment of the present invention, the combination therapy of the present invention may be performed in conjunction with a cytokine therapy using the above-mentioned multispecific antigen-binding molecule and a cytokine as an anti-tumor immune response enhancer, and such therapies include, but are not limited to, cytokines such as IL-2, IL-7, IL-12, IL-15, IL-17, IL-18, IL-21, IL-21, IL-23, IL-27, GM-CSF, IFNα (interferon-α), IFNα-2b, IFNβ, and IFNγ.

本発明における非限定のー態様として、上述の医薬組成物を含む、細胞傷害誘導剤、細胞増殖抑制剤、細胞増殖阻害剤、免疫応答活性化剤、がん治療剤またはがん予防剤を提供する。 As a non-limiting embodiment of the present invention, there is provided a cytotoxicity inducer, a cell proliferation suppressant, a cell proliferation inhibitor, an immune response activator, a cancer treatment agent, or a cancer prevention agent, which comprises the above-mentioned pharmaceutical composition.

いくつかの実施態様において、上述した多重特異性抗原結合分子及び/又は他の抗がん剤を投与する「個体」は、ヒト又は非ヒト哺乳動物、例えばウシ、ウマ、イヌ、ヒツジ、又はネコを含む哺乳動物を意味する。好ましくは、個体はヒトである。個体には患者(ヒト及び非ヒト哺乳動物を含む)が含まれる。いくつかの実施態様において、当該個体は、がん細胞又はがん細胞を含む腫瘍組織を有する患者である。本発明における抗がん剤、又は併用療法の対象となるがん細胞又はがん細胞を含む腫瘍組織は、CLDN6が発現している限りは、特に限定されない。本発明における好ましいCLDN6発現細胞、すなわちCLDN6陽性の細胞は、がん細胞である。より好ましいがん種として、例えば、卵巣がん(Ovary)、非小細胞肺がん(NSCLC)、胃がん(Gastric) 、食道がん(Esophageal)、肝臓がん(Liver) 、乳がん(Breast) 、大腸がん(結腸がん(Colon)及び直腸がん(Rectum)を含む)、胚細胞腫瘍 (Germ cell tumor,Germinoma)、精巣がん(Testis)、子宮がん(Uterine)、子宮頸がん(Cervical)、胆管がん(Cholangiocarcinoma)、腎臓がん(Kidney)、頭頚部がん(Head and Neck)、膵臓がん(PDAC)、膀胱がん(Urinary bladder)、非定型奇形腫様ラブドイド腫瘍(AT/RT)が挙げられるが、これに限定されることはない。さらに好ましいがん種としては、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、非定型奇形腫様ラブドイド腫瘍が挙げられるが、これに限定されることはない。 In some embodiments, the "individual" to which the multispecific antigen-binding molecule and/or other anti-cancer agent described above is administered means a mammal including a human or a non-human mammal, such as a cow, a horse, a dog, a sheep, or a cat. Preferably, the individual is a human. The individual includes patients (including humans and non-human mammals). In some embodiments, the individual is a patient having cancer cells or tumor tissue containing cancer cells. The cancer cells or tumor tissue containing cancer cells that are the subject of the anti-cancer agent or combination therapy of the present invention are not particularly limited as long as CLDN6 is expressed. A preferred CLDN6-expressing cell in the present invention, i.e., a CLDN6-positive cell, is a cancer cell. More preferred cancer types include, but are not limited to, ovarian cancer, non-small cell lung cancer (NSCLC), gastric cancer, esophageal cancer, liver cancer, breast cancer, colorectal cancer (including colon cancer and rectum cancer), germ cell tumor, testicular cancer, uterine cancer, cervical cancer, cholangiocarcinoma, kidney cancer, head and neck cancer, pancreatic cancer (PDAC), urinary bladder cancer, and atypical teratoid rhabdoid tumor (AT/RT). More preferred cancer types include, but are not limited to, ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumors, colorectal cancer, bladder cancer, and atypical teratoid rhabdoid tumors.

いくつかの実施形態において、患者は、上述した多重特異性抗原結合分子と他の抗がん剤の併用療法より前に、該多重特異性抗体および/または何らかの抗がん剤治療を受けたことがある患者である。いくつかの実施形態において、患者は、標準療法を受けることが出来ない、又は標準療法が有効でない患者である。いくつかの実施態様において、患者が有するがんは初期または末期である。 In some embodiments, the patient has received the multispecific antibody and/or any anticancer drug treatment prior to the combination therapy of the multispecific antigen-binding molecule and another anticancer drug. In some embodiments, the patient is a patient who cannot receive standard therapy or for whom standard therapy is ineffective. In some embodiments, the patient has cancer in an early or late stage.

さらには、いくつかの実施形態において、本発明における抗がん剤による治療、又は医薬組成物を用いた併用療法の対象となるがん種としては、1細胞あたりの細胞表面上のCLDN6抗原数が100以上のがん種が好ましく、1細胞あたりの細胞表面上のCLDN6抗原数が200以上、300以上、400以上、500以上、600以上、700以上、800以上、900以上、1000以上、1200以上、1400以上、1600以上、1800以上、2000以上のがん種がより好ましく、1細胞あたりの細胞表面上のCLDN6抗原数が3000以上、4000以上、5000以上、6000以上、7000以上、8000以上、9000以上、10000以上、20000以上、30000以上、40000以上、50000以上のがん種がさらに好ましい。 Furthermore, in some embodiments, the cancer types targeted for treatment with the anticancer agent of the present invention or combination therapy with the pharmaceutical composition of the present invention are preferably those with 100 or more CLDN6 antigens on the cell surface per cell, more preferably those with 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1200 or more, 1400 or more, 1600 or more, 1800 or more, or 2000 or more CLDN6 antigens on the cell surface per cell, and even more preferably those with 3000 or more, 4000 or more, 5000 or more, 6000 or more, 7000 or more, 8000 or more, 9000 or more, 10000 or more, 20000 or more, 30000 or more, 40000 or more, or 50000 or more CLDN6 antigens on the cell surface per cell.

1細胞あたりの細胞表面上のCLDN6抗原数を測定する手法は、本明細書に記載された方法のほか、当業者公知の手法を用いて適宜測定することが 可能であるが、例えば、細胞表面上のCLDN6のantibody binding capacity (ABC)をQIFIKIT (DAKO)を用いてフローサイメトリーにより算出することもできる。本発明の抗がん剤又は、医薬組成物が投与される対象であるか否かを決定するために、対象の候補から単離された組織標品における、1細胞あたりの細胞表面上のCLDN6抗原数が決定され得る。当該標品において、1細胞あたりの細胞表面上のCLDN6抗原数が上述した基準を満たす場合は、当該標品が由来する対象が本発明における抗がん剤、又は医薬組成物(併用療法)が投与される対象となり得る。 The number of CLDN6 antigens on the cell surface per cell can be measured by any method known to those skilled in the art, in addition to the method described herein. For example, the antibody binding capacity (ABC) of CLDN6 on the cell surface can be calculated by flow cytometry using QIFIKIT (DAKO). In order to determine whether or not a subject is a subject to which the anticancer agent or pharmaceutical composition of the present invention is to be administered, the number of CLDN6 antigens on the cell surface per cell in a tissue specimen isolated from a potential subject can be determined. If the number of CLDN6 antigens on the cell surface per cell in the specimen satisfies the above-mentioned criteria, the subject from which the specimen is derived can be a subject to which the anticancer agent or pharmaceutical composition (combination therapy) of the present invention is to be administered.

本発明における非限定のー態様として、本発明の抗がん剤は、他の抗がん剤による処置に対して不応性のがんを有する患者を治療するために用いられることができる。
例えば、本発明の抗がん剤は、化学療法剤による処置に対して不応性のがんを有する患者を治療するために用いられることができる。CLDN6陽性のがんを有する患者であって、化学療法剤の投与により所望の薬効が認められなかった患者、化学療法剤の投与に対してがんの再発が見られた患者、あるいは、化学療法剤に対して耐性が確認された患者に対して、本発明の抗がん剤による治療をすることができる。言い換えると、化学療法剤による療法既治療のCLDN6陽性のがんに対して、本発明の抗がん剤による治療をすることができる。
また、例えば、本発明の抗がん剤は、免疫チェックポイント阻害剤による処置に対して不応性のがんを有する患者を治療するために用いられることができる。例えば、CLDN6陽性のがんを有する患者であって、免疫チェックポイント阻害剤の投与により所望の薬効が認められなかった患者、免疫チェックポイント阻害剤の投与に対してがんの再発が見られた患者、あるいは、免疫チェックポイント阻害剤に対して耐性が確認された患者に対して、本発明の抗がん剤による治療をすることができる。言い換えると、免疫チェックポイント阻害剤による療法既治療のCLDN6陽性のがんに対して、本発明の抗がん剤による治療をすることができる。
As a non-limiting embodiment of the present invention, the anti-cancer agents of the present invention can be used to treat patients with cancers that are refractory to treatment with other anti-cancer agents.
For example, the anticancer agent of the present invention can be used to treat patients with cancer that is refractory to treatment with a chemotherapeutic agent. Patients with CLDN6-positive cancer who have not shown the desired efficacy after administration of a chemotherapeutic agent, who have shown cancer recurrence after administration of a chemotherapeutic agent, or who have been confirmed to have resistance to a chemotherapeutic agent can be treated with the anticancer agent of the present invention. In other words, CLDN6-positive cancer that has already been treated with a chemotherapeutic agent can be treated with the anticancer agent of the present invention.
For example, the anticancer agent of the present invention can be used to treat patients with cancer that is refractory to treatment with immune checkpoint inhibitors. For example, patients with CLDN6-positive cancer who have not shown the desired efficacy by administration of immune checkpoint inhibitors, who have shown cancer recurrence by administration of immune checkpoint inhibitors, or who have been confirmed to be resistant to immune checkpoint inhibitors can be treated with the anticancer agent of the present invention. In other words, CLDN6-positive cancer that has already been treated with immune checkpoint inhibitors can be treated with the anticancer agent of the present invention.

本発明における非限定のー態様として、本発明の医薬組成物(併用療法)は、他の抗がん剤による処置に対して不応性のがんを有する患者を治療するために用いることができる。
例えば、本発明の医薬組成物は、化学療法剤による処置に対して不応性のがんを有する患者を治療するために用いられることができる。CLDN6陽性のがんを有する患者であって、化学療法剤の投与により所望の薬効が認められなかった患者、化学療法剤の投与に対してがんの再発が見られた患者、あるいは、化学療法剤に対して耐性が確認された患者に対して、本発明の医薬組成物による治療をすることができる。言い換えると、化学療法剤による療法既治療のCLDN6陽性のがんに対して、本発明の医薬組成物による治療をすることができる。該医薬組成物に含まれる他の抗がん剤の好適な例としては、化学療法剤を挙げることができるが、これに限定されることはない。
また、例えば、本発明の医薬組成物は免疫チェックポイント阻害剤による処置に対して不応性のがんを有する患者を治療するために用いられることができる。例えば、CLDN6陽性のがんを有する患者であって、免疫チェックポイント阻害剤の投与により所望の薬効が認められなかった患者、免疫チェックポイント阻害剤の投与に対してがんの再発が見られた患者、あるいは、免疫チェックポイント阻害剤に対して耐性が確認された患者に対して、本発明の医薬組成物(併用療法)による治療をすることができる。言い換えると、免疫チェックポイント阻害剤による療法既治療のCLDN6陽性のがんに対して、本発明の医薬組成物(併用療法)による治療をすることができる。該医薬組成物に含まれる他の抗がん剤の好適な例としては、免疫チェックポイント阻害剤を挙げることができるが、これに限定されることはない。
As a non-limiting embodiment of the present invention, the pharmaceutical composition (combination therapy) of the present invention can be used to treat patients with cancer that is refractory to treatment with other anti-cancer agents.
For example, the pharmaceutical composition of the present invention can be used to treat patients with cancer that is refractory to treatment with a chemotherapeutic agent. Patients with CLDN6-positive cancer who have not shown the desired efficacy of administration of a chemotherapeutic agent, who have shown cancer recurrence after administration of a chemotherapeutic agent, or who have been confirmed to be resistant to a chemotherapeutic agent can be treated with the pharmaceutical composition of the present invention. In other words, CLDN6-positive cancer that has already been treated with a chemotherapeutic agent can be treated with the pharmaceutical composition of the present invention. Suitable examples of other anticancer agents contained in the pharmaceutical composition include, but are not limited to, chemotherapeutic agents.
For example, the pharmaceutical composition of the present invention can be used to treat patients with cancer that is refractory to treatment with immune checkpoint inhibitors. For example, patients with CLDN6-positive cancer who have not shown the desired efficacy by administration of immune checkpoint inhibitors, who have shown cancer recurrence by administration of immune checkpoint inhibitors, or who have been confirmed to be resistant to immune checkpoint inhibitors can be treated with the pharmaceutical composition of the present invention (combination therapy). In other words, CLDN6-positive cancer that has already been treated with immune checkpoint inhibitors can be treated with the pharmaceutical composition of the present invention (combination therapy). Suitable examples of other anticancer agents contained in the pharmaceutical composition include, but are not limited to, immune checkpoint inhibitors.

本発明における非限定のー態様として、本発明の医薬組成物(併用療法)は、本発明の抗がん剤による処置に対して不応性のがんを有する患者を治療するために用いられることができる。例えば、CLDN6陽性のがんを有する患者であって、本発明の抗がん剤を投与後に該抗がん剤に対して耐性となった患者、本発明の抗がん剤の投与により所望の薬効が認められなかった患者、あるいは、本発明の抗がん剤に対して耐性が確認された患者に対して、本発明の医薬組成物(併用療法)による治療をすることができる。言い換えると、本発明の抗がん剤療法既治療のCLDN6陽性のがんに対して、本発明の医薬組成物(併用療法)による治療をすることができる。該医薬組成物に含まれる他の抗がん剤の好適な例としては、免疫チェックポイント阻害剤や化学療法剤を挙げることができるが、これに限定されることはない。
CLDN6陽性のがん(CLDN6の発現が確認されたがん)に関しては、免疫組織染色法やフローサイトメトリー法、in situ ハイブリダイゼーション法等の当業者公知の方法により当業者が適宜検査し、CLDN6陽性であると判断することが可能である。
As a non-limiting embodiment of the present invention, the pharmaceutical composition (combination therapy) of the present invention can be used to treat patients with cancer that is refractory to treatment with the anticancer agent of the present invention. For example, patients with CLDN6-positive cancer who have become resistant to the anticancer agent of the present invention after administration of the anticancer agent of the present invention, patients who have not shown the desired efficacy by administration of the anticancer agent of the present invention, or patients who have been confirmed to be resistant to the anticancer agent of the present invention can be treated with the pharmaceutical composition (combination therapy) of the present invention. In other words, CLDN6-positive cancer that has already been treated with the anticancer agent of the present invention can be treated with the pharmaceutical composition (combination therapy) of the present invention. Suitable examples of other anticancer agents contained in the pharmaceutical composition include, but are not limited to, immune checkpoint inhibitors and chemotherapeutic agents.
With regard to CLDN6-positive cancers (cancers in which expression of CLDN6 has been confirmed), those skilled in the art can appropriately test using methods known to those skilled in the art, such as immunohistochemical staining, flow cytometry, and in situ hybridization, and determine that the cancer is CLDN6-positive.

この態様において、本発明の抗がん剤以外の他の抗がん剤による治療経験があるCLDN6陽性のがんが、他の抗がん剤に耐性を有するCLDN6陽性がんとして例示される。例えば、プラチナ製剤による治療経験があるCLDN6陽性のがんはプラチナ製剤耐性CLDN6陽性がん、免疫チェックポイント阻害剤による治療経験があるCLDN6陽性がんは免疫チェックポイント阻害剤耐性CLDN6陽性がんとして例示される。「耐性」は「抵抗性」に置き換え得る。
例として、プラチナ製剤を含む治療を行った後に再発したCLDN6陽性がんが、該プラチナ製剤治療経験があるCLDN6陽性がんに包含される。免疫チェックポイント阻害剤を含む治療を行った後に再発したCLDN6陽性がんが、該免疫チェックポイント阻害剤による治療経験があるCLDN6陽性がんに包含される。
ここで、本明細書において、「耐性」は、細胞や個体が、疾患の処置や治療に対し応答性(感受性ともいう)がなく、かつ/または有意な応答(たとえば、部分奏功および/または完全奏功)を生み出す能力が低下している状態であれば限定されない。例えば、他の抗がん剤に対して耐性があるがんとは、本発明の抗がん剤以外による処置後に生じた耐性であってもよい。たとえば、治療初期には有効であっても繰り返し治療を続けると、やがて当該治療に対し、がんが耐性を獲得することがあり、他の抗がん剤の存在下でもはや退縮しないか、または進行さえする場合がある。
また、例えば他の抗がん剤に耐性を有するCLDN6陽性がんの他の例示として、本発明の抗がん剤以外の抗がん剤投与による治療後に再発したがんが挙げられる。
In this embodiment, CLDN6-positive cancers that have been treated with anticancer drugs other than the anticancer drug of the present invention are exemplified as CLDN6-positive cancers that are resistant to other anticancer drugs. For example, CLDN6-positive cancers that have been treated with platinum drugs are exemplified as platinum drug-resistant CLDN6-positive cancers, and CLDN6-positive cancers that have been treated with immune checkpoint inhibitors are exemplified as immune checkpoint inhibitor-resistant CLDN6-positive cancers. "Resistance" can be replaced with "resistance".
For example, a CLDN6-positive cancer that recurs after treatment with a platinum agent is included in the platinum-treated CLDN6-positive cancer, and a CLDN6-positive cancer that recurs after treatment with an immune checkpoint inhibitor is included in the immune checkpoint inhibitor-treated CLDN6-positive cancer.
Here, in the present specification, "resistance" is not limited to a state in which a cell or an individual is not responsive (also called sensitive) to a disease treatment or therapy and/or has a reduced ability to produce a significant response (e.g., partial response and/or complete response). For example, a cancer that is resistant to other anticancer drugs may be resistance that occurs after treatment with a drug other than the anticancer drug of the present invention. For example, even if a treatment is effective at the beginning, repeated treatment may cause the cancer to acquire resistance to the treatment and may no longer regress or even progress in the presence of other anticancer drugs.
Further, other examples of CLDN6-positive cancers that are resistant to other anticancer agents include cancers that have recurred after treatment with the administration of an anticancer agent other than the anticancer agent of the present invention.

本開示はまた、本開示の抗原結合分子または本開示の方法によって産生された抗原結合分子を含有する、本開示の方法において使用するためのキットも提供する。該キットは、追加の薬学的に許容される担体もしくは媒体、またはキットの使用方法を記載した取扱説明書等と共に包装され得る。 The present disclosure also provides a kit for use in the method of the present disclosure, containing an antigen-binding molecule of the present disclosure or an antigen-binding molecule produced by the method of the present disclosure. The kit may be packaged with additional pharma- ceutically acceptable carriers or vehicles, or instructions for use of the kit, etc.

本発明の別の局面において、上述の障害の治療、予防、および/または診断に有用な器材を含んだ製品が、提供される。製品は、容器、および当該容器上のラベルまたは当該容器に付属する添付文書を含む。好ましい容器としては、例えば、ボトル、バイアル、シリンジ、IV溶液バッグなどが含まれる。容器類は、ガラスやプラスチックなどの、様々な材料から形成されていてよい。容器は組成物を単体で保持してもよいし、症状の治療、予防、および/または診断のために有効な別の組成物と組み合わせて保持してもよく、また、無菌的なアクセスポートを有していてもよい(例えば、容器は、皮下注射針によって突き通すことのできるストッパーを有する静脈内投与用溶液バッグまたはバイアルであってよい)。組成物中の少なくとも1つの有効成分は、本開示に記載の多重特異性抗原結合分子である。ラベルまたは添付文書は、組成物が選ばれた症状を治療するために使用されるものであることを示す。さらに製品は、(a)第1の容器であって、その中に収められた本開示に記載の多重特異性抗原結合分子を含む組成物を伴う、第1の容器;および、(b)第2の容器であって、その中に収められたさらなる細胞傷害剤(少なくとも1つの他の抗がん剤、複数種類の他の抗がん剤が併用される場合、第1の他の抗がん剤)またはそれ以外で治療的な剤を含む組成物を伴う、第2の容器を含んでもよい。さらに製品は、(c)第3の容器であって、その中に収められたさらなる細胞傷害剤(複数種類の他の抗がん剤が併用される場合、第2の他の抗がん剤)またはそれ以外で治療的な剤を含む組成物を伴う、第3の容器を含んでもよい。本発明のこの態様における製品は、さらに、組成物が特定の症状を治療するために使用され得ることを示す、添付文書を含んでもよい。あるいはまたは加えて、製品はさらに、注射用制菌水 (BWFI)、リン酸緩衝生理食塩水、リンガー溶液、およびデキストロース溶液などの、薬学的に許容される緩衝液を含む、第2の(または第3のもしくは第4の)容器を含んでもよい。他の緩衝液、希釈剤、フィルター、針、およびシリンジなどの、他の商業的観点またはユーザの立場から望ましい器材をさらに含んでもよい。 In another aspect of the invention, an article of manufacture is provided that includes materials useful for the treatment, prevention, and/or diagnosis of the above-mentioned disorders. The article of manufacture includes a container and a label on the container or a package insert associated with the container. Preferred containers include, for example, bottles, vials, syringes, IV solution bags, and the like. The containers may be formed from a variety of materials, such as glass or plastic. The container may hold the composition alone or in combination with another composition effective for the treatment, prevention, and/or diagnosis of a condition, and may have a sterile access port (e.g., the container may be an intravenous solution bag or vial having a stopper pierceable by a hypodermic needle). At least one active ingredient in the composition is a multispecific antigen-binding molecule as described herein. The label or package insert indicates that the composition is used to treat the condition of choice. The article of manufacture may further comprise: (a) a first container with a composition comprising a multispecific antigen-binding molecule according to the present disclosure contained therein; and (b) a second container with a composition comprising an additional cytotoxic agent (at least one other anti-cancer agent, if more than one other anti-cancer agent is used in combination, the first other anti-cancer agent) or other therapeutic agent contained therein. The article of manufacture may further comprise (c) a third container with a composition comprising an additional cytotoxic agent (if more than one other anti-cancer agent is used in combination, the second other anti-cancer agent) or other therapeutic agent contained therein. The article of manufacture in this aspect of the invention may further comprise a package insert indicating that the composition may be used to treat a particular condition. Alternatively or additionally, the article of manufacture may further comprise a second (or third or fourth) container comprising a pharma- ceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate buffered saline, Ringer's solution, and dextrose solution. It may further include other equipment desirable from a commercial or user standpoint, such as other buffers, diluents, filters, needles, and syringes.

添付文書
用語「添付文書」は、治療用製品の市販パッケージに通常含まれる説明書を指すために用いられ、そのような治療用製品の使用に関する適応症、用法、投与量、投与方法、併用療法、禁忌、および/または警告についての情報を含む。
The term " package insert" is used to refer to instructions typically included in the commercial packaging of a therapeutic product, which contain information about the indications, usage, dosage, method of administration, concomitant therapy, contraindications, and/or warnings regarding the use of such therapeutic product.

いくつかの実施態様において、本発明は、(1)上述した多重特異性抗原結合分子、(2)容器、(3)個体におけるがんを治療するために前記多重特異性抗原結合分子と少なくとも一種の抗がん剤とを組み合わせて個体に投与することを示す指示書またはラベル、を含むキットを提供する。
別の実施態様において、本発明は、(1)少なくとも1つの他の抗がん剤、(2)容器、(3)個体におけるがんを治療するために前記少なくとも1つの他の抗がん剤と少なくとも一種の上述した多重特異性抗原結合分子とを組み合わせて個体に投与することを示す指示書またはラベル、を含むキットを提供する。
In some embodiments, the present invention provides a kit comprising: (1) the multispecific antigen-binding molecule described above; (2) a container; and (3) instructions or a label indicating that the multispecific antigen-binding molecule is administered to an individual in combination with at least one anti-cancer agent to treat cancer in the individual.
In another embodiment, the present invention provides a kit comprising: (1) at least one other anti-cancer drug; (2) a container; and (3) instructions or a label indicating that the at least one other anti-cancer drug is administered in combination with at least one of the above-described multispecific antigen-binding molecules to an individual to treat cancer in the individual.

別の実施態様において、本発明は、(1)上述した多重特異性抗原結合分子、(2)少なくとも1つの他の抗がん剤、(3)容器、(4)個体におけるがんを治療するために前記多重特異性抗原結合分子と前記少なくとも1つの他の抗がん剤とを組み合わせて個体に投与することを示す指示書またはラベル、を含むキットを提供する。 In another embodiment, the present invention provides a kit comprising: (1) the multispecific antigen-binding molecule described above; (2) at least one other anti-cancer drug; (3) a container; and (4) instructions or a label indicating that the multispecific antigen-binding molecule and the at least one other anti-cancer drug are administered in combination to an individual to treat cancer in the individual.

いくつかの実施形態において、キットは、さらに医薬的に許容され得る担体を含む。キットはさらに、好ましくは別の追加容器中に保存されている滅菌希釈剤をさらに含み得る。すなわち、キットは、さらに、注射用制菌水 (BWFI)、リン酸緩衝生理食塩水、リンガー溶液、およびデキストロース溶液などの、薬学的に許容される緩衝液を含む、第二の(または第三の)容器を含んでもよい。
本開示におけるキットはまた、さらに、他の緩衝液、希釈剤、フィルター、針、およびシリンジなどの、他の商業的観点またはユーザの立場から望ましい器材をさらに含んでもよい。キットは、さらに、がんを治療または予防するための併用療法に関する指示書を含み得る。
いくつかの実施態様において、本開示におけるキットにおいて、多重特異性抗原結合分子および/または抗がん剤は容器に充填されていることができる。
In some embodiments, the kit further comprises a pharma- ceutically acceptable carrier. The kit may further comprise a sterile diluent, preferably stored in another additional container. That is, the kit may further comprise a second (or third) container comprising a pharma- ceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution, and dextrose solution.
Kits of the present disclosure may also include other materials desirable from a commercial or user standpoint, such as other buffers, diluents, filters, needles, and syringes, etc. The kits may further include instructions for combination therapy for treating or preventing cancer.
In some embodiments, in the kit of the present disclosure, the multispecific antigen-binding molecule and/or the anticancer drug can be packed in a container.

いくつかの実施態様において、「指示書」は、医薬品の使用に関する適応症、使用法、用量、投与、禁忌および/または警告についての情報を含み得る、医薬品の市販の箱の中に通常入っている指示書を指す。
いくつかの実施態様において、本開示におけるキットは、例えば、治療用品として商用パッケージとして提供される。
In some embodiments, "instructions" refers to the instructions typically found in the commercial packaging of a pharmaceutical product, which may contain information about indications, usage, dosage, administration, contraindications and/or warnings regarding the use of the pharmaceutical product.
In some embodiments, the kits of this disclosure are provided in a commercial package, e.g., as therapeutic products.

なお当該キットは、本発明の多重特異性抗原結合分子と、少なくとも1つの他の抗がん剤とを組み合わせて用いる用途のみに用いられるキットであってもよいが、本発明の多重特異性抗原結合分子と、少なくとも1つの他の抗がん剤とを組み合わせて用いる用途に用いられる限り、その他の用途にも用いられるキットであってもよい。例えば本発明のキットの指示書またはラベルには、組み合わせて個体に投与することが示されている限り、それ以外の態様、例えば当該多重特異性抗原結合分子または当該少なくとも1つの他の抗がん剤を、単独で用いることについて示されていてもよい。 The kit may be a kit used only for the purpose of using the multispecific antigen-binding molecule of the present invention in combination with at least one other anticancer drug, but may also be a kit used for other purposes as long as it is used for the purpose of using the multispecific antigen-binding molecule of the present invention in combination with at least one other anticancer drug. For example, the instructions or label of the kit of the present invention may indicate other aspects, such as the use of the multispecific antigen-binding molecule or the at least one other anticancer drug alone, as long as it indicates that they are administered to an individual in combination.

本明細書において「および/または」との用語が使用される場合、「および/または」の前後に記載される各対象またはそれらの任意の組合せを示す。具体的には、例えば、「A、B、および/またはC」には、以下の7通りのバリエーションが含まれる; (i) A、(ii) B、(iii) C、(iv) AおよびB、(v) AおよびC、(vi) BおよびC、(vii) A、B、およびC。 When the term "and/or" is used herein, it refers to each of the objects listed before and after "and/or" or any combination thereof. Specifically, for example, "A, B, and/or C" includes the following seven variations: (i) A, (ii) B, (iii) C, (iv) A and B, (v) A and C, (vi) B and C, (vii) A, B, and C.

「一つの(a)」および「一つの(an)」という不定冠詞は、本発明において、一つのまたは二つ以上の(すなわち少なくとも一つの)その不定冠詞の文法上の対象をいう。例えば「一つの(a)要素」は、一つの要素または二つ以上の要素を意味する。 The indefinite articles "a" and "an" herein refer to one or to more than one (i.e., at least one) of the grammatical objects of the indefinite article. For example, "an element" means one element or more than one element.

本明細書に記載の1又は複数の態様を任意に組み合わせたものも、当業者の技術常識に基づいて技術的に矛盾しない限り、本発明に含まれることが当業者には当然に理解される。 It will be understood by those skilled in the art that any combination of one or more aspects described in this specification is also included in the present invention, so long as there is no technical contradiction based on the technical common sense of those skilled in the art.

本明細書において引用したすべての文献は、参照により本明細書に組み入れられる。 All references cited herein are hereby incorporated by reference.

以下は、本開示の方法および組成物の実施例である。上述の一般的な記載に照らし、種々の他の態様が実施され得ることが、理解されるであろう。 Below are examples of the methods and compositions of the present disclosure. It will be understood that various other embodiments may be practiced in light of the general description above.

[実施例1] 各種がん組織におけるCLDN6の発現
TCGA (The Cancer Genome Atlas)データをもとに、各種がん組織におけるCLDN6の発現を比較した。
[Example 1] CLDN6 expression in various cancer tissues
Based on TCGA (The Cancer Genome Atlas) data, we compared the expression of CLDN6 in various cancer tissues.

図1に示す通り、CLDN6は卵巣がん(Ovary)、肺腺がん(非小細胞肺がん、NSCLC)、胚細胞腫(Germinoma)、子宮体がん(Uterus)で発現が亢進していることが確認された。また頻度は高くないものの、胆管がん(Cholangiocarcinoma)、子宮頸がん(Cervix Uteri)、乳がん(Breast)、大腸がん(結腸がん(Colon)及び直腸がん(Rectum))、肝臓がん(Liver)、腎臓がん(Kidney)、食道がん(Esophagus)、膵臓がん(Pancreas)、胃がん(Stomach)、膀胱がん(Urinary Bladder)、頭頚部がん(上気道消化管がん、Upper Aerodigestive Tract)などでも発現が認められた。 As shown in Figure 1, CLDN6 expression was confirmed to be elevated in ovarian cancer, lung adenocarcinoma (non-small cell lung cancer, NSCLC), germinoma, and uterine cancer. In addition, although not frequently, expression was also observed in bile duct cancer, cervical cancer, breast cancer, colorectal cancer (Colon and Rectum), liver cancer, kidney cancer, esophageal cancer, pancreatic cancer, stomach cancer, bladder cancer, and head and neck cancer (Upper Aerodigestive Tract).

[実施例2]腫瘍細胞に対するin vitro細胞傷害活性の改善のための、親Dual-Fab H183L072に由来する親和性成熟バリアントのスクリーニングExample 2 Screening of affinity matured variants derived from parent Dual-Fab H183L072 for improved in vitro cytotoxic activity against tumor cells

2.1. 親和性成熟バリアントの配列
親Dual-Fab H183L072(重鎖:配列番号:90;軽鎖:配列番号:142)の結合親和性を増加させるために、H183L072を鋳型として用いて、可変領域に単一のまたは複数の変異を導入することにより、1,000個よりも多いDual-Fabバリアントを創出した。抗体を、Expi293(Invitrogen)を用いて発現させ、プロテインA精製、続いて、ゲル濾過が必要な場合にはゲル濾過によって精製した。複数の変異を有する15個の代表的なバリアントの配列を、表1に列記し、結合キネティクスを、実施例2.2.2に後述の通りにBiacore T200機器(GE Healthcare)を用いて25℃および/または37℃で評価した。
2.1. Sequences of affinity matured variants To increase the binding affinity of the parent Dual-Fab H183L072 (heavy chain: SEQ ID NO: 90; light chain: SEQ ID NO: 142), more than 1,000 Dual-Fab variants were created by introducing single or multiple mutations in the variable regions using H183L072 as a template. Antibodies were expressed using Expi293 (Invitrogen) and purified by Protein A purification followed by gel filtration when required. The sequences of 15 representative variants with multiple mutations are listed in Table 1, and the binding kinetics were evaluated at 25°C and/or 37°C using a Biacore T200 instrument (GE Healthcare) as described below in Example 2.2.2.

Figure 0007470760000001
Figure 0007470760000001

2.2. 親和性成熟バリアントの結合キネティクス情報
2.2.1. ヒトCD3およびCD137の発現および精製
ヒトCD3複合体のγサブユニットおよびεサブユニット(ヒトCD3egリンカー)を29-merリンカーによって連結し、Flag-タグをγサブユニットのC末端に融合させた(配列番号:169)。この構築物を、FreeStyle293F細胞株(Thermo Fisher)を用いて一過性に発現させた。ヒトCD3egリンカーを発現する培養上清を、Q HP樹脂(GE healthcare)を充填したカラムを用いて濃縮し、次いで、FLAG-タグ親和性クロマトグラフィーに適用した。ヒトCD3egリンカーを含有する画分を収集し、続いて、1×D-PBSで平衡化したSuperdex 200ゲル濾過カラム(GE healthcare)に供した。次いで、ヒトCD3egリンカーを含有する画分をプールし、-80℃で保管した。
2.2. Binding kinetics information of affinity matured variants
2.2.1. Expression and purification of human CD3 and CD137 The γ and ε subunits of the human CD3 complex (human CD3eg linker) were linked by a 29-mer linker, and a Flag-tag was fused to the C-terminus of the γ subunit (SEQ ID NO: 169). This construct was transiently expressed using the FreeStyle293F cell line (Thermo Fisher). Culture supernatants expressing the human CD3eg linker were concentrated using a column packed with Q HP resin (GE healthcare) and then applied to FLAG-tag affinity chromatography. Fractions containing the human CD3eg linker were collected and subsequently subjected to a Superdex 200 gel filtration column (GE healthcare) equilibrated with 1×D-PBS. Fractions containing the human CD3eg linker were then pooled and stored at -80°C.

そのC末端にヘキサヒスチジン(His-タグ)およびビオチンアクセプターペプチド(BAP)を有するヒトCD137細胞外ドメイン(ECD)(配列番号:179)を、FreeStyle293F細胞株(Thermo Fisher)を用いて一過性に発現させた。ヒトCD137 ECDを発現する培養上清をHisTrap HPカラム(GE healthcare)に負荷し、イミダゾール(Nacalai)を含有する緩衝液で溶出した。ヒトCD137 ECDを含有する画分を収集し、続いて、1×D-PBSで平衡化したSuperdex 200ゲル濾過カラム(GE healthcare)に供した。次いで、ヒトCD137 ECDを含有する画分をプールし、-80℃で保管した。 Human CD137 extracellular domain (ECD) (SEQ ID NO: 179) with hexahistidine (His-tag) and biotin acceptor peptide (BAP) at its C-terminus was transiently expressed using the FreeStyle293F cell line (Thermo Fisher). Culture supernatant expressing human CD137 ECD was loaded onto a HisTrap HP column (GE healthcare) and eluted with a buffer containing imidazole (Nacalai). Fractions containing human CD137 ECD were collected and subsequently subjected to a Superdex 200 gel filtration column (GE healthcare) equilibrated with 1x D-PBS. Fractions containing human CD137 ECD were then pooled and stored at -80°C.

2.2.2. ヒトCD3およびCD137に対する親和性測定
ヒトCD3に対するDual-Fab抗体(Dual-Ig)の結合親和性を、Biacore T200機器(GE Healthcare)を用いて25℃で評価した。抗ヒトFc(GE Healthcare)を、アミンカップリングキット(GE Healthcare)を用いてCM4センサーチップのすべてのフローセルの上に固相化した。抗体を抗Fcセンサー表面上に捕捉し、次いで、組換えヒトCD3またはCD137をフローセルにインジェクトした。すべての抗体およびアナライトを、20 mM ACES、150 mM NaCl、0.05% Tween 20、および0.005% NaN3を含有するACES pH 7.4を用いて調製した。センサー表面は、3M MgCl2でサイクル毎に再生した。結合親和性は、Biacore T200 Evaluation software、version 2.0(GE Healthcare)を用いて、データをプロセシングし、1:1結合モデルにフィットさせることによって決定させた。CD137結合親和性アッセイを、アッセイ温度を37℃に設定したことを除いて、同じ条件で行った。組換えヒトCD3およびCD137に対するDual-Fab抗体の結合親和性を表2に示す(表中、Kon、Koff、およびKD値を表すために用いられる表示Eは、「10の冪」を意味し、例えば、3.54E+04 = 3.54×104である)。
2.2.2. Affinity measurements for human CD3 and CD137 The binding affinity of Dual-Fab antibodies (Dual-Ig) for human CD3 was evaluated at 25 °C using a Biacore T200 instrument (GE Healthcare). Anti-human Fc (GE Healthcare) was immobilized on all flow cells of a CM4 sensor chip using an amine coupling kit (GE Healthcare). Antibodies were captured on the anti-Fc sensor surface, and then recombinant human CD3 or CD137 was injected into the flow cells. All antibodies and analytes were prepared with ACES pH 7.4 containing 20 mM ACES, 150 mM NaCl, 0.05% Tween 20, and 0.005% NaN3. The sensor surface was regenerated every cycle with 3 M MgCl2. Binding affinities were determined by processing the data and fitting to a 1:1 binding model using Biacore T200 Evaluation software, version 2.0 (GE Healthcare). CD137 binding affinity assay was performed under the same conditions, except that the assay temperature was set at 37° C. The binding affinities of the Dual-Fab antibodies to recombinant human CD3 and CD137 are shown in Table 2 (in the table, the notation E used to represent K on , K off , and KD values means "power of 10", e.g., 3.54E+04 = 3.54×10 4 ).

Figure 0007470760000002
Figure 0007470760000002

[実施例3]H0868L0581/hCD137複合体のX線結晶構造解析[Example 3] X-ray crystal structure analysis of H0868L0581/hCD137 complex

3.1. 共結晶解析のための抗体の調製
H0868L581を、hCD137タンパク質との共結晶解析のために選択した。二価抗体を、Expi293 Expression system(Thermo Fisher Scientific)を用いて一過性にトランスフェクトし、発現させた。培養上清を採取し、MabSelect SuRe親和性クロマトグラフィー(GE Healthcare)およびその後のSuperdex200(GE Healthcare)を用いたゲル濾過クロマトグラフィーを用いて、抗体を上清から精製した。
3.1. Preparation of antibodies for cocrystal analysis
H0868L581 was selected for co-crystallography with hCD137 protein. The bivalent antibody was transiently transfected and expressed using the Expi293 Expression system (Thermo Fisher Scientific). Culture supernatants were harvested and the antibody was purified from the supernatants using MabSelect SuRe affinity chromatography (GE Healthcare) followed by gel filtration chromatography using Superdex200 (GE Healthcare).

3.2. ヒトCD137の細胞外ドメイン(24~186)の発現および精製
第Xa因子切断可能リンカーを介してFcに融合したヒトCD137の細胞外ドメイン(CD137-FFc、配列番号:166)を、キフネンシンの存在下でHEK293細胞において発現させた。培養培地由来のCD137-FFcを、親和性クロマトグラフィー(HiTrap MabSelect SuRe column, GE Healthcare)およびサイズ排除クロマトグラフィー(HiLoad 16/600 Superdex 200 pg column, GE healthcare)によって精製した。Fcを第Xa因子で切断して、結果として生じたCD137細胞外ドメインを、タンデムに接続されたゲル濾過カラム(HiLoad 16/600 Superdex 200 pg, GE healthcare)およびプロテインAカラム(HiTrap MabSelect SuRe 1ml, GE Healthcare)でさらに精製し、その後、Benzamidine Sepharose樹脂(GE Healthcare)を用いて精製した。CD137細胞外ドメインを含有する画分をプールして、-80℃で保管した。
3.2. Expression and purification of human CD137 extracellular domain (24-186) The extracellular domain of human CD137 fused to Fc via a factor Xa-cleavable linker (CD137-FFc, SEQ ID NO: 166) was expressed in HEK293 cells in the presence of kifunensine. CD137-FFc from the culture medium was purified by affinity chromatography (HiTrap MabSelect SuRe column, GE Healthcare) and size-exclusion chromatography (HiLoad 16/600 Superdex 200 pg column, GE Healthcare). Fc was cleaved with factor Xa, and the resulting CD137 extracellular domain was further purified on a gel filtration column (HiLoad 16/600 Superdex 200 pg, GE Healthcare) and a Protein A column (HiTrap MabSelect SuRe 1 ml, GE Healthcare) connected in tandem, followed by purification using Benzamidine Sepharose resin (GE Healthcare). Fractions containing the CD137 extracellular domain were pooled and stored at -80°C.

3.3. H0868L0581および抗CD137対照抗体のFab断片の調製
結晶構造解析のための抗体を、Expi293 Expression system(Thermo Fisher Scientific)を用いて一過性にトランスフェクトし、発現させた。培養上清を採取し、MabSelect SuRe親和性クロマトグラフィー(GE Healthcare)およびその後のSuperdex200(GE Healthcare)を用いたゲル濾過クロマトグラフィーを用いて、抗体を上清から精製した。H0868L0581および公知の抗CD137対照抗体(以下137Ctrlと呼ばれる、重鎖は配列番号:167、軽鎖は配列番号:168)のFab断片を、Lys-C(Roche)での制限消化と、それに続く、Fc断片を除去するためのプロテインAカラム(MabSlect SuRe, GE Healthcare)、カチオン交換カラム(HiTrap SP HP, GE Healthcare)、およびゲル濾過カラム(Superdex200 16/60, GE Healthcare)上へのローディングを用いた、従来の方法によって調製した。Fab断片を含有する画分をプールして、-80℃で保管した。
3.3. Preparation of Fab fragments of H0868L0581 and anti-CD137 control antibody Antibodies for crystal structure analysis were transiently transfected and expressed using the Expi293 Expression system (Thermo Fisher Scientific). Culture supernatants were harvested and antibodies were purified from the supernatants using MabSelect SuRe affinity chromatography (GE Healthcare) followed by gel filtration chromatography using Superdex200 (GE Healthcare). Fab fragments of H0868L0581 and a known anti-CD137 control antibody (hereinafter referred to as 137Ctrl, heavy chain SEQ ID NO: 167, light chain SEQ ID NO: 168) were prepared by conventional methods using restriction digestion with Lys-C (Roche) followed by loading onto a protein A column (MabSlect SuRe, GE Healthcare) to remove the Fc fragment, a cation exchange column (HiTrap SP HP, GE Healthcare), and a gel filtration column (Superdex200 16/60, GE Healthcare). Fractions containing Fab fragments were pooled and stored at -80°C.

3.4. H0868L0581 Fab、137Ctrl、およびヒトCD137複合体の調製
精製されたCD137を、脱グリコシル化のためにGST-タグ融合エンドグリコシダーゼF1(社内)と混合し、続いて、ゲル濾過カラム(HiLoad 16/600 Superdex 200 pg, GE healthcare)およびプロテインAカラム(HiTrap MabSelect SuRe 1ml, GE Healthcare)を用いたCD137の精製を行った。精製されたCD137を、H0868L0581 Fabと混合した。複合体を、ゲル濾過カラム(Superdex 200 Increase 10/300 GL, GE healthcare)によって精製し、その後、精製されたH0868L0581 FabおよびCD137複合体を、137Ctrlと混合した。三成分複合体を、25 mM HEPES pH7.3、100 mM NaClで平衡化されたカラムを用いたゲル濾過クロマトグラフィー(Superdex200 10/300 increase, GE Healthcare)によって精製した。
3.4. Preparation of H0868L0581 Fab, 137Ctrl, and human CD137 complex Purified CD137 was mixed with GST-tagged endoglycosidase F1 (in-house) for deglycosylation, followed by purification of CD137 using a gel filtration column (HiLoad 16/600 Superdex 200 pg, GE healthcare) and a protein A column (HiTrap MabSelect SuRe 1 ml, GE Healthcare). Purified CD137 was mixed with H0868L0581 Fab. The complex was purified by a gel filtration column (Superdex 200 Increase 10/300 GL, GE healthcare), and then the purified H0868L0581 Fab and CD137 complex was mixed with 137Ctrl. The ternary complex was purified by gel filtration chromatography (Superdex200 10/300 increase, GE Healthcare) using a column equilibrated with 25 mM HEPES pH 7.3, 100 mM NaCl.

3.5. 結晶化
精製された複合体を、約10 mg/mLまで濃縮し、21℃でのシッティングドロップ蒸気拡散法によって結晶化を実施した。リザーバー溶液は、0.1Mトリス塩酸塩 pH8.5、25.0% v/vポリエチレングリコールモノメチルエーテル550からなった。
The purified complex was concentrated to approximately 10 mg/mL and crystallized by sitting drop vapor diffusion at 21° C. The reservoir solution consisted of 0.1 M Tris-HCl pH 8.5, 25.0% v/v polyethylene glycol monomethyl ether 550.

3.6. データ収集および構造決定
X線回折データを、SLSでのX06SAによって測定した。測定の最中には、結晶を、-178℃の窒素流に常に置いて凍結状態に維持し、結晶を一回に0.25度回転させながら、ビームラインに付属したEiger X16M(DECTRIS)を用いて合計で1440枚のX線回折画像を収集した。セルパラメーターの決定、回折スポットの指数付け、および回折画像から得られた回折データのプロセシングは、autoPROC program(Acta. Cryst. 2011, D67: 293-302)、XDS Package(Acta. Cryst. 2010, D66: 125-132)、およびAIMLESS(Acta. Cryst. 2013, D69: 1204-1214)を用いて行い、最終的に、最大で3.705オングストローム解像度の回折強度データが得られた。結晶学データの統計を、表3に示す。
構造を、プログラムPhaserでの分子置換によって決定した(J. Appl. Cryst. 2007, 40: 658-674)。検索モデルは、公開された結晶構造(PDBコード:4NKIおよび6MI2)に由来した。モデルは、Cootプログラム(Acta Cryst. 2010, D66: 486-501)で作り、プログラムRefmac5(Acta Cryst. 2011, D67: 355-367)およびPHENIX(Acta Cryst. 2010, D66: 213-221)で精密化した。77.585~3.705オングストロームの回折強度データについての結晶学的信頼度因子(R)は、22.33%であり、フリーR値は27.50%であった。構造精密化の統計を、表3に示す。
3.6. Data collection and structure determination
X-ray diffraction data were measured by X06SA on SLS. During the measurements, the crystal was kept frozen by constantly placing it in a nitrogen stream at -178 °C, and a total of 1440 X-ray diffraction images were collected using an Eiger X16M (DECTRIS) attached to the beamline while rotating the crystal 0.25 degrees at a time. Determination of cell parameters, indexing of diffraction spots, and processing of diffraction data obtained from the diffraction images were performed using the autoPROC program (Acta. Cryst. 2011, D67: 293-302), XDS Package (Acta. Cryst. 2010, D66: 125-132), and AIMLESS (Acta. Cryst. 2013, D69: 1204-1214), and finally, diffraction intensity data with a maximum resolution of 3.705 Å were obtained. The statistics of the crystallographic data are shown in Table 3.
The structure was determined by molecular replacement with the program Phaser (J. Appl. Cryst. 2007, 40: 658-674). Search models were derived from published crystal structures (PDB codes: 4NKI and 6MI2). The model was generated with the program Coot (Acta Cryst. 2010, D66: 486-501) and refined with the programs Refmac5 (Acta Cryst. 2011, D67: 355-367) and PHENIX (Acta Cryst. 2010, D66: 213-221). The crystallographic confidence factor (R) for the diffraction intensity data from 77.585 to 3.705 Å was 22.33%, and the free R value was 27.50%. The statistics of the structure refinement are shown in Table 3.

Figure 0007470760000003
Figure 0007470760000003

3.7. H0868L0581 FabおよびCD137の相互作用部位の特定
H0868L0581 Fab、137Ctrl、およびCD137の三成分複合体の結晶構造を、3.705オングストローム解像度で決定した。図2および3では、H0868L0581 Fab接触領域のエピトープを、それぞれCD137アミノ酸配列においておよび結晶構造においてマッピングしている。エピトープは、結晶構造においてH0868L0581 Fabの任意の部分から4.5オングストロームの距離内に位置する1個または複数個の原子を含有するCD137のアミノ酸残基を含む。加えて、3.0オングストローム内のエピトープを、図2および3において強調表示している。
3.7. Identification of the interaction site between H0868L0581 Fab and CD137
The crystal structure of the ternary complex of H0868L0581 Fab, 137Ctrl, and CD137 was determined at 3.705 angstrom resolution. In Figures 2 and 3, the epitopes of the H0868L0581 Fab contact region are mapped in the CD137 amino acid sequence and in the crystal structure, respectively. The epitopes include amino acid residues of CD137 that contain one or more atoms located within a distance of 4.5 angstroms from any part of the H0868L0581 Fab in the crystal structure. In addition, epitopes within 3.0 angstroms are highlighted in Figures 2 and 3.

図2および3に示すように、結晶構造により、H0868L0581 Fabの重鎖と軽鎖との間に形成されるポケットに結合したCD137のCRD1におけるL24~N30、特にL24~S29が、CD137のN末端がポケットの深部に対して向けられる様式で深く埋められていることが示された。加えて、CD137中のCRD1におけるN39~I44およびCRD2におけるG58~I64が、H0868L0581 Fabの重鎖CDRによって認識された。CRDとは、WO2015/156268に記載されているようにCRD参照と呼ばれる、Cys-Cysにより形成される構造によって隔てられるドメインの名称である。 As shown in Figures 2 and 3, the crystal structure showed that L24-N30, especially L24-S29, in CRD1 of CD137 bound to the pocket formed between the heavy and light chains of H0868L0581 Fab are deeply buried in a manner that the N-terminus of CD137 is directed toward the depth of the pocket. In addition, N39-I44 in CRD1 and G58-I64 in CRD2 in CD137 were recognized by the heavy chain CDR of H0868L0581 Fab. CRD is the name of the domains separated by the structure formed by Cys-Cys, called CRD reference as described in WO2015/156268.

本発明者らは、ヒトCD137のN末端領域、特にL24~N30を認識する抗ヒトCD137抗体を特定し、この領域に対する抗体が細胞上のCD137を活性化できることもまた特定した。 The present inventors have identified an anti-human CD137 antibody that recognizes the N-terminal region of human CD137, particularly L24-N30, and have also found that antibodies against this region can activate CD137 on cells.

[実施例4]抗CLDN6/Dual-Fab三重特異性抗体の生成[Example 4] Generation of anti-CLDN6/Dual-Fab trispecific antibody

FAST-Ig(WO2013065708)またはCrossMabテクノロジー(図4)を利用することによって、クローディン6を標的とする1つのアームと、CD3およびCD137に対するデュアルターゲティング機能を持つもう1つのアームとを有する三重特異性抗体を生成した。三重特異性抗体中の各Fv領域の標的抗原を表4に示した。各鎖の命名規則を図4に示した。配列番号を表5に示す。各可変領域の配列を表6に示す。 By utilizing FAST-Ig (WO2013065708) or CrossMab technology (Figure 4), we generated a trispecific antibody with one arm targeting claudin-6 and another arm with dual targeting functions against CD3 and CD137. The target antigens of each Fv region in the trispecific antibody are shown in Table 4. The naming rules for each chain are shown in Figure 4. The sequence numbers are shown in Table 5. The sequences of each variable region are shown in Table 6.

Fc領域は、Fcγ Rサイレントであり、かつ脱グリコシル化されていた。FcRn増強変異Act5(M428L、N434A、Q438R、S440E)を適用し、抗体のPKを改善した。各抗体に適用したエンジニアリング構成要素を表7-1および7-2に示し、FAST06、FAST22、およびFAST30の詳細を表8に示した。すべての抗体を、Expi293細胞(Invitrogen)での一過性発現によって三重特異性形態として発現させ、参考実施例1に従って精製した。 The Fc region was FcγR silent and deglycosylated. FcRn enhancing mutations Act5 (M428L, N434A, Q438R, S440E) were applied to improve the PK of the antibodies. The engineering components applied to each antibody are shown in Tables 7-1 and 7-2, and details of FAST06, FAST22, and FAST30 are shown in Table 8. All antibodies were expressed in trispecific form by transient expression in Expi293 cells (Invitrogen) and purified according to Reference Example 1.

Figure 0007470760000004
Figure 0007470760000004

Figure 0007470760000005
Figure 0007470760000005

Figure 0007470760000006
Figure 0007470760000006

Figure 0007470760000007
Figure 0007470760000007

Figure 0007470760000008
Figure 0007470760000008

Figure 0007470760000009
Figure 0007470760000009

[実施例5]CLDNファミリーに対する特異性のFACS分析[Example 5] FACS analysis of specificity to the CLDN family

CLDN3、CLDN4、CLDN6、およびCLDN9間で、アミノ酸配列は高度に保存されている。したがって、発明者らは、FACS分析によって、VHとして65HQ39EおよびVLとして54L0532Q38Kを含むCLDN6結合FvのCLDN6結合特異性を調べた。hCLDN6/BaF、hCLDN3/BaF、hCLDN4/BaF、およびhCLDN9/BaFを、CLDN6結合Fv CLDN6AE25EKおよびCD3結合Fv(重鎖可変領域の配列番号:184、軽鎖可変領域の配列番号:185)を含む15μg/mlの抗CLDN6/CD3二重特異性抗体(CS2961)と共にインキュベートした。染色対照として、別の抗CLDN6/CD3二重特異性抗体(6PHU3/TR01)およびCLDN6への結合能を有さない抗体(KLH/TR01)を用いた。6PHU3/TR01およびKLH/TR01は、同じCD3結合Fv(重鎖可変領域の配列番号:188、軽鎖可変領域の配列番号:189)を含む。6PHU3/TR01のCLDN6結合Fvは、配列番号:190に示す重鎖可変領域および配列番号:191に示す軽鎖可変領域を含む。KLH/TR01は、KLH結合Fv(重鎖可変領域の配列番号:186、軽鎖可変領域の配列番号:187)を含む。
各抗体の結合を、Alexa Fluor 488コンジュゲート抗ヒトIgG(Invitrogen)によって検出した。死細胞をeFlour 780(Invitrogen)染色によって区別した。
図5に示すように、CS2961は、6PHU3/TR01と比較して、CLDN6に対するより良好な特異性を示した。
The amino acid sequences are highly conserved among CLDN3, CLDN4, CLDN6, and CLDN9. Therefore, the inventors investigated the CLDN6 binding specificity of the CLDN6 binding Fv containing 65HQ39E as VH and 54L0532Q38K as VL by FACS analysis. hCLDN6/BaF, hCLDN3/BaF, hCLDN4/BaF, and hCLDN9/BaF were incubated with 15 μg/ml of an anti-CLDN6/CD3 bispecific antibody (CS2961) containing the CLDN6 binding Fv CLDN6AE25EK and a CD3 binding Fv (heavy chain variable region SEQ ID NO: 184, light chain variable region SEQ ID NO: 185). As staining controls, another anti-CLDN6/CD3 bispecific antibody (6PHU3/TR01) and an antibody that does not bind to CLDN6 (KLH/TR01) were used. 6PHU3/TR01 and KLH/TR01 contain the same CD3-binding Fv (heavy chain variable region SEQ ID NO: 188, light chain variable region SEQ ID NO: 189). The CLDN6-binding Fv of 6PHU3/TR01 contains the heavy chain variable region shown in SEQ ID NO: 190 and the light chain variable region shown in SEQ ID NO: 191. KLH/TR01 contains the KLH-binding Fv (heavy chain variable region SEQ ID NO: 186, light chain variable region SEQ ID NO: 187).
Binding of each antibody was detected by Alexa Fluor 488-conjugated anti-human IgG (Invitrogen). Dead cells were distinguished by eFlour 780 (Invitrogen) staining.
As shown in FIG. 5, CS2961 showed better specificity for CLDN6 compared to 6PHU3/TR01.

[実施例6]抗CLDN6/CD3二重特異性抗体および抗CLDN6/Dual-Fab三重特異性抗体のT細胞依存性細胞傷害の測定[Example 6] Measurement of T cell-dependent cytotoxicity of anti-CLDN6/CD3 bispecific antibody and anti-CLDN6/Dual-Fab trispecific antibody

図6は、NIH:OVCAR-3(高CLDN6発現卵巣がん細胞株)ならびにA2780およびCOV413A(低CLDN6発現卵巣がん細胞株)に対する、抗CLDN6/CD3二重特異性抗体(CS3348)および5種類の抗CLDN6/Dual-Fab三重特異性抗体(PPU4134、PPU4135、PPU4136、PPU4137、およびPPU4138)のT細胞依存性細胞傷害を示す。抗体の配列を表9に示す。 Figure 6 shows the T-cell-dependent cytotoxicity of anti-CLDN6/CD3 bispecific antibody (CS3348) and five anti-CLDN6/Dual-Fab trispecific antibodies (PPU4134, PPU4135, PPU4136, PPU4137, and PPU4138) against NIH:OVCAR-3 (a high CLDN6-expressing ovarian cancer cell line) and A2780 and COV413A (low CLDN6-expressing ovarian cancer cell lines). The antibody sequences are shown in Table 9.

Figure 0007470760000010
Figure 0007470760000010

細胞傷害を、ヒトPBMCを用いたLDHアッセイによって評価した。15,000個の標的細胞および150,000個のヒトPBMC(E/T = 10)を96ウェルU底プレートの各ウェルに播種し、種々の濃度の抗体と共に37℃および5%CO2にて一晩インキュベートした。標的細胞の死滅をLDH細胞傷害検出キット(Takara Bio)によって測定した。各抗体の細胞傷害活性(%)を以下の式を用いて計算した。
細胞傷害活性 (%) = (A - B - C)×100 / (D - C)
「A」は、抗体およびPBMCで処理したウェルの平均吸光度値を表し、「B」は、エフェクター細胞PBMCのみを有するウェルの平均吸光度値を表し、「C」は、未処理標的細胞のみを有するウェルの平均吸光度値を表し、かつ「D」は、Triton-Xで溶解した標的細胞を有するウェルの平均吸光度値を表す。さらに、抗体なしでPBMCおよび標的細胞を含有するウェルで計算した細胞傷害を0%に設定した。すべての抗CLDN6/Dual-Fab三重特異性抗体は、CLDN6発現細胞に対するT細胞依存性細胞傷害を示した。
Cytotoxicity was evaluated by LDH assay using human PBMCs. 15,000 target cells and 150,000 human PBMCs (E/T = 10) were seeded into each well of a 96-well U-bottom plate and incubated with various concentrations of antibodies overnight at 37°C and 5% CO2 . Target cell killing was measured by LDH cytotoxicity detection kit (Takara Bio). The cytotoxic activity (%) of each antibody was calculated using the following formula:
Cytotoxicity (%) = (A - B - C) x 100 / (D - C)
"A" represents the average absorbance value of wells treated with antibody and PBMC, "B" represents the average absorbance value of wells with effector cells PBMC only, "C" represents the average absorbance value of wells with untreated target cells only, and "D" represents the average absorbance value of wells with target cells lysed with Triton-X. Furthermore, the calculated cytotoxicity in wells containing PBMC and target cells without antibody was set to 0%. All anti-CLDN6/Dual-Fab trispecific antibodies showed T cell-dependent cytotoxicity against CLDN6 expressing cells.

[実施例7]CD137/CD3ダブルヒト化マウスの生成[Example 7] Generation of CD137/CD3 double humanized mice

ヒトCD137ノックイン(KI)マウス系統を、マウス胚性幹細胞を用いてマウス内在性Cd137ゲノム領域をヒトCD137ゲノム配列で置き換えることによって生成した。ヒトCD3 EDG置換マウスは、CD3複合体の3つの成分CD3e、CD3d、およびCD3gがすべて、そのヒトカウンターパートCD3E、CD3D、およびCD3Gで置き換えられている系統として樹立された(Scientific Rep. 2018; 8: 46960)。CD137/CD3ダブルヒト化マウス系統を、ヒトCD137 KIマウスをヒトCD3 EDG置換マウスと交配することによって樹立した。 Human CD137 knock-in (KI) mouse lines were generated by replacing the mouse endogenous Cd137 genomic region with human CD137 genomic sequences using mouse embryonic stem cells. Human CD3 EDG replacement mice were established as lines in which all three components of the CD3 complex, CD3e, CD3d, and CD3g, were replaced with their human counterparts CD3E, CD3D, and CD3G (Scientific Rep. 2018; 8: 46960). CD137/CD3 double humanized mouse lines were established by crossing human CD137 KI mice with human CD3 EDG replacement mice.

[実施例8]hCD3/hCD137マウスでの抗CLDN6/Dual-Fab三重特異性抗体のin vivo有効性の評価[Example 8] Evaluation of in vivo efficacy of anti-CLDN6/Dual-Fab trispecific antibody in hCD3/hCD137 mice

実施例4において調製された抗体を、そのin vivo有効性について担がんモデルを用いて評価する。
in vivo有効性評価のために、以下「hCD3/hCD137マウス」と呼ばれる、実施例6において樹立されたCD3/CD137ダブルヒト化マウスを用いる。ヒトCLDN6の安定な発現を有する細胞を、hCD3/hCD137マウス中に移植して、腫瘍形成が確認されたhCD3/hCD137マウスを、抗体の投与によって処置する。
The antibody prepared in Example 4 is evaluated for its in vivo efficacy using a tumor-bearing model.
For in vivo efficacy evaluation, CD3/CD137 double humanized mice established in Example 6, hereinafter referred to as "hCD3/hCD137 mice", are used. Cells with stable expression of human CLDN6 are transplanted into hCD3/hCD137 mice, and hCD3/hCD137 mice in which tumor formation has been confirmed are treated by administration of the antibody.

より具体的には、担がんモデルを用いた抗体の薬物有効性試験において、下記の試験を行う。CLDN6発現細胞(1×106細胞)を、hCD3/hCD137マウスの鼠径部皮下領域中に移植する。移植の日を、0日目と定義する。移植後9日目に、マウスを、その体重および腫瘍サイズに従ってランダム化して群分けする。ランダム化の日に、抗体を、6 mg/kgで尾静脈を通じて静脈内投与する。抗体は、1回のみ投与する。腫瘍体積および体重を、3~4日毎に抗腫瘍試験システム(ANTES version 7.0.0.0)で測定する。 More specifically, the following tests are performed in the drug efficacy test of the antibody using a tumor-bearing model: CLDN6 expressing cells ( 1x106 cells) are implanted into the subcutaneous inguinal region of hCD3/hCD137 mice. The day of implantation is defined as day 0. On the 9th day after implantation, the mice are randomized and divided into groups according to their body weight and tumor size. On the day of randomization, the antibody is administered intravenously through the tail vein at 6 mg/kg. The antibody is administered only once. The tumor volume and body weight are measured every 3-4 days using an antitumor test system (ANTES version 7.0.0.0).

別のin vivo有効性評価において、CLDN6発現細胞を、hCD3/hCD137マウスの右側腹部中に移植する。9日目に、マウスを、その腫瘍体積および体重に基づいてランダム化して群分けし、溶媒または実施例3において調製された抗体をi.v.注射する。腫瘍体積を、週2回測定する。IL-6解析のために、処置の2時間後にマウスから採血する。血漿サンプルを、Bio-Plex Pro Mouse Cytokine Th1 Panelにより製造業者のプロトコールに従って解析する。 In another in vivo efficacy evaluation, CLDN6 expressing cells are implanted into the right flank of hCD3/hCD137 mice. On day 9, mice are randomized into groups based on their tumor volume and body weight and injected i.v. with vehicle or the antibody prepared in Example 3. Tumor volumes are measured twice weekly. Mice are bled 2 hours after treatment for IL-6 analysis. Plasma samples are analyzed by Bio-Plex Pro Mouse Cytokine Th1 Panel according to the manufacturer's protocol.

[実施例9]乳酸デヒドロゲナーゼ放出アッセイを用いた細胞傷害活性のin vitroアッセイ[Example 9] In vitro assay of cytotoxic activity using lactate dehydrogenase release assay

抗CLDN6/Dual-Fab三重特異性抗体PPU4135の細胞傷害活性を、乳酸デヒドロゲナーゼ(LDH)放出アッセイによって評価した。
ヒトCLDN6を発現する、ヒト胃がん細胞株NUGC-3(JCRB)、ヒト奇形がん細胞株PA-1(ATCC)、ヒト子宮がん細胞株SNG-M(JCRB)、ヒト精巣胚細胞性腫瘍細胞株NEC8(JCRB)、ヒト卵黄嚢腫瘍細胞株NEC14(JCRB)、ヒト非定型奇形腫様ラブドイド腫瘍細胞株CHLA-02-ATRT(ATCC)、ヒト膀胱がん細胞株HT-1197(ATCC)およびヒト大腸がん細胞株OUMS-23(JCRB)を標的細胞として用いた。
The cytotoxic activity of the anti-CLDN6/Dual-Fab trispecific antibody PPU4135 was evaluated by lactate dehydrogenase (LDH) release assay.
The target cells used were the human gastric cancer cell line NUGC-3 (JCRB), the human teratocarcinoma cell line PA-1 (ATCC), the human uterine cancer cell line SNG-M (JCRB), the human testicular germ cell tumor cell line NEC8 (JCRB), the human yolk sac tumor cell line NEC14 (JCRB), the human atypical teratoid rhabdoid tumor cell line CHLA-02-ATRT (ATCC), the human bladder cancer cell line HT-1197 (ATCC), and the human colon cancer cell line OUMS-23 (JCRB), all of which express human CLDN6.

凍結したPBMC(CTL)を、CTL anti-aggregate washおよび10%FBSを含有するRPMI-1640培地(SIGMA)(10%FBS/RPMIと呼ばれる)によって洗浄し、PBMCを3×106細胞/mLに調整した。これらのPBMCをエフェクター細胞として用いた。
標的細胞を培養フラスコから剥離し、U底透明96ウェルプレート(Corning)に、100μL/ウェルで1.5×104細胞ずつ播種した。ヒトPMBC溶液50μL(1.5×105細胞)および0.004、0.04、0.4、4、または40 nMから選択される濃度の調製した抗体50μLを、それぞれウェル内に添加した。37℃で一晩のインキュベーション後、プレートを遠心分離し、各ウェルからの培養上清100μLを新たな平底透明96ウェルプレートに移した。次いで、LDH検出試薬(触媒を含有する色素溶液、TaKaRa)100μLを各ウェルに添加し、続いて室温で30分間インキュベートした。490 nmおよび620 nmでの吸光度をEnVision(PerkinElmer Japan)によって測定した。
Frozen PBMCs (CTLs) were washed with CTL anti-aggregate wash and RPMI-1640 medium (SIGMA) containing 10% FBS (referred to as 10% FBS/RPMI) to adjust the PBMCs to 3 x 106 cells/mL. These PBMCs were used as effector cells.
Target cells were detached from culture flasks and seeded in U-bottom clear 96-well plates (Corning) at 1.5 × 104 cells per well at 100 μL. 50 μL of human PMBC solution (1.5 × 105 cells) and 50 μL of prepared antibodies at concentrations selected from 0.004, 0.04, 0.4, 4, or 40 nM were added into the wells, respectively. After overnight incubation at 37 °C, the plates were centrifuged and 100 μL of culture supernatant from each well was transferred to a new flat-bottom clear 96-well plate. Then, 100 μL of LDH detection reagent (dye solution containing catalyst, TaKaRa) was added into each well, followed by incubation at room temperature for 30 min. The absorbance at 490 nm and 620 nm was measured by EnVision (PerkinElmer Japan).

以下の式により、細胞傷害活性率(%)を、490 nmの吸光度と620 nmの吸光度の差から計算した。
細胞傷害活性 (%) = (A - B - C)×100 / (D - C)
「A」は、抗体およびPBMCで処理したウェルの平均吸光度値を表し、「B」は、エフェクター細胞PBMCのみを有するウェルの平均吸光度値を表し、「C」は、未処理の標的細胞のみを有するウェルの平均吸光度値を表し、かつ「D」は、Triton-Xで溶解した標的細胞を有するウェルの平均吸光度値を表す。培養培地ウェルの平均吸光度値を、すべての吸光度値から減算した。さらに、抗体なしでPBMCおよび標的細胞を含有するウェルで計算した細胞傷害を0%に設定した。抗CLDN6/Dual-Fab三重特異性抗体は、用いたすべての細胞株に対してT細胞依存性細胞傷害を示した。
結果を図8に示す。
The cytotoxic activity rate (%) was calculated from the difference between the absorbance at 490 nm and the absorbance at 620 nm using the following formula.
Cytotoxicity (%) = (A - B - C) x 100 / (D - C)
"A" represents the average absorbance value of wells treated with antibody and PBMC, "B" represents the average absorbance value of wells with effector cells PBMC only, "C" represents the average absorbance value of wells with untreated target cells only, and "D" represents the average absorbance value of wells with target cells lysed with Triton-X. The average absorbance value of culture medium wells was subtracted from all absorbance values. Furthermore, cytotoxicity calculated in wells containing PBMC and target cells without antibody was set to 0%. Anti-CLDN6/Dual-Fab trispecific antibody showed T cell dependent cytotoxicity against all cell lines used.
The results are shown in Figure 8.

[実施例10]リアルタイム細胞増殖阻害アッセイ(xCELLigenceアッセイ)[Example 10] Real-time cell proliferation inhibition assay (xCELLigence assay)

抗CLDN6/Dual-Fab三重特異性抗体によって媒介されるT細胞依存性増殖阻害を、xCELLigence RTCA MP機器(ACEA Biosciences)を用いた細胞増殖アッセイによって評価した。 T cell-dependent proliferation inhibition mediated by the anti-CLDN6/Dual-Fab trispecific antibody was evaluated by cell proliferation assay using the xCELLigence RTCA MP instrument (ACEA Biosciences).

ヒトCLDN6を発現する、ヒト卵巣がん細胞株NIH:OVCAR-3(ATCC)およびヒト肺がん細胞株NCI-H1435(ATCC)を、標的細胞として用いた。 The human ovarian cancer cell line NIH:OVCAR-3 (ATCC) and the human lung cancer cell line NCI-H1435 (ATCC), which express human CLDN6, were used as target cells.

1,000単位/mLのヘパリン溶液(NovoNordisk)を予め500μL充填した注射器によって、健常な成人ボランティアから末梢血50 mLを採取した。PBS(-)で希釈し4等分した末梢血に、Ficoll-Paque PLUS 15 mLを注入し、Leucosepリンパ球分離管(Greiner Bio-One)中で遠心分離した。分離管を遠心分離(室温にて2150 rpmで10分間)した後、末梢血単核細胞(以下、PBMCと称する)画分層を分離した。10% FBSを含有するRPMI-1640培地(SIGMA)(10%FBS/RPMIと呼ぶ)でPBMCを1回洗浄した後、PBMCを4×105細胞/mLに調整した。これらのPBMCをエフェクター細胞として用いた。 50 mL of peripheral blood was collected from healthy adult volunteers using a syringe pre-filled with 500 μL of 1,000 units/mL heparin solution (NovoNordisk). The peripheral blood was diluted with PBS(-) and divided into four equal portions, and 15 mL of Ficoll-Paque PLUS was injected and centrifuged in a Leucosep lymphocyte separation tube (Greiner Bio-One). After centrifuging the separation tube (2150 rpm at room temperature for 10 min), the peripheral blood mononuclear cell (hereinafter referred to as PBMC) fraction was isolated. After washing the PBMC once with RPMI-1640 medium (SIGMA) containing 10% FBS (referred to as 10% FBS/RPMI), the PBMC were adjusted to 4 × 105 cells/mL. These PBMC were used as effector cells.

100μL/ウェルで、1×104個の標的細胞をE-Plate 96プレート(Roche Diagnostics)にプレーティングした。一晩培養後、0.004、0.04、0.4、4、または40 nMから選択される濃度の抗体と共に2×104個のT細胞をそれぞれ、50μL/ウェルで添加した。プレートのインキュベーションの間、72時間にわたって15分毎に細胞増殖をxCELLigenceを用いてモニターした。細胞増殖阻害率(CGI:%)を、CGI (%) = 100 - (CIAb×100 / CINoAb) として与えられる式に従って、Cell Index値から決定した。「CIAb」は、特定の実験時間における、抗体ありのウェルのCell Index値を表し、「CINoAb」は、同じ実験時間における、抗体なしのウェルの平均Cell Index値を表す。 1 × 104 target cells were plated in E-Plate 96 plates (Roche Diagnostics) at 100 μL/well. After overnight culture, 2 × 104 T cells were added at 50 μL/well with antibodies at concentrations selected from 0.004, 0.04, 0.4, 4, or 40 nM, respectively. During plate incubation, cell proliferation was monitored using xCELLigence every 15 min for 72 h. Percentage of cell proliferation inhibition (CGI:%) was determined from the Cell Index values according to the formula given as CGI (%) = 100 - (CI Ab × 100 / CI NoAb ). "CI Ab " represents the Cell Index value of wells with antibody at a particular experimental time, and "CI NoAb " represents the average Cell Index value of wells without antibody at the same experimental time.

この結果から、すべての抗CLDN6/Dual-Fab三重特異性抗体が、CLDN6を発現するがん細胞株(OVCAR-3およびNCI-H1435)の細胞増殖を用量依存的に阻害したことが示された。
結果を図9に示す。
The results showed that all anti-CLDN6/Dual-Fab trispecific antibodies dose-dependently inhibited cell proliferation of CLDN6-expressing cancer cell lines (OVCAR-3 and NCI-H1435).
The results are shown in Figure 9.

[実施例11]CLDN6発現腫瘍細胞と共培養したNFAT-luc2 Jurkat細胞株におけるT細胞活性化[Example 11] T cell activation in NFAT-luc2 Jurkat cell line co-cultured with CLDN6-expressing tumor cells

抗CLDN6/Dual-Fab三重特異性抗体によるCD3結合を通じたT細胞活性化を、エフェクター細胞としてGloResponse NFAT-luc2 Jurkat細胞(Promega、J1601)を用いたルシフェラーゼアッセイシステムによって測定した。クローディン6を内因的に発現する細胞として、ヒト卵巣がん細胞株OVCAR-3(ATCC)および肺腺がん細胞株NCI-H1435(ATCC)を用いた。CLDN6陰性細胞として、ヒト膀胱がん細胞株5637(ATCC)を用いた。 T cell activation through CD3 binding by anti-CLDN6/Dual-Fab trispecific antibody was measured by a luciferase assay system using GloResponse NFAT-luc2 Jurkat cells (Promega, J1601) as effector cells. Human ovarian cancer cell line OVCAR-3 (ATCC) and lung adenocarcinoma cell line NCI-H1435 (ATCC) were used as cells that endogenously express claudin-6. Human bladder cancer cell line 5637 (ATCC) was used as a CLDN6-negative cell.

アッセイを以下の通りに行った。はじめに、上記がん細胞株を培養フラスコから剥離し、25μL/ウェル(2×104細胞)で白色平底96ウェルプレート(Coster #3917)にプレーティングした。次に、0.003、0.03、0.3、3、または30 nMから選択される濃度の抗体と共に1×105個のJurkat/NFAT-REレポーター細胞株をそれぞれ、25μL/ウェルで添加した。37℃で一晩培養後、Bio-Glo試薬(Promega #G7941)を75μL/ウェルで添加し、続いて、室温で10分間さらにインキュベートした。次いで、活性化Jurkat細胞から生じた発光をEnSpire(PerkinElmer Japan)によって測定した。各ウェルの発光倍率を、抗体ありのウェルと抗体なしのウェルとの間で比較を行うことによって計算した。 The assay was performed as follows. First, the cancer cell lines were detached from the culture flasks and plated in a white flat-bottom 96-well plate (Coster #3917) at 25 μL/well (2× 104 cells). Then, 1× 105 Jurkat/NFAT-RE reporter cell lines were added at 25 μL/well with antibodies at concentrations selected from 0.003, 0.03, 0.3, 3, or 30 nM, respectively. After overnight culture at 37°C, Bio-Glo reagent (Promega #G7941) was added at 75 μL/well, followed by further incubation at room temperature for 10 min. Then, the luminescence generated from the activated Jurkat cells was measured by EnSpire (PerkinElmer Japan). The luminescence fold of each well was calculated by comparing wells with and without antibodies.

標的細胞としてCLDN6発現ヒト細胞株(OVCAR3およびNCI-H1435)およびCLDN6陰性細胞株(5637)を用いた、抗CLDN6/Dual-Fab三重特異性抗体およびCS3348のNFATシグナル活性化特性の結果を、図10に示す。 Figure 10 shows the NFAT signal activation properties of the anti-CLDN6/Dual-Fab trispecific antibody and CS3348 using CLDN6-expressing human cell lines (OVCAR3 and NCI-H1435) and a CLDN6-negative cell line (5637) as target cells.

クローディン6陽性細胞株の存在下で、すべての抗体によるNFAT活性化が用量依存的に観察された。一方で、クローディン6陰性細胞株5637の存在下では、高濃度の抗体でも活性化はほとんど観察されなかった。 In the presence of claudin-6-positive cell lines, NFAT activation by all antibodies was observed in a dose-dependent manner. On the other hand, in the presence of the claudin-6-negative cell line 5637, little activation was observed even at high antibody concentrations.

[実施例12]CLDN6発現腫瘍細胞と共培養したヒト4-1BBおよびルシフェラーゼを発現するJurkatレポーター細胞株におけるNFκB活性化[Example 12] NFκB activation in Jurkat reporter cell lines expressing human 4-1BB and luciferase co-cultured with CLDN6-expressing tumor cells

抗CLDN6/Dual-Fab三重特異性抗体によるCD137結合を通じたNFκB活性化を、GloResponse(商標)NFκB luc2/4-1BB Jurkat(Promega, CS196004)を用いて評価した。クローディン6を内因的に発現する細胞として、ヒト卵巣がん細胞株OVCAR-3(ATCC)および肺腺がん細胞株NCI-H1435(ATCC)を用いた。CLDN6陰性細胞として、ヒト膀胱がん細胞株5637(ATCC)を用いた。 NFκB activation through CD137 binding by anti-CLDN6/Dual-Fab trispecific antibodies was evaluated using GloResponse™ NFκB luc2/4-1BB Jurkat (Promega, CS196004). Human ovarian cancer cell line OVCAR-3 (ATCC) and lung adenocarcinoma cell line NCI-H1435 (ATCC) were used as cells that endogenously express claudin-6. Human bladder cancer cell line 5637 (ATCC) was used as a CLDN6-negative cell.

アッセイを以下の通りに行った。はじめに、上記のがん細胞株を培養フラスコから剥離し、25μL/ウェル(2.5×104細胞)で白色平底96ウェルプレート(Coster #3917)にプレーティングした。次に、5×104個のNFκB luc2/4-1BB Jurkatレポーター細胞株を移し、漸増量の抗体を含有する25μl培地を混合した。アッセイプレートを37℃で6時間インキュベートし、次いで、Bio-Glo試薬(Promega #G7941)を75μL/ウェルで添加し、続いて、室温で10分間さらにインキュベートした。次いで、活性化Jurkat細胞から生じた発光をEnVision(PerkinElmer Japan)によって測定した。各ウェルの発光倍率を、各抗体(0.003、0.03、0.3、3、および30 nM)ありのウェルと抗体なしのウェルとの間で比較を行うことにより計算した。 The assay was performed as follows. First, the above cancer cell lines were detached from the culture flasks and plated in white flat-bottom 96-well plates (Coster #3917) at 25 μL/well (2.5× 104 cells). Then, 5× 104 NFκB luc2/4-1BB Jurkat reporter cell lines were transferred and mixed with 25 μl medium containing increasing amounts of antibodies. The assay plate was incubated at 37° C. for 6 hours, then Bio-Glo reagent (Promega #G7941) was added at 75 μL/well, followed by further incubation at room temperature for 10 minutes. The luminescence generated from the activated Jurkat cells was then measured by EnVision (PerkinElmer Japan). The luminescence fold of each well was calculated by comparing wells with each antibody (0.003, 0.03, 0.3, 3, and 30 nM) and wells without antibody.

標的細胞としてCLDN6発現ヒト細胞株(OVCAR3およびNCI-H1435)およびCLDN6陰性細胞株(5637)を用いた、抗CLDN6/Dual-Fab三重特異性抗体およびCS3348のNFκBシグナル活性化特性の結果を、図11に示す。 Figure 11 shows the NFκB signal activation properties of anti-CLDN6/Dual-Fab trispecific antibody and CS3348 using CLDN6-expressing human cell lines (OVCAR3 and NCI-H1435) and a CLDN6-negative cell line (5637) as target cells.

クローディン6陽性細胞株の存在下で、すべての抗体によるNFκB活性化が用量依存的に観察された。特に、抗CLDN6/Dual-Fab三重特異性抗体の存在下ではるかに高い活性化が確認された。一方で、クローディン6陰性細胞株5637の存在下では、高濃度の抗体でも活性化が観察されなかった。 In the presence of claudin-6-positive cell lines, NFκB activation by all antibodies was observed in a dose-dependent manner. In particular, much higher activation was observed in the presence of the anti-CLDN6/Dual-Fab trispecific antibody. On the other hand, in the presence of the claudin-6-negative cell line 5637, no activation was observed even at high antibody concentrations.

[実施例13]in vivo抗腫瘍効果試験[Example 13] In vivo antitumor effect test

抗CLDN6/Dual-Fab三重特異性抗体のin vivo抗腫瘍効果を、担がんマウスモデルを用いて評価した。臍帯血由来のヒト幹細胞を移植したヒト化NOGマウス(HuNOGマウスモデル)の皮下に、ヒトCLDN6を発現するヒトがん細胞株(NCI-H1435またはOV-90)を移植した。担がんマウスは、ランダム化して処置群に分け、抗体、または対象として溶媒を投与した(表10)。 The in vivo antitumor effect of the anti-CLDN6/Dual-Fab trispecific antibody was evaluated using a tumor-bearing mouse model. Human cancer cell lines expressing human CLDN6 (NCI-H1435 or OV-90) were subcutaneously transplanted into humanized NOG mice transplanted with human stem cells derived from umbilical cord blood (HuNOG mouse model). The tumor-bearing mice were randomized into treatment groups and administered either the antibody or vehicle as a control (Table 10).

移植後8日目(NCI-H1435)または16日目(OV90)の腫瘍サイズおよび体重によってマウスをランダム化しかつ群分けした後、抗CLDN6/Dual-Fab三重特異性抗体を静脈内に投与した。抗CLDN6/Dual-Fab三重特異性抗体は1回のみ投与された。腫瘍塊の長さ(L)および幅(W)を測定し、腫瘍体積(TV)をTV = (L×W×W) / 2として計算した。 Mice were randomized and grouped according to tumor size and body weight on day 8 (NCI-H1435) or day 16 (OV90) after implantation, and then anti-CLDN6/Dual-Fab trispecific antibody was administered intravenously. Anti-CLDN6/Dual-Fab trispecific antibody was administered only once. The length (L) and width (W) of the tumor mass were measured, and tumor volume (TV) was calculated as TV = (L × W × W) / 2.

溶媒投与対照群と比較して抗CLDN6/Dual-Fab三重特異性抗体投与群において、抗腫瘍効果が観察された(図12および13)。 Antitumor effects were observed in the anti-CLDN6/Dual-Fab trispecific antibody-treated group compared to the vehicle-treated control group (Figures 12 and 13).

Figure 0007470760000011
Figure 0007470760000011

[実施例14]抗CLDN6/Dual-Fab三重特異性抗体の毒性研究
PPU4135抗体(抗CLDN6/Dual-Fab三重特異性抗体)の潜在的な毒性を、カニクイザルを用いた毒性研究においてCS3348抗体(抗CLDN6/CD3二重特異性抗体)と比較して評価した。PPU4135抗体およびCS3348抗体は両方とも、カニクイザルのそれらの抗原と交差反応することから、in vivo毒性研究における評価のための動物種としてカニクイザルを選択した。単回投与毒性研究の概要を表11に示す。CS3348を用いた毒性研究では、雌より雄の動物でより毒性学的所見に対する感受性が高いと考えられた(図14)ため、PPU4135由来毒性の評価では2匹の雄が用いられた。これらの研究において、設定した用量レベルは、100(CS3348)または90(PPU4135)μg/kgであり、これらは、最大反応の80%を生じる有効濃度のおよそ2.57倍であった。
[Example 14] Toxicity study of anti-CLDN6/Dual-Fab trispecific antibody
The potential toxicity of the PPU4135 antibody (anti-CLDN6/Dual-Fab trispecific antibody) was evaluated in comparison with the CS3348 antibody (anti-CLDN6/CD3 bispecific antibody) in toxicity studies using cynomolgus monkeys. Both the PPU4135 and CS3348 antibodies cross-react with their antigens in cynomolgus monkeys, so the cynomolgus monkey was selected as the animal species for evaluation in the in vivo toxicity studies. A summary of the single-dose toxicity studies is shown in Table 11. In toxicity studies with CS3348, male animals were considered more sensitive to toxicological findings than females (Figure 14), so two males were used in the evaluation of PPU4135-induced toxicity. In these studies, the dose levels established were 100 (CS3348) or 90 (PPU4135) μg/kg, which were approximately 2.57-fold the effective concentration that produced 80% of the maximum response.

Figure 0007470760000012
IV = 静脈内
Figure 0007470760000012
IV = intravenous

CS3348またはPPU4135で処置した雄動物では、血漿曝露レベルは、8日目までPPU4135処置群とCS3348処置群との間で同等であった。これらの抗体の単回投与後に、AST(アスパラギン酸アミノトランスフェラーゼ)、ALT(アラニンアミノトランスフェラーゼ)、およびGLDH(グルタミン酸デヒドロゲナーゼ)(肝酵素);ALP(アルカリホスファターゼ)、TBIL(総ビリルビン)、GGT(γグルタミルトランスペプチダーゼ)、およびTBA(総胆汁酸)(肝胆道障害パラメーター);ならびにCRP(C反応性タンパク質)(炎症マーカー)の増加が記録された(図14)。本研究から、これらの抗体で処置した雄動物間での肝酵素レベルの差はわずかであった(図14)が、肝胆道障害パラメーターおよび炎症マーカーの上昇は、CS3348投与と比較してPPU4135の投与で劇的に軽減した(図14)。これらの結果は、被験物質由来の肝毒性、主に肝胆道障害は、抗CLDN6/CD3二重特異性抗体を用いるより抗CLDN6/Dual-Fab三重特異性抗体を用いることによって減弱することを示唆している。 In male animals treated with CS3348 or PPU4135, plasma exposure levels were comparable between PPU4135 and CS3348 treatment groups up to day 8. Increases were recorded after a single dose of these antibodies in AST (aspartate aminotransferase), ALT (alanine aminotransferase), and GLDH (glutamate dehydrogenase) (liver enzymes); ALP (alkaline phosphatase), TBIL (total bilirubin), GGT (gamma glutamyl transpeptidase), and TBA (total bile acids) (hepatobiliary injury parameters); and CRP (C-reactive protein) (inflammatory marker) (Figure 14). The study showed that there were only minor differences in liver enzyme levels between male animals treated with these antibodies (Figure 14), but the elevation of hepatobiliary injury parameters and inflammatory markers was dramatically attenuated by administration of PPU4135 compared to CS3348 administration (Figure 14). These results suggest that hepatotoxicity, mainly hepatobiliary damage, induced by the test substance is attenuated by using anti-CLDN6/Dual-Fab trispecific antibody rather than anti-CLDN6/CD3 bispecific antibody.

[実施例15]抗CLDN6/Dual-Fab三重特異性抗体の特徴づけ
pH 7.4でのヒトおよびカニクイザル(cyno)CLDN6 VLP(ウイルス様粒子)に対する抗CLDN6/Dual-Fab三重特異性抗体の結合親和性を、Biacore T200機器(GE Healthcare)を用いて25℃で決定した。抗ヒトCD81(BD Pharmingen)抗体を、アミンカップリングキット(GE Healthcare)を用いてC1センサーチップのすべてのフローセル上に固相化した。ヒトおよびカニクイザルCLDN6 VLPを、抗ヒトCD81抗体によってセンサー表面上に捕捉した。各VLPは、緩衝液(20 mMリン酸Na、150 mM NaCl、0.1 mg/mL BSA、0.005% NaN3、pH 7.4)によって5倍希釈した。被験抗体を緩衝液(20 mMリン酸Na、150 mM NaCl、0.1 mg/mL BSA、0.005% NaN3、pH 7.4)において調製した。抗CLDN6/Dual-Fab三重特異性抗体を50および200 nMでインジェクトし、続いて解離させた。センサー表面は、サイクル毎に0.1% SDSおよび100 mM H3PO4で再生した。表12に示すように、カニクイザルCLDN6に対するPPU4135の結合親和性は、ヒトCLDN6に対するものと同等である。結合親和性は、Biacore T200 Evaluation software、version 2.0(GE Healthcare)を用いて、データをプロセシングし、1:1結合モデルにフィットさせることによって決定した。
[Example 15] Characterization of anti-CLDN6/Dual-Fab trispecific antibody
The binding affinity of anti-CLDN6/Dual-Fab trispecific antibodies to human and cynomolgus (cyno) CLDN6 VLPs (virus-like particles) at pH 7.4 was determined at 25°C using a Biacore T200 instrument (GE Healthcare). Anti-human CD81 (BD Pharmingen) antibodies were immobilized on all flow cells of a C1 sensor chip using an amine coupling kit (GE Healthcare). Human and cynomolgus CLDN6 VLPs were captured on the sensor surface by anti-human CD81 antibodies. Each VLP was diluted 5-fold with buffer (20 mM Na phosphate, 150 mM NaCl, 0.1 mg/mL BSA, 0.005% NaN 3 , pH 7.4). Test antibodies were prepared in buffer (20 mM Na phosphate, 150 mM NaCl, 0.1 mg/mL BSA, 0.005% NaN 3 , pH 7.4). Anti-CLDN6/Dual-Fab trispecific antibodies were injected at 50 and 200 nM, followed by dissociation. The sensor surface was regenerated with 0.1% SDS and 100 mM H3PO4 after every cycle. As shown in Table 12, the binding affinity of PPU4135 to cynomolgus monkey CLDN6 is comparable to that to human CLDN6. The binding affinity was determined by processing the data and fitting to a 1:1 binding model using Biacore T200 Evaluation software, version 2.0 (GE Healthcare).

pH 7.4での組換えヒトおよびカニクイザルCD3eg(CD3のγおよびεサブユニット)に対する抗CLDN6/Dual-Fab三重特異性抗体の結合親和性を、Biacore 8K機器(GE Healthcare)を用いて25℃で決定した。pH 7.4での組換えヒトおよびカニクイザルCD137に対する抗CLDN6/Dual-Fab三重特異性抗体の結合親和性を、Biacore 8K機器(GE Healthcare)を用いて37℃で決定した。抗ヒトFc(GE Healthcare)抗体を、アミンカップリングキット(GE Healthcare)を用いてCM4センサーチップのすべてのフローセル上に固相化した。被験抗体およびアナライトを、20 mM ACES、150 mM NaCl、0.05% Tween 20、0.005% NaN3を含有するACES pH 7.4において調製した。抗CLDN6/Dual-Fab三重特異性抗体を抗ヒトFcによってセンサー表面上に捕捉した。抗体捕捉レベルは、300レゾナンスユニット(RU)を目指した。組換えCD3egおよびCD137を500および2000 nMの両方でインジェクトし、続いて解離させた。センサー表面は、サイクル毎に3M MgCl2で再生した。表12に示すように、カニクイザルCD3egおよびカニクイザルCD137に対するPPU4135の結合親和性はそれぞれ、ヒトCD3egおよびCD137に対するものと同等である。結合親和性は、Biacore Insight Evaluationソフトウェア(GE Healthcare)を用いて、データをプロセシングし、1:1結合モデルにフィットさせることによって決定した。 The binding affinity of the anti-CLDN6/Dual-Fab trispecific antibody to recombinant human and cynomolgus CD3eg (gamma and epsilon subunits of CD3) at pH 7.4 was determined at 25°C using a Biacore 8K instrument (GE Healthcare). The binding affinity of the anti-CLDN6/Dual-Fab trispecific antibody to recombinant human and cynomolgus CD137 at pH 7.4 was determined at 37°C using a Biacore 8K instrument (GE Healthcare). Anti-human Fc (GE Healthcare) antibody was immobilized on all flow cells of a CM4 sensor chip using an amine coupling kit (GE Healthcare). The test antibody and analyte were prepared in ACES pH 7.4 containing 20 mM ACES, 150 mM NaCl, 0.05% Tween 20, 0.005% NaN3 . The anti-CLDN6/Dual-Fab trispecific antibody was captured on the sensor surface by anti-human Fc. The antibody capture level was aimed for 300 resonance units (RU). Recombinant CD3eg and CD137 were injected at both 500 and 2000 nM, followed by dissociation. The sensor surface was regenerated with 3M MgCl2 every cycle. As shown in Table 12, the binding affinity of PPU4135 for cynomolgus CD3eg and cynomolgus CD137 is comparable to that for human CD3eg and CD137, respectively. The binding affinity was determined by processing the data and fitting to a 1:1 binding model using Biacore Insight Evaluation software (GE Healthcare).

Figure 0007470760000013
(表中でka(1/Ms)、kd(1/s)、およびKD値を表すために用いられる表示Eは、「10の冪」を意味し、例えば、2.17E+05 = 2.17×105である)
Figure 0007470760000013
(The notation E used in the tables to represent ka(1/Ms), kd(1/s), and KD values means "power of 10", e.g., 2.17E+05 = 2.17 x 105. )

[実施例16]腹膜播種モデルのin vivo薬効評価試験
卵巣がんの腹膜転移に対する抗CLDN6/Dual-Fab三重特異性抗体CS4135(上述の実施例6の表9に記載のPPU4135と同一の抗体)の効果を評価するため、マウス腹膜播種モデルを用いて薬効を評価した。標的細胞として、ヒト卵巣がん細胞株OV-90(ATCC)を用いた。NOD/ShiJic-scid Jclマウス腹腔内に5×106個/500μL/匹のOV-90細胞が移植された。移植3日後に、ヒトPBMCより分離され、Dynabeads Human T-Activator CD3/CD28(Gibco)により拡大培養されたヒトT細胞3×107個/400μLが静脈内投与された。さらに、溶媒(0.05% Tween-20含有PBS)またはCS4135抗体の溶液5mg/kgが静脈内投与された。
[Example 16] In vivo drug efficacy evaluation test in peritoneal dissemination model To evaluate the effect of anti-CLDN6/Dual-Fab trispecific antibody CS4135 (the same antibody as PPU4135 described in Table 9 of Example 6 above) on peritoneal metastasis of ovarian cancer, drug efficacy was evaluated using a mouse peritoneal dissemination model. Human ovarian cancer cell line OV-90 (ATCC) was used as target cells. OV-90 cells were transplanted into the peritoneal cavity of NOD/ShiJic-scid Jcl mice at 5×10 6 cells/500 μL/mouse. Three days after transplantation, human T cells separated from human PBMC and expanded with Dynabeads Human T-Activator CD3/CD28 (Gibco) at 3×10 7 cells/400 μL were intravenously administered. In addition, a solvent (PBS containing 0.05% Tween-20) or a solution of CS4135 antibody at 5 mg/kg was intravenously administered.

腫瘍移植後2~7日ごとにマウスを観察し、人道的エンドポイントに従ってマウスの状態を評価した。各群の生存率を図15に示す。
その結果、溶媒投与群では移植48日後から状態悪化を呈するマウスが見られ、移植55日後までに全例の状態悪化が認められた。一方、CS4135抗体投与群では移植57日後から状態悪化を呈するマウスが見られたが、移植66日後における生存率は78%であり、移植80日後における生存率は22%だった。50%生存率は移植71日後だった。この結果より、CS4135抗体による卵巣がんの腹膜転移への治療効果が認められた。
Mice were observed every 2-7 days after tumor implantation and their condition was evaluated according to humane endpoints. The survival rate of each group is shown in Figure 15.
As a result, in the vehicle-treated group, mice were seen to show a worsening condition starting 48 days after transplantation, and all mice had shown signs of worsening by 55 days after transplantation. Meanwhile, in the CS4135 antibody-treated group, mice were seen to show a worsening condition starting 57 days after transplantation, but the survival rate was 78% 66 days after transplantation and 22% 80 days after transplantation. The 50% survival rate was 71 days after transplantation. These results demonstrated the therapeutic effect of the CS4135 antibody on peritoneal metastasis of ovarian cancer.

[実施例17] 抗CLDN6/Dual-Fab三重特異性抗体CS4135と化学療法剤との併用に関する薬効評価試験
17.1. 各種がん細胞におけるプラチナ製剤処理によるCLDN6発現量の変化
ヒト卵巣がん細胞株(NIH-OVCAR3, ATCC)、ヒト肺がん細胞株(NCI-H1435, ATCC)、およびヒト子宮体がん細胞株(SNG-M, Health Science Research Resources Bank)に対し、シスプラチン(CDDP, 日医工)、あるいはカルボプラチン(CBDCA, サンド)を処理し、CLDN6の発現にどのような影響を与えるかを解析した。
[Example 17] Efficacy evaluation test for the combination of anti-CLDN6/Dual-Fab trispecific antibody CS4135 and chemotherapeutic agents
17.1. Changes in CLDN6 expression levels following treatment with platinum agents in various cancer cells Human ovarian cancer cell lines (NIH-OVCAR3, ATCC), human lung cancer cell lines (NCI-H1435, ATCC), and human endometrial cancer cell lines (SNG-M, Health Science Research Resources Bank) were treated with cisplatin (CDDP, Nichi-Iko) or carboplatin (CBDCA, Sandoz) and the effect on CLDN6 expression was analyzed.

各細胞に対し、シスプラチンは0.1μg/ml (OVCAR3)、または0.6μg/ml(H1435, SNG-M)を、カルボプラチンは0.5μg/ml (OVCAR3)、または5μg/ml (H1435, SNG-M)を添加し、5日間培養した。その後細胞を回収し、CLDN6の発現をFACSで解析した。 Cisplatin was added to each cell line at 0.1 μg/ml (OVCAR3) or 0.6 μg/ml (H1435, SNG-M), and carboplatin was added at 0.5 μg/ml (OVCAR3) or 5 μg/ml (H1435, SNG-M), and the cells were cultured for 5 days. The cells were then harvested and CLDN6 expression was analyzed by FACS.

FACS解析では、細胞を培養フラスコより剥離し、抗CLDN6抗体(AE3-20 mIgG2a、日本特許第5848863号)、あるいは、アイソタイプ抗体(mIgG2a, BioLegend)を2μg/mlで4℃、1時間反応した。続いて、Alexa Flour 488標識抗マウスIgG (ThermoFisher)を10μg/mlで4℃、1時間反応し、CLDN6の発現量をフローサイトメーター(FACSVerse, BD Biosciences)で解析した。 For FACS analysis, cells were detached from the culture flask and reacted with anti-CLDN6 antibody (AE3-20 mIgG2a, Japanese Patent No. 5848863) or isotype antibody (mIgG2a, BioLegend) at 2 μg/ml for 1 hour at 4°C. Next, cells were reacted with Alexa Flour 488-labeled anti-mouse IgG (ThermoFisher) at 10 μg/ml for 1 hour at 4°C, and the expression level of CLDN6 was analyzed using a flow cytometer (FACS Verse, BD Biosciences).

図16は、シスプラチンまたはカルボプラチンで5日間処理した各種細胞と非処理の各種細胞におけるCLDN6の発現をFACSで解析した結果である。いずれの細胞もシスプラチン、カルボプラチンを作用させることで、CLDN6の発現が上昇することが確認された。すなわち、シスプラチン及びカルボプラチンががん細胞のCLDN6の発現を増強する剤であることが確認された。 Figure 16 shows the results of FACS analysis of CLDN6 expression in various cells treated with cisplatin or carboplatin for 5 days and in untreated cells. It was confirmed that CLDN6 expression increased in all cells when cisplatin or carboplatin was applied. In other words, it was confirmed that cisplatin and carboplatin are agents that enhance CLDN6 expression in cancer cells.

次に、化学療法剤による処理の有無によって、CS4135抗体のCD3結合を通じたT細胞活性化能が変化するかを、GloResponse NFAT-luc2 Jurkat細胞(Promega、J1601)を用いたルシフェラーゼアッセイシステムによって測定した。 Next, we used a luciferase assay system with GloResponse NFAT-luc2 Jurkat cells (Promega, J1601) to measure whether the T cell activation ability of the CS4135 antibody through CD3 binding changed depending on whether or not chemotherapy was administered.

アッセイは以下の通りに行った。はじめに、上記のとおり、5日間化学療法剤で処理したOVCAR3およびH1435細胞を培養フラスコから剥離し、25μL/ウェル(2×104細胞)で白色平底96ウェルプレート(Coster #3917)にプレーティングした。次に、0.003、0.03、0.3、3、または30 nMから選択される濃度のCS4135抗体と共に1×105個のJurkat/NFAT-REレポーター細胞株をそれぞれ、25μL/ウェルで添加した。37℃で一晩培養後、Bio-Glo試薬(Promega #G7941)を75μL/ウェルで添加し、続いて、室温で10分間さらにインキュベートした。次いで、活性化Jurkat細胞から生じた発光をEnSpire(PerkinElmer Japan)によって測定した。各ウェルの発光倍率を、抗体ありのウェルと抗体なしのウェルとの間で比較を行うことによって計算した。 The assay was performed as follows. First, OVCAR3 and H1435 cells treated with chemotherapy drugs for 5 days as described above were detached from culture flasks and plated in white flat-bottom 96-well plates (Coster #3917) at 25 μL/well (2× 104 cells). Then, 1×105 Jurkat/NFAT-RE reporter cell lines were added at 25 μL/well with CS4135 antibody at concentrations selected from 0.003, 0.03, 0.3, 3, or 30 nM, respectively. After overnight culture at 37°C, Bio-Glo reagent (Promega #G7941) was added at 75 μL/well, followed by further incubation at room temperature for 10 minutes. The luminescence generated from the activated Jurkat cells was then measured by EnSpire (PerkinElmer Japan). The luminescence fold of each well was calculated by comparing wells with and without antibodies.

図17は、シスプラチンまたはカルボプラチンで5日間処理した細胞、非処理の細胞に対するCS4135のCD3を介するT細胞活性化能をJurkatルシフェラーゼアッセイで解析した結果である。シスプラチンまたはカルボプラチンで5日間処理した細胞に対しては、CS4135によるT細胞活性化能がより強まっていることが確認され、化学療法剤がCS4135のcytotoxicityを増強する可能性が示唆された。 Figure 17 shows the results of a Jurkat luciferase assay that analyzed the CD3-mediated T cell activation ability of CS4135 in cells treated with cisplatin or carboplatin for five days and in untreated cells. It was confirmed that the T cell activation ability of CS4135 was enhanced in cells treated with cisplatin or carboplatin for five days, suggesting the possibility that chemotherapy drugs enhance the cytotoxicity of CS4135.

17.2. vivo移植腫瘍におけるカルボプラチン投与によるCLDN6の発現誘導
NOD/scidマウス(日本クレア)にSNG-M (1×107細胞)を皮下に移植した。腫瘍が生着後、溶媒(生理食塩液)あるいはカルボプラチン40mg/kg及び80mg/kgを、移植当日(day 0)、3日後(day 3)に腹腔内投与し、6日後(day 6)に腫瘍をサンプリングした。
17.2. Induction of CLDN6 expression by carboplatin administration in tumors transplanted in vivo
SNG-M ( 1x107 cells) was subcutaneously transplanted into NOD/scid mice (CLEA Japan). After the tumors had taken root, the vehicle (saline) or carboplatin 40mg/kg or 80mg/kg was intraperitoneally administered on the day of transplantation (day 0) and 3 days later (day 3), and the tumors were sampled 6 days later (day 6).

腫瘍よりRNAを精製し(RNeasy Mini Kit, QIAGEN)、続いてcDNA合成を行った(Suprescript IV VILO Master Mix, ThermoFisher)。これを鋳型にして、CLDN6特異的なプライマーによりリアルタイムPCRを行い(Power SYBR(登録商標) Green Master Mix, ThermoFisher)、CLDN6の発現を解析した(QuantStudio 12K Flex Real-Time PCR System, ThermoFisher)。 RNA was purified from the tumor (RNeasy Mini Kit, QIAGEN), followed by cDNA synthesis (Suprescript IV VILO Master Mix, ThermoFisher). Using this as a template, real-time PCR was performed with CLDN6-specific primers (Power SYBR® Green Master Mix, ThermoFisher) to analyze CLDN6 expression (QuantStudio 12K Flex Real-Time PCR System, ThermoFisher).

ヒトCLDN6 に対するプライマー、およびインターナルコントロールとして用いたヒトGAPDHに対するプライマーの配列は以下のとおりである。
hCLDN6-1: GGG TGG ACG TCT TAT CAG GA(配列番号:206)
hCLDN6-2: GAG CTC CTC TCT TCA CCC CT(配列番号:207)
hGAPDH-F: GAG TCC ACT GGC GTC TTC AC(配列番号:208)
hGAPDH-R: ATC TTG AGG CTG TTG TCA TAC TT(配列番号:209)
The sequences of the primers for human CLDN6 and for human GAPDH used as an internal control are as follows.
hCLDN6-1: GGG TGG ACG TCT TAT CAG GA (SEQ ID NO: 206)
hCLDN6-2: GAG CTC CTC TCT TCA CCC CT (SEQ ID NO: 207)
hGAPDH-F: GAG TCC ACT GGC GTC TTC AC (SEQ ID NO: 208)
hGAPDH-R: ATC TTG AGG CTG TTG TCA TAC TT (SEQ ID NO: 209)

図18は、SNG-M腫瘍が生着したマウスに、溶媒、あるいはカルボプラチンを40mg/kg、および80mg/kgで2回投与したのち、腫瘍を採材し、腫瘍中のCLDN6の発現をqPCRで解析した結果である。溶媒投与群に対し、カルボプラチン投与群では、腫瘍内におけるCLDN6の発現が上昇していることが確認された。 Figure 18 shows the results of administering vehicle or carboplatin twice at 40 mg/kg and 80 mg/kg to mice bearing SNG-M tumors, then sampling the tumors and analyzing the expression of CLDN6 in the tumors by qPCR. It was confirmed that the expression of CLDN6 in the tumors was increased in the carboplatin-administered group compared to the vehicle-administered group.

17.3. huNOGマウスを用いたxenograft移植モデルによるCS4135抗体の抗腫瘍活性の評価
17.3.1. 細胞株およびxenograft移植モデルの作製、ならびに抗腫瘍活性の評価方法
本試験において、ヒト子宮体がん細胞株SNG-Mと、ヒトCD34陽性細胞を移植したNOG(huNOG)マウス(上述の実施例13に記載)が使用された。SNG-M細胞株はマウスの右側腹部皮下に移植され、群分けは移植13日後に行った。腫瘍体積が130~244mm3となった個体を用いて群分けを行った。溶媒1及びCS4135は移植13日後にマウス尾静脈内に投与された。溶媒1として0.05% Tween-20含有PBSが使用された。溶媒2及びカルボプラチン(ブリストル・マイヤーズ スクイブ株式会社)は移植13、16、20日後にマウス腹腔内に投与された。溶媒2として生理食塩液が使用された。
17.3. Evaluation of antitumor activity of CS4135 antibody using xenograft transplantation model in huNOG mice
17.3.1. Preparation of cell lines and xenograft transplantation models, and methods for evaluating antitumor activity In this study, human endometrial cancer cell line SNG-M and NOG (huNOG) mice transplanted with human CD34-positive cells (described in Example 13 above) were used. The SNG-M cell line was transplanted subcutaneously into the right flank of the mice, and the mice were divided into groups 13 days after transplantation. The mice were divided into groups using individuals with tumor volumes of 130-244 mm3 . Solvent 1 and CS4135 were administered into the tail vein of the mice 13 days after transplantation. PBS containing 0.05% Tween-20 was used as solvent 1. Solvent 2 and carboplatin (Bristol-Myers Squibb) were administered into the peritoneal cavity of the mice 13, 16, and 20 days after transplantation. Saline was used as solvent 2.

Figure 0007470760000014
Figure 0007470760000014

腫瘍体積は、移植13、16、20、23、26、30日後に測定し、各群の平均腫瘍体積を示した。
腫瘍体積は以下の計算式にて算出された。
腫瘍体積(mm3)=長径(mm)×短径(mm)×短径(mm)/2
The tumor volumes were measured 13, 16, 20, 23, 26, and 30 days after transplantation, and the average tumor volume for each group is shown.
The tumor volume was calculated using the following formula.
Tumor volume (mm 3 ) = major axis (mm) × minor axis (mm) × minor axis (mm)/2

腫瘍増殖抑制作用(Tumor Growth Inhibition: TGI)は、以下の計算式にて算出された。
TV change (mm3) =移植30日後の腫瘍体積-群分け時の腫瘍体積
TGI (%) = (1-(各群ごとのTV change平均値/溶媒対照群のTV change平均値))×100
Tumor growth inhibition (TGI) was calculated using the following formula.
TV change (mm 3 ) = tumor volume 30 days after transplantation - tumor volume at the time of group division
TGI (%) = (1 - (mean TV change for each group / mean TV change for the solvent control group)) x 100

その結果、移植30日後のCS4135抗体とカルボプラチンの併用投与群のTGIは65%だったが、CS4135抗体単剤投与群とカルボプラチン単剤投与群のTGIは各々35%、44%だった。従って、CS4135抗体とカルボプラチンの併用投与群は、CS4135抗体単剤投与群やカルボプラチン単剤投与群よりも強い抗腫瘍効果を有することが示された(図19,表14)。 As a result, 30 days after transplantation, the TGI in the group administered the combination of CS4135 antibody and carboplatin was 65%, while the TGI in the group administered the CS4135 antibody alone and the group administered the carboplatin alone were 35% and 44%, respectively. Therefore, it was shown that the group administered the combination of CS4135 antibody and carboplatin had a stronger antitumor effect than the group administered the CS4135 antibody alone or the group administered the carboplatin alone (Figure 19, Table 14).

Figure 0007470760000015
Figure 0007470760000015

17.3.2. 細胞株およびxenograft移植モデルの作製、ならびに抗腫瘍活性の評価方法
本試験において、卵巣がん細胞株OVCAR3と、ヒトCD34陽性細胞を移植したNOG(huNOG)マウス(上述の実施例13に記載)が使用された。OVCAR3細胞株はマウスの右側腹部皮下に移植され、群分けは移植38日後に行った。腫瘍体積が119~210mm3となった個体を用いて群分けを行った。溶媒1及びCS4135は移植38、45日後にマウス尾静脈内に投与された。溶媒1として0.05% Tween-20含有PBSが使用された。溶媒2及びカルボプラチン(ブリストル・マイヤーズ スクイブ株式会社)は移植38、45日後にマウス腹腔内に投与された。溶媒2として生理食塩液が使用された。
17.3.2. Preparation of cell lines and xenograft transplantation models, and methods for evaluating antitumor activity In this study, ovarian cancer cell line OVCAR3 and NOG (huNOG) mice transplanted with human CD34-positive cells (described in Example 13 above) were used. The OVCAR3 cell line was transplanted subcutaneously into the right flank of the mice, and the mice were divided into groups 38 days after transplantation. The mice were divided into groups using individuals with tumor volumes of 119-210 mm3 . Solvent 1 and CS4135 were administered into the tail vein of the mice 38 and 45 days after transplantation. PBS containing 0.05% Tween-20 was used as solvent 1. Solvent 2 and carboplatin (Bristol-Myers Squibb Co., Ltd.) were administered into the mouse peritoneal cavity 38 and 45 days after transplantation. Saline was used as solvent 2.

Figure 0007470760000016
Figure 0007470760000016

腫瘍体積は移植38、42、45、48、52、56日後に測定し、各群の平均腫瘍体積を示した。腫瘍体積は以下の計算式にて算出された。
腫瘍体積(mm3)=長径(mm)×短径(mm)×短径(mm)/2
The tumor volumes were measured 38, 42, 45, 48, 52, and 56 days after transplantation, and the average tumor volume for each group is shown. The tumor volume was calculated using the following formula:
Tumor volume (mm 3 ) = major axis (mm) × minor axis (mm) × minor axis (mm)/2

腫瘍増殖抑制作用(Tumor Growth Inhibition: TGI)は以下の計算式にて算出された。
TV change (mm3) =移植56日後の腫瘍体積-群分け時の腫瘍体積
TGI (%) = (1-(各群ごとのTV change平均値/溶媒対照群のTV change平均値))×100
Tumor growth inhibition (TGI) was calculated using the following formula.
TV change (mm 3 ) = tumor volume 56 days after transplantation - tumor volume at the time of group division
TGI (%) = (1 - (mean TV change for each group / mean TV change for the solvent control group)) x 100

その結果、移植56日後のCS4135抗体とカルボプラチンの併用投与群(同時)のTGIは180%だったが、CS4135抗体単剤投与群とカルボプラチン単剤投与群のTGIは各々18%、-9%だった。従って、CS4135抗体とカルボプラチンの併用群は、CS4135抗体単剤投与群やカルボプラチン単剤投与群よりも強くかつ相乗的な抗腫瘍効果を有することが示された(図20、表16)。 As a result, 56 days after transplantation, the TGI in the group administered the combination of CS4135 antibody and carboplatin (simultaneous administration) was 180%, while the TGI in the group administered the CS4135 antibody alone and the group administered the carboplatin alone were 18% and -9%, respectively. Therefore, it was shown that the group administered the combination of CS4135 antibody and carboplatin had a stronger and more synergistic antitumor effect than the group administered the CS4135 antibody alone or the group administered the carboplatin alone (Figure 20, Table 16).

さらに、カルボプラチン投与後にCS4135を連続的に投与すると移植56日後のTGIは、カルボプラチンとCS4135の同時投与群と同様に180%だった。従って、CS4135はカルボプラチンとの同時投与だけではなく、カルボプラチン投与後の連続的投与においても同様の効果を有することが示された(図21、表16)。 Furthermore, when CS4135 was administered consecutively after carboplatin administration, the TGI 56 days after transplantation was 180%, the same as in the group administered carboplatin and CS4135 simultaneously. This shows that CS4135 has a similar effect not only when administered consecutively after carboplatin administration, but also when administered concurrently with carboplatin (Figure 21, Table 16).

Figure 0007470760000017
Figure 0007470760000017

17.4 huNOGマウスを用いたxenograft移植モデルによるCS4135抗体の抗腫瘍活性の評価
17.4.1細胞株およびxenograft移植モデルの作製、ならびに抗腫瘍活性の評価方法
本試験において卵巣がん細胞株NIH:OVCAR-3 (OVCAR3, ATCC)と、ヒトCD34陽性細胞を移植したNOG (huNOG)マウス(上述の実施例13に記載)が使用された。OVCAR3細胞株はマウスの右側腹部皮下に移植され、群分けは移植39日後に行った。腫瘍体積が160-263 mm3となった個体を用いて群分けを行った。溶媒 1及びCS4135は移植39、46日後にマウス尾静脈内に投与された。溶媒 1として0.05% Tween-20含有PBSが使用された。溶媒 2及びイリノテカン塩酸塩(沢井製薬株式会社)は移植39、46日後にマウス尾静脈内に投与された。溶媒 2として生理食塩液が使用された。
17.4 Evaluation of antitumor activity of CS4135 antibody using xenograft model with huNOG mice
17.4.1 Preparation of cell line and xenograft transplantation model, and method for evaluating antitumor activity In this study, ovarian cancer cell line NIH:OVCAR-3 (OVCAR3, ATCC) and NOG (huNOG) mice transplanted with human CD34 positive cells (described in Example 13 above) were used. OVCAR3 cell line was transplanted subcutaneously into the right flank of the mice, and the mice were divided into groups 39 days after transplantation. The mice were divided into groups using the mice whose tumor volume reached 160-263 mm3 . Solvent 1 and CS4135 were administered into the tail vein of the mice 39 and 46 days after transplantation. PBS containing 0.05% Tween-20 was used as solvent 1. Solvent 2 and irinotecan hydrochloride (Sawai Pharmaceutical Co., Ltd.) were administered into the tail vein of the mice 39 and 46 days after transplantation. Saline was used as solvent 2.

Figure 0007470760000018
Figure 0007470760000018

腫瘍体積は移植39, 42, 46, 49, 53, 57, 60日後に測定し,各群の平均腫瘍体積を示した。腫瘍体積は以下の計算式にて算出された。
腫瘍体積(mm3) = 長径(mm) × 短径(mm) × 短径(mm)/2
Tumor volumes were measured 39, 42, 46, 49, 53, 57, and 60 days after transplantation, and the average tumor volume for each group is shown. Tumor volume was calculated using the following formula:
Tumor volume ( mm3 ) = major axis (mm) × minor axis (mm) × minor axis (mm)/2

腫瘍増殖抑制作用(Tumor Growth Inhibition: TGI)は以下の計算式にて算出された。
TV change (mm3) = 移植60日後の腫瘍体積-群分け時の腫瘍体積
TGI (%) = (1-(各群ごとのTV change平均値/溶媒対照群のTV change平均値))×100
Tumor growth inhibition (TGI) was calculated using the following formula.
TV change (mm 3 ) = tumor volume 60 days after transplantation - tumor volume at the time of group division
TGI (%) = (1 - (mean TV change for each group / mean TV change for the solvent control group)) x 100

その結果,移植60日後のCS4135抗体とイリノテカン塩酸塩の併用群のTGIは106%だったが、CS4135抗体単剤投与群とイリノテカン塩酸塩単剤投与群のTGIは各々-2%、65%だった。さらに、移植60日後のCS4135抗体とイリノテカン塩酸塩の併用群とイリノテカン塩酸塩単剤投与群の腫瘍体積の間には統計学的に有意差が認められた。従って、CS4135抗体とイリノテカン塩酸塩の併用群は、CS4135抗体単剤投与群やイリノテカン塩酸塩単剤投与群よりも強くかつ相乗的な抗腫瘍効果を有することが示された(図22、表18)。 As a result, 60 days after transplantation, the TGI of the group treated with the combination of CS4135 antibody and irinotecan hydrochloride was 106%, while the TGI of the group treated with CS4135 antibody alone and the group treated with irinotecan hydrochloride alone was -2% and 65%, respectively. Furthermore, a statistically significant difference was observed between the tumor volume of the group treated with the combination of CS4135 antibody and irinotecan hydrochloride and the group treated with irinotecan hydrochloride alone 60 days after transplantation. Therefore, it was shown that the group treated with the combination of CS4135 antibody and irinotecan hydrochloride had a stronger and more synergistic antitumor effect than the group treated with CS4135 antibody alone or the group treated with irinotecan hydrochloride alone (Figure 22, Table 18).

Figure 0007470760000019
Figure 0007470760000019

[実施例18] 抗CLDN6/Dual-Fab三重特異性抗体CS4135と免疫チェックポイント阻害剤との併用に関する薬効評価試験
18.1.1 細胞株およびsyngenic移植モデルの作製、ならびに抗腫瘍活性の評価方法
本試験において、クローディン6 (CLDN6)を強制発現した肺がん細胞株LLC1 (CLDN6-LLC1)とhCD137 KI/hCD3Tgマウス(上述の実施例7に記載)が使用された。CLDN6-LLC1細胞株はマウスの右側腹部皮下に移植され、群分けは移植7日後に行った。腫瘍体積が262~353 mm3となった個体を用いて群分けを行った。溶媒及びCS4135は移植8日後にマウス尾静脈内に投与された。溶媒として0.05% Tween-20含有PBSが使用された。
[Example 18] Efficacy evaluation test for the combination of anti-CLDN6/Dual-Fab trispecific antibody CS4135 and immune checkpoint inhibitor
18.1.1 Preparation of cell lines and syngenic transplantation models, and methods for evaluating antitumor activity In this study, the lung cancer cell line LLC1 (CLDN6-LLC1) overexpressing claudin 6 (CLDN6) and hCD137 KI/hCD3Tg mice (described in Example 7 above) were used. The CLDN6-LLC1 cell line was subcutaneously transplanted into the right flank of the mice, and mice were divided into groups 7 days after transplantation. Mice with tumor volumes of 262-353 mm3 were used for group division. Vehicle and CS4135 were administered into the tail vein of mice 8 days after transplantation. PBS containing 0.05% Tween-20 was used as the vehicle.

Figure 0007470760000020
Figure 0007470760000020

腫瘍体積は移植7、10、14日後に測定し,各群の平均腫瘍体積を示した。腫瘍体積は以下の計算式にて算出された。
腫瘍体積(mm3) = 長径(mm) × 短径(mm) × 短径(mm)/2
Tumor volumes were measured 7, 10, and 14 days after transplantation, and the average tumor volume for each group is shown. Tumor volume was calculated using the following formula:
Tumor volume ( mm3 ) = major axis (mm) × minor axis (mm) × minor axis (mm)/2

腫瘍増殖抑制作用(Tumor Growth Inhibition: TGI)は以下の計算式にて算出された。
TV change (mm3) =移植14日後の腫瘍体積-群分け時の腫瘍体積
TGI (%) = (1-(各群ごとのTV change平均値/Vehicle control群のTV change平均値))×100
Tumor growth inhibition (TGI) was calculated using the following formula.
TV change (mm 3 ) = tumor volume 14 days after transplantation - tumor volume at the time of group division
TGI (%) = (1 - (mean TV change for each group / mean TV change for vehicle control group)) x 100

結果を図23に示す。移植14日後におけるCS4135投与群のTGIは71%だった。移植10, 14日後(各々投与2、6日後(Day2、Day6)に腫瘍を摘出して、以下の通り腫瘍組織中のCD8陽性T細胞数を検出した。 The results are shown in Figure 23. The TGI in the CS4135-administered group 14 days after transplantation was 71%. The tumors were excised 10 and 14 days after transplantation (2 and 6 days after administration (Day 2 and Day 6), respectively), and the number of CD8-positive T cells in the tumor tissue was detected as follows:

Figure 0007470760000021
Figure 0007470760000021

18.1.2. CLDN6-LLC1細胞株移植マウスからの腫瘍組織の摘出とリンパ球画分の調製
摘出された腫瘍組織について、重量が測定された後に、リンパ球画分単離が実施された。リンパ球画分はTumor Dissociation Kit, mouse(Miltenyi Biotec)を用いて組織破砕後、セルストレーナーを用いて得られたリンパ球画分が使用された。得られた腫瘍由来リンパ球画分はフローサイトメトリー (FCM) 解析が実施された。
18.1.2. Removal of tumor tissue from mice implanted with CLDN6-LLC1 cell line and preparation of lymphocyte fraction After measuring the weight of the removed tumor tissue, lymphocyte fraction isolation was performed. The lymphocyte fraction was obtained by disintegrating the tissue using a Tumor Dissociation Kit, mouse (Miltenyi Biotec) and using a cell strainer. The obtained tumor-derived lymphocyte fraction was analyzed by flow cytometry (FCM).

18.1.3. フローサイトメトリー (FCM) 解析による腫瘍重量当たりのCD8陽性T細胞数の算出
腫瘍由来のT細胞数についてFCMを用いて解析を実施した。腫瘍重量当たりのCD8陽性T細胞数算出には、腫瘍重量値とFCMによるCD8陽性T細胞胞数が用いられた。FCM解析では抗CD45抗体 (BD Biosciences)、抗CD3抗体 (BioLegend)、抗CD8抗体 (BioLegend)、抗CD4抗体 (BioLegend) が用いられた。測定には、BD LSRFortessa X-20 (BDBiosciences) が用いられた。
その結果、腫瘍移植14日後(投与6日後(Day 6))のCS4135投与群において、腫瘍重量当たりのCD8陽性T細胞数の顕著な増加が認められた(図24)。
18.1.3. Calculation of the number of CD8 positive T cells per tumor weight by flow cytometry (FCM) analysis The number of tumor-derived T cells was analyzed by FCM. The number of CD8 positive T cells per tumor weight was calculated using the tumor weight and the number of CD8 positive T cells by FCM. Antibodies used for FCM analysis were anti-CD45 antibody (BD Biosciences), anti-CD3 antibody (BioLegend), anti-CD8 antibody (BioLegend), and anti-CD4 antibody (BioLegend). Measurements were performed using BD LSRFortessa X-20 (BD Biosciences).
As a result, a significant increase in the number of CD8 positive T cells per tumor weight was observed in the CS4135 administration group 14 days after tumor inoculation (6 days after administration (Day 6)) (FIG. 24).

18.2.1. 細胞株およびsyngenic移植モデルの作製、ならびに抗腫瘍活性の評価方法
本試験において、クローディン6(CLDN6)を強制発現した肺がん細胞株LLC1 (CLDN6-LLC1)と、hCD137 KI/hCD3Tgマウス(上述の実施例7に記載)が使用された。CLDN6-LLC1細胞株はマウスの右側腹部皮下に移植され、群分けは移植6日後に行った。腫瘍体積が104~140 mm3となった個体を用いて群分けを行った。溶媒及びCS4135抗体は移植6日後にマウス尾静脈内に投与された。溶媒として0.05% Tween-20含有PBSが使用された。溶媒及び抗マウスPD-L1抗体 (Bio X cell)は移植6、8、10、12、14、17日後にマウス腹腔内に投与された。
18.2.1. Preparation of cell lines and syngenic transplantation models, and methods for evaluating antitumor activity In this study, the lung cancer cell line LLC1 (CLDN6-LLC1) overexpressing claudin 6 (CLDN6) and hCD137 KI/hCD3Tg mice (described in Example 7 above) were used. The CLDN6-LLC1 cell line was subcutaneously transplanted into the right flank of the mice, and mice were divided into groups 6 days after transplantation. Mice with tumor volumes of 104-140 mm3 were used for group division. Vehicle and CS4135 antibody were administered into the tail vein of mice 6 days after transplantation. PBS containing 0.05% Tween-20 was used as the vehicle. Vehicle and anti-mouse PD-L1 antibody (Bio X cell) were administered into the peritoneal cavity of mice 6, 8, 10, 12, 14, and 17 days after transplantation.

Figure 0007470760000022
Figure 0007470760000022

腫瘍体積は、移植6、10、12、14、17日後に測定し、各群の平均腫瘍体積を示した。腫瘍体積は以下の計算式にて算出された。
腫瘍体積(mm3) = 長径(mm) × 短径(mm) × 短径(mm)/2
The tumor volumes were measured 6, 10, 12, 14, and 17 days after transplantation, and the average tumor volume for each group is shown. The tumor volume was calculated using the following formula:
Tumor volume ( mm3 ) = major axis (mm) × minor axis (mm) × minor axis (mm)/2

腫瘍増殖抑制作用(Tumor Growth Inhibition: TGI)は、以下の計算式にて算出された。
TV change (mm3) =移植17日後時点の腫瘍体積-群分け時の腫瘍体積
TGI (%) = (1-(各群ごとのTV change平均値/Vehicle control群のTV change平均値))×100
Tumor growth inhibition (TGI) was calculated using the following formula.
TV change (mm 3 ) = tumor volume 17 days after transplantation - tumor volume at the time of group division
TGI (%) = (1 - (mean TV change for each group / mean TV change for vehicle control group)) x 100

その結果、移植17日後のCS4135抗体と抗マウスPD-L1抗体の併用投与群のTGIは108%だったが、CS4135抗体単剤投与群と抗マウスPD-L1抗体単剤投与群のTGIは各々71%、-1%だった。従って、CS4135抗体と抗マウスPD-L1抗体の併用投与群は、CS4135抗体単剤投与群や抗マウスPD-L1抗体単剤投与群よりも強くかつ相乗的な抗腫瘍効果を有することが示された(図25、表22)。 As a result, 17 days after implantation, the TGI in the group administered the combination of CS4135 antibody and anti-mouse PD-L1 antibody was 108%, while the TGI in the group administered CS4135 antibody alone and the group administered anti-mouse PD-L1 antibody alone were 71% and -1%, respectively. Therefore, it was demonstrated that the group administered the combination of CS4135 antibody and anti-mouse PD-L1 antibody had a stronger and synergistic anti-tumor effect than the group administered CS4135 antibody alone or the group administered anti-mouse PD-L1 antibody alone (Figure 25, Table 22).

Figure 0007470760000023
Figure 0007470760000023

[実施例19] 抗CLDN6/Dual-Fab三重特異性抗体CS4135とPARP阻害剤との併用に関する薬効評価試験
19.1. PARP阻害剤の投与によるCLDN6発現誘導の評価
PARP阻害剤(オラパリブ(Olaparib))によるCLDN6発現誘導を評価した。ヒトCLDN6を発現するBRCA1欠損卵巣がん細胞株UWB1.289(ATCC)またはBRCA1野生型卵巣がん細胞株OV-90(ATCC)を用いた。
3mL/ウェルで、3×105個の標的細胞を6穴プレートにプレーティングした。一晩培養後、最終濃度が0.03, 0.1, 0.3, 1, 3μMとなるようにオラパリブを添加した。コントロールウェルにはDMSOを添加した。プレートを3日間培養後、細胞を回収して抗CLDN6抗体を用いたFACS解析により細胞表面のCLDN6発現量を測定した。コントロールウェルから回収した標的細胞における蛍光値を1としたときの、オラパリブ各濃度添加ウェルから回収した標的細胞における蛍光値を図26に示す。
[Example 19] Efficacy evaluation test for the combined use of anti-CLDN6/Dual-Fab trispecific antibody CS4135 and PARP inhibitor
19.1. Evaluation of CLDN6 expression induction by administration of PARP inhibitors
We evaluated the induction of CLDN6 expression by the PARP inhibitor (olaparib).Using the BRCA1-deficient ovarian cancer cell line UWB1.289 (ATCC) or the BRCA1 wild-type ovarian cancer cell line OV-90 (ATCC), which express human CLDN6.
3 × 105 target cells were plated in a 6-well plate at 3 mL/well. After overnight culture, olaparib was added to the plate at final concentrations of 0.03, 0.1, 0.3, 1, and 3 μM. DMSO was added to the control wells. After culturing the plate for 3 days, the cells were harvested and the expression level of CLDN6 on the cell surface was measured by FACS analysis using an anti-CLDN6 antibody. The fluorescence value of the target cells harvested from the wells containing each concentration of olaparib is shown in Figure 26 , with the fluorescence value of the target cells harvested from the control well set to 1.

BRCA1欠損卵巣がん細胞株UWB1.289ではオラパリブ濃度依存的にCLDN6発現誘導亢進が見られた。一方、BRCA1野生型卵巣がん細胞株OV-90ではオラパリブの濃度にかかわらずCLDN6発現誘導亢進は見られなかった。 Olaparib concentration-dependently induced CLDN6 expression in the BRCA1-deficient ovarian cancer cell line UWB1.289, whereas no CLDN6 expression was induced in the BRCA1 wild-type ovarian cancer cell line OV-90, regardless of the Olaparib concentration.

19.2. PARP阻害剤投与細胞に対する、抗CLDN6/Dual-Fab三重特異性抗体CS4135の細胞傷害活性
BRCA1欠損卵巣がん細胞株UWB1.289に対するPARP阻害剤(オラパリブ)によるCLDN6発現誘導亢進が、抗CLDN6/Dual-Fab三重特異性抗体CS4135の細胞傷害活性に与える影響を評価した。
19.2. Cytotoxic activity of anti-CLDN6/Dual-Fab trispecific antibody CS4135 against PARP inhibitor-treated cells
We evaluated the effect of increased CLDN6 expression induced by the PARP inhibitor (olaparib) on the cytotoxic activity of the anti-CLDN6/Dual-Fab trispecific antibody CS4135 in the BRCA1-deficient ovarian cancer cell line UWB1.289.

ヒトCLDN6を発現するBRCA1欠損卵巣がん細胞株UWB1.289(ATCC)またはBRCA1野生型卵巣がん細胞株OV-90(ATCC)を標的細胞として用いた。
3×105個のそれぞれの標的細胞を25cm2フラスコに5mL播いた。フラスコは2本用意した。一晩培養後、片方のフラスコには最終濃度が3μMとなるようにオラパリブを添加した。もう片方のフラスコにはDMSOを添加した。フラスコを3日間培養後に標的細胞を回収し、ヒトPBMCをエフェクター細胞として乳酸デヒドロゲナーゼ(LDH)放出アッセイによってCS4135抗体の細胞傷害活性を評価した。その結果を図27に示す。
BRCA1欠損卵巣がん細胞株UWB1.289ではオラパリブ添加によるPPU4135の細胞傷害活性の亢進が見られた。一方、BRCA1野生型卵巣がん細胞株OV-90ではオラパリブの添加は細胞傷害活性に影響を与えなかった。
The BRCA1-deficient ovarian cancer cell line UWB1.289 (ATCC) expressing human CLDN6 or the BRCA1 wild-type ovarian cancer cell line OV-90 (ATCC) were used as target cells.
3 × 105 of each target cell were seeded in 5 mL of a 25 cm2 flask. Two flasks were prepared. After overnight culture, olaparib was added to one flask to a final concentration of 3 μM. DMSO was added to the other flask. After culturing the flask for 3 days, the target cells were harvested and the cytotoxic activity of the CS4135 antibody was evaluated by lactate dehydrogenase (LDH) release assay using human PBMC as effector cells. The results are shown in Figure 27 .
Addition of olaparib enhanced the cytotoxic activity of PPU4135 in the BRCA1-deficient ovarian cancer cell line UWB1.289, whereas addition of olaparib had no effect on the cytotoxic activity in the BRCA1 wild-type ovarian cancer cell line OV-90.

[実施例20] リアルタイム細胞増殖阻害アッセイ(xCELLigenceアッセイ)を用いたCS4135抗体のメカニズム解析
抗CLDN6/Dual-Fab三重特異性抗体によって媒介されるT細胞依存性増殖阻害のメカニズムをxCELLigence RTCA MP機器(ACEA Biosciences)を用いた細胞増殖アッセイによって解析した。
[Example 20] Analysis of the mechanism of CS4135 antibody using a real-time cell proliferation inhibition assay (xCELLigence assay) The mechanism of T cell-dependent proliferation inhibition mediated by the anti-CLDN6/Dual-Fab trispecific antibody was analyzed by a cell proliferation assay using the xCELLigence RTCA MP instrument (ACEA Biosciences).

ヒトCLDN6を発現する、マウス結腸がん細胞株MC38/CLDN6を、標的細胞として用いた。hCD3トランスジェニックマウス、hCD3/hCD137ノックインマウスの脾臓を無菌的に採取した。10% FBSを含有するRPMI-1640培地中で脾臓をすりつぶし、70μmのCell strainerに通した後、遠心分離(室温にて1200 rpmで10分間)することで脾臓細胞を単離した。単離した脾臓細胞を溶血し、さらにCD3 MicroBeads(Miltenyi Biotec)を用いてT細胞のみ分離してエフェクター細胞として用いた。 The mouse colon cancer cell line MC38/CLDN6, which expresses human CLDN6, was used as the target cells. Spleens were collected aseptically from hCD3 transgenic mice and hCD3/hCD137 knock-in mice. The spleens were ground in RPMI-1640 medium containing 10% FBS, passed through a 70 μm cell strainer, and then centrifuged (1200 rpm at room temperature for 10 minutes) to isolate spleen cells. The isolated spleen cells were hemolyzed, and only T cells were isolated using CD3 MicroBeads (Miltenyi Biotec) and used as effector cells.

E-Plate 96プレート(Roche Diagnostics)に50μL/ウェルで培地を加えてバックグラウンドを測定したのち、50μL/ウェルで、5×103個の標的細胞をプレーティングした。一晩培養後、1 nM(終濃度)のCS4135と100 nM、500 nM(終濃度)から選択されるKLH/CD137二重特異性抗体をそれぞれ25μL/ウェルで添加した。さらに2.5×104個のエフェクター細胞を50μL/ウェルで添加した。プレートのインキュベーションの間、48時間にわたって10分毎に細胞増殖をxCELLigenceを用いてモニターした。細胞増殖阻害率(CGI:%)を、
CGI (%) = 100 - (CIAb×100 / CINoAb)
として与えられる式に従って、Cell Index値から決定した。「CIAb」は、特定の実験時間における、抗体ありのウェルのCell Index値を表し、「CINoAb」は、同じ実験時間における抗体なしのウェルの平均Cell Index値を表す。なお、各Cell Index値は抗体及びエフェクター細胞添加前の各ウェルのCell Index値を1として補正した値を用いた。
After background measurement by adding 50 μL/well of medium to E-Plate 96 plates (Roche Diagnostics), 5 × 10 3 target cells were plated at 50 μL/well. After overnight incubation, CS4135 at 1 nM (final concentration) and KLH/CD137 bispecific antibodies selected from 100 nM and 500 nM (final concentrations) were added at 25 μL/well. In addition, 2.5 × 10 4 effector cells were added at 50 μL/well. During the incubation of the plates, cell proliferation was monitored every 10 min for 48 h using xCELLigence. The percentage of cell proliferation inhibition (CGI: %) was calculated as:
CGI (%) = 100 - (CI Ab × 100 / CI NoAb )
The cell index was determined from the cell index value according to the formula given below. "CI Ab " represents the cell index value of wells with antibody at a specific experimental time, and "CI NoAb " represents the average cell index value of wells without antibody at the same experimental time. Each cell index value was corrected by setting the cell index value of each well before the addition of antibody and effector cells to 1.

hCD3/hCD137ノックインマウス由来のT細胞を用いた場合において、KLH/CD137二重特異性抗体無添加時のCS4135抗体はhCD3トランスジェニックマウス由来のT細胞を用いた場合に比べてはるかに高い細胞増殖阻害率を示したが、KLH/CD137二重特異性抗体用量依存的に細胞増殖阻害率は低下し、KLH/CD137二重特異性抗体を500 nM(終濃度)添加した時にはhCD3トランスジェニックマウス由来のT細胞を用いた場合と同程度まで細胞増殖阻害率が低下した。この結果から、CS4135抗体によるCD137シグナルが細胞傷害活性を亢進していることが示された。結果を図28に示す。 When T cells derived from hCD3/hCD137 knock-in mice were used, the CS4135 antibody showed a much higher cell proliferation inhibition rate than T cells derived from hCD3 transgenic mice when the KLH/CD137 bispecific antibody was not added. However, the cell proliferation inhibition rate decreased in a dose-dependent manner, and when the KLH/CD137 bispecific antibody was added at 500 nM (final concentration), the cell proliferation inhibition rate decreased to the same level as when T cells derived from hCD3 transgenic mice were used. This result indicates that the CD137 signal by the CS4135 antibody enhances cytotoxic activity. The results are shown in Figure 28.

[実施例21]
21.1. 化学療法剤によるCLDN6発現誘導
ヒト卵巣がん細胞株(NIH:OVCAR-3, ATCC)に各種化学療法剤を添加し、CLDN6の発現変化について解析した。培養プレートに播種したNIH:OVCAR-3細胞について、薬剤非添加(無処理)の細胞から、あるいは、カルボプラチン(0.5μg/ml)シスプラチン (0.1μg/ml)、イリノテカン(0.25μg/ml)、またはゲムシタビン (2ng/ml)を添加して6日後に回収された細胞から、RNAを精製した(RNeasy Mini Kit, QIAGEN)。続いてcDNA合成を行い(Superscript IV VILO Master Mix, ThermoFisher)、これを鋳型にして、CLDN6特異的なプライマーによりリアルタイムPCRを行い(Power SYBR(登録商標) Green Master Mix, ThermoFisher)、CLDN6の発現を解析した(QuantStudio 12K Flex Real-Time PCR System, ThermoFisher)。
[Example 21]
21.1. Induction of CLDN6 expression by chemotherapeutic agents Various chemotherapeutic agents were added to human ovarian cancer cell lines (NIH:OVCAR-3, ATCC), and changes in CLDN6 expression were analyzed. RNA was purified (RNeasy Mini Kit, QIAGEN) from cells without drug addition (untreated) or from cells harvested 6 days after addition of carboplatin (0.5 μg/ml), cisplatin (0.1 μg/ml), irinotecan (0.25 μg/ml), or gemcitabine (2 ng/ml) to NIH:OVCAR-3 cells seeded on culture plates. cDNA was then synthesized (Superscript IV VILO Master Mix, ThermoFisher), and real-time PCR was performed using this as a template with CLDN6-specific primers (Power SYBR® Green Master Mix, ThermoFisher), and CLDN6 expression was analyzed (QuantStudio 12K Flex Real-Time PCR System, ThermoFisher).

ヒトCLDN6に対するプライマー、およびインターナルコントロールとして用いたヒトGAPDHに対するプライマーの配列は以下のとおりである。
hCLDN6-1: GGG TGG ACG TCT TAT CAG GA(配列番号:206)
hCLDN6-2: GAG CTC CTC TCT TCA CCC CT(配列番号:207)hGAPDH-F: GAG TCC ACT GGC GTC TTC AC(配列番号:208)
hGAPDH-R: ATC TTG AGG CTG TTG TCA TAC TT(配列番号:209)
The sequences of the primers for human CLDN6 and for human GAPDH used as an internal control are as follows:
hCLDN6-1: GGG TGG ACG TCT TAT CAG GA (SEQ ID NO: 206)
hCLDN6-2: GAG CTC CTC TCT TCA CCC CT (SEQ ID NO: 207) hGAPDH-F: GAG TCC ACT GGC GTC TTC AC (SEQ ID NO: 208)
hGAPDH-R: ATC TTG AGG CTG TTG TCA TAC TT (SEQ ID NO: 209)

図29は、NIH:OVCAR-3細胞について、薬剤非添加(無処理)の細胞、あるいは、カルボプラチン、シスプラチン、イリノテカン、またはゲムシタビン添加の細胞の、CLDN6の発現をqPCRで解析した結果である。薬剤非添加の細胞に比べ、カルボプラチン、シスプラチン、イリノテカン、およびゲムシタビン処理細胞では、CLDN6の発現が上昇していることが確認された。 Figure 29 shows the results of qPCR analysis of CLDN6 expression in NIH:OVCAR-3 cells, either in cells without drug addition (untreated) or in cells with carboplatin, cisplatin, irinotecan, or gemcitabine addition. Compared to cells without drug addition, it was confirmed that CLDN6 expression was increased in cells treated with carboplatin, cisplatin, irinotecan, and gemcitabine.

21.2 化学療法剤によるTGFβ1の発現誘導
続いて、実施例21.1で使用した、カルボプラチン、シスプラチン、イリノテカン、またはゲムシタビンで処理したヒト卵巣がん細胞株(NIH:OVCAR-3, ATCC)より調製したcDNAを鋳型にして、TGFβ1特異的なプライマーによりリアルタイムPCRを行い(Power SYBR(登録商標) Green Master Mix, ThermoFisher)、TGFβ1の発現を解析した(QuantStudio 12K Flex Real-Time PCR System, ThermoFisher)。
21.2 Induction of TGFβ1 Expression by Chemotherapeutic Agents Next, using cDNA prepared from human ovarian cancer cell lines (NIH:OVCAR-3, ATCC) treated with carboplatin, cisplatin, irinotecan, or gemcitabine used in Example 21.1 as a template, real-time PCR was performed with TGFβ1-specific primers (Power SYBR® Green Master Mix, ThermoFisher) to analyze the expression of TGFβ1 (QuantStudio 12K Flex Real-Time PCR System, ThermoFisher).

ヒトTGFβ1 に対するプライマーの配列は以下のとおりである。
hTGFβ1-F : AGTGGTTGAGCCGTGGAG (配列番号:214)
hTGFβ1-R : CGGTAGTGAACCCGTTGAT (配列番号:215)
インターナルコントロールとして用いたヒトGAPDHに対するプライマーは、上記実施例21.1と同じものを使用した。
The sequences of the primers for human TGFβ1 are as follows:
hTGFβ1-F: AGTGGTTGAGCCGTGGAG (SEQ ID NO: 214)
hTGFβ1-R: CGGTAGTGAACCCGTTGAT (SEQ ID NO: 215)
The primers for human GAPDH used as an internal control were the same as those used in Example 21.1 above.

図30は NIH:OVCAR-3細胞について、薬剤非添加(無処理)の細胞、あるいは、カルボプラチン、シスプラチン、イリノテカン、またはゲムシタビンを添加の細胞の、TGFβ1の発現をqPCRで解析した結果である。薬剤非添加の細胞に比べ、カルボプラチン、シスプラチン、イリノテカン、およびゲムシタビン処理細胞では、TGFβ1の発現が上昇していることが確認された。 Figure 30 shows the results of qPCR analysis of TGFβ1 expression in NIH:OVCAR-3 cells, either in cells without drug addition (untreated) or in cells treated with carboplatin, cisplatin, irinotecan, or gemcitabine. Compared to cells without drug addition, it was confirmed that TGFβ1 expression was increased in cells treated with carboplatin, cisplatin, irinotecan, and gemcitabine.

21.3 TGFβによるCLDN6発現誘導
実施例21.1において、細胞を化学療法剤で処理するとCLDN6の発現が上昇することを確認した。
また、実施例21.2において、化学療法剤による癌細胞のTGFβ1の発現誘導が確認された。実施例21.2において確認された化学療法剤以外にも、抗がん剤によるTGFβ1の発現誘導は知られている。例えば、ドキソルビシンやパクリタキセルなどの化学療法剤や、放射線照射により、癌細胞のTGFβ1の発現が誘導されることが報告されている(Barcellos-Hoff et al., J Clin Invest. 1994 Feb;93(2):892-9.および Bhola et al., J Clin Invest. 2013 Mar;123(3):1348-58.)。
21.3 Induction of CLDN6 Expression by TGFβ In Example 21.1, it was confirmed that CLDN6 expression was increased when cells were treated with a chemotherapeutic agent.
In addition, in Example 21.2, induction of TGFβ1 expression in cancer cells by chemotherapeutic agents was confirmed. In addition to the chemotherapeutic agents confirmed in Example 21.2, induction of TGFβ1 expression by anticancer agents is also known. For example, it has been reported that chemotherapeutic agents such as doxorubicin and paclitaxel, and radiation exposure induce the expression of TGFβ1 in cancer cells (Barcellos-Hoff et al., J Clin Invest. 1994 Feb;93(2):892-9. and Bhola et al., J Clin Invest. 2013 Mar;123(3):1348-58.).

このことから、抗がん剤処理で誘導されたTGFβ1がCLDN6の発現に影響を与える可能性が推測された。そこでヒト卵巣がん細胞株(NIH:OVCAR-3, ATCC)に対してTGFβ1がCLDN6の発現を誘導するか解析した。培養プレートに播種したNIH:OVCAR-3細胞について、無処理の細胞から、あるいはTGFβ1(R & D Systems, 10ng/ml)を添加して5日後に回収した細胞から、RNAを精製した(RNeasy Mini Kit, QIAGEN)。続いてcDNA合成を行い(Superscript IV VILO Master Mix, ThermoFisher)、これを鋳型にして、CLDN6特異的なプライマーによりリアルタイムPCRを行い(Power SYBR(登録商標) Green Master Mix, ThermoFisher)、CLDN6の発現を解析した(QuantStudio 12K Flex Real-Time PCR System, ThermoFisher)。 This led us to speculate that TGFβ1 induced by anticancer drug treatment may affect CLDN6 expression. We therefore analyzed whether TGFβ1 induces CLDN6 expression in a human ovarian cancer cell line (NIH:OVCAR-3, ATCC). RNA was purified (RNeasy Mini Kit, QIAGEN) from untreated NIH:OVCAR-3 cells seeded on a culture plate or from cells harvested 5 days after the addition of TGFβ1 (R & D Systems, 10 ng/ml). Next, cDNA was synthesized (Superscript IV VILO Master Mix, ThermoFisher), and real-time PCR was performed using this as a template with CLDN6-specific primers (Power SYBR® Green Master Mix, ThermoFisher) to analyze CLDN6 expression (QuantStudio 12K Flex Real-Time PCR System, ThermoFisher).

ヒトCLDN6に対するプライマーおよびインターナルコントロールとして用いたヒトGAPDHに対するプライマーは、上記実施例21.1と同じものを使用した。 The primers for human CLDN6 and the primers for human GAPDH used as an internal control were the same as those used in Example 21.1 above.

図31は、NIH:OVCAR-3細胞について、無処理の細胞、あるいはTGFβ1添加細胞の、CLDN6の発現をqPCRで解析した結果である。無処理の細胞に比べ、TGFβ1添加細胞では、CLDN6の発現が上昇していることが確認された。 Figure 31 shows the results of qPCR analysis of CLDN6 expression in untreated NIH:OVCAR-3 cells and cells treated with TGFβ1. It was confirmed that CLDN6 expression was increased in cells treated with TGFβ1 compared to untreated cells.

次に他の卵巣癌細胞株に対してもTGFβ1がCLDN6の発現を誘導するか解析を行った。NIH:OVCAR-3細胞に加え、COV413A細胞 (ECACC)、COV413B (ECACC)、COV362 (ECACC)を培養プレートに播種し、TGFβ1を10ng/mlで添加した。4日後に細胞を回収し、FACS解析によりCLDN6の発現を解析した。 Next, we analyzed whether TGFβ1 induces CLDN6 expression in other ovarian cancer cell lines. In addition to NIH:OVCAR-3 cells, COV413A cells (ECACC), COV413B (ECACC), and COV362 (ECACC) were seeded onto culture plates, and TGFβ1 was added at 10 ng/ml. After 4 days, the cells were harvested, and CLDN6 expression was analyzed by FACS analysis.

FACS解析では、細胞を培養フラスコより剥離し細胞懸濁液をAlexa Flour 488標識(Alexa Fluor 488 antibody labeling kit, ThermoFisher Scientific)で標識した抗CLDN6抗体(CS4135 mIgG1: 重鎖および軽鎖アミノ酸配列は、それぞれ配列番号:210および配列番号:211に示され、重鎖および軽鎖ヌクレオチド配列は、それぞれ配列番号:212および配列番号:213に示される)で染色し、CLDN6の発現量をフローサイトメーター(FACSlyric, BD Biosciences)で解析した。CS4135 mIgG1抗体は、CS4135抗体のFabにマウスIgG1のFc領域を連結したキメラ抗体である。 For FACS analysis, cells were detached from the culture flask, and the cell suspension was stained with anti-CLDN6 antibody (CS4135 mIgG1: heavy and light chain amino acid sequences are shown in SEQ ID NO: 210 and SEQ ID NO: 211, respectively, and heavy and light chain nucleotide sequences are shown in SEQ ID NO: 212 and SEQ ID NO: 213, respectively) labeled with Alexa Fluor 488 (Alexa Fluor 488 antibody labeling kit, ThermoFisher Scientific), and the expression level of CLDN6 was analyzed using a flow cytometer (FACSlyric, BD Biosciences). The CS4135 mIgG1 antibody is a chimeric antibody in which the Fab of the CS4135 antibody is linked to the Fc region of mouse IgG1.

図32は、TGFβ1で刺激した各種細胞と非処理の各種細胞におけるCLDN6の発現をFACSで解析した結果である。いずれの細胞もTGFβ1刺激により、CLDN6の発現が上昇することが確認された。すなわち、TGFβ1が各種がん細胞に対してCLDN6の発現を誘導する剤であることが確認された。このことから、特定の理論に縛られることを望むものではないが、TGFβ1発現を誘導する剤により、CLDN6の発現が増強されると考えられ、また、TGFβ1発現を誘導する剤とCLDN6結合抗体との併用により、相加的・相乗的な抗がん作用が奏されると考えられる。 Figure 32 shows the results of FACS analysis of CLDN6 expression in various cells stimulated with TGFβ1 and various untreated cells. It was confirmed that CLDN6 expression increased in all cells upon stimulation with TGFβ1. In other words, it was confirmed that TGFβ1 is an agent that induces CLDN6 expression in various cancer cells. From this, without wishing to be bound by a particular theory, it is believed that CLDN6 expression is enhanced by an agent that induces TGFβ1 expression, and furthermore, it is believed that the combined use of an agent that induces TGFβ1 expression and a CLDN6-binding antibody exerts additive and synergistic anti-cancer effects.

[参考実施例1]抗CLDN6/Dual-Fab三重特異性抗体の精製[Reference Example 1] Purification of anti-CLDN6/Dual-Fab trispecific antibody

ヘテロ二量体化のための各変異を有する重鎖定常領域および軽鎖定常領域を含有する発現ベクター内に、重鎖可変領域および軽鎖可変領域をクローニングした。
in vitroおよびin vivo研究向けの抗CLDN6/Dual-Fab三重特異性抗体の大規模調製のために、製造者の指示に従って、Expi293F細胞(Life technologies)を用いて、抗体を一過性に発現させた。最初に、組換え抗体を含有する培養培地をMabSelect Sure(GE healthcare)カラムで精製し、50 mM酢酸で溶出した。溶出した抗体を1.5 M Tris HCl/1 MアルギニンHCl緩衝液で中和した。次いで、ProA溶出物を、20 mMリン酸ナトリウム、pH6緩衝液中、カチオン交換HiTrap SP-HP(GE healthcare)カラム上に添加し、20 mMリン酸ナトリウム、1M NaCl、pH6緩衝液で溶出した。二重特異性抗体を含有する画分をプールし、濃縮した。高分子量および/または低分子量の構成成分を取り除くために、サイズ排除クロマトグラフィーを、P1緩衝液(20 mMヒスチジン、150 mMアルギニン、162.1 mM Asp、pH6.0)中、Superdex 200カラム(GE healthcare)を用いて実施した。精製した二重特異性抗体を濃縮し、-80℃の冷凍庫で保管した。
The heavy and light chain variable regions were cloned into an expression vector containing the heavy and light chain constant regions with the respective mutations for heterodimerization.
For large-scale preparation of anti-CLDN6/Dual-Fab trispecific antibodies for in vitro and in vivo studies, the antibodies were transiently expressed using Expi293F cells (Life technologies) according to the manufacturer's instructions. First, the culture medium containing the recombinant antibodies was purified on a MabSelect Sure (GE healthcare) column and eluted with 50 mM acetic acid. The eluted antibodies were neutralized with 1.5 M Tris HCl/1 M arginine HCl buffer. The ProA eluate was then loaded onto a cation-exchange HiTrap SP-HP (GE healthcare) column in 20 mM sodium phosphate, pH 6 buffer, and eluted with 20 mM sodium phosphate, 1 M NaCl, pH 6 buffer. The fractions containing the bispecific antibodies were pooled and concentrated. To remove high and/or low molecular weight components, size exclusion chromatography was performed using a Superdex 200 column (GE healthcare) in P1 buffer (20 mM histidine, 150 mM arginine, 162.1 mM Asp, pH 6.0). The purified bispecific antibody was concentrated and stored in a -80°C freezer.

[参考実施例2]クローディン発現細胞の生成[Reference Example 2] Generation of claudin-expressing cells

ヒトCLDN6、ヒトCLDN9(配列番号:198)、ヒトCLDN3(配列番号:199)、ヒトCLDN4(配列番号:200)、マウスCLDN6(配列番号:201)、マウスCLDN9(配列番号:202)、マウスCLDN3(配列番号:203)、およびマウスCLDN4(配列番号:204)発現ベクターをそれぞれマウスプロB細胞株Ba/F3にトランスフェクトすることによって、ヒトCLDN6を発現するBa/F3細胞(hCLDN6/BaF)、ヒトCLDN9を発現するBa/F3細胞(hCLDN9/BaF)、ヒトCLDN3を発現するBa/F3細胞(hCLDN3/BaF)、ヒトCLDN4を発現するBa/F3細胞(hCLDN4/BaF)、マウスCLDN6を発現するBa/F3細胞(mCLDN6/BaF)、マウスCLDN9を発現するBa/F3細胞(mCLDN9/BaF)、マウスCLDN3を発現するBa/F3細胞(mCLDN3/BaF)、およびマウスCLDN4を発現するBa/F3細胞(mCLDN4/BaF)を樹立した。 Human CLDN6-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN6 ...6-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9-expressing Ba/F3 cells (hCLDN6/BaF), human CLDN9 We established Ba/F3 cells expressing human CLDN6 (hCLDN9/BaF), Ba/F3 cells expressing human CLDN3 (hCLDN3/BaF), Ba/F3 cells expressing human CLDN4 (hCLDN4/BaF), Ba/F3 cells expressing mouse CLDN6 (mCLDN6/BaF), Ba/F3 cells expressing mouse CLDN9 (mCLDN9/BaF), Ba/F3 cells expressing mouse CLDN3 (mCLDN3/BaF), and Ba/F3 cells expressing mouse CLDN4 (mCLDN4/BaF).

クローディンファミリータンパク質は、抗体にとってアクセス可能な2つの細胞外ドメインを有する。ヒトCLDN6とヒトCLDN9とでの細胞外ドメイン間のアミノ酸配列類似性に関して、第1の細胞外ドメインはほぼ同一であり、第2の細胞外ドメインでは、異なるアミノ酸が2個だけ存在する(図18)。ヒトクローディン6の156位のグルタミン(配列番号:196または197に示される配列での156位)を、ロイシンに置換し、156位にヒトクローディン9と同じアミノ酸を含むヒトCLDN6変異体を作製した。このヒトCLDN6変異体をhCLDN6(Q156L)(配列番号:205)と名付けた。hCLDN6(Q156L)を安定的に発現するBa/F3トランスフェクタントを、上記に記載のものと類似の方法を用いて生成した。樹立したBa/F3トランスフェクタントをhCLDN6(Q156L)/BaFと名付けた。 Claudin family proteins have two extracellular domains accessible to antibodies. With regard to the amino acid sequence similarity between the extracellular domains of human CLDN6 and human CLDN9, the first extracellular domain is nearly identical, and the second extracellular domain has only two different amino acids (Figure 18). A human CLDN6 mutant containing the same amino acid at position 156 as human claudin 9 was generated by substituting glutamine at position 156 of human claudin 6 (position 156 in the sequence shown in SEQ ID NO: 196 or 197) with leucine. This human CLDN6 mutant was named hCLDN6(Q156L) (SEQ ID NO: 205). Ba/F3 transfectants stably expressing hCLDN6(Q156L) were generated using a method similar to that described above. The established Ba/F3 transfectant was named hCLDN6(Q156L)/BaF.

293fectin(Invitrogen)を用いてヒトおよびマウスCLDN(CLDN6、CLDN9、CLDN3、およびCLDN4を含む)の発現ベクターをFreeStyle(商標)293-F細胞(Invitrogen)に導入することによって、ヒトおよびマウスCLDN3、4、6、および9を一過性に発現するFreeStyle(商標)293-Fトランスフェクタント細胞を生成した。生成したFreeStyle(商標)293-Fトランスフェクタント細胞をそれぞれ、hCLDN3/FS293、hCLDN4/FS293、hCLDN6/FS293、hCLDN9/FS293、mCLDN3/FS293、mCLDN4/FS293、mCLDN6/FS293、およびmCLDN9/FS293と名付けた。 FreeStyle™ 293-F transfectant cells transiently expressing human and mouse CLDN3, 4, 6, and 9 were generated by introducing expression vectors for human and mouse CLDN (including CLDN6, CLDN9, CLDN3, and CLDN4) into FreeStyle™ 293-F cells (Invitrogen) using 293fectin (Invitrogen). The resulting FreeStyle™ 293-F transfectant cells were named hCLDN3/FS293, hCLDN4/FS293, hCLDN6/FS293, hCLDN9/FS293, mCLDN3/FS293, mCLDN4/FS293, mCLDN6/FS293, and mCLDN9/FS293, respectively.

本開示は、CD3およびCD137(4-1BB)に結合することができ、CD3またはCD137のいずれかに結合し、かつCLDN6に結合することができる、多重特異性抗原結合分子を含む抗がん剤、当該抗がん剤と少なくとも1つの他の抗がん剤との併用療法、及び当該併用療法に用いるための医薬組成物等を提供する。本開示の抗がん剤、医薬組成物、組み合わせ、キットに含まれる、または本開示の方法もしくは使用に用いられる多重特異性抗原結合分子は、種々のがん、特に、CLDN6陽性がんなどのCLDN6に関連するがんを治療するための免疫療法において使用するために、CLDN6を発現する細胞を標的とするのに用いることができる。 The present disclosure provides an anti-cancer agent comprising a multispecific antigen-binding molecule capable of binding to CD3 and CD137 (4-1BB), capable of binding to either CD3 or CD137, and capable of binding to CLDN6, a combination therapy of the anti-cancer agent with at least one other anti-cancer agent, and a pharmaceutical composition for use in the combination therapy. The multispecific antigen-binding molecule contained in the anti-cancer agent, pharmaceutical composition, combination, or kit of the present disclosure, or used in the method or use of the present disclosure, can be used to target cells expressing CLDN6 for use in immunotherapy to treat various cancers, particularly cancers associated with CLDN6, such as CLDN6-positive cancers.

Claims (10)

以下を含む多重特異性抗原結合分子を有効成分として含み、対象とするがんが、CLDN6陽性のがんである、抗がん剤:
列番号:42のアミノ酸配列を含む重鎖(鎖1)および配列番号:51のアミノ酸配列を含む軽鎖(鎖2)からなる第2の抗原結合部分、ならびに配列番号:56のアミノ酸配列を含む重鎖(鎖3)および配列番号:69のアミノ酸配列を含む軽鎖(鎖4)からなる第1の抗原結合部
An anticancer agent comprising as an active ingredient a multispecific antigen-binding molecule comprising the following, wherein the target cancer is a CLDN6-positive cancer:
a second antigen-binding portion consisting of a heavy chain (chain 1) comprising the amino acid sequence of SEQ ID NO: 42 and a light chain (chain 2) comprising the amino acid sequence of SEQ ID NO: 51, and a first antigen-binding portion consisting of a heavy chain (chain 3) comprising the amino acid sequence of SEQ ID NO: 56 and a light chain (chain 4) comprising the amino acid sequence of SEQ ID NO: 69.
前記第1の抗原結合部分は、
(i)CD3に結合する、
(ii)CD137に結合する、または
(iii)CD3およびCD137に結合することができ、CD3もしくはCD137のいずれかに結合する、
請求項1に記載の抗がん剤。
The first antigen-binding portion comprises:
(i) binds to CD3;
(ii) binds to CD137; or
(iii) capable of binding to CD3 and CD137, and binds to either CD3 or CD137;
The anticancer agent according to claim 1.
対象とするがんが、卵巣がん、非小細胞肺がん、胃がん、肝がん、子宮内膜がん、胚細胞性腫瘍、大腸がん、膀胱がん、または非定型奇形腫様ラブドイド腫瘍からなる群より選ばれる少なくとも1つのがんである、請求項1に記載の抗がん剤。 The anticancer agent according to claim 1, wherein the target cancer is at least one cancer selected from the group consisting of ovarian cancer, non-small cell lung cancer, gastric cancer, liver cancer, endometrial cancer, germ cell tumor, colon cancer, bladder cancer, and atypical teratoid rhabdoid tumor. 対象とするがんが、腹膜に転移したがんである、請求項1に記載の抗がん剤。 The anticancer agent according to claim 1, wherein the target cancer is cancer that has metastasized to the peritoneum. なくとも1つの他の抗がん剤による処置に対して不応性のがんを有する患者を治療するための、請求項1に記載の抗がん剤。 The anticancer agent of claim 1 for treating a patient having a cancer refractory to treatment with at least one other anticancer agent. 前記CLDN6陽性のがんが、他の抗がん剤による治療経験があるがんである、請求項1に記載の抗がん剤。 The anticancer agent according to claim 1, wherein the CLDN6-positive cancer is a cancer that has been previously treated with another anticancer agent. 前記CLDN6陽性のがんが、他の抗がん剤単独投与による治療に対して所望の効果が得られなかったがんである、請求項1に記載の抗がん剤。 The anticancer agent according to claim 1, wherein the CLDN6-positive cancer is a cancer for which the desired effect was not obtained when treated with a single administration of another anticancer agent. 薬学的に許容される担体をさらに含む、請求項1に記載の抗がん剤。 The anticancer agent according to claim 1, further comprising a pharma- ceutically acceptable carrier. 前記多重特異性抗原結合分子は、細胞傷害を誘導する、請求項1に記載の抗がん剤。 The anticancer agent according to claim 1, wherein the multispecific antigen-binding molecule induces cytotoxicity. 前記細胞傷害は、T細胞依存的細胞傷害である、請求項9に記載の抗がん剤。 The anticancer agent according to claim 9, wherein the cytotoxicity is T cell-dependent cytotoxicity.
JP2022154330A 2021-09-29 2022-09-28 Cytotoxicity-inducing therapeutic agent for use in the treatment of cancer Active JP7470760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023214776A JP2024039035A (en) 2021-09-29 2023-12-20 Cytotoxicity-inducing therapeutic agent for use in cancer treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022578651A JPWO2023053282A1 (en) 2021-09-29 2021-09-29
JP2022578651 2021-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023214776A Division JP2024039035A (en) 2021-09-29 2023-12-20 Cytotoxicity-inducing therapeutic agent for use in cancer treatment

Publications (2)

Publication Number Publication Date
JP2023050167A JP2023050167A (en) 2023-04-10
JP7470760B2 true JP7470760B2 (en) 2024-04-18

Family

ID=85802978

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022154330A Active JP7470760B2 (en) 2021-09-29 2022-09-28 Cytotoxicity-inducing therapeutic agent for use in the treatment of cancer
JP2023214776A Pending JP2024039035A (en) 2021-09-29 2023-12-20 Cytotoxicity-inducing therapeutic agent for use in cancer treatment

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023214776A Pending JP2024039035A (en) 2021-09-29 2023-12-20 Cytotoxicity-inducing therapeutic agent for use in cancer treatment

Country Status (1)

Country Link
JP (2) JP7470760B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500059A (en) 2012-11-13 2016-01-07 バイオエヌテック アーゲーBioNTech AG Agents for treating cancer diseases that express claudin
WO2019111871A1 (en) 2017-12-05 2019-06-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding cd3 and cd137
WO2019135404A1 (en) 2018-01-05 2019-07-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
WO2020067399A1 (en) 2018-09-28 2020-04-02 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region
WO2020067419A1 (en) 2018-09-28 2020-04-02 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules capable of binding cd3 and cd137 but not simultaneously
WO2021006328A1 (en) 2019-07-10 2021-01-14 Chugai Seiyaku Kabushiki Kaisha Claudin-6 binding molecules and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016500059A (en) 2012-11-13 2016-01-07 バイオエヌテック アーゲーBioNTech AG Agents for treating cancer diseases that express claudin
WO2019111871A1 (en) 2017-12-05 2019-06-13 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region binding cd3 and cd137
WO2019135404A1 (en) 2018-01-05 2019-07-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
WO2020067399A1 (en) 2018-09-28 2020-04-02 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule comprising altered antibody variable region
WO2020067419A1 (en) 2018-09-28 2020-04-02 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules capable of binding cd3 and cd137 but not simultaneously
WO2021006328A1 (en) 2019-07-10 2021-01-14 Chugai Seiyaku Kabushiki Kaisha Claudin-6 binding molecules and uses thereof

Also Published As

Publication number Publication date
JP2024039035A (en) 2024-03-21
JP2023050167A (en) 2023-04-10

Similar Documents

Publication Publication Date Title
KR102505383B1 (en) DLL3 Target Multispecific Antigen Binding Molecules and Their Uses
JP2017214405A (en) Cytotoxicity-inducing therapeutic agents for use in cancer therapy
JP6971419B2 (en) Multispecific antigen-binding molecule targeting claudin 6 and its use
WO2021200896A1 (en) Immune activating multispecific antigen-binding molecules and uses thereof
JPWO2017159287A1 (en) Cytotoxicity-inducing therapeutic agent for use in cancer treatment
JP7470760B2 (en) Cytotoxicity-inducing therapeutic agent for use in the treatment of cancer
WO2023054421A1 (en) Cytotoxicity-inducing therapeutic agent for use in treatment of cancer
WO2023054423A1 (en) Uses of dll3-targeting multispecific antigen-binding molecules
WO2022004761A1 (en) Site specific notch-activating molecule and uses thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7470760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150