JP7433191B2 - Flood damage response system - Google Patents

Flood damage response system Download PDF

Info

Publication number
JP7433191B2
JP7433191B2 JP2020184327A JP2020184327A JP7433191B2 JP 7433191 B2 JP7433191 B2 JP 7433191B2 JP 2020184327 A JP2020184327 A JP 2020184327A JP 2020184327 A JP2020184327 A JP 2020184327A JP 7433191 B2 JP7433191 B2 JP 7433191B2
Authority
JP
Japan
Prior art keywords
gas
flood
equipment
pressure
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020184327A
Other languages
Japanese (ja)
Other versions
JP2022074360A (en
Inventor
宏太 ▲桑▼原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2020184327A priority Critical patent/JP7433191B2/en
Publication of JP2022074360A publication Critical patent/JP2022074360A/en
Application granted granted Critical
Publication of JP7433191B2 publication Critical patent/JP7433191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、浸水を含む水害の発生を予測し当該予測に基づいて前記水害に対応する水害対応システムに関する。 The present invention relates to a water damage response system that predicts the occurrence of water damage including flooding and responds to the water damage based on the prediction.

昨今、大気中の温室効果ガスの濃度上昇が引き起こす地球規模の気象現象として、局地的な温暖化や、極渦の発生・移動による局地的な寒冷化が発生している。特に、局地的な温暖化に伴う海水温の上昇により、大気に含まれる水分が増加し局地的に降雨量が増加して、河川の氾濫等を伴う水害が発生する場合がある。
このような状況に鑑みて、例えば、各地点毎の降雨量時系列情報から水害が発生する確率分布を推定し、リスク指標を導出すると共に、それらを表示する水害対応システムが開発されている(例えば、特許文献1を参照)。
当該水害対応システムでは、水害が発生する確率分布から導出されるリスク指標、及び水害が発生する水害発生推定範囲を算出し、地図上に表示するよう構成され、これにより、水害による被害額の推定等を実行可能に構成されている。
Recently, local warming and local cooling due to the generation and movement of polar vortices are occurring as global weather phenomena caused by rising concentrations of greenhouse gases in the atmosphere. In particular, a rise in seawater temperature associated with local global warming may increase the amount of moisture contained in the atmosphere, leading to an increase in local rainfall and causing flood damage such as river flooding.
In view of this situation, for example, a flood response system has been developed that estimates the probability distribution of flood damage from time-series rainfall information for each location, derives risk indicators, and displays them ( For example, see Patent Document 1).
This flood response system is configured to calculate the risk index derived from the probability distribution of flood damage and the estimated area where flood damage will occur, and display it on a map, thereby estimating the amount of damage caused by flood damage. etc. is configured to be able to execute the following.

特開2006-4212号公報Japanese Patent Application Publication No. 2006-4212

上述したような水害が発生すると、例えば、一部の地域が水没するような事態になり得るが、当該水没地域にガス配管の二次側圧力を所定圧力に調整するガバナ等を含むガス設備が存在することがある。当該ガス設備が水没すると、当該ガス設備の挙動を制御することが困難となり、その二次側圧力が水圧により昇圧する場合があり、この場合、二次側のガス需要家のガス機器が使用されているときには、火炎が意図せず大きくなり噴出する虞がある。
このような事態の発生を防止するため、水害の発生前に比較的高い降雨量が予想される地域のガス設備を停止する対応が考えられるが、このような対応をとる場合、ガス設備を停止している期間に、停止したガス設備の二次側のガス需要家へのガス供給が停止する虞があり、利便性の観点から問題が生じる。
When the above-mentioned flood disaster occurs, for example, some areas may be submerged, but if there is gas equipment in the submerged area, including a governor that adjusts the secondary pressure of the gas piping to a predetermined pressure. It may exist. When the gas equipment is submerged in water, it becomes difficult to control the behavior of the equipment, and the pressure on the secondary side may increase due to water pressure. In this case, the gas equipment of the gas consumer on the secondary side may be used. There is a risk that the flame will grow larger and erupt unintentionally.
In order to prevent such a situation from occurring, it is possible to stop gas equipment in areas where relatively high rainfall is expected before a flood occurs; During this period, there is a risk that the gas supply to the gas consumers on the secondary side of the stopped gas equipment will be stopped, which poses a problem from the perspective of convenience.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、水害が発生する虞がある場合にも、水害発生地域及びその近傍にて、ガス需要家へのガス供給が極力維持されて利便性の低下を抑制しながらも、ガス需要家への供給ガス圧の昇圧に伴う事故を効果的に防止できる水害対応システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to maintain gas supply to gas consumers as much as possible in the flood-damaged area and its vicinity even when there is a risk of water damage occurring. It is an object of the present invention to provide a flood disaster response system that can effectively prevent accidents associated with an increase in the pressure of gas supplied to gas consumers while suppressing a decrease in convenience due to the increase in gas pressure.

上記目的を達成するための浸水を含む水害の発生を予測し当該予測に基づいて前記水害に対応する水害対応システムであって、その特徴構成は、
ガス配管及び当該ガス配管での供給ガス圧を制御するガス設備が存在するガス供給領域において、河川毎に決定される計画降雨量と雨量予測部にて予測された予想降雨量とから前記ガス供給領域において浸水が発生する確率が高い第1浸水発生予測領域及び前記第1浸水発生予測領域にて浸水が発生する浸水発生予測時点を予測する浸水発生予測部と、
前記浸水発生予測時点よりも予め決定された事前停止期間前の時点から、前記事前停止期間及び復旧に要する復旧期間に亘って事前停止し二次側へのガス供給を停止する前記ガス設備を、前記第1浸水発生予測領域に存在する前記ガス設備から事前停止許容設備として判定抽出する停止判定抽出部とを備え、
前記停止判定抽出部は、前記ガス供給領域に存在する前記ガス設備の二次側の圧力である二次圧と前記二次側のガス消費部における予測消費ガス量に基づいて、前記事前停止期間及び前記復旧期間に亘って前記二次側の前記ガス消費部に対してガス供給可能であると予測した前記ガス設備を、前記事前停止許容設備として判定抽出する第1判定抽出処理を実行する点にある。
To achieve the above object, there is provided a flood disaster response system that predicts the occurrence of flood damage including flooding and responds to the flood damage based on the prediction, and its characteristic configuration is as follows:
In a gas supply area where gas piping and gas equipment that controls the supply gas pressure in the gas piping are present, the gas supply is determined based on the planned rainfall amount determined for each river and the expected rainfall amount predicted by the rainfall prediction unit. a first flood occurrence prediction region in which the probability of flooding occurring is high; and a flood occurrence prediction unit that predicts a predicted time point at which flooding will occur in the first flood occurrence prediction region;
The gas equipment is pre-shutdowned and the gas supply to the secondary side is stopped from a point before a pre-determined pre-shutdown period before the predicted time of flooding, for the pre-shutdown period and the restoration period required for restoration. , a shutdown determination extraction unit that determines and extracts a preliminary shutdown permissible facility from the gas equipment existing in the first flood prediction area,
The stop determination extraction unit determines the preliminary stop based on the secondary pressure that is the pressure on the secondary side of the gas equipment existing in the gas supply area and the predicted gas consumption amount in the gas consumption unit on the secondary side. Executing a first determination extraction process for determining and extracting the gas equipment that is predicted to be capable of supplying gas to the gas consumption unit on the secondary side over the period and the recovery period as the equipment that is permitted to be shut down in advance. It is in the point of doing.

上記特徴構成によれば、浸水発生予測部が、浸水が発生する確率が高い第1浸水発生予測領域及び当該第1浸水発生予測領域にて浸水が発生する浸水発生予測時点を予測したときに、当該発生予測時点よりも前に、ガス設備のうち予め停止する事前停止許容設備を判定抽出できる。
換言すると、停止判定抽出部が、浸水発生予測時点よりも予め決定された事前停止期間前の時点から、事前停止期間に亘って事前停止し二次側へのガス供給を停止するガス設備を、第1浸水発生予測箇所に存在するガス設備から事前停止許容設備として判定抽出する際に、ガス供給領域に存在するガス設備の二次側の圧力である二次圧と二次側のガス消費部における予測消費ガス量に基づいて、事前停止期間に亘って二次側のガス消費部に対してガス供給可能であると予測したガス設備を、事前停止許容設備として判定抽出するので、第1浸水発生予測領域が浸水した場合であっても、当該第1浸水発生予測領域に設けられているガス設備を、事前停止許容設備としての判定に従って停止しておくことができ、停止した当該ガス設備の二次側のガス需要家等のガス消費部にて、ガス圧の昇圧による火炎の噴出等が生じることを防止できる。
更に、ガス設備を停止する、即ち、当該ガス設備を介する一次側から二次側へのガスの供給を停止する場合、停止している期間において、当該ガス設備の二次側のガス配管に存在するガスが、ガス需要家等のガス消費部にてガスが供給され使用されることになるため、二次側のガスが消費されガス圧が一定値を下回ると、ガス消費部へガスが供給されない供給支障が発生する恐れがある。
これに対し、上記特徴構成によれば、ガス設備を停止している期間は、停止したガス設備の二次側での予測消費ガス消費量と二次側の二次圧とに基づいて、事前停止期間に亘って二次側のガス消費部に対してガス供給可能であると予測したガス設備のみを、事前停止許容設備として事前に停止するから、事前停止期間に亘って二次側のガス消費部へのガス供給支障が発生するリスクを十分に低減できる。
以上より、水害が発生する虞がある場合にも、水害発生地域及びその近傍にて、ガス需要家へのガス供給が極力維持されて利便性の低下を抑制しながらも、ガス需要家への供給ガス圧の昇圧に伴う事故を効果的に防止できる水害対応システムを実現できる。
According to the above characteristic configuration, when the flooding occurrence prediction unit predicts the first flooding occurrence prediction area where flooding is likely to occur and the flooding occurrence prediction time point at which flooding will occur in the first flooding occurrence prediction area, It is possible to determine and extract equipment that is permitted to be stopped in advance from among the gas equipment before the predicted occurrence time point.
In other words, the stop determination extraction unit pre-shuts the gas equipment to stop the gas supply to the secondary side from a point before the pre-determined pre-shutdown period from the predicted time of flooding, for the pre-shutdown period. When determining and extracting gas equipment existing in the first predicted location as a pre-shutdown permissible equipment, the secondary pressure, which is the pressure on the secondary side of the gas equipment existing in the gas supply area, and the gas consumption part on the secondary side Based on the predicted gas consumption amount in Even if the predicted flooding area is flooded, the gas equipment installed in the first predicted flooding area can be stopped according to the judgment as equipment that is permitted to be shut down in advance, and the gas equipment installed in the first predicted flooded area can be stopped. It is possible to prevent flames from erupting due to an increase in gas pressure at a gas consumption unit such as a gas consumer on the secondary side.
Furthermore, when stopping gas equipment, that is, stopping the supply of gas from the primary side to the secondary side via the gas equipment, any gas that exists in the gas piping on the secondary side of the gas equipment during the period of suspension The gas is supplied and used by the gas consuming part of the gas consumer, so when the gas on the secondary side is consumed and the gas pressure falls below a certain value, the gas is supplied to the gas consuming part. There is a risk that supply disruptions may occur.
On the other hand, according to the characteristic configuration described above, the period during which the gas equipment is stopped is determined in advance based on the predicted gas consumption on the secondary side of the stopped gas equipment and the secondary pressure on the secondary side. Only the gas equipment that is predicted to be able to supply gas to the gas consumption parts on the secondary side during the shutdown period is shut down in advance as equipment that is permitted to be shut down in advance. The risk of gas supply failure to the consumption part can be sufficiently reduced.
From the above, even if there is a risk of a flood occurring, the gas supply to gas consumers will be maintained as much as possible in the flood disaster area and its vicinity, and the loss of convenience will be suppressed. It is possible to realize a water damage response system that can effectively prevent accidents caused by increases in supply gas pressure.

水害対応システムの更なる特徴構成は、
前記停止判定抽出部は、前記判定抽出を開始する時点において前記ガス供給領域での前記ガス配管の敷設状況を更新した後に、前記判定抽出を実行する点にある。
Further features of the flood response system are:
The stop determination extraction unit executes the determination extraction after updating the installation status of the gas piping in the gas supply area at the time when the determination extraction is started.

通常、ガス配管は、配管延長工事や、配管更新工事等が逐次実施されており、当該ガス配管の敷設状況に応じて、停止するガス設備の二次側の予測消費ガス量が変化することになる。
上記特徴構成によれば、停止判定抽出部は、判定抽出を開始する時点においてガス供給領域でのガス配管の敷設状況を更新した後に、判定抽出を実行するので、最新のガス配管の敷設状況に基づいて算出される予測消費ガス量に基づいて、判定抽出が実行でき、事前停止許容設備の判定精度をより向上することができる。
Normally, gas piping undergoes piping extension work, piping renewal work, etc., and the estimated amount of gas consumed on the secondary side of the gas equipment that will be shut down will change depending on the installation status of the gas piping. Become.
According to the characteristic configuration described above, the stop judgment extraction unit executes judgment extraction after updating the gas piping installation situation in the gas supply area at the time when judgment extraction is started, so that Judgment extraction can be performed based on the predicted gas consumption amount calculated based on the predicted gas consumption amount, and the accuracy of judgment of equipment that allows advance shutdown can be further improved.

水害対応システムの更なる特徴構成は、
前記事前停止期間は、前記ガス設備としての前記事前停止許容設備を停止し、二次側へのガス供給を停止している間の前記二次圧を計測する停止テストを実行する時間を含む期間であり、
前記停止判定抽出部は、前記停止テストの判定結果も鑑みて、前記事前停止許容設備を判定抽出する前記第1判定抽出処理を実行する点にある。
Further features of the flood response system are:
The pre-shutdown period is a time period during which the pre-shutdown permitted equipment as the gas equipment is stopped and a shutdown test is performed to measure the secondary pressure while gas supply to the secondary side is stopped. It is a period including
The stop determination extraction unit executes the first determination extraction process for determining and extracting the equipment that is permitted to be stopped in advance, also taking into account the determination result of the stop test.

上記特徴構成によれば、事前停止期間では、ガス設備としての事前停止許容設備を停止し、二次側へのガス供給を停止している間の二次圧を計測する停止テストを実行できるから、直前の実際の二次側のガス消費部での実ガス消費量をも鑑みて、事前停止許容設備を判定抽出でき、当該判定抽出をより実態の利用状態に即した状態で実行できる。 According to the above characteristic structure, during the pre-shutdown period, it is possible to stop the equipment that allows pre-shutdown as gas equipment and perform a shutdown test to measure the secondary pressure while the gas supply to the secondary side is stopped. , it is possible to determine and extract equipment that is permitted to be shut down in advance, taking into consideration the actual gas consumption amount in the immediately preceding actual gas consumption section on the secondary side, and to perform the determination and extraction in a state that is more in line with the actual usage state.

水害対応システムの更なる特徴構成は、
前記ガス供給領域における前記河川にて破堤が発生した場合に、当該破堤が発生した場所である破堤点毎に予め導出された浸水発生導出領域を記憶する記憶部を備え、
前記浸水発生予測部は、前記ガス供給領域における前記河川にて前記破堤が発生した場合に、当該破堤が発生した前記破堤点に対応する前記浸水発生導出領域を浸水が発生する可能性が高い第2浸水発生予測領域とし、
前記停止判定抽出部は、前記第2浸水発生予測領域に存在する前記ガス設備を緊急停止設備として判定抽出する第2判定抽出処理を実行する点にある。
Further features of the flood response system are:
When a levee break occurs in the river in the gas supply region, a storage unit stores a flood occurrence derivation region derived in advance for each levee break point where the levee break occurs,
The flooding occurrence prediction unit is configured to predict the possibility that, when the levee break occurs in the river in the gas supply region, the flooding occurrence derivation region corresponding to the levee break point where the levee break occurs will be flooded. As the second flood prediction area with high
The stop determination extraction unit executes a second determination extraction process that determines and extracts the gas equipment existing in the second flood prediction area as emergency stop equipment.

上記特徴構成によれば、停止判定抽出部は、ガス供給領域における河川にて破堤が発生した場合に、当該破堤が発生した破堤点に対応する浸水発生導出領域を浸水が発生する可能性が高い第2浸水発生予測領域とし、停止判定抽出部は、第2浸水発生予測領域に存在するガス設備を緊急停止設備として判定抽出するから、実際に河川の破堤により発生した第2浸水発生予測領域に存在するガス設備も停止対象として抽出して停止することができ、その二次側のガス配管での二次圧の昇圧を良好に防止でき、実際の水害状況にも即応できるシステムを実現できる。 According to the characteristic configuration described above, when a levee break occurs in a river in a gas supply region, the stop determination extraction unit is capable of determining the possibility that flooding will occur in the flooding occurrence derivation region corresponding to the levee break point where the levee break occurs. Since the stop judgment extraction unit determines and extracts the gas equipment existing in the second predicted flood occurrence area as the emergency stop equipment, the second flood occurrence prediction area that actually occurs due to a river levee break is detected. This system can also extract and shut down gas equipment that exists in the predicted area, effectively prevents the secondary pressure from increasing in the gas piping on the secondary side, and can immediately respond to actual water damage situations. can be realized.

水害対応システムの更なる特徴構成は、
前記停止判定抽出部にて判定抽出された前記ガス設備を、予め定められた通知期間毎に、前記ガス設備を停止する作業に関連する通信機器に対して通知処理する通知処理部を備える点にある。
Further features of the flood response system are:
The gas equipment is further provided with a notification processing unit that notifies a communication device related to the work of shutting down the gas equipment, for each predetermined notification period, of the gas equipment determined and extracted by the shutdown determination extraction unit. be.

上記特徴構成によれば、通知処理部は、停止判定抽出部にて判定抽出されたガス設備を、予め定められた通知期間毎に、ガス設備を停止する作業に関連する通信機器に対して通知処理するから、例えば、通信機器を保持するガス保安員に対して、判定抽出がされると同時にその通知をすることができ、一刻を争う水害対応の現場において、ガス設備の停止処理を迅速に行うことができる。 According to the characteristic configuration described above, the notification processing unit notifies the communication equipment related to the work of shutting down the gas equipment at each predetermined notification period of the gas equipment determined and extracted by the shutdown determination extraction unit. For example, gas safety personnel holding communication equipment can be notified of the judgment at the same time as the judgment is extracted, allowing them to quickly shut down gas equipment at the time of critical flood response. It can be carried out.

水害対応システムの更なる特徴構成は、
前記ガス設備は、前記ガス配管の二次側への前記供給ガス圧を制御すると共に、助動球盤を有する整圧装置である点にある。
Further features of the flood response system are:
The gas equipment is a pressure regulating device that controls the supply gas pressure to the secondary side of the gas pipe and has an auxiliary ball.

ガス設備が、ガス配管の二次側への供給ガス圧を制御すると共に、助動球盤を有する整圧装置である場合、浸水したときに、助動球盤に水圧が付加されて、ガス配管の二次圧が昇圧する虞が高くなる。
上記特徴構成によれば、このような構成にあっても、ガス設備としての整圧装置を浸水する前に好適に停止して、その二次側にてガス圧が昇圧することを良好に防止できる。
If the gas equipment is a pressure regulating device that controls the gas pressure supplied to the secondary side of the gas piping and has an auxiliary ball, when flooded, water pressure is applied to the auxiliary ball and the gas is There is a high possibility that the secondary pressure in the piping will rise.
According to the characteristic configuration described above, even with such a configuration, the pressure regulating device as gas equipment is suitably stopped before being submerged in water, and the gas pressure is effectively prevented from rising on the secondary side. can.

実施形態に係る水害対応システムの概略構成図である。1 is a schematic configuration diagram of a flood disaster response system according to an embodiment. 第1浸水発生予測箇所及びそこでのガス設備のうちの事前停止許容設備、第2浸水発生予測箇所及びそこでの緊急停止設備を示す区域図である。It is an area map showing a first predicted flood occurrence location, equipment that allows advance shutdown of the gas equipment there, a second predicted flood occurrence location, and emergency shutdown equipment there. ガス設備を停止する作業に関連する通信機器に対し、通知処理部にて通知される通知内容の一例である。This is an example of the content of a notification that is notified by the notification processing unit to a communication device related to the work of shutting down gas equipment. ガス設備の一例としての整圧装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a pressure regulating device as an example of gas equipment. 水害対応の制御フローである。This is the control flow for responding to flood damage.

本発明の実施形態に係る水害対応システム100は、水害が発生する虞がある場合にも、水害発生地域及びその近傍にて、ガス需要家へのガス供給が極力維持されて利便性の低下を抑制しながらも、ガス需要家への供給ガス圧の昇圧に伴う事故を効果的に防止できるものに関する。
以下、図1~5に基づいて、当該水害対応システム100の実施形態を説明する。
The flood disaster response system 100 according to the embodiment of the present invention maintains gas supply to gas consumers as much as possible in the flood disaster area and its vicinity, thereby preventing a decrease in convenience even when there is a risk of a flood occurring. The present invention relates to something that can effectively prevent accidents associated with an increase in the pressure of gas supplied to gas consumers while suppressing the pressure.
Hereinafter, an embodiment of the flood disaster response system 100 will be described based on FIGS. 1 to 5.

水害対応システム100としての制御システムSは、ハードウェアとソフトウェアとが協働する形態で実現されるものであり、浸水を含む水害の発生を予測し当該予測に基づいて水害に対応するものである。当該水害対応システム100は、図1に示すように、ガス(例えば、都市ガス13A)を通流するガス配管及び当該ガス配管での供給ガス圧を制御する整圧装置G(図2に図示、ガス設備の一例)が存在するガス供給領域の河川K(図2に図示)毎に決定される計画降雨量、河川K毎に河川氾濫や内水氾濫等が発生した場合の浸水発生領域が図示されるハザードマップ、ガス供給領域に存在する整圧装置Gの二次側の圧力である二次圧と二次側のガス需要家に設けられるガス消費部における予測消費ガス量等を記憶する記憶部S5と、ガス配管PB及び当該ガス配管PBでの供給ガス圧を制御する整圧装置Gが存在するガス供給領域において、河川K毎に決定される計画降雨量と雨量予測部にて予測された予想降雨量とからガス供給領域において浸水が発生する確率が高い第1浸水発生予測領域R1(図2に図示)及び第1浸水発生予測領域R1にて浸水が発生する浸水発生予測時点を予測する浸水発生予測部S2と、浸水発生予測時点よりも予め決定された事前停止期間前の時点から、事前停止期間及び復旧に要する復旧期間に亘って事前停止し二次側へのガス供給を停止する整圧装置Gを、第1浸水発生予測領域R1に存在する整圧装置Gから事前停止許容設備Ga(図2に図示)として判定抽出する停止判定抽出部S3とを備える。 The control system S as the water damage response system 100 is realized in a form in which hardware and software cooperate, and predicts the occurrence of water damage including flooding and responds to the water damage based on the prediction. . As shown in FIG. 1, the flood disaster response system 100 includes a gas pipe through which gas (for example, city gas 13A) flows, and a pressure regulator G (shown in FIG. 2, The planned rainfall amount determined for each river K (shown in Figure 2) in the gas supply area where gas equipment (an example of gas equipment) is located, and the area where flooding will occur in the event of river flooding or inland water flooding for each river K are shown. A memory that stores the hazard map to be displayed, the secondary pressure that is the pressure on the secondary side of the pressure regulating device G existing in the gas supply area, and the predicted gas consumption amount in the gas consumption section provided in the gas consumer on the secondary side. In the gas supply area where the section S5, the gas piping PB, and the pressure regulating device G that controls the supply gas pressure in the gas piping PB are present, the planned rainfall amount determined for each river K and the rainfall amount predicted by the rainfall prediction section are determined for each river K. Based on the predicted rainfall amount, predict the first predicted flood occurrence area R1 (shown in FIG. 2) where the probability of flooding occurring in the gas supply area is high and the predicted time point at which flooding will occur in the first predicted flood area R1. The flooding occurrence prediction unit S2 performs a pre-shutdown and stops gas supply to the secondary side from a point before a pre-determined pre-shutdown period before the predicted flooding occurrence time, for the pre-shutdown period and the recovery period required for restoration. and a stop determination extraction unit S3 that determines and extracts a pressure regulating device G existing in the first predicted flood occurrence region R1 as a pre-stop permissible equipment Ga (shown in FIG. 2).

制御システムSは、電気通信回線Nにより、気象システムKSからガス供給領域を含む気象予測領域における気温や湿度等に関する気象データI1を受信可能な通知処理部S4を備えており、受信した気象データI1は記憶部S5に記憶される。また、通知処理部S4は、停止判定抽出部S3にて判定抽出されたガス設備としての整圧装置Gを、予め定められた通知期間(例えば、1時間)毎に、整圧装置Gを停止する作業に関連する通信機器T(T1、T2、T3・・・)、換言すると整圧装置Gの停止作業を実行する作業員が保持するスマートフォン端末やタブレット端末としての通信機器Tに対して通知処理を実行する。 The control system S is equipped with a notification processing unit S4 capable of receiving weather data I1 regarding temperature, humidity, etc. in the weather forecast area including the gas supply area from the weather system KS via the telecommunications line N, and receives the received weather data I1. is stored in the storage section S5. In addition, the notification processing unit S4 stops the pressure regulating device G as the gas equipment determined and extracted by the stop determination extraction unit S3 every predetermined notification period (for example, one hour). In other words, the communication device T (T1, T2, T3, etc.) related to the work to be performed, in other words, the communication device T such as a smartphone terminal or a tablet terminal held by the worker who executes the work to stop the pressure regulating device G, is notified. Execute processing.

雨量予測部S1は、気象システムKSから受信したガス供給領域を含む気象予測領域での気温や湿度等に関する気象データI1に基づいて、所定の気象モデルを用いてガス供給領域における所定期間(例えば24時間)毎の予測降雨量を導出する降雨量予測処理を実行する。
換言すると、雨量予測部S1は、気象庁の解析雨量予測としてのメソアンサンブル予測(MEPS)とヨーロッパ中期予報センター(ECMWF)のアンサンブル予測を用いて、ガス供給領域における最大降雨量と平均降雨量と最小降雨量との何れかを、予測降雨量として予測する。
浸水発生予測部S2は、雨量予測部S1にて予測される直近の24時間での予測降雨量が、記憶部S5に記憶される河川K毎に決定される24時間での計画降雨量を超える場合、予想降雨量が計画降雨量を超えた河川Kに対応するハザードマップに記録される浸水発生領域を第1浸水発生予測領域R1として予測すると共に、予測降雨量が計画降雨量を超える時点を浸水発生予測時点として予測する浸水発生予測処理を実行する。
The rainfall forecasting unit S1 uses a predetermined meteorological model to predict rainfall for a predetermined period (for example, 24 A rainfall prediction process is executed to derive the predicted rainfall amount for each hour.
In other words, the rainfall forecasting unit S1 uses meso-ensemble forecasting (MEPS) as analytical rainfall forecasting from the Japan Meteorological Agency and ensemble forecasting from the European Center for Medium-Range Weather Forecasts (ECMWF) to predict maximum rainfall, average rainfall, and minimum rainfall in the gas supply area. Either the amount of rainfall or the amount of rainfall is predicted as the predicted rainfall amount.
The flooding occurrence prediction unit S2 determines that the predicted rainfall amount in the latest 24 hours predicted by the rainfall prediction unit S1 exceeds the planned rainfall amount in 24 hours determined for each river K stored in the storage unit S5. In this case, the inundation occurrence area recorded in the hazard map corresponding to the river K where the expected rainfall amount exceeds the planned rainfall amount is predicted as the first inundation occurrence prediction area R1, and the point in time when the predicted rainfall amount exceeds the planned rainfall amount is predicted. Execute a process for predicting the occurrence of flooding, which is predicted as the predicted time of flooding.

上述の第1浸水発生予測領域R1に存在する整圧装置Gは、浸水した場合に当該整圧装置Gの二次側のガス圧を設定圧力以上に昇圧させ、二次側の需要家に設けられるガス消費部が使用された場合に、当該ガス消費部からガスが噴出する虞がある。
詳述すると、整圧装置Gは、図4に示すように、レイノルド式のガスガバナとして構成されており、当該整圧装置Gは、1次側のガス配管PBから供給されるガスを、主器であるメインガバナ8を介して、2次側のガス配管PBから、一定の2次圧として供給する。当該整圧装置Gは、所謂中低圧から、低圧へ減圧するガスガバナであって、地区整圧器用として使用される。メインガバナ8は、2つの弁体10を有し、その弁体10は、ダイヤフラムスピンドル11を経て、主ダイヤフラム12に連結される。この主ダイヤフラム12の下側の部屋13には、2次圧が導かれている。
更に、整圧装置Gは、メインガバナ8の一次側のガス配管PBに1次圧力調整管14を介して接続される中圧補助ガバナ15と、当該中圧補助ガバナ15に調整管16を介して接続される低圧補助ガバナ17と、当該中圧補助ガバナ15に管路18を介して接続される助動球盤19とを有する。低圧補助ガバナ17は、2次圧力調整管20を介してガス配管PBの二次側に接続されている。調整管16の管路18との接続部位より中圧補助ガバナ15の側には、ニードル弁21が介在される。メインガバナ8と助動球盤19とを連結するために、レバー22と吊棒23とが設けられ、レバー22と吊棒23とには、メインガバナ8を開くためのウエイト24が載置されている。
The pressure regulating device G existing in the first flood occurrence prediction region R1 described above increases the gas pressure on the secondary side of the pressure regulating device G to a set pressure or higher in the event of flooding, and is installed at the secondary side consumer. When a gas consuming part such as this is used, there is a possibility that gas may blow out from the gas consuming part.
Specifically, as shown in FIG. 4, the pressure regulating device G is configured as a Reynold type gas governor, and the pressure regulating device G supplies gas from the primary side gas pipe PB to the main equipment. It is supplied as a constant secondary pressure from the secondary side gas pipe PB via the main governor 8. The pressure regulating device G is a gas governor that reduces pressure from so-called medium-low pressure to low pressure, and is used as a district pressure regulator. The main governor 8 has two valve bodies 10 which are connected to a main diaphragm 12 via a diaphragm spindle 11 . Secondary pressure is introduced into the chamber 13 below this main diaphragm 12.
Further, the pressure regulating device G includes an intermediate pressure auxiliary governor 15 connected to the gas piping PB on the primary side of the main governor 8 via a primary pressure adjustment pipe 14, and a medium pressure auxiliary governor 15 connected to the intermediate pressure auxiliary governor 15 via an adjustment pipe 16. A low-pressure auxiliary governor 17 is connected to the medium-pressure auxiliary governor 15, and an auxiliary drive ball 19 is connected to the medium-pressure auxiliary governor 15 via a conduit 18. The low pressure auxiliary governor 17 is connected to the secondary side of the gas pipe PB via a secondary pressure regulating pipe 20. A needle valve 21 is interposed closer to the intermediate pressure auxiliary governor 15 than the connecting portion of the regulating pipe 16 to the conduit 18 . A lever 22 and a hanging rod 23 are provided to connect the main governor 8 and the auxiliary ball disk 19, and a weight 24 for opening the main governor 8 is placed on the lever 22 and the hanging rod 23. ing.

当該整圧装置Gの圧力制御は、2次側の需要が全くないときには、2次圧が高いため、このとき低圧補助ガバナ17は閉止した状態となり、かつ中圧補助ガバナ15は、中間圧力に設定されているので、この圧力が調整管16を経由して助動球盤19のダイヤフラム26の下側の部屋27に伝達され、これによって吊棒23及びレバー22が押し上げられ、メインガバナ8の2つの弁体10が上昇して開孔10aを閉止している。 The pressure control of the pressure regulating device G is such that when there is no demand on the secondary side, the secondary pressure is high. Since this pressure is set, this pressure is transmitted to the chamber 27 below the diaphragm 26 of the auxiliary sphere 19 via the adjustment pipe 16, thereby pushing up the hanging rod 23 and the lever 22, and pushing up the main governor 8. The two valve bodies 10 are raised to close the opening 10a.

2次側に需要が発生して2次圧力が低下すると、低圧補助ガバナ17が働き、助動球盤19の部屋27のガスが2次側へ流れ始める。このとき、中圧補助ガバナ15も働き始めるが、助動球盤19との間のニードル弁21による絞りにより流量が制限されるので、調整管16の中間圧力が低下し、助動球盤19のダイヤフラム26が下降して吊棒23及びレバー22が下がり、メインガバナ8が開放する。 When demand occurs on the secondary side and the secondary pressure decreases, the low-pressure auxiliary governor 17 operates, and the gas in the chamber 27 of the auxiliary sphere 19 begins to flow to the secondary side. At this time, the intermediate pressure auxiliary governor 15 also starts working, but the flow rate is restricted by the throttle by the needle valve 21 between it and the auxiliary sphere 19, so the intermediate pressure in the regulating pipe 16 decreases, and the auxiliary sphere 19 The diaphragm 26 is lowered, the hanging rod 23 and the lever 22 are lowered, and the main governor 8 is opened.

需要が減少して2次圧力が上昇すると、低圧補助ガバナ17が閉じ、中間圧力が上昇して、メインガバナ8が閉止することになる。2次圧力の設定は、低圧補助ガバナ17に載置される小ウエイト17aの数で調節される。 When the demand decreases and the secondary pressure increases, the low pressure auxiliary governor 17 closes, the intermediate pressure increases, and the main governor 8 closes. The setting of the secondary pressure is adjusted by the number of small weights 17a placed on the low pressure auxiliary governor 17.

以上の構成を有する整圧装置Gが浸水する場合、助動球盤19のダイヤフラム26の上部の部屋へ大気開放孔19aを介して水が流れ込み、その水圧によりダイヤフラム26が下降して吊棒23及びレバー22が下がり、メインガバナ8が開放し、二次側の圧力が設定圧力を超えて昇圧する虞があるのである。 When the pressure regulating device G having the above configuration is submerged in water, water flows into the upper chamber of the diaphragm 26 of the auxiliary sphere 19 through the atmosphere opening hole 19a, and the diaphragm 26 is lowered by the water pressure and the hanging rod 23 is lowered by the water pressure. There is a possibility that the lever 22 will be lowered, the main governor 8 will be opened, and the pressure on the secondary side will rise beyond the set pressure.

このように、整圧装置Gが浸水して二次側の圧力が設定圧力を超えて昇圧すると、二次側の需要家にて火災等の二次災害が発生する可能性があるため、浸水する前に整圧装置Gを停止することが好ましい。一方で、浸水が発生すると予測される浸水発生予測時点よりも前に、すべての整圧装置Gを停止する場合、停止期間中に、整圧装置Gの二次側のガス圧力が低下して、最終的には、二次側のすべての需要家のガス消費部へのガス供給が停止される事態となる虞がある。 In this way, if the pressure regulating device G is flooded and the pressure on the secondary side rises above the set pressure, there is a possibility that secondary disasters such as fire may occur at the consumers on the secondary side. It is preferable to stop the pressure regulating device G before doing so. On the other hand, if all the pressure regulators G are stopped before the predicted time when flooding occurs, the gas pressure on the secondary side of the pressure regulator G decreases during the stop period. Ultimately, there is a possibility that the gas supply to the gas consuming parts of all the secondary side customers will be stopped.

そこで、当該実施形態に係る水害対応システム100においては、浸水領域に存在する整圧装置Gの二次側が所定の圧力よりも昇圧するリスクを効果的に抑制しつつ、二次側へのガス供給が停止されることを防止するべく、以下の構成を有する。
即ち、停止判定抽出部S3が、図2に示すように、ガス供給領域に存在する整圧装置Gの二次側の圧力である二次圧と二次側の需要家に設けられるガス消費部における予測消費ガス量に基づいて、事前停止期間及び復旧期間に亘って二次側のガス消費部に対してガス供給可能であると予測したガス設備としての整圧装置Gを、事前停止許容設備Gaとして判定抽出する第1判定抽出処理を実行する。
つまり、停止判定抽出部S3は、記憶部S5に整圧装置G毎に記憶されるその二次側における予測消費ガス量が、浸水発生予測時点よりも前の事前停止期間及び浸水発生予測時点以降で復旧にかかる復旧期間に亘って、二次側のガス消費部に対し二次側のガス配管PBに存在するガスにてガス供給が可能な整圧装置Gを、事前停止許容設備Gaとして抽出することで、浸水領域に存在する整圧装置Gの二次側が所定の圧力よりも昇圧するリスクを効果的に抑制しつつ、二次側へのガス供給が停止されることを防止するのである。
Therefore, in the flood disaster response system 100 according to the embodiment, gas is supplied to the secondary side while effectively suppressing the risk that the pressure on the secondary side of the pressure regulating device G existing in the flooded area increases above a predetermined pressure. In order to prevent this from being stopped, it has the following configuration.
That is, as shown in FIG. 2, the stop determination extraction unit S3 extracts the secondary pressure, which is the pressure on the secondary side of the pressure regulator G existing in the gas supply area, and the gas consumption unit provided at the consumer on the secondary side. Based on the predicted gas consumption amount in A first determination extraction process for determining and extracting Ga is executed.
In other words, the stop determination extraction unit S3 determines that the predicted gas consumption amount on the secondary side stored for each pressure regulating device G in the storage unit S5 is in the pre-stop period before the predicted time of flooding occurrence and after the predicted time of flooding occurrence. The pressure regulating device G that can supply gas to the gas consuming part on the secondary side using the gas existing in the gas piping PB on the secondary side during the restoration period is extracted as equipment Ga that allows advance shutdown. By doing so, the risk of the pressure on the secondary side of the pressure regulator G existing in the flooded area rising above a predetermined pressure is effectively suppressed, and the gas supply to the secondary side is prevented from being stopped. .

さて上述の構成においては、図2に示すように、停止判定抽出部S3にて、抽出されない整圧装置Gbが存在する。当該整圧装置Gbは、浸水発生予測時点の後であっても稼働状態にあるため、浸水発生予測時点以降に、実際に河川Kの堤防が破堤し、浸水した場合には、その二次側のガス配管PBが昇圧してしまうことになる。そこで、当該実施形態に係る水害対応システム100では、以下の構成を採用している。
即ち、記憶部S5は、ガス供給領域における河川Kにて破堤が発生した場合に、当該破堤が発生した場所である破堤点P1(図2に図示)毎に予め導出された浸水発生導出領域を記憶し、浸水発生予測部S2は、ガス供給領域における河川Kにて破堤が発生した場合に、当該破堤が発生した破堤点P1に対応する浸水発生導出領域を浸水が発生する可能性が高い第2浸水発生予測領域R2(図2に図示)とし、停止判定抽出部S3は、第2浸水発生予測領域R2に存在する整圧装置Gを緊急停止設備Gcとして判定抽出する第2判定抽出処理を実行する。
尚、破堤点は、図2ではP1のみ図示しているが、記憶部S5では生じ得る複数の破堤点と、当該破堤点毎の浸水発生導出領域を記憶している。
Now, in the above-mentioned configuration, as shown in FIG. 2, there is a pressure regulating device Gb that is not extracted by the stop determination extraction section S3. Since the pressure regulating device Gb is in operation even after the predicted flood occurrence time, if the embankment of river K actually breaks and floods after the predicted flood occurrence time, the secondary This will increase the pressure in the side gas pipe PB. Therefore, the flood disaster response system 100 according to this embodiment employs the following configuration.
That is, when a levee break occurs in the river K in the gas supply area, the storage unit S5 stores the flood occurrence information derived in advance for each levee break point P1 (shown in FIG. 2) where the levee break occurs. The inundation occurrence prediction unit S2 stores the derivation area, and when a levee break occurs in the river K in the gas supply area, the inundation occurrence prediction unit S2 predicts the inundation occurrence derivation area corresponding to the levee break point P1 where the levee break occurs. The stop determination extraction unit S3 determines and extracts the pressure regulating device G existing in the second predicted flood occurrence region R2 as the emergency stop equipment Gc. A second determination extraction process is executed.
Although only P1 is shown as the levee break point in FIG. 2, the storage unit S5 stores a plurality of possible levee break points and a flood occurrence derivation area for each levee break point.

次に、当該実施形態に係る水害対応システム100を用いた制御フローを、図5に基づいて説明する。
図5に示すように、制御システムSは、雨量予測部S1にて降雨量予測処理を実行し(#01)、浸水発生予測部S2が浸水発生予測処理を実行し(#02)、浸水発生予測処理において第1浸水発生予測領域及び浸水発生予測時点が予測されなかった場合(#03でNo)、#01及び#02の処理を所定時間毎に繰り返し実行することになる。
Next, a control flow using the flood disaster response system 100 according to the embodiment will be described based on FIG. 5.
As shown in FIG. 5, in the control system S, the rainfall prediction unit S1 executes rainfall prediction processing (#01), the flooding occurrence prediction unit S2 executes flooding occurrence prediction processing (#02), and the rainfall prediction unit S1 executes rainfall prediction processing (#02). If the first predicted flood area and predicted time point of flood occurrence are not predicted in the prediction process (No in #03), the processes in #01 and #02 are repeatedly executed at predetermined intervals.

一方、浸水発生予測処理において第1浸水発生予測領域及び浸水発生予測時点が予測された場合(#03でYes)、通知処理部S4は、以降のフローにおいて、整圧装置Gの停止に対応する作業員が保持する通信機器Tに対し、第1浸水発生予測領域及び浸水発生予測時点が予測されたことを通知する通知処理を実行する(#04)。これより、作業員は、以降の第1判定抽出処理により、整圧装置Gの事前停止許容設備Gaが抽出された場合に、迅速に対応できるよう事前準備ができる。 On the other hand, if the first predicted flood occurrence area and predicted time point of flood occurrence are predicted in the flood occurrence prediction process (Yes in #03), the notification processing unit S4 responds to the stoppage of the pressure regulating device G in the subsequent flow. A notification process is executed to notify the communication device T held by the worker that the first predicted flood area and predicted time of flood occurrence have been predicted (#04). This allows the worker to prepare in advance so as to be able to respond quickly when the equipment Ga that allows advance shutdown of the pressure regulating device G is extracted in the subsequent first determination extraction process.

停止判定抽出部S3は、第1判定抽出処理を実行する前に、判定抽出を開始する時点においてガス供給領域でのガス配管PBの敷設状況を更新する(#05)。ガス配管PBは、随時、延長工事や交換工事等が施されているが、当該処理により、以降の予測消費ガス量に基づく第1判定抽出処理を、より精度良く実行できる。 Before executing the first determination extraction process, the stop determination extraction unit S3 updates the installation status of the gas piping PB in the gas supply area at the time when determination extraction is started (#05). Although the gas pipe PB is subjected to extension work, replacement work, etc. from time to time, this process allows the subsequent first determination extraction process based on the predicted gas consumption amount to be executed with higher accuracy.

停止判定抽出部S3は、ガス供給領域に存在する整圧装置Gの二次側の圧力である二次圧と二次側の需要家に設けられるガス消費部における予測消費ガス量に基づいて、事前停止期間及び復旧期間に亘って二次側のガス消費部に対してガス供給可能であると予測したガス設備としての整圧装置Gを、事前停止許容設備Gaとして判定抽出する第1判定抽出処理を実行する(#06)。
ここで、事前停止期間は、整圧装置Gとしての事前停止許容設備Gaを停止し、二次側へのガス供給を停止している間の二次圧を計測する停止テストを実行する時間を含む期間であり、当該事前停止期間において、停止テストが実行される(#07)。
停止判定抽出部S3は、停止テストの判定結果も鑑みて、事前停止許容設備Gaを判定抽出する第1判定抽出処理を実行する(#08)。
説明を追加すると、停止判定抽出部S3は、実際の現場にて二次圧の低下度合を計測し、事前停止期間及び復旧期間に亘って、二次側のガス消費部でのガス消費が、二次側のガス配管PB内のガスにより賄えるか否かを判断し、賄えない場合には、第1判定抽出処理にて事前停止許容設備Gaとして抽出された整圧装置Gを、事前停止許容設備Gaから除外する。
The stop determination extraction unit S3 is based on the secondary pressure that is the pressure on the secondary side of the pressure regulating device G existing in the gas supply area and the predicted gas consumption amount in the gas consumption unit provided in the secondary side consumer. First judgment extraction for determining and extracting the pressure regulating device G, which is a gas equipment predicted to be able to supply gas to the gas consumption unit on the secondary side during the pre-shutdown period and the recovery period, as the pre-shutdown permissible equipment Ga. Execute the process (#06).
Here, the pre-stop period is the time required to stop the pre-shutdown permitting equipment Ga as the pressure regulating device G and execute a stop test to measure the secondary pressure while gas supply to the secondary side is stopped. The stop test is executed during the pre-stop period (#07).
The stop judgment extraction unit S3 executes a first judgment extraction process for judging and extracting equipment Ga that is permitted to be stopped in advance, also taking into account the judgment result of the stop test (#08).
To add an explanation, the stop determination extraction unit S3 measures the degree of decrease in secondary pressure at the actual site, and determines whether the gas consumption at the gas consumption unit on the secondary side is It is determined whether the gas in the gas pipe PB on the secondary side can cover the supply, and if it cannot, the pressure regulating device G, which has been extracted as a pre-stop permissible equipment Ga in the first judgment extraction process, is pre-stopped. Exclude from allowable equipment Ga.

通知処理部S4は、図3に示すように、第1判定抽出処理にて判定抽出された事前停止許容設備Ga(図2では対象設備)を、予め定められた通知期間(例えば1時間)毎に、整圧装置Gを停止する作業に関連する通信機器Tに対して通知処理を実行する(#09)。
因みに、図3に示す例では、予測降雨量が計画降雨量以下の河川Kに対応する整圧装置Gについても、示されている。
As shown in FIG. 3, the notification processing unit S4 updates the pre-stop permissible equipment Ga (target equipment in FIG. 2) determined and extracted in the first determination extraction process every predetermined notification period (for example, one hour). Next, a notification process is executed to the communication equipment T related to the work of stopping the pressure regulating device G (#09).
Incidentally, in the example shown in FIG. 3, a pressure regulating device G corresponding to a river K whose predicted rainfall amount is less than or equal to the planned rainfall amount is also shown.

更に、降雨量が増加し、ガス供給領域における河川Kにて破堤が発生した場合、浸水発生予測部S2は、破堤が発生した破堤点P1に対応する浸水発生導出領域を浸水が発生する可能性が高い第2浸水発生予測領域R2とし、停止判定抽出部S3は、第2浸水発生予測領域R2に存在する整圧装置Gを緊急停止設備Gcとして判定抽出する第2判定抽出処理を実行する(#10)。 Furthermore, if the amount of rainfall increases and a levee break occurs in the river K in the gas supply area, the flooding occurrence prediction unit S2 predicts whether flooding will occur in the flooding occurrence derivation area corresponding to the levee break point P1 where the levee break has occurred. The stop determination extraction unit S3 performs a second determination extraction process to determine and extract the pressure regulating device G existing in the second predicted flood occurrence region R2 as the emergency stop facility Gc. Execute (#10).

そして、通知処理部S4は、第2判定抽出処理にて判定抽出された緊急停止設備Gcを、予め定められた通知期間(例えば1時間)毎に、整圧装置Gを停止する作業に関連する通信機器Tに対して通知処理を実行する(#11)。 Then, the notification processing unit S4 updates the emergency stop equipment Gc determined and extracted in the second determination extraction process to the emergency stop equipment Gc related to the work of stopping the pressure regulating device G every predetermined notification period (for example, 1 hour). A notification process is executed for the communication device T (#11).

整圧装置Gの浸水が解消した後、停止した事前停止許容設備Ga及び緊急停止設備Gcを、再度働かせる復旧処理を実行する(#12)。 After the flooding of the pressure regulating device G is resolved, a restoration process is executed to restart the stopped advance stop permitting equipment Ga and the emergency stop equipment Gc (#12).

〔別実施形態〕
(1)上記実施形態では、雨量予測部S1は、一の気象モデルを用いて予測降雨量を予測する構成例を示したが、他の構成例として、複数の気象モデルを用いて予測降雨量を導出する構成を採用しても構わない。
具体的には、雨量予測部S1は、複数の気象モデルから予想降雨量を予測するものであり、浸水発生予測部S2は、複数の気象モデルの夫々の予想降雨量のうち計画降雨量を超えた数をすべての気象モデルの数で除算した値を、ガス供給領域において浸水が発生する浸水発生確率として導出し、導出した浸水発生確率が所定の浸水発生判定閾値以上となったガス供給領域を第1浸水発生予測領域R1として予測する構成を採用しても構わない。
当該構成によれば、雨量予測部S1は、第1浸水発生予測領域R1で浸水が発生する確率を、複数の気象モデルの夫々の予想降雨量のうち計画降雨量を超えた数をすべての気象モデルの数で除算した値として導出するから、一の気象モデルから第1浸水発生予測領域R1で浸水が起きるか否かを予測する場合に比べ、確率的な値に基づいた判断を行うことでき、浸水の発生する確率の予測精度を向上できる。
[Another embodiment]
(1) In the above embodiment, the rainfall prediction unit S1 uses one meteorological model to predict the predicted rainfall amount. However, as another configuration example, the rainfall prediction unit S1 uses a plurality of weather models to predict the predicted rainfall amount. It is also possible to adopt a configuration that derives .
Specifically, the rainfall prediction section S1 predicts the expected rainfall amount from a plurality of weather models, and the flooding occurrence prediction section S2 predicts the amount of rainfall exceeding the planned rainfall amount among the predicted rainfall amounts of each of the plurality of weather models. The value obtained by dividing the number of weather models by the number of all weather models is calculated as the probability of flooding occurring in the gas supply area. It is also possible to employ a configuration that is predicted as the first predicted flood occurrence region R1.
According to this configuration, the rainfall prediction unit S1 calculates the probability that flooding will occur in the first predicted flooding area R1 by calculating the number of predicted rainfall amounts exceeding the planned rainfall amount of each of the plurality of weather models. Because it is derived as a value divided by the number of models, it is possible to make decisions based on probabilistic values compared to predicting whether or not flooding will occur in the first flooding prediction area R1 from one weather model. , the accuracy of predicting the probability of flooding can be improved.

(2)上記実施形態において、制御システムSは、一のハードウェア構成にて実現する構成として示したが、他の構成例として、比較的高い演算能力を要する雨量予測部S1は、別の気象予測サーバから構成し、電気通信回線Nを介して、当該気象サーバにて演算された演算結果を通知処理部S4が受信する構成を採用しても構わない。 (2) In the above embodiment, the control system S is shown as having a configuration realized by one hardware configuration, but as another configuration example, the rainfall prediction unit S1, which requires relatively high computing power, may be implemented using a different meteorological system. It is also possible to employ a configuration in which the notification processing unit S4 is composed of a prediction server and receives the calculation results calculated by the weather server via the telecommunication line N.

(3)上記実施形態において、浸水発生予測部S2は、雨量予測部S1にて予測される直近の24時間での予測降雨量が、記憶部S5に記憶される河川K毎に決定される24時間での計画降雨量を超える場合、予想降雨量が計画降雨量を超えた河川Kに対応するハザードマップに記録される浸水発生領域を第1浸水発生予測領域R1として予測すると共に、予測降雨量が計画降雨量を超える時点を浸水発生予測時点として予測するものとした。
他の構成として、浸水発生予測部S2は、雨量予測部S1にて予測される直近の24時間での予測降雨量が、記憶部S5に記憶される河川K毎に決定される24時間での計画降雨量の所定割合(例えば、80%)を超える場合、予想降雨量が計画降雨量を超えた河川Kに対応するハザードマップに記録される浸水発生領域を第1浸水発生予測領域R1として予測すると共に、予測降雨量が計画降雨量を超える時点を浸水発生予測時点として予測するものとしても構わない。
また、直近の24時間での予測降雨量に限らず、48時間等の期間における予測降雨量であっても構わない。
(3) In the above embodiment, the inundation occurrence prediction unit S2 determines the predicted rainfall in the most recent 24 hours predicted by the rainfall prediction unit S1 for each river K stored in the storage unit S5. If the planned rainfall amount exceeds the planned rainfall amount in time, the inundation occurrence area recorded in the hazard map corresponding to the river K whose expected rainfall amount exceeds the planned rainfall amount is predicted as the first inundation prediction area R1, and the predicted rainfall amount The point in time when the amount of rainfall exceeds the planned rainfall amount is assumed to be the point in time when flooding is predicted to occur.
As another configuration, the inundation occurrence prediction unit S2 is configured such that the predicted rainfall in the latest 24 hours predicted by the rainfall prediction unit S1 is determined by the predicted rainfall in the 24 hours determined for each river K stored in the storage unit S5. If a predetermined percentage (for example, 80%) of the planned rainfall amount is exceeded, the flooding occurrence area recorded in the hazard map corresponding to the river K whose expected rainfall amount exceeds the planned rainfall amount is predicted as the first flooding occurrence prediction area R1. In addition, the time when the predicted rainfall amount exceeds the planned rainfall amount may be predicted as the flooding occurrence prediction time point.
Further, the predicted rainfall amount is not limited to the latest 24 hours, but may be the predicted rainfall amount for a period such as 48 hours.

(4)上記実施形態において、停止判定抽出部S3は、第1判定抽出処理、第2判定抽出処理を実行する例を示したが、第2判定抽出処理については、実行しなくても構わない。また、第1判定抽出処理では、停止テストの結果を鑑みずに、事前停止許容設備Gaを判定抽出しても構わない。 (4) In the above embodiment, an example was shown in which the stop judgment extraction unit S3 executes the first judgment extraction process and the second judgment extraction process, but the second judgment extraction process does not need to be executed. . In addition, in the first determination extraction process, preliminary shutdown permissible equipment Ga may be determined and extracted without considering the result of the shutdown test.

(5)上記実施形態において、ガス配管PBの敷設状況を更新する処理を実行する例を示したが、当該処理は、実行しなくても構わない。 (5) In the above embodiment, an example was shown in which the process of updating the installation status of the gas piping PB was executed, but the process does not need to be executed.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 It should be noted that the configuration disclosed in the above embodiment (including other embodiments, the same applies hereinafter) can be applied in combination with the configuration disclosed in other embodiments, as long as there is no contradiction, and The embodiments disclosed in this specification are illustrative, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the purpose of the present invention.

本発明の水害対応システムは、水害が発生する虞がある場合にも、水害発生地域及びその近傍にて、ガス需要家へのガス供給が極力維持されて利便性の低下を抑制しながらも、ガス需要家への供給ガス圧の昇圧に伴う事故を効果的に防止できる水害対応システムとして、有効に利用可能である。 The flood disaster response system of the present invention maintains the gas supply to gas consumers as much as possible in the flood disaster area and its vicinity even when there is a risk of a flood occurring, while suppressing a decline in convenience. It can be effectively used as a flood disaster response system that can effectively prevent accidents caused by increases in the pressure of gas supplied to gas consumers.

19 :助動球盤
100 :水害対応システム
G :ガス設備
Ga :事前停止許容設備
Gb :整圧装置
Gc :緊急停止設備
K :河川
N :電気通信回線
P1 :破堤点
PB :ガス配管
R1 :第1浸水発生予測領域
R2 :第2浸水発生予測領域
S :制御システム
S1 :雨量予測部
S2 :浸水発生予測部
S3 :停止判定抽出部
S4 :通知処理部
S5 :記憶部
T :通信機器
19: Assistance sphere 100: Flood damage response system G: Gas equipment Ga: Pre-stop permission equipment Gb: Pressure regulator Gc: Emergency stop equipment K: River N: Telecommunication line P1: Levee break point PB: Gas piping R1: First flood prediction area R2: Second flood prediction area S: Control system S1: Rainfall prediction section S2: Flood prediction section S3: Stop judgment extraction section S4: Notification processing section S5: Storage section T: Communication equipment

Claims (6)

浸水を含む水害の発生を予測し当該予測に基づいて前記水害に対応する水害対応システムであって、
ガス配管及び当該ガス配管での供給ガス圧を制御するガス設備が存在するガス供給領域において、河川毎に決定される計画降雨量と雨量予測部にて予測された予想降雨量とから前記ガス供給領域において浸水が発生する確率が高い第1浸水発生予測領域及び前記第1浸水発生予測領域にて浸水が発生する浸水発生予測時点を予測する浸水発生予測部と、
前記浸水発生予測時点よりも予め決定された事前停止期間前の時点から、前記事前停止期間及び復旧に要する復旧期間に亘って事前停止し二次側へのガス供給を停止する前記ガス設備を、前記第1浸水発生予測領域に存在する前記ガス設備から事前停止許容設備として判定抽出する停止判定抽出部とを備え、
前記停止判定抽出部は、前記ガス供給領域に存在する前記ガス設備の二次側の圧力である二次圧と前記二次側のガス消費部における予測消費ガス量に基づいて、前記事前停止期間及び前記復旧期間に亘って前記二次側の前記ガス消費部に対してガス供給可能であると予測した前記ガス設備を、前記事前停止許容設備として判定抽出する第1判定抽出処理を実行する水害対応システム。
A flood disaster response system that predicts the occurrence of flood damage including flooding and responds to the flood damage based on the prediction,
In a gas supply area where gas piping and gas equipment that controls the supply gas pressure in the gas piping are present, the gas supply is determined based on the planned rainfall amount determined for each river and the expected rainfall amount predicted by the rainfall prediction unit. a first flood occurrence prediction region in which the probability of flooding occurring is high; and a flood occurrence prediction unit that predicts a predicted time point at which flooding will occur in the first flood occurrence prediction region;
The gas equipment is pre-shutdowned and the gas supply to the secondary side is stopped from a point before a pre-determined pre-shutdown period before the predicted time of flooding, for the pre-shutdown period and the restoration period required for restoration. , a shutdown determination extraction unit that determines and extracts a preliminary shutdown permissible facility from the gas equipment existing in the first flood prediction area,
The stop determination extraction unit determines the preliminary stop based on the secondary pressure that is the pressure on the secondary side of the gas equipment existing in the gas supply area and the predicted gas consumption amount in the gas consumption unit on the secondary side. Executing a first determination extraction process for determining and extracting the gas equipment that is predicted to be capable of supplying gas to the gas consumption unit on the secondary side over the period and the recovery period as the equipment that is permitted to be shut down in advance. Water damage response system.
前記停止判定抽出部は、前記判定抽出を開始する時点において前記ガス供給領域での前記ガス配管の敷設状況を更新した後に、前記判定抽出を実行する請求項1に記載の水害対応システム。 The water damage response system according to claim 1, wherein the stoppage determination extraction unit executes the determination extraction after updating the installation status of the gas piping in the gas supply area at the time when the determination extraction is started. 前記事前停止期間は、前記ガス設備としての前記事前停止許容設備を停止し、二次側へのガス供給を停止している間の前記二次圧を計測する停止テストを実行する時間を含む期間であり、
前記停止判定抽出部は、前記停止テストの判定結果も鑑みて、前記事前停止許容設備を判定抽出する前記第1判定抽出処理を実行する請求項1又は2に記載の水害対応システム。
The pre-shutdown period is a time period during which the pre-shutdown permitted equipment as the gas equipment is stopped and a shutdown test is performed to measure the secondary pressure while gas supply to the secondary side is stopped. It is a period including
The flood disaster response system according to claim 1 or 2, wherein the stoppage determination extraction unit executes the first judgment extraction process of determining and extracting the equipment that is permitted to be stopped in advance, also taking into account the determination result of the stoppage test.
前記ガス供給領域における前記河川にて破堤が発生した場合に、当該破堤が発生した場所である破堤点毎に予め導出された浸水発生導出領域を記憶する記憶部を備え、
前記浸水発生予測部は、前記ガス供給領域における前記河川にて前記破堤が発生した場合に、当該破堤が発生した前記破堤点に対応する前記浸水発生導出領域を浸水が発生する可能性が高い第2浸水発生予測領域とし、
前記停止判定抽出部は、前記第2浸水発生予測領域に存在する前記ガス設備を緊急停止設備として判定抽出する第2判定抽出処理を実行する請求項1~3の何れか一項に記載の水害対応システム。
When a levee break occurs in the river in the gas supply region, a storage unit stores a flood occurrence derivation region derived in advance for each levee break point where the levee break occurs,
The flooding occurrence prediction unit is configured to predict the possibility that, when the levee break occurs in the river in the gas supply region, the flooding occurrence derivation region corresponding to the levee break point where the levee break occurs will be flooded. As the second flood prediction area with high
The flood disaster according to any one of claims 1 to 3, wherein the stoppage judgment extraction unit executes a second judgment extraction process to judge and extract the gas equipment existing in the second flood prediction area as emergency stoppage equipment. Compatible system.
前記停止判定抽出部にて判定抽出された前記ガス設備を、予め定められた通知期間毎に、前記ガス設備を停止する作業に関連する通信機器に対して通知処理する通知処理部を備える請求項1~4の何れか一項に記載の水害対応システム。 Claim comprising: a notification processing unit that processes the gas equipment determined and extracted by the shutdown determination extraction unit to notify a communication device related to the work of shutting down the gas equipment at each predetermined notification period. Flood damage response system according to any one of items 1 to 4. 前記ガス設備は、前記ガス配管の二次側への前記供給ガス圧を制御すると共に、助動球盤を有する整圧装置である請求項1~5の何れか一項に記載の水害対応システム。 The water damage response system according to any one of claims 1 to 5, wherein the gas equipment is a pressure regulating device that controls the supply gas pressure to the secondary side of the gas pipe and has an auxiliary ball. .
JP2020184327A 2020-11-04 2020-11-04 Flood damage response system Active JP7433191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184327A JP7433191B2 (en) 2020-11-04 2020-11-04 Flood damage response system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184327A JP7433191B2 (en) 2020-11-04 2020-11-04 Flood damage response system

Publications (2)

Publication Number Publication Date
JP2022074360A JP2022074360A (en) 2022-05-18
JP7433191B2 true JP7433191B2 (en) 2024-02-19

Family

ID=81605497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184327A Active JP7433191B2 (en) 2020-11-04 2020-11-04 Flood damage response system

Country Status (1)

Country Link
JP (1) JP7433191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7174187B1 (en) 2022-05-12 2022-11-17 東京瓦斯株式会社 District Governor Monitoring System

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298063A (en) 2001-03-30 2002-10-11 Original Engineering Consultants Co Ltd Real inundation map system and method for inundation forecast and drainage control
JP2006004212A (en) 2004-06-18 2006-01-05 Hitachi Ltd Program for making computer execute estimation method of damage by flood disaster and information presentation method
JP2017120231A (en) 2015-12-28 2017-07-06 株式会社東芝 Nuclear power plant monitoring system, program and control method therefor
JP2019144984A (en) 2018-02-23 2019-08-29 株式会社日立パワーソリューションズ Flood prediction program and flood prediction system
JP2021518889A (en) 2018-04-17 2021-08-05 ワン コンサーン インコーポレイテッドOne Concern,Inc. Flood monitoring and management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298063A (en) 2001-03-30 2002-10-11 Original Engineering Consultants Co Ltd Real inundation map system and method for inundation forecast and drainage control
JP2006004212A (en) 2004-06-18 2006-01-05 Hitachi Ltd Program for making computer execute estimation method of damage by flood disaster and information presentation method
JP2017120231A (en) 2015-12-28 2017-07-06 株式会社東芝 Nuclear power plant monitoring system, program and control method therefor
JP2019144984A (en) 2018-02-23 2019-08-29 株式会社日立パワーソリューションズ Flood prediction program and flood prediction system
JP2021518889A (en) 2018-04-17 2021-08-05 ワン コンサーン インコーポレイテッドOne Concern,Inc. Flood monitoring and management system

Also Published As

Publication number Publication date
JP2022074360A (en) 2022-05-18

Similar Documents

Publication Publication Date Title
AU2009315897B2 (en) System and method for optimized decision-making in water supply networks and/or water supply operations
Ghorbanian et al. Pressure standards in water distribution systems: Reflection on current practice with consideration of some unresolved issues
JP7433191B2 (en) Flood damage response system
EP3584656B1 (en) Risk assessment device, risk assessment method, and risk assessment program
US20230392757A1 (en) Methods and systems for assessing pipeline failures based on smart gas internet of things
Andersen et al. Risk indexing tool to assist in prioritizing improvements to embankment dam inventories
CN112241815B (en) Detection method for preferentially repairing damaged pipeline in water supply pipeline system
Risko Understanding steam traps
EP3510450B1 (en) Emergency shutdown system for dynamic and high integrity operations
CN112766772A (en) Oil-gas-water well real-time monitoring method and device, computer equipment and storage medium
JP7174187B1 (en) District Governor Monitoring System
CN117082097A (en) Intelligent machine room management method and system based on Internet of things
JP6620445B2 (en) Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment
JP2015121017A (en) Water storage system and water storage amount control method
JP7216591B2 (en) Management control system and management control method
JP2014055917A (en) Gas meter, automatic recovery control program therefor, automatic recovery control method therefor, and gas meter system
JP5680784B1 (en) Management method of steam utilization equipment and steam utilization equipment
JP2023034237A (en) System coping with flood disaster and control method thereof
Eerkes Holistic Transient Analysis of a Large Pressure Zone
US11661926B2 (en) System for optimizing and maintaining power plant performance
Pisaniello The Need for Private Dam Safety Assurance Policy-a Demonstrative Case Study
Laptos et al. Committee Report: Using Transient Hydraulic Models to Design Surge Control Devices.
JP6250176B2 (en) Plant system information creation device
JP2024053966A (en) Infrastructure resilience assessment system, infrastructure resilience assessment method, and program
Valentin et al. Maintenance of the romanian national transportation system of crude oil and natural gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240206

R150 Certificate of patent or registration of utility model

Ref document number: 7433191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150