JP7430906B2 - Beam scanning wide angle system - Google Patents

Beam scanning wide angle system Download PDF

Info

Publication number
JP7430906B2
JP7430906B2 JP2020100700A JP2020100700A JP7430906B2 JP 7430906 B2 JP7430906 B2 JP 7430906B2 JP 2020100700 A JP2020100700 A JP 2020100700A JP 2020100700 A JP2020100700 A JP 2020100700A JP 7430906 B2 JP7430906 B2 JP 7430906B2
Authority
JP
Japan
Prior art keywords
polarization diffraction
diffraction element
light
polarization
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020100700A
Other languages
Japanese (ja)
Other versions
JP2021196408A (en
Inventor
盛嗣 坂本
浩司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2020100700A priority Critical patent/JP7430906B2/en
Publication of JP2021196408A publication Critical patent/JP2021196408A/en
Application granted granted Critical
Publication of JP7430906B2 publication Critical patent/JP7430906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ビームステアリング素子からの光線走査広角化システムに関する。 The present invention relates to a beam-scanning widening system from a beam steering element.

レーザービームの伝搬方向を1次元的ないし2次元的に走査することを可能とするビームステアリング装置は自動運転のLiDAR(Light Detection And Ranging)やプロジェクター等、これまでに様々な手法が報告されている。 Various methods have been reported for beam steering devices that enable one-dimensional or two-dimensional scanning of the propagation direction of a laser beam, such as autonomous driving LiDAR (Light Detection and Ranging) and projectors. .

ビームステアリング装置にはビームの伝搬方向を曲げる偏向素子が必要不可欠であり、LiDARやプロジェクター用途においてはより高速動作が可能な偏向素子が求められる。この要求を満たす偏向素子の1つにMEMSミラーがある。MEMSミラーは電磁誘導の原理で微小なミラーを高速で振ることができ、ビームでの伝搬方向を高速に制御できる。このような性質を利用して、MEMSミラーはLiDARに搭載するビームステアリング装置の構成要素として積極的に利用されている。 A deflection element that bends the beam propagation direction is essential to a beam steering device, and a deflection element that can operate at higher speeds is required for LiDAR and projector applications. One of the deflection elements that meets this requirement is a MEMS mirror. The MEMS mirror uses the principle of electromagnetic induction to swing a minute mirror at high speed, and the propagation direction of the beam can be controlled at high speed. Taking advantage of these properties, MEMS mirrors are actively used as components of beam steering devices installed in LiDAR.

しかし一方でMEMSミラーは光学的振れ角が他手法に比べて小さく、概ね10deg未満に制約されるため、近距離で広範な領域を照明することができない。 However, on the other hand, the optical deflection angle of the MEMS mirror is smaller than that of other methods, and is generally limited to less than 10 degrees, so it is not possible to illuminate a wide area at a short distance.

MEMSミラーの光学的振れ角を広角化するための技術として、いくつかの方法が提案されている。一つは、バルクレンズを用いる方法である(非特許文献1、2、3参照)。この従来技術によれば、例えば凹面レンズでビームの進行方向を屈折させ、ビームの振れ角を拡大することができる。振れ角の大きさはバルクレンズの凹面曲率に応じて設計することができる。 Several methods have been proposed as techniques for widening the optical deflection angle of a MEMS mirror. One is a method using a bulk lens (see Non-Patent Documents 1, 2, and 3). According to this conventional technique, for example, the traveling direction of the beam is refracted by a concave lens, and the deflection angle of the beam can be expanded. The magnitude of the deflection angle can be designed according to the concave curvature of the bulk lens.

他にも、フレネルレンズやDOE(Diffrtactive Optical Element)などのフラットレンズを用いる方式もあり、バルクレンズに比べてより軽量で小型な光学系を構築できる。 There are also other methods that use flat lenses such as Fresnel lenses and DOEs (Differtactive Optical Elements), which make it possible to construct optical systems that are lighter and more compact than bulk lenses.

他にも、等方性の体積ホログラムや偏光回折格子を利用して機械的可動部を有しないビームステアリングを実現する方法が提案されている(特許文献1および非特許文献4参照)。本方式では偏光回折格子による光線の偏向機能を多段に組み合わせ、大きな振れ角を実現している。 Other methods have been proposed that utilize an isotropic volume hologram or a polarization diffraction grating to realize beam steering without mechanically moving parts (see Patent Document 1 and Non-Patent Document 4). This method combines the beam deflection function of a polarization diffraction grating in multiple stages to achieve a large deflection angle.

特許文献2には、偏光回折格子とMEMSアレイ上のMEMSミラーを組み合わせる技術が記載されている。この技術では、格子ベクトル方向と周期が異なる偏光回折格子がアレイ状ないし連続して分布した偏光回折素子を波面制御素子として用いている。この技術では、MEMSミラーで偏光回折素子への入射エリアを変えることで、MEMSミラーによる伝搬方向制御と偏光回折素子の伝搬方向制御の重ね合わせで光線の伝搬方向を平行ないしランダムに制御できるが、複数のMEMSミラーやそのアレイ装置を多段に組み合わせるためシステム構成が複雑であることから、既存のビームステアリング素子を利用した振れ角の広角化ができるシステムが望まれている。 Patent Document 2 describes a technique of combining a polarization diffraction grating and a MEMS mirror on a MEMS array. In this technique, a polarization diffraction element in which polarization diffraction gratings having different grating vector directions and periods are distributed in an array or continuously is used as a wavefront control element. With this technology, by changing the incident area to the polarization diffraction element using a MEMS mirror, the propagation direction of the light beam can be controlled in parallel or randomly by combining the propagation direction control by the MEMS mirror and the propagation direction control by the polarization diffraction element. Since the system configuration is complicated because a plurality of MEMS mirrors and their array devices are combined in multiple stages, a system that can widen the deflection angle using existing beam steering elements is desired.

また、MEMSミラーは、共振現象を利用するためミラーの駆動が正弦波形に制限される。このため、ビームの走査速度が一定とはならず、光学的振れ角の最大値近傍で低速、振れ角の最小値近傍で高速となり、投影される2次元領域内での輝度ムラを生じることとなる。この輝度ムラの改善は加工・表示・計測用途等、いずれの応用法においても望まれており、投影される2次元領域内(照射面)においてビームの走査速度を均一化する技術が望まれている。 Furthermore, since the MEMS mirror utilizes a resonance phenomenon, the driving of the mirror is limited to a sine waveform. For this reason, the scanning speed of the beam is not constant; it becomes slow near the maximum optical deflection angle and fast near the minimum optical deflection angle, resulting in uneven brightness within the projected two-dimensional area. Become. Improvement of this brightness unevenness is desired in any application method such as processing, display, measurement, etc., and a technology that equalizes the scanning speed of the beam within the projected two-dimensional area (irradiation surface) is desired. There is.

特開2011-257764号公報JP2011-257764A 特開2019-45574号公報JP 2019-45574 Publication

K. Iida, T. Morikawa, T. Hano, S. Shimizu, and K. Tezuka, “Development of 3D range sensor with super-wide angle detection to observe vehicle surrounding,” 19th ITS World Congress, no. AP-00079, Austiam Oct. 2012.K. Iida, T. Morikawa, T. Hano, S. Shimizu, and K. Tezuka, “Development of 3D range sensor with super-wide angle detection to observe vehicle surrounding,” 19th ITS World Congress, no. AP-00079, Austiam Oct. 2012. X. Lee, and C. Wang, “Optical design for uniform scanning in MEMS-based 3D imaging lidar,” Appl. Opt. 54, 2219-2223 (2015).X. Lee, and C. Wang, “Optical design for uniform scanning in MEMS-based 3D imaging lidar,” Appl. Opt. 54, 2219-2223 (2015). J. Zhou, and K. Qian, “Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,” Appl. Opt. 58, A283-A290 (2019).J. Zhou, and K. Qian, “Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror,” Appl. Opt. 58, A283-A290 (2019). J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 2636-2639 (2011).J. Kim, C. Oh, S. Serati, and M. J. Escuti, “Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings,” Appl. Opt. 2636-2639 (2011).

MEMSミラーの振れ角を広角化する従来技術を数例上記に挙げたが、既存のビームステアリング素子を利用した振れ角の広角化及び照射面において光線(ビーム)の走査速度を均一化する技術が望まれている。 Several examples of conventional techniques for widening the deflection angle of MEMS mirrors have been listed above, but there is a technology that uses existing beam steering elements to widen the deflection angle and to equalize the scanning speed of the light beam on the irradiation surface. desired.

そこで上記課題に鑑み、本発明の目的は、光線走査の振れ角の広角化と光線照射面における走査速度均一化の機能を有した光線走査広角化システムを提供することにある。 In view of the above-mentioned problems, an object of the present invention is to provide a beam scanning wide-angle system having the functions of widening the deflection angle of beam scanning and uniformizing the scanning speed on the beam irradiation surface.

本発明の一観点に係る光線広角化システムは、光源と、ビームステアリング素子と、光源とビームステアリング素子との間に配置された偏光制御素子と、光源から発せられる光線がビームステアリング素子を経由して入射可能に配置された偏光回折素子とを備え、該偏光回折素子は、局所的な格子周期を有し、且つ、光線の振れ角がビームステアリング素子が与える振れ角より増加させる機能を有し、且つ、該偏光回折素子の面と並行に離れた空間平面における光線の走査速度が一定となる機能を有するものである。 A light beam widening system according to one aspect of the present invention includes a light source, a beam steering element, a polarization control element disposed between the light source and the beam steering element, and a light beam emitted from the light source passing through the beam steering element. and a polarization diffraction element arranged so as to be incident on the beam, the polarization diffraction element having a local grating period and having a function of increasing the deflection angle of the light beam from the deflection angle given by the beam steering element. , and has a function of keeping the scanning speed of the light beam constant in a spatial plane parallel to and separated from the plane of the polarization diffraction element.

本観点において、偏光回折素子は光線がビームステアリング素子から直接入射可能な位置に配置されることが好ましい。 In this aspect, it is preferable that the polarization diffraction element is arranged at a position where a light beam can directly enter from the beam steering element.

また、本観点において、偏光回折素子が有する局所的な格子周期は、偏光回折素子の面内において1次元的又は2次元的に規則性を有し形成された光学軸方位の分布であることが好ましい。 Furthermore, in this aspect, the local grating period of the polarization diffraction element is a distribution of optical axis orientations formed with one-dimensional or two-dimensional regularity within the plane of the polarization diffraction element. preferable.

また、本観点において、偏光回折素子は、光学異方性材料を含んで構成されていることが好ましい。この場合において、偏光回折素子は、光反応性側鎖を有する液晶性高分子膜を含むものであり、更に、光反応性側鎖は、光架橋及び光異性化の少なくともいずれかの反応を生ずるものが好ましい。 Moreover, in this aspect, it is preferable that the polarization diffraction element is configured to include an optically anisotropic material. In this case, the polarization diffraction element includes a liquid crystal polymer film having a photoreactive side chain, and the photoreactive side chain causes at least one of photocrosslinking and photoisomerization reactions. Preferably.

また、本観点において、偏光回折素子は複数備えることが好ましい。 Moreover, in this aspect, it is preferable to provide a plurality of polarization diffraction elements.

以上、本発明により、ビームステアリング素子からの光線走査の振れ角の広角化と光線照射面における走査速度均一化の機能を有する光線走査広角化システムを提供することができる。 As described above, according to the present invention, it is possible to provide a beam scanning wide angle system having the functions of widening the deflection angle of beam scanning from a beam steering element and uniformizing the scanning speed on the beam irradiation surface.

実施形態1に係る光線走査広角化システムの概略図である。1 is a schematic diagram of a beam scanning wide-angle system according to a first embodiment; FIG. 偏光回折素子を含まない構成で、ビームステアリング素子による光線走査の外略を示す図である。FIG. 2 is a diagram schematically illustrating light beam scanning by a beam steering element in a configuration that does not include a polarization diffraction element. 素子面内で一様な格子周期を有する偏光回折素子の偏向顕微鏡写真及び光学軸方位φの素子面内における分布(光学軸分布)を示す図である。FIG. 2 is a diagram showing a polarization micrograph of a polarization diffraction element having a uniform grating period within the element plane and the distribution of the optical axis orientation φ within the element plane (optic axis distribution). 光が図3の偏光回折素子を透過したときの回折光の状態の一例を示す図である。4 is a diagram showing an example of the state of diffracted light when the light passes through the polarization diffraction element of FIG. 3. FIG. リタデーションΓがπ/2のときの±1次光の回折効率の入射光の楕円率依存性を示す図である。FIG. 7 is a diagram showing the dependence of the diffraction efficiency of ±1st-order light on the ellipticity of the incident light when the retardation Γ is π/2. 光の偏向角が光線の入射位置ごとに異なるように局所的な格子周期を分布させた偏光回折素子の光学軸分布の一例を示す図である。(a)1次元(x軸)方向に分布させた場合。(b)2次元(x軸およびy軸)方向に分布させた場合。FIG. 3 is a diagram showing an example of the optical axis distribution of a polarization diffraction element in which local grating periods are distributed so that the deflection angle of light differs depending on the incident position of the light ray. (a) When distributed in one-dimensional (x-axis) direction. (b) When distributed in two dimensions (x-axis and y-axis). 実施形態2に係る光線走査の広角化・速度均一化機能を有する偏光回折素子を含む光線走査広角化システムの外略を示す図である。FIG. 7 is a diagram schematically showing a beam scanning wide angle system including a polarization diffraction element having a function of widening the beam scanning angle and uniformizing the speed of beam scanning according to a second embodiment. 実施形態2に係る光線走査広角化システム(1次元)における、(a)光線露光位置の時間変化と、(b)偏光回折素子の局所格子周期の空間分布と、(c)偏光回折素子の光学軸方位φの回転量を300π毎にプロットした等高線で示した光学軸分布を示す図である。In the beam scanning wide-angle system (one-dimensional) according to Embodiment 2, (a) temporal change in beam exposure position, (b) spatial distribution of local grating period of the polarization diffraction element, and (c) optics of the polarization diffraction element FIG. 7 is a diagram showing an optical axis distribution shown by contour lines in which the amount of rotation of the axial direction φ is plotted every 300π. 実施形態2に係る光線走査広角化システム(2次元)における、(a)光線露光位置の時間変化と、(b)偏光回折素子の局所格子周期の空間分布と、(c)偏光回折素子の光学軸方位φのx方向とy方向の位相分布の和を再現した光学軸分布を示す図である。In the beam scanning wide-angle system (two-dimensional) according to Embodiment 2, (a) temporal change in the beam exposure position, (b) spatial distribution of local grating period of the polarization diffraction element, and (c) optics of the polarization diffraction element FIG. 7 is a diagram showing an optical axis distribution that reproduces the sum of phase distributions in the x direction and the y direction of the axial direction φ. 実施例の偏光回折素子の偏光顕微鏡写真である。It is a polarization micrograph of the polarization diffraction element of an Example. 実施例の光線走査広角化システムを説明する図である。FIG. 2 is a diagram illustrating a beam scanning wide-angle system according to an embodiment. MEMSミラーの1次元走査の振れ角θ1を1.61倍に広角化させた実施例を示す図である。FIG. 7 is a diagram showing an example in which the deflection angle θ 1 of one-dimensional scanning of the MEMS mirror is widened by 1.61 times. 振れ角θを説明する図である。It is a figure explaining deflection angle (theta).

以下、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例に記載された具体的な例示にのみ限定されるわけではない。 Hereinafter, embodiments of the present invention will be described in detail using the drawings. However, the present invention can be implemented in many different forms and is not limited to the specific examples described in the embodiments and examples below.

[実施形態1]
図1は、本実施形態1に係る光線走査広角化システム(以下「本システム」という。)1の概略を示すものである。本図で示すように、本システム1は、光源2と、ビームステアリング素子4と、偏光回折素子5と、光源2とビームステアリング素子4の間に配置された偏光制御素子3から成る。
[Embodiment 1]
FIG. 1 schematically shows a beam scanning wide-angle system (hereinafter referred to as "this system") 1 according to the first embodiment. As shown in this figure, the system 1 includes a light source 2, a beam steering element 4, a polarization diffraction element 5, and a polarization control element 3 disposed between the light source 2 and the beam steering element 4.

<光源2>
本システム1において光源2は、文字通り光を発することができるものを指す。本システム1の光源2が発する光は、特に限定されるわけではないが、波長λが単一のレーザー光であることが望ましい。レーザー光を発する光源としては、例えば半導体レーザー、全固体レーザー、DPSS(Diode Pumped Solid State)レーザー等を例示することができる。
<Light source 2>
In this system 1, the light source 2 literally refers to something that can emit light. Although the light emitted by the light source 2 of the system 1 is not particularly limited, it is desirable that the light be a laser beam having a single wavelength λ. Examples of light sources that emit laser light include semiconductor lasers, all-solid-state lasers, and DPSS (Diode Pumped Solid State) lasers.

光源2が発する光の波長λは、後述する式(4)を満たす限りにおいて限定されないが、例えば0.1mm以上1mm以下の波長とすれば、システムを自動車等に搭載するミリ波レーザー等に用いることができる。また、1μm以上10μm以下とすれば、自動運転等に利用するLiDAR等に用いることができる。さらに、300nm以上900nm以下とすれば、レーザープロジェクター等に用いることができる。従って光源2が発する光の波長は、300nm以上1mm以下であることが望ましく、300nm以上10μm以下であることがより望ましい。 The wavelength λ of the light emitted by the light source 2 is not limited as long as it satisfies formula (4) described below, but if it is, for example, a wavelength of 0.1 mm or more and 1 mm or less, the system can be used in a millimeter wave laser etc. mounted on a car etc. be able to. Further, if the thickness is 1 μm or more and 10 μm or less, it can be used for LiDAR etc. used in automatic driving etc. Furthermore, if it is 300 nm or more and 900 nm or less, it can be used for a laser projector or the like. Therefore, the wavelength of the light emitted by the light source 2 is preferably 300 nm or more and 1 mm or less, and more preferably 300 nm or more and 10 μm or less.

<偏光制御素子3>
本システム1において偏光制御素子3は、光源2が発する波長λの光の偏光状態を制御する素子である。具体的には、図1に例示するように、偏光制御素子3は、λ/4板32を含むものであることが好ましく、より好ましくはその前段に偏光子31を備えたものであることが好ましい。
<Polarization control element 3>
In the present system 1, the polarization control element 3 is an element that controls the polarization state of the light having the wavelength λ emitted by the light source 2. Specifically, as illustrated in FIG. 1, the polarization control element 3 preferably includes a λ/4 plate 32, and more preferably includes a polarizer 31 at the front stage thereof.

偏光子31によって無偏光を直線偏光に、λ/4板32によって直線偏光を右円偏光又は左円偏光に変換することが可能となる。また、レーザーから射出され直線偏光とした光をその振動方向から0°,45°,90°,135°以外の角度にλ/4板32を向けると楕円偏光に変換することが可能となる。さらに、円偏光を作る方式としては、電気光学変調器や液晶リターダなどのリタデーションΓが可変な位相子を用いても良い。 The polarizer 31 makes it possible to convert unpolarized light into linearly polarized light, and the λ/4 plate 32 makes it possible to convert linearly polarized light into right-handed or left-handed circularly polarized light. Moreover, if the λ/4 plate 32 is directed at an angle other than 0°, 45°, 90°, or 135° from the vibration direction of the linearly polarized light emitted from the laser, it is possible to convert the light into elliptically polarized light. Further, as a method for producing circularly polarized light, a retardation having a variable retardation Γ such as an electro-optic modulator or a liquid crystal retarder may be used.

偏光子31やλ/4板32、その他の素子によって、偏光制御素子3によるビームステアリング素子4への入射前の円偏光の楕円率を制御することができる。また、偏光制御素子3により偏光回折素子5への入射前の円偏光の回転方向を制御することで、偏光回折素子5から射出するビームの光路方向を変更させることができる。 The polarizer 31, the λ/4 plate 32, and other elements can control the ellipticity of the circularly polarized light before it is incident on the beam steering element 4 by the polarization control element 3. Furthermore, by controlling the rotation direction of the circularly polarized light before it enters the polarization diffraction element 5 using the polarization control element 3, the optical path direction of the beam emitted from the polarization diffraction element 5 can be changed.

<ビームステアリング素子4>
本システム1においてビームステアリング素子4は、偏光回折素子5に入射する円偏光の入射位置と伝搬方向を偏向させることができるものである。
<Beam steering element 4>
In this system 1, the beam steering element 4 is capable of deflecting the incident position and propagation direction of circularly polarized light incident on the polarization diffraction element 5.

ビームステアリング素子4は様々な形態をとりうることができ、MEMSミラーなどのミラー反射面を外部制御可能であり、入射光の伝搬方向をリサージュ波形状に制御できることが可能なものであることが好ましい。ただし、反射構造を有するビームステアリング素子に限定するものではなく、回転機構を有するウェッジプリズムや回折格子など、透過型のビームステアリング素子であっても良い。 The beam steering element 4 can take various forms, and is preferably capable of externally controlling a mirror reflection surface such as a MEMS mirror, and controlling the propagation direction of the incident light into a Lissajous wave shape. . However, the beam steering element is not limited to a beam steering element having a reflective structure, and may be a transmission type beam steering element such as a wedge prism or a diffraction grating having a rotation mechanism.

図2は偏光回折素子5を配置しない場合に、ビームステアリング素子4による光線走査の外略を示す図である。MEMSミラー等のビームステアリング素子4により偏向操作される光は、基準となる座標軸zに沿って距離d0離れた座標軸x2上で走査される。この時、MEMSミラーが光学的に与える振れ角θ1が時間に対して線形応答しない場合、光線が単位時間あたりにx2上を移動する距離(走査速度)が一定では無くなる。すなわち、光線がx2上を露光する位置間隔は不等間隔となる。光線密度が均一化されないことから輝度ムラが生じることとなる。 FIG. 2 is a diagram schematically showing the beam scanning by the beam steering element 4 when the polarization diffraction element 5 is not arranged. The light deflected by a beam steering element 4 such as a MEMS mirror is scanned on a coordinate axis x 2 that is a distance d 0 away from the reference coordinate axis z. At this time, if the deflection angle θ 1 optically given by the MEMS mirror does not respond linearly to time, the distance that the light beam moves on x 2 per unit time (scanning speed) is no longer constant. That is, the positional intervals at which the light beam exposes x 2 are irregular. Luminance unevenness occurs because the light density is not made uniform.

次に説明する偏光回折素子5は、この輝度ムラを補正しつつ、光線走査においてビームステアリング素子4が与える振れ角θ1を広角化する機能を担う。 The polarization diffraction element 5, which will be described next, has the function of widening the deflection angle θ 1 given by the beam steering element 4 during beam scanning while correcting this brightness unevenness.

<偏光回折素子5>
偏光回折素子5は光学軸方位φが周期的に変調された構造を有し、より具体的には光学軸方位φが周期的に分布した構造を有し、更に偏光回折素子5は局所的な格子周期を有し、円偏光が偏光回折素子5の平面に対し入射する位置における局所的な格子周期Λ(x)に応じた偏向角(回折角)で偏向する特性を有するものが良い。
<Polarization diffraction element 5>
The polarization diffraction element 5 has a structure in which the optical axis direction φ is periodically modulated, more specifically, it has a structure in which the optical axis direction φ is periodically distributed. It is preferable to have a characteristic of having a grating period and deflecting the circularly polarized light at a deflection angle (diffraction angle) corresponding to the local grating period Λ(x) at the position where the circularly polarized light is incident on the plane of the polarization diffraction element 5.

ここで偏光回折素子が有する「局所的な格子周期」とは、πを、ある位置における単位長さあたりの回転角で除算したものであり、下記式で表される。 Here, the "local grating period" of the polarization diffraction element is obtained by dividing π by the rotation angle per unit length at a certain position, and is expressed by the following formula.

本システムに備える、偏光回折素子5は、所望の方向へと偏向させる効率が90%以上、好ましくは95%以上、より好ましくは98%以上、最も好ましくは100%であるものが良い。また、偏光回折素子5は、所望の方向へと偏向させる光の楕円率が95%以上、好ましくは97%以上、より好ましくは99%以上、最も好ましくは100%であるものが良い。 The polarization diffraction element 5 included in this system is preferably one that has an efficiency of deflecting light in a desired direction at 90% or more, preferably 95% or more, more preferably 98% or more, and most preferably 100%. The polarization diffraction element 5 preferably has an ellipticity of 95% or more, preferably 97% or more, more preferably 99% or more, and most preferably 100% of the light to be polarized in a desired direction.

偏光回折素子5における光学軸方位φの空間分布構造は限定するものではなく、ビームステアリング素子4の特性(駆動周波数・走査軌跡が描くリサージュ図形)に応じて適宜選択可能であるが、以下では、図3に示すような1次元方向に対して線形且つ連続的に光学軸方位が周期的に回転する異方性の空間分布を有する偏光回折素子をもとに、その機能について述べる。 The spatial distribution structure of the optical axis azimuth φ in the polarization diffraction element 5 is not limited, and can be selected as appropriate depending on the characteristics of the beam steering element 4 (driving frequency and Lissajous figure drawn by the scanning locus). The functions of the polarization diffraction element will be described based on a polarization diffraction element having an anisotropic spatial distribution in which the optical axis direction periodically rotates linearly and continuously with respect to a one-dimensional direction as shown in FIG.

ここで「1次元的に規則性を有し形成された光学軸方位」とは、偏光回折素子5対して垂直に入射される光線の光線軸を基準軸zとして、基準軸zに直交する平面内における任意の一軸の方向に沿って、光学軸方位φが任意の規則に基づき形成されている状態をいう。図3に示す1次元方向に対して線形且つ連続的に光学軸方位が周期的に回転する状態は最も代表的な規則性を示す一例である。 Here, "one-dimensionally regular optical axis direction" refers to a plane perpendicular to the reference axis z, where the optical axis of the light beam perpendicularly entering the polarization diffraction element 5 is the reference axis z. A state in which the optical axis azimuth φ is formed according to an arbitrary rule along an arbitrary uniaxial direction within the optical axis. The state in which the optical axis direction periodically rotates linearly and continuously with respect to the one-dimensional direction shown in FIG. 3 is an example of the most typical regularity.

偏光回折素子に光を入射させると、その光学軸方位φに応じたPancharatnam Berry位相(PB位相)が周期的に付与されて回折が起こる(図4)。下記式(2)の左円偏光のJonesベクトル|L>および下記式(3)の右円偏光のJonesベクトル|R>を用いて、格子周期が一様に分布した偏光回折素子のJones行列は、下記式(4)で定義される。 When light is incident on the polarization diffraction element, a Pancharatnam Berry phase (PB phase) corresponding to the optical axis direction φ is periodically imparted to the light, causing diffraction (FIG. 4). Using the Jones vector |L> of left-handed circularly polarized light in the following equation (2) and the Jones vector |R> of right-handed circularly polarized light in the following equation (3), the Jones matrix of a polarization diffraction element with a uniform grating period distribution is , is defined by the following formula (4).

ここで、TOCは上記偏光回折素子のJones行列、Γ=πΔnd/λは偏光回折素子のリタデーション(Δn:偏光回折素子の複屈折、d:偏光回折素子の厚さ)、Λは偏光回折素子の格子周期、tは時間、xは横軸の空間座標、yは縦軸の空間座標、φは格子ベクトルのx軸からの方位、iは虚数単位を、また、<L|および<R|はそれぞれ|L>および|R>の随伴行列を表す。 Here, T OC is the Jones matrix of the polarization diffraction element, Γ = πΔnd/λ is the retardation of the polarization diffraction element (Δn: birefringence of the polarization diffraction element, d: thickness of the polarization diffraction element), Λ is the polarization diffraction element , where t is the time, x is the spatial coordinate of the horizontal axis, y is the spatial coordinate of the vertical axis, φ is the orientation of the grating vector from the x-axis, i is the imaginary unit, and <L| and <R| represent adjoint matrices of |L> and |R>, respectively.

また、式(4)から、左円偏光及び右円偏光に対する透過光の複素振幅を求めると下記式(5)および(6)を得ることができる。ここで、式(5)および(6)それぞれの第2項目が+1次光と-1次光の回折光成分に対応し、左円偏光に対する+1次光の回折光強度IL +1および右円偏光に対する-1次光の回折光強度IR -1は下記式(7)および(8)でそれぞれ与えられる。これらの式から、偏光回折素子は、リタデーションΓがπ/2の時、円偏光の入射に対して100%の回折効率を得ることができる。 Further, by calculating the complex amplitude of transmitted light for left-handed circularly polarized light and right-handed circularly polarized light from formula (4), the following formulas (5) and (6) can be obtained. Here, the second term in each of equations (5) and (6) corresponds to the diffracted light components of the +1st order light and -1st order light, and the diffracted light intensity I L +1 of the +1st order light with respect to the left circularly polarized light and the right The diffracted light intensity I R -1 of −1st-order light with respect to circularly polarized light is given by the following equations (7) and (8), respectively. From these equations, the polarization diffraction element can obtain 100% diffraction efficiency for incident circularly polarized light when the retardation Γ is π/2.

回折光の伝搬方向は、図4に示すように偏光回折素子5への入射角をθinとするとき、下記式(9)で表される。この式から、偏光回折素子5へ入射する光は、偏光回折素子の格子周期Λと入射光の波長λに依存して角度θoutだけ偏向されることがわかる(θoutを偏向角又は回折角という)。回折光の伝搬方向は円偏光の回転方向に応じて±1次の方向で反転する。なお、任意の楕円偏光が入射する場合のJonesベクトル|Earb>は下記式(10)のようにあらわされ、±1次光の回折光強度Iarb ±は下記式(11)で求められる。ここで、εとΨは入射偏光の楕円率角と方位角を表している。式(11)より、偏光回折素子のリタデーションΓがπ/2の時の±1次光の回折効率は入射光の楕円率に応じて±1次光の間の強度比が変わるという特性を持ち、その楕円率角依存性は図5に示すようになる。 The propagation direction of the diffracted light is expressed by the following equation (9) when the angle of incidence on the polarization diffraction element 5 is θ in as shown in FIG. From this equation, it can be seen that the light incident on the polarization diffraction element 5 is deflected by an angle θ out depending on the grating period Λ of the polarization diffraction element and the wavelength λ of the incident light (θ out is the deflection angle or the diffraction angle ). The propagation direction of the diffracted light is reversed in the ±1st order direction according to the rotation direction of the circularly polarized light. Note that the Jones vector |E arb > when arbitrary elliptically polarized light is incident is expressed as in the following equation (10), and the diffracted light intensity I arb ± of the ±1st-order light is determined by the following equation (11). Here, ε and Ψ represent the ellipticity angle and azimuth angle of the incident polarized light. From equation (11), when the retardation Γ of the polarization diffraction element is π/2, the diffraction efficiency of the ±1st order light has the characteristic that the intensity ratio between the ±1st order lights changes depending on the ellipticity of the incident light. , its dependence on the ellipticity angle is shown in FIG.

上述のとおり、偏光回折素子はリタデーションΓがπ/2の条件を満たすとき、円偏光の入射に対して±1次光のどちらか一方に100%の回折効率で光を回折させる機能を示す。このため、不要な回折光の発生なくビームを特定方向に偏向させることが可能である。 As described above, when the retardation Γ satisfies the condition of π/2, the polarization diffraction element exhibits the function of diffracting the incident circularly polarized light into either the ±1st order light with 100% diffraction efficiency. Therefore, it is possible to deflect the beam in a specific direction without generating unnecessary diffracted light.

偏光回折素子をビームステアリング素子の広角化に用いるにあたり、回折効率が高い偏光回折素子であるのがよい。偏光回折素子において、回折効率が最も高い理想的な位相差は上記式(7)および(8)から求められる。 When using a polarization diffraction element to widen the angle of a beam steering element, it is preferable that the polarization diffraction element has high diffraction efficiency. In the polarization diffraction element, the ideal phase difference with the highest diffraction efficiency can be found from the above equations (7) and (8).

具体的には、本システムに用いる偏光回折素子は、5%以上の回折効率、即ち位相差(δ=2πΔnd/λ)では0.448+2πm~5.82+2πm(m:自然数)の範囲、好ましくは50%以上の回折効率、即ち位相差(δ=2πΔnd/λ)では1.57+2πm~4.71+2πm(m:自然数)の範囲、理想的には100%の回折効率、即ち位相差(δ=2πΔnd/λ)では3.14+2πm(m:自然数)であるのがよい。 Specifically, the polarization diffraction element used in this system has a diffraction efficiency of 5% or more, that is, a phase difference (δ=2πΔnd/λ) in the range of 0.448+2πm to 5.82+2πm (m: natural number), preferably 50 % or more, that is, the phase difference (δ = 2πΔnd/λ) is in the range of 1.57 + 2πm to 4.71 + 2πm (m: natural number), ideally the diffraction efficiency is 100%, that is, the phase difference (δ = 2πΔnd/λ). λ) is preferably 3.14+2πm (m: natural number).

また、所望の回折次数にエネルギーを集中させるために、図5より偏光回折素子5に入射する円偏光の楕円率角の絶対値が26deg以上、好ましくは32deg以上、より好ましくは37deg以上、最も好ましくは45degであるのがよい。 In addition, in order to concentrate energy on a desired diffraction order, the absolute value of the ellipticity angle of the circularly polarized light incident on the polarization diffraction element 5 is 26 degrees or more, preferably 32 degrees or more, more preferably 37 degrees or more, and most preferably, as shown in FIG. is preferably 45deg.

なお、上記したように、偏光回折素子を透過する光線の偏向角θoutは、偏光回折素子の格子周期Λに依存する。このため、偏光回折素子の格子周期に分布を持たせることで、偏光回折素子への光線の入射位置ごとに偏向角を制御することができる。 Note that, as described above, the deflection angle θ out of the light beam transmitted through the polarization diffraction element depends on the grating period Λ of the polarization diffraction element. Therefore, by giving a distribution to the grating period of the polarization diffraction element, it is possible to control the deflection angle for each incident position of the light beam to the polarization diffraction element.

[実施形態2]
この考え方に基づけば、ビームステアリング素子4だけによる光線走査で、偏光回折素子5の面と並行に距離d2離れた空間平面におけるスクリーン6上での走査速度が不均一となる状態を、偏光回折素子5による偏向角θoutの制御により光線が単位時間あたりにスクリーン上で移動する距離を補正することで、スクリーン上での光線の走査速度を等速化できるとともに、光線の振れ角θを広角化することができる。
[Embodiment 2]
Based on this idea, the state in which the scanning speed on the screen 6 in a spatial plane parallel to the plane of the polarization diffraction element 5 at a distance d 2 is non-uniform due to beam scanning using only the beam steering element 4 can be explained by polarization diffraction. By correcting the distance that the light beam moves on the screen per unit time by controlling the deflection angle θ out by the element 5, the scanning speed of the light beam on the screen can be made constant, and the deflection angle θ of the light beam can be adjusted to a wide angle. can be converted into

ここで、「光線の振れ角」θとは、ビームステアリング素子4によって走査される光線が、偏光回折素子面及び空間平面xyに対して垂直に入射される光線軸を基準軸zとして、偏光回折素子5での出射点PPGと空間平面xyにて露光される点Pexとを通る線が、基準軸zに対してなす角度である(図13)。偏光回折素子5を配置しない場合には、基準軸zに対してビームステアリング素子4が与える振れ角θ1はθに等しくなる。 Here, "the deflection angle of the light beam" θ means that the light beam scanned by the beam steering element 4 is polarized by polarization diffraction, with the reference axis z being the light axis that is perpendicular to the polarization diffraction element surface and the spatial plane xy. This is the angle that a line passing through the emission point P PG in the element 5 and the point P ex exposed on the spatial plane xy makes with respect to the reference axis z (FIG. 13). When the polarization diffraction element 5 is not arranged, the deflection angle θ 1 given by the beam steering element 4 with respect to the reference axis z is equal to θ.

MEMSミラーなどの場合、光線走査速度は露光エリアの外周部程低速化するため、例えば、1次元的な光線走査に対しては、図6(a)に示すように偏光回折素子の外部(この場合は偏光回折素子のx軸における両端側)の局所的な格子周期を素子中央部(y軸から)から外部に向かって連続的または離散的に短くすることで、走査速度の変化の補正が可能となる。 In the case of a MEMS mirror, etc., the light beam scanning speed becomes slower toward the outer periphery of the exposure area. For example, for one-dimensional light beam scanning, as shown in FIG. By shortening the local grating period of the polarization diffraction element (both ends of the x-axis) continuously or discretely from the center of the element (from the y-axis) toward the outside, changes in scanning speed can be corrected. It becomes possible.

また、図6(b)は2次元的に規則性を有し形成された光学軸方位の一例であり、偏光回折素子の格子ベクトル方向をxy平面に分布させることで、2次元的な光線走査に対しても広角化及び走査速度の均一化、すなわち走査速度の等速化が可能となる。 In addition, FIG. 6(b) is an example of an optical axis direction formed with two-dimensional regularity, and by distributing the grating vector direction of the polarization diffraction element on the xy plane, two-dimensional light beam scanning is possible. It is also possible to widen the angle of view and to make the scanning speed uniform, that is, to make the scanning speed uniform.

<偏光回折素子を用いたビームステアリング素子の光線走査の広角化および等速化>
上述の偏光回折素子の機能をもとに、ビームステアリング素子で走査される光線の振れ角θの広角化および走査速度の等速化の原理について具体的に述べる。
<Wide angle and uniform speed of beam scanning of beam steering element using polarization diffraction element>
Based on the function of the polarization diffraction element described above, the principle of widening the deflection angle θ of the light beam scanned by the beam steering element and making the scanning speed constant will be specifically described.

図7は本実施形態2に係る本システム1’の概略を示す図である。本システム1’は、空間中に光線走査する本システム1に対し、光線を照射するスクリーン6を備えた形態であり、1枚の偏光回折素子5を用いた構成例である。本システム1’は、光源2(レーザー光源)、偏光制御素子3、ビームステアリング素子4(MEMSミラー)、偏光回折素子5および偏光回折素子5の面と並行に距離d2離れた空間平面に配置されたスクリーン6で構成される。 FIG. 7 is a diagram schematically showing the present system 1' according to the second embodiment. This system 1' has a configuration in which the system 1 scans a light beam in space and is equipped with a screen 6 that irradiates the light beam, and is an example of a configuration using one polarization diffraction element 5. This system 1' is arranged in a spatial plane parallel to the plane of a light source 2 (laser light source), a polarization control element 3, a beam steering element 4 (MEMS mirror), a polarization diffraction element 5, and a distance d 2 away from the polarization diffraction element 5. It consists of a screen 6.

スクリーン6は、例えば本システムをプロジェクター用途で使用する場合には映像を映し出すスクリーンを用いることができ、露光装置用途で使用する場合には露光対象物を用いることができる。他にもセンシング用途で使用する場合には被測定対象物を用いることができる。 As the screen 6, for example, when the present system is used as a projector, a screen that projects an image can be used, and when the system is used as an exposure device, an object to be exposed can be used. Other objects to be measured can also be used when used in sensing applications.

レーザー光源から射出されたビームは、最初の偏光制御素子3により左円偏光又は右円偏光に変換されたのちにビームステアリング素子4(MEMSミラー)により基準とする座標軸zから偏角θ1(t)[deg]だけ伝搬方向を曲げられる。ここで、tは時刻を表しており、θ1(t)は振れ角の時間応答を示す。 The beam emitted from the laser light source is first converted into left-handed circularly polarized light or right-handed circularly polarized light by the polarization control element 3, and then the polarization angle θ 1 (t ) [deg] can bend the propagation direction. Here, t represents time, and θ 1 (t) represents the time response of the deflection angle.

MEMSミラーの高速軸の時間応答は一般に正弦波形となっており、下記式(12)で表される。ここで、θ0[deg]はMEMSが光線走査可能なz軸に対する最大振れ角、fは駆動周波数[Hz]とする。 The high-speed axis time response of a MEMS mirror generally has a sinusoidal waveform, and is expressed by the following equation (12). Here, θ 0 [deg] is the maximum deflection angle with respect to the z-axis at which the MEMS can perform light beam scanning, and f is the drive frequency [Hz].

θ1(t)を用いて、MEMSミラーの機械的動作軸中心点から基準軸zに沿って距離d1離れたxy面におけるx軸に対する光線の入射位置x1は下記式(13)で表される。距離d1の位置に配置した偏光回折素子5の位置x1における局所的な格子周期をΛ(x1)とすると、該当位置を透過する光線はθ1(t)から更に回折し、その回折角θ2(t)は下記式(14)で表される。この時、偏光回折素子5の位置x1を通って且つz軸に平行な軸からの光線伝搬方向の偏角(振れ角)θはMEMSの偏向角θ1と偏光回折素子の回折角θ2の和となり、θ1+θ2となる。このため、偏光回折素子5の面と並行に座標軸zに沿って距離d2離れたxy平面に配置されたスクリーン6の面におけるx軸に対する露光位置x2は下記式(15)で表される。 Using θ 1 (t), the incident position x 1 of the light beam with respect to the x-axis in the xy plane, which is a distance d 1 away from the center point of the mechanical operation axis of the MEMS mirror along the reference axis z, is expressed by the following equation (13). be done. If the local grating period at the position x 1 of the polarization diffraction element 5 placed at a distance d 1 is Λ(x 1 ), then the light beam passing through the corresponding position is further diffracted from θ 1 (t), and the diffraction is The angle θ 2 (t) is expressed by the following equation (14). At this time, the polarization angle (deflection angle) θ of the light beam propagation direction from the axis parallel to the z-axis passing through the position x 1 of the polarization diffraction element 5 is the deflection angle θ 1 of the MEMS and the diffraction angle θ 2 of the polarization diffraction element 5. The sum is θ 12 . Therefore, the exposure position x 2 with respect to the x-axis on the plane of the screen 6, which is arranged on the xy plane parallel to the plane of the polarization diffraction element 5 and a distance d 2 apart along the coordinate axis z, is expressed by the following equation (15). .

MEMSの光線走査による振れ角θ1をβ倍に広角化することを考える。この際、MEMSの振れ角の最大値をθ1 maxとすると(式(12)の場合は、θ1 max0)、偏光回折素子で必要な最大回折角θ2 maxは下記式(16)で表される。 Consider widening the deflection angle θ 1 due to MEMS light beam scanning by a factor of β. At this time, if the maximum value of the deflection angle of the MEMS is θ 1 max (in the case of formula (12), θ 1 max0 ), the maximum diffraction angle θ 2 max required for the polarization diffraction element is calculated using the following formula (16). ).

MEMSが最大振れ角となる時刻での偏光回折素子への入射位置x1 maxにおける局所的な格子周期は式(16)を用いて下記式(17)の形で表される。即ち、MEMSミラーが与える振れ角θ1をβ倍に広角化するのに必要な偏光回折素子の特定位置における局所的な格子周期が定まる。 The local grating period at the incident position x 1 max on the polarization diffraction element at the time when the MEMS reaches its maximum deflection angle is expressed by the following equation (17) using equation (16). That is, the local grating period at a specific position of the polarization diffraction element is determined, which is necessary to widen the deflection angle θ 1 given by the MEMS mirror by a factor of β.

MEMSミラーが与える振れ角θ1の広角化と同時に光線走査速度を均一化させるためには、下記式(18)で表される光線の一定時間毎の露光位置x2(t)間の変位量Δxが一定になればよい。 In order to widen the deflection angle θ 1 given by the MEMS mirror and at the same time make the beam scanning speed uniform, the amount of displacement between the exposure positions x 2 (t) of the light beam at fixed time intervals, expressed by the following equation (18), must be It is sufficient if Δx becomes constant.

すなわち、変位量Δxが一定値となるよう偏光回折素子の格子周期Λ(x1)のx軸に沿った1次元的空間分布を決めれば良く、この際にΛ(x1 max)の境界条件を課すことで、β倍の広角化と光線走査速度の均一化を同時に満足する偏光回折素子の局所格子周期の空間分布が求められる。なお、局所格子周期Λと偏光回折素子の光学軸方位φとの間には下記式(19)の関係が成り立ち、これにより偏光回折素子のx軸に沿った光学軸方位φ(x1)の1次元的空間分布が設計できる。 In other words, it is sufficient to determine the one-dimensional spatial distribution of the grating period Λ(x 1 ) of the polarization diffraction element along the x-axis so that the amount of displacement Δx is a constant value, and in this case, the boundary condition of Λ(x 1 max ) By imposing this, it is possible to obtain a spatial distribution of the local grating period of the polarization diffraction element that simultaneously satisfies the widening of the angle by a factor of β and the uniformity of the beam scanning speed. Note that the following equation (19) holds true between the local grating period Λ and the optical axis azimuth φ of the polarization diffraction element, and as a result, the optical axis azimuth φ (x 1 ) along the x-axis of the polarization diffraction element One-dimensional spatial distribution can be designed.

図8は式(12)-(19)に基づいて算出したMEMSミラーの1次元走査における広角化と走査速度均一化の両機能を満たす偏光回折素子51の例である。 FIG. 8 is an example of a polarization diffraction element 51 that satisfies both the functions of widening the angle and uniformizing the scanning speed in one-dimensional scanning of the MEMS mirror calculated based on equations (12) to (19).

偏光回折素子51は、ビームステアリング素子4であるMEMSミラーが描く走査軌跡とその時間応答に対応して、走査範囲が広角化されると同時に、走査速度が均一化されるよう格子周期の1次元的空間分布を有している。 The polarization diffraction element 51 has a one-dimensional grating period so that the scanning range is widened and the scanning speed is made uniform, corresponding to the scanning locus drawn by the MEMS mirror, which is the beam steering element 4, and its time response. It has a specific spatial distribution.

ここで、MEMSミラーの光線走査の基礎特性は、最大振れ角θ0=10[deg]、駆動周波数f=100[Hz]とした。また、d1=0.1[m]、d2=1.0[m]、λ=532[nm]、β=5とした。偏光回折素子51のリタデーションΓはπ/2であり、回折効率は100%である。 Here, the basic characteristics of the light beam scanning of the MEMS mirror are that the maximum deflection angle θ 0 =10 [deg] and the drive frequency f = 100 [Hz]. Further, d 1 =0.1 [m], d 2 =1.0 [m], λ=532 [nm], and β=5. The retardation Γ of the polarization diffraction element 51 is π/2, and the diffraction efficiency is 100%.

図8(a)はMEMSミラーによりx軸に沿って光線走査した時のスクリーン6上での露光位置x2の時間変化、図8(b)は偏光回折素子5の面内におけるx軸の位置x1における局所格子周期Λの分布をそれぞれ表している。図8(c)は局所格子周期Λから偏光回折素子の光学軸分布の等高線を光学軸方位φの回転量を300π毎にプロットしたものである。MEMSミラーの走査波形はx2の正負の領域間で対称性を有するため、1/4周期分のみプロットした。 FIG. 8(a) shows the temporal change in the exposure position x2 on the screen 6 when the light beam is scanned along the x-axis by the MEMS mirror, and FIG. 8(b) shows the position of the x-axis in the plane of the polarization diffraction element 5. Each represents the distribution of the local lattice period Λ at x 1 . FIG. 8(c) is a plot of contour lines of the optical axis distribution of the polarization diffraction element from the local grating period Λ and the amount of rotation of the optical axis azimuth φ every 300π. Since the scanning waveform of the MEMS mirror has symmetry between the positive and negative regions of x 2 , only 1/4 period was plotted.

図8(a)において、破線は偏光回折素子51を配置しない場合、実線は偏光回折素子51を配置した場合のスクリーン上での露光位置x2の時間変化をそれぞれプロットしたものである。偏光回折素子51を配置しない場合、スクリーン上での露光位置x2の時間t軸に対する変化は非線形となっており、走査速度が一定ではないことが分かる。 In FIG. 8A, the broken line plots the time change of the exposure position x 2 on the screen when the polarization diffraction element 51 is not arranged, and the solid line plots the time change of the exposure position x 2 on the screen when the polarization diffraction element 51 is arranged. It can be seen that when the polarization diffraction element 51 is not arranged, the change in the exposure position x 2 on the screen with respect to the time t-axis is nonlinear, and the scanning speed is not constant.

一方で、偏光回折素子51を配置した場合、スクリーン上での露光位置x2の時間t軸に対する変化が線形となっており、走査速度が均一化していることが分かる。さらに、図8(a)のグラフから偏光回折素子51を配置することで露光位置x2が偏光回折素子51を配置しない場合よりも増加、すなわち露光範囲が拡大されており、振れ角θが広角化していることが分かる。 On the other hand, when the polarization diffraction element 51 is arranged, the change in the exposure position x 2 on the screen with respect to the time t-axis is linear, and it can be seen that the scanning speed is made uniform. Furthermore, from the graph of FIG. 8(a), by arranging the polarization diffraction element 51, the exposure position x 2 is increased compared to when the polarization diffraction element 51 is not arranged, that is, the exposure range is expanded, and the deflection angle θ is wide-angle. It can be seen that it has changed.

この光線走査の広角化と速度均一化を達成する偏光回折素子の格子周期ないし、光学軸方位φの素子面内における分布(光学軸分布)は図8(b)(c)に示す通りであり、素子中央部から外部に行くにしたがって周期が短くなる。これは、光線走査の特性が式(12)に従うMEMSミラーの場合、露光エリアの外部に行くほど走査速度が遅くなるので、外部程回折角を大きくすることで走査速度を加速させて補正している為である。 The grating period of the polarization diffraction element and the distribution (optic axis distribution) of the optical axis azimuth φ in the element plane (optic axis distribution) that achieve wide angle and uniform speed of beam scanning are as shown in FIGS. 8(b) and 8(c). , the period becomes shorter as one goes from the center of the element to the outside. In the case of a MEMS mirror whose beam scanning characteristics follow equation (12), the scanning speed becomes slower as it goes outside the exposure area, so this can be corrected by accelerating the scanning speed by increasing the diffraction angle toward the outside of the exposure area. It is for the sake of being there.

図9はMEMSミラーの2次元走査における広角化と走査速度均一化の両機能を満たす偏光回折素子52の例である。一般的なMEMSミラーは低速軸と高速軸の2軸駆動であることから、y軸方向(低速軸)に対してMEMSの光線走査の振れ角θ1は線形変化とし、y軸方向(低速軸)の最大振れ角はθ0=10[deg]、駆動周波数fは10[Hz]とした。x軸方向(高速軸)のMEMSの光線走査の最大振れ角θ0及び駆動周波数fは、1次元走査における広角化と走査速度均一化の両機能を満たす偏光回折素子51と同じである。光線走査の振れ角θの拡大と速度等速化をx軸とy軸それぞれの変位に対して行った。 FIG. 9 is an example of a polarization diffraction element 52 that satisfies both the functions of widening the angle and uniformizing the scanning speed in two-dimensional scanning of a MEMS mirror. Since a general MEMS mirror is driven in two axes, a slow axis and a fast axis, the deflection angle θ 1 of MEMS light beam scanning changes linearly with respect to the y-axis direction (low-speed axis). ), the maximum deflection angle was θ 0 =10 [deg], and the driving frequency f was 10 [Hz]. The maximum deflection angle θ 0 and driving frequency f of MEMS light beam scanning in the x-axis direction (fast axis) are the same as those of the polarization diffraction element 51 that satisfies both the functions of widening the angle in one-dimensional scanning and uniformizing the scanning speed. The deflection angle θ of the beam scan was expanded and the velocity was made constant for each displacement of the x-axis and y-axis.

図9(a)はy2軸に対する露光位置の時間依存性を偏光回折素子52の有無で比較した結果である。y軸方向については線形走査である為、光線走査速度の非線形性の緩和の程度は顕著にみられないが、振れ角θは広角化されているのが明確に確認できる。 FIG. 9A shows the results of comparing the time dependence of the exposure position with respect to the y 2 axis with and without the polarization diffraction element 52. Since linear scanning is performed in the y-axis direction, the degree of relaxation of the nonlinearity of the beam scanning speed is not noticeable, but it can be clearly seen that the deflection angle θ is widened.

図9(b)は、x軸(高速軸)方向とy軸(低速軸)方向に対してそれぞれ偏光回折素子52の局所格子周期Λの2次元的空間分布をプロットしたものである。図9(c)は式(19)に従ってx方向とy方向の位相分布の和を再現するように光学軸方位φをプロットしたものである。放物状に光学軸方位φの素子面内における分布(光学軸分布)が得られていることが分かる。 FIG. 9B is a plot of the two-dimensional spatial distribution of the local grating period Λ of the polarization diffraction element 52 in the x-axis (fast axis) direction and the y-axis (slow axis) direction, respectively. FIG. 9(c) is a plot of the optical axis azimuth φ so as to reproduce the sum of the phase distributions in the x direction and the y direction according to equation (19). It can be seen that a parabolic distribution of the optical axis orientation φ in the element plane (optic axis distribution) is obtained.

図7の形態では、単一の偏光回折素子を用いる例を示したが、偏光回折素子は同一または異なる光学軸分布を有する複数の偏光回折素子を光線の進行方向に対し多段に配列させて用いても良い。 In the embodiment shown in FIG. 7, an example is shown in which a single polarization diffraction element is used, but a polarization diffraction element is also used in which a plurality of polarization diffraction elements having the same or different optical axis distributions are arranged in multiple stages in the direction of travel of the light beam. It's okay.

<偏光回折素子5の作製方法>
偏光回折素子5は、光学異方性材料を含んで構成されていることが好ましい。光学異方性材料は、高い光学異方性を確保できる限りにおいて限定されるわけではないが、光学異方性材料は光架橋及び光異性化の少なくともいずれかの反応を生ずる光反応性側鎖を有する光反応性高分子であることが好ましく、液晶性を示す光反応性高分子液晶がより好ましい。
<Method for manufacturing polarized light diffraction element 5>
Preferably, the polarization diffraction element 5 includes an optically anisotropic material. The optically anisotropic material is not limited as long as it can ensure high optical anisotropy, but the optically anisotropic material has a photoreactive side chain that causes at least one of photocrosslinking and photoisomerization reactions. It is preferable to use a photoreactive polymer having the following properties, and a photoreactive polymer liquid crystal exhibiting liquid crystallinity is more preferable.

光学異方性材料を含む偏光回折素子5は、公知の方法、例えばWO2016/072436、特願2019-164405、J. Appl. Phys. 94, 1298 (2003)等に記載された方法に従うことで、光学軸方位φが周期的に変調された構造を有する偏光回折素子5を作製することができる。 The polarization diffraction element 5 including an optically anisotropic material can be manufactured by a known method, for example, WO2016/072436, Japanese Patent Application No. 2019-164405, J. Appl. Phys. 94, 1298 (2003), etc., it is possible to produce a polarization diffraction element 5 having a structure in which the optical axis direction φ is periodically modulated.

他にも偏光回折素子5は、光源2が発する光の波長λよりも短い周期構造を有するサブ波長構造に基づく構造性複屈折を利用した光学異方性材料によって作製されたものでもよい。 Alternatively, the polarization diffraction element 5 may be made of an optically anisotropic material that utilizes structural birefringence based on a sub-wavelength structure having a periodic structure shorter than the wavelength λ of the light emitted by the light source 2.

<本システムの特徴>
本システムは、既存のビームステアリング素子の後段に上記の手法で作製される光学軸方位φが素子面内で周期的に変調された構造を有する偏光回折素子を配置するだけのシンプルな構成であるため、装置全体の小型化が容易である。光線走査の広角化には従来、屈折性のバルクレンズを用いる方法が利用されているが、本システムは、この従来の方式と比べ重量面やシステムのサイズ面で有利である。また、本システムでは偏光回折素子として厚さ数μm程度の異方性フィルムを単層用意するのみでビーム振れ角の広角化が可能であり、システムの軽量化・小型化の面で優位である。また、液晶の光配向法などの製造自由度の高いプロセスで作製できることから作製コストの面で優位である。
<Features of this system>
This system has a simple configuration in which a polarization diffraction element fabricated by the above method and having a structure in which the optical axis azimuth φ is periodically modulated within the element plane is placed after the existing beam steering element. Therefore, it is easy to downsize the entire device. Conventionally, a method using a refractive bulk lens has been used to widen the angle of beam scanning, but the present system has advantages over this conventional method in terms of weight and system size. Additionally, in this system, it is possible to widen the beam deflection angle by simply preparing a single layer of anisotropic film with a thickness of several μm as a polarization diffraction element, which is advantageous in terms of making the system lighter and smaller. . Furthermore, since it can be manufactured using a process with a high degree of manufacturing freedom, such as a liquid crystal photo-alignment method, it is advantageous in terms of manufacturing cost.

ここで、上記実施形態2に係る本システム1’に関しその効果を確認した。以下、実施例を用いて具体的に説明するが、該実施例によってのみ限定されるものではない。 Here, the effects of the present system 1' according to the second embodiment were confirmed. The present invention will be specifically explained below using examples, but is not limited only by these examples.

<偏光回折素子の作製>
偏光感受性を有する液晶高分子への偏光ホログラム記録により偏光回折素子を作製した。記録材料として、光架橋性の側鎖を有する厚さ3.5μmの高分子液晶膜がTAC(Tri-Acetyle Cellulose)フィルム上に製膜されたものを用いた。光学異方性を誘起するために、互いに逆回りの円偏光の360nmレーザー光をコヒーレントに異なる曲率の球面位相を与えて記録材料上で同軸で重ね合わせて偏光ホログラムを記録した。記録後、130℃で5分間熱処理を施し、次いで冷却することにより、偏光回折素子の光学異方性を誘起した。本実施例では、焦点距離が155[mm]に相当する曲率位相差を与えて偏光ホログラム記録して形成された偏光回折素子を用いた。
<Preparation of polarized light diffraction element>
A polarization diffraction element was fabricated by recording a polarization hologram on a polarization-sensitive liquid crystal polymer. As a recording material, a polymer liquid crystal film having a thickness of 3.5 μm and having a photocrosslinkable side chain was formed on a TAC (Tri-Acetyle Cellulose) film. In order to induce optical anisotropy, polarization holograms were recorded by coaxially superimposing 360 nm laser beams with circularly polarized light in opposite directions, giving spherical phases of different curvatures coherently on the recording material. After recording, a heat treatment was performed at 130° C. for 5 minutes, followed by cooling to induce optical anisotropy in the polarization diffraction element. In this example, a polarization diffraction element formed by recording a polarization hologram while giving a curvature phase difference corresponding to a focal length of 155 mm was used.

<偏光回折素子の特性>
作製した偏光回折素子の偏光顕微鏡写真を図10に示す。偏光回折素子を直交する偏光子で挟んで撮影したものであり、明暗に対応して光学軸が分布していることを示す。本図によると作製した偏光回折素子は、光学軸方位φが素子中心から外周部に向かって局所的な格子周期が連続的に短くなるような分布となる光学軸分布を有しており、素子外周部程入射光を大きく偏向させる機能を有することが分かる。
<Characteristics of polarization diffraction element>
A polarized light micrograph of the produced polarized light diffraction element is shown in FIG. This photo was taken with a polarized diffraction element sandwiched between orthogonal polarizers, showing that the optical axis is distributed in correspondence to brightness and darkness. According to this figure, the fabricated polarization diffraction element has an optical axis distribution in which the optical axis orientation φ is distributed such that the local grating period becomes continuously shorter from the element center to the outer periphery. It can be seen that the outer peripheral portion has a function of deflecting incident light to a greater extent.

<MEMSミラー反射光の光線走査の広角化>
作製した偏光回折素子を図11の光学系の形態で配置し、別途配置した図示されていないイメージングカメラでスクリーン6上に投影された光線走査の軌跡を長時間露光で撮像した。光源2にはYAGレーザー(Quantum社製、Torus532-100s)を使用した。YAGレーザーから射出された波長532nmのビームを偏光子及び1/4波長板から成る偏光制御素子3へと透過させ、円偏光に変換した。その後、ビームステアリング素子4として使用した2軸のMEMSミラー(Mirrocle Technology社製)で反射させ、x軸(高速軸)方向に対して周波数f=100[Hz]の正弦信号で1次元走査した。MEMSミラーから距離d1=0.098[m]離れた位置に上記の偏光回折素子を配置し、偏光回折素子から距離d2=0.559[m]の位置に配置したスクリーンへの光線を投影した。イメージングカメラの長時間露光により、スクリーンに投影された光線走査の軌跡を観察した。
<Wide-angle scanning of MEMS mirror reflected light>
The produced polarization diffraction element was arranged in the form of the optical system shown in FIG. 11, and the locus of the light beam scan projected onto the screen 6 was imaged by long exposure using a separately arranged imaging camera (not shown). As the light source 2, a YAG laser (Torus532-100s, manufactured by Quantum) was used. A beam with a wavelength of 532 nm emitted from a YAG laser was transmitted through a polarization control element 3 consisting of a polarizer and a quarter-wave plate, and converted into circularly polarized light. Thereafter, it was reflected by a two-axis MEMS mirror (manufactured by Mirror Technology) used as the beam steering element 4, and one-dimensional scanning was performed in the x-axis (high-speed axis) direction with a sine signal of frequency f = 100 [Hz]. The above polarized light diffraction element is placed at a distance d 1 =0.098 [m] from the MEMS mirror, and the light rays are directed to the screen placed at a distance d 2 =0.559 [m] from the polarized light diffraction element. Projected. We observed the trajectory of the light beam scan projected onto the screen using long-time exposure with an imaging camera.

図12は撮像した光線走査の軌跡の例である。図の上部は偏光回折素子5の偏向作用を受けて振れ角θが広角化した光線走査の軌跡で、下部は偏光回折素子5を透過していない元々のMEMSミラーだけによる振れ角θの光線走査の軌跡である。 FIG. 12 is an example of the trajectory of the imaged light beam scan. The upper part of the figure is the trajectory of a light beam whose deflection angle θ is widened due to the deflection action of the polarization diffraction element 5, and the lower part is the light beam with a deflection angle θ 1 caused only by the original MEMS mirror that does not pass through the polarization diffraction element 5. This is the scanning trajectory.

スクリーン上に投影された元々の光線走査の幅は25[mm]で、最大振れ角θ1(=θ0)に換算すると±1.09[deg]である。一方で、偏光回折素子の偏向作用を受けた後の光線走査の幅は、38[mm]で、最大振れ角θに換算すると±1.76[deg]である。 The width of the original beam scan projected onto the screen is 25 [mm], which is ±1.09 [deg] when converted to the maximum deflection angle θ 1 (=θ 0 ). On the other hand, the width of the beam scan after being subjected to the deflection action of the polarization diffraction element is 38 [mm], which is ±1.76 [deg] when converted to the maximum deflection angle θ.

従って、およそMEMSで与えられる光線の最大振れ角θ0が1.61倍に広角化出来ており、本システムが既存ビームステアリング素子により走査される光線の振れ角θ1を広角化出来ることが実証できた。また、厚み3.5μmの薄膜フィルムの偏光回折素子により光線走査の振れ角θを広角化出来たことから、従来技術でのバルクレンズと比べてシステムの小型化が可能であることも併せて実証できた。 Therefore, the maximum deflection angle θ 0 of the light beam given by MEMS can be widened by 1.61 times, proving that this system can widen the deflection angle θ 1 of the light beam scanned by the existing beam steering element. did it. In addition, since we were able to widen the deflection angle θ of light beam scanning using a polarization diffraction element made of a thin film with a thickness of 3.5 μm, we also demonstrated that it is possible to downsize the system compared to bulk lenses using conventional technology. did it.

以上、本実施例によって、本発明の効果の内、光線走査の広角化を確認することができた。なお、この実施例以外にも、光線走査の速度均一化等、偏光回折素子の光学軸方位φの空間分布の設計に応じて様々な効果を得ることができる。 As described above, according to this example, one of the effects of the present invention was to widen the angle of light beam scanning. In addition to this embodiment, various effects such as equalization of the speed of beam scanning can be obtained depending on the design of the spatial distribution of the optical axis azimuth φ of the polarization diffraction element.

本発明は、既存のMEMSミラーを代表とするビームステアリング素子を利用した振れ角の広角化が可能となる。さらにビームの走査速度の不均一さを改善することが可能となる。このような特徴を鑑みるに、光線走査システムとして産業上の利用可能性がある。より具体的に説明すると以下のとおりである。 The present invention makes it possible to widen the deflection angle by using a beam steering element typified by an existing MEMS mirror. Furthermore, it becomes possible to improve non-uniformity in beam scanning speed. In view of these characteristics, there is a possibility of industrial use as a beam scanning system. A more specific explanation is as follows.

自動運転の普及に向けて、車外の環境情報を逐次取得するためのライダー(レーザー光を2次元的にスキャンする光源付帯システム)の開発が勢力的に行われている。本発明は、小型システムで高速かつ均一な輝度で広範囲なビームステアリングを可能とすることから、ライダーへの適用の可能性が高いと期待される。 In order to popularize autonomous driving, efforts are being made to develop lidar (a system with a light source that scans laser light two-dimensionally) to sequentially acquire environmental information outside the vehicle. Since the present invention enables beam steering over a wide range with high speed and uniform brightness with a small system, it is expected that it has a high possibility of being applied to lidar.

また、プロジェクター用途も期待される。一般的な映像の表示周波数である60Hz程度を超える回転駆動と半導体レーザー光源の出力時間制御を組み合わせれば、任意の画像を被写体上に投影することができる。 It is also expected to be used in projectors. By combining rotational drive at a frequency exceeding about 60 Hz, which is a typical video display frequency, and output time control of the semiconductor laser light source, any image can be projected onto the subject.

発明について自動運転技術分野や表示分野などを例に挙げたが、ビームステアリング方式の用途展開は医療分野、セキュリティー分野、加工分野なども想定でき、これらに限定されない。 Although the invention has been given as examples in the fields of automatic driving technology and display, the application of the beam steering method can also be expected to be expanded to the medical field, security field, processing field, etc., and is not limited to these fields.

1,1’・・・・・・光線走査広角化システム
2・・・・・・・・・光源
3・・・・・・・・・偏光制御素子
4・・・・・・・・・ビームステアリング素子
5,51,52・・・偏光回折素子
6・・・・・・・・・スクリーン
1,1'... Ray scanning wide angle system 2... Light source 3... Polarization control element 4... Beam Steering element 5, 51, 52...Polarization diffraction element 6...Screen

Claims (7)

光源と、
ビームステアリング素子と、
前記光源と前記ビームステアリング素子との間に配置された偏光制御素子と
前記光源から発せられる光線が前記ビームステアリング素子を経由して入射可能に配置された偏光回折素子とを備え、
前記偏光回折素子は、局所的な格子周期を有し、且つ、
前記光線の振れ角が前記ビームステアリング素子が与える振れ角より増加させる機能を有し、且つ、
前記偏光回折素子の面と並行に離れた空間平面における前記光線の走査速度が一定となる機能を有する
ことを特徴とした光線走査広角化システム。
a light source and
a beam steering element;
a polarization control element disposed between the light source and the beam steering element; and a polarization diffraction element disposed so that the light beam emitted from the light source can enter through the beam steering element;
The polarization diffraction element has a local grating period, and
having a function of increasing the deflection angle of the light beam from the deflection angle given by the beam steering element, and
A beam scanning wide-angle system characterized by having a function of making the scanning speed of the beam constant in a spatial plane parallel to the plane of the polarization diffraction element.
前記光線が前記ビームステアリング素子から直接入射可能に配置された前記偏光回折素子を備える
請求項1に記載の光線走査広角化システム。
The beam scanning wide angle system according to claim 1, comprising the polarization diffraction element arranged so that the beam can directly enter from the beam steering element.
前記局所的な格子周期は、前記偏光回折素子の面内において1次元的又は2次元的に規則性を有し形成された光学軸方位の分布である
請求項1に記載の光線走査広角化システム。
The beam scanning wide angle system according to claim 1, wherein the local grating period is a distribution of optical axis orientations formed with regularity one-dimensionally or two-dimensionally within the plane of the polarization diffraction element. .
前記偏光回折素子を複数備える
請求項1に記載の光線走査広角化システム。
The beam scanning wide angle system according to claim 1, comprising a plurality of the polarization diffraction elements.
前記偏光回折素子は、光学異方性材料を含んで構成されている
請求項1に記載の光線走査広角化システム。
The beam scanning wide angle system according to claim 1, wherein the polarization diffraction element includes an optically anisotropic material.
前記偏光回折素子は、光反応性側鎖を有する液晶性高分子膜を含む
請求項5に記載の光線走査広角化システム。
The beam scanning wide angle system according to claim 5, wherein the polarization diffraction element includes a liquid crystal polymer film having a photoreactive side chain.
前記光反応性側鎖は、光架橋及び光異性化の少なくともいずれかの反応を生ずるものである
請求項6に記載の光線走査広角化システム。
The beam scanning wide angle system according to claim 6, wherein the photoreactive side chain causes at least one of photocrosslinking and photoisomerization.
JP2020100700A 2020-06-10 2020-06-10 Beam scanning wide angle system Active JP7430906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020100700A JP7430906B2 (en) 2020-06-10 2020-06-10 Beam scanning wide angle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100700A JP7430906B2 (en) 2020-06-10 2020-06-10 Beam scanning wide angle system

Publications (2)

Publication Number Publication Date
JP2021196408A JP2021196408A (en) 2021-12-27
JP7430906B2 true JP7430906B2 (en) 2024-02-14

Family

ID=79197904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020100700A Active JP7430906B2 (en) 2020-06-10 2020-06-10 Beam scanning wide angle system

Country Status (1)

Country Link
JP (1) JP7430906B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075229A (en) 1998-09-01 2000-03-14 Canon Inc Scanning optical system
JP3209209B2 (en) 1998-10-08 2001-09-17 日本電気株式会社 Method for manufacturing semiconductor device having capacitance contact hole
JP2003241130A (en) 2002-02-14 2003-08-27 Ricoh Co Ltd Optical scanner and image forming device
JP2008233539A (en) 2007-03-20 2008-10-02 Nagaoka Univ Of Technology Forming method for polarization diffraction grating, and polarization diffraction grating
US20110188120A1 (en) 2010-01-29 2011-08-04 Beam Engineering For Advanced Measurement Co. Broadband optics for manipulating light beams and images
JP2012505430A (en) 2008-10-09 2012-03-01 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
CN109459849A (en) 2017-09-06 2019-03-12 脸谱科技有限责任公司 On-mechanical light beam for depth sense turns to
JP2019045574A (en) 2017-08-30 2019-03-22 学校法人慶應義塾 Optical scanning device
WO2019189675A1 (en) 2018-03-29 2019-10-03 富士フイルム株式会社 Light deflection device and optical device
WO2019203357A1 (en) 2018-04-20 2019-10-24 富士フイルム株式会社 Light irradiation device and sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000075229A (en) 1998-09-01 2000-03-14 Canon Inc Scanning optical system
JP3209209B2 (en) 1998-10-08 2001-09-17 日本電気株式会社 Method for manufacturing semiconductor device having capacitance contact hole
JP2003241130A (en) 2002-02-14 2003-08-27 Ricoh Co Ltd Optical scanner and image forming device
JP2008233539A (en) 2007-03-20 2008-10-02 Nagaoka Univ Of Technology Forming method for polarization diffraction grating, and polarization diffraction grating
JP2012505430A (en) 2008-10-09 2012-03-01 ノース・キャロライナ・ステイト・ユニヴァーシティ Polarization-independent liquid crystal display device having a plurality of polarization grating arrangements and related devices
US20110188120A1 (en) 2010-01-29 2011-08-04 Beam Engineering For Advanced Measurement Co. Broadband optics for manipulating light beams and images
JP2019045574A (en) 2017-08-30 2019-03-22 学校法人慶應義塾 Optical scanning device
CN109459849A (en) 2017-09-06 2019-03-12 脸谱科技有限责任公司 On-mechanical light beam for depth sense turns to
WO2019189675A1 (en) 2018-03-29 2019-10-03 富士フイルム株式会社 Light deflection device and optical device
WO2019203357A1 (en) 2018-04-20 2019-10-24 富士フイルム株式会社 Light irradiation device and sensor

Also Published As

Publication number Publication date
JP2021196408A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
US7375887B2 (en) Method and apparatus for correcting a visible light beam using a wire-grid polarizer
US11822288B2 (en) Self-interference digital holographic system
US11914182B2 (en) Polarizing beam splitter assembly
EP2927728A1 (en) Light modulation element
JP2007521518A (en) High-speed, high-frequency optical pattern generator using rotating optical components
US11372248B2 (en) Thin waveguide wavelength-selective projector
KR20130100693A (en) Illumination optical system, light irradiation apparatus for spectrometory, and spectrometer
US10012833B2 (en) Displaying apparatus including optical image projection system and two plate-shaped optical propagation systems
JP2018054759A (en) Speckle eliminating optical system and optical device having the same
JP4055590B2 (en) Image display device
Sakamoto et al. Polarized beam steering using multiply-cascaded rotating polarization gratings
CN116324582A (en) Off-axis focusing geometric phase lens and system including the same
JP2021176005A (en) Beam steering device, beam steering method, and beam detection system
JP7297075B2 (en) Optical deflection device and optical device
JP7430906B2 (en) Beam scanning wide angle system
CN112558203B (en) Independent phase control device and method for radial and angular column vector beams
TW518427B (en) Light irradiating device
US11815729B2 (en) System and method for interference fringe stabilization
CN105328330A (en) CO2 laser and outer optical path transmission method and system of CO2 laser
JP2004536342A (en) Scanning device
US20170038729A1 (en) Holographic-stereogram-forming apparatus, diffusing member, and holographic-stereogram-forming method
JP2018087885A (en) Polarization control device and polarization control method
TW202117374A (en) Holographic waveguide
JP2002277812A (en) Laser scanning method and scanner
JPH01502453A (en) scanning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240125

R150 Certificate of patent or registration of utility model

Ref document number: 7430906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150