JP7367322B2 - Object position detection sensor - Google Patents

Object position detection sensor Download PDF

Info

Publication number
JP7367322B2
JP7367322B2 JP2019064430A JP2019064430A JP7367322B2 JP 7367322 B2 JP7367322 B2 JP 7367322B2 JP 2019064430 A JP2019064430 A JP 2019064430A JP 2019064430 A JP2019064430 A JP 2019064430A JP 7367322 B2 JP7367322 B2 JP 7367322B2
Authority
JP
Japan
Prior art keywords
sensor
ultrasonic
distance
ultrasonic sensors
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019064430A
Other languages
Japanese (ja)
Other versions
JP2020165705A (en
Inventor
政治 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2019064430A priority Critical patent/JP7367322B2/en
Publication of JP2020165705A publication Critical patent/JP2020165705A/en
Application granted granted Critical
Publication of JP7367322B2 publication Critical patent/JP7367322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、対象物位置検出センサに関する。 The present invention relates to an object position detection sensor.

特許文献1には、障害物検出装置(本願の対象物位置検出センサに対応)が記載されている。この障害物検出装置は、まず、複数の受信部(超音波センサの一例)で受信した反射波の包絡線波を求めてそれぞれの頂点時刻を判別し、立ち上がり推測値を求める。そして、各包絡線波の頂点時刻の関係に基づいて、候補となる包絡線波の組合せを選定する。更に、算定した組合せに対応する立ち上がり推測値に基づいて、候補となる障害物(本願の対象物に対応)の位置を算定する。 Patent Document 1 describes an obstacle detection device (corresponding to the object position detection sensor of the present application). This obstacle detection device first obtains envelope waves of reflected waves received by a plurality of receivers (an example of an ultrasonic sensor), determines the apex time of each, and obtains an estimated rise value. Then, a candidate combination of envelope waves is selected based on the relationship between the peak times of each envelope wave. Furthermore, the position of a candidate obstacle (corresponding to the object of the present invention) is calculated based on the estimated rise value corresponding to the calculated combination.

特開2007-322225号公報Japanese Patent Application Publication No. 2007-322225

上記のように、超音波センサで受信した反射波の包絡線から立ち上がり推測値を求める場合、求めた立ち上がり推測値の誤差が大きくなりやすい。そのため、対象物の検出位置精度が悪くなる問題があった。包絡線に代えて複数の超音波センサで受信した反射波の位相差を用いて対象物の位置を検出する場合には、超音波センサの寸法上(直径)の問題から位相差が一周期を超えてしまうため、そのままでは精度の高い検出は困難である。そこで、対象物の検出位置精度が高い対象物位置検出センサの提供が望まれる。 As described above, when an estimated rise value is obtained from the envelope of the reflected wave received by the ultrasonic sensor, the error in the obtained estimated rise value tends to be large. Therefore, there was a problem that the detection position accuracy of the target object deteriorated. When detecting the position of an object using the phase difference of reflected waves received by multiple ultrasonic sensors instead of the envelope, due to the size (diameter) of the ultrasonic sensors, the phase difference Therefore, it is difficult to perform highly accurate detection as it is. Therefore, it is desired to provide an object position detection sensor that can detect the object position with high accuracy.

本発明は、かかる実状に鑑みて為されたものであって、その目的は、対象物の検出位置精度が高い対象物位置検出センサを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an object position detection sensor that can detect the object position with high accuracy.

上記目的を達成するための本発明に係る対象物位置検出センサの特徴構成は、対象物に反射した超音波の反射波を受信する3つ以上の複数の超音波センサを含むセンサ群と、前記超音波センサに対する前記対象物の方向と、前記超音波センサから前記対象物までの距離とに基づいて前記対象物の位置を検出する検出部とを備え、前記センサ群における前記複数の超音波センサはそれぞれ、同じ向きに受波面を向けられており、かつ、直線状に配設されており、前記センサ群における、任意の2つの前記超音波センサを一つの組と定義した場合、ある一組の2つの前記超音波センサ間の距離である第一のセンサ間距離が他の一組の2つの前記超音波センサ間の距離である第二のセンサ間距離を超え、前記検出部は、前記超音波センサが超音波を送信してから受信するまでの時間に基づいて前記距離を算出し、前記対象物の方向として、前記受波面が向けられた向きを基準として前記直線状に配設されている方向に反れる角度θを検出するように設定されており、前記ある一組の2つの前記超音波センサ間における前記各超音波センサが受信した前記反射波の位相差と、前記他の一組の2つの前記超音波センサ間における前記各超音波センサが受信した前記反射波の位相差との差分である組間位相差、前記第一のセンサ間距離と前記第二センサ間距離との差分α、前記反射波の波長λ、前記角度θが満たす式(1)に基づいて前記角度θを求めることにより、前記方向を算出する点にある。
α・sinθ=λ・(組間位相差/360°) 式(1)
The characteristic structure of the object position detection sensor according to the present invention for achieving the above object is as follows: the plurality of ultrasonic sensors in the sensor group, comprising: a detection unit that detects a position of the object based on a direction of the object with respect to the ultrasonic sensor and a distance from the ultrasonic sensor to the object; have their wave-receiving surfaces facing the same direction and are arranged in a straight line, and if any two ultrasonic sensors in the sensor group are defined as one set, then one set The first inter-sensor distance, which is the distance between the two ultrasonic sensors, exceeds the second inter-sensor distance, which is the distance between the other two ultrasonic sensors, and the detection unit The distance is calculated based on the time from when the ultrasonic sensor transmits the ultrasonic wave to when the ultrasonic sensor receives the ultrasonic wave, and the distance is calculated based on the time from when the ultrasonic sensor transmits the ultrasonic wave to when the ultrasonic sensor receives the ultrasonic wave. It is set to detect the angle θ of deflection in the direction in which the ultrasonic waves are deflected, and the phase difference between the reflected waves received by each of the ultrasonic sensors between the two ultrasonic sensors of the certain set and the other An inter-group phase difference, which is a difference between a set of two ultrasonic sensors and a phase difference of the reflected waves received by each of the ultrasonic sensors, the first inter-sensor distance and the second inter-sensor distance; The point is that the direction is calculated by finding the angle θ based on equation (1) that is satisfied by the difference α, the wavelength λ of the reflected wave, and the angle θ.
α・sinθ=λ・(intergroup phase difference/360°) Formula (1)

上記構成によれば、センサ群における、第一のセンサ間距離が第二のセンサ間距離を超えている。これにより、第一のセンサ間距離から第二のセンサ間距離を差し引いた差分(以下、差分αと称する)と、一方の一組の超音波センサ間における反射波の位相差から他方の一組の超音波センサ間における反射波の位相差を差し引いた位相差の差分(以下、組間位相差と称する)とに基づいて、対象物からの反射波につき、受波面が向けられた向きに沿う方向と、複数の超音波センサの配列された方向(以下、配列方向と記載する)とに沿う仮想面における超音波センサへの入射角度を、対象物の方向として検出することができる。このように位相差に基づいて対象物の方向を検出することで、検出位置精度を高めることができる。 According to the above configuration, the first inter-sensor distance in the sensor group exceeds the second inter-sensor distance. As a result, the difference obtained by subtracting the second inter-sensor distance from the first inter-sensor distance (hereinafter referred to as difference α) and the phase difference of the reflected waves between one set of ultrasonic sensors and the other set of ultrasonic sensors are calculated. Based on the difference in phase difference (hereinafter referred to as inter-set phase difference) obtained by subtracting the phase difference of the reflected waves between the ultrasonic sensors, the waves reflected from the object are aligned along the direction in which the wave receiving surface is directed. The angle of incidence on the ultrasonic sensor on a virtual plane along the direction and the direction in which the plurality of ultrasonic sensors are arranged (hereinafter referred to as the arrangement direction) can be detected as the direction of the object. By detecting the direction of the object based on the phase difference in this manner, it is possible to improve the detection position accuracy.

なお、対象物位置検出センサと対象物との距離は、超音波センサにより超音波を送信し、その反射波を受信して、超音波を送信してから反射波を受信するまでの時間と音速とに基づいて障害物までの距離を測定するいわゆるタイム・オブ・フライト(Time-Of-Flight、TOF)法により求めることができる。したがって、上記構成によれば、対象物の方向と対象物との距離とにより、対象物の位置を検出することができる。 Note that the distance between the object position detection sensor and the object is determined by the time from when the ultrasonic sensor transmits ultrasonic waves and when the reflected waves are received, the time from when the ultrasonic waves are transmitted until the reflected waves are received, and the speed of sound. The distance to the obstacle can be determined by the so-called time-of-flight (TOF) method, which measures the distance to the obstacle based on the following. Therefore, according to the above configuration, the position of the object can be detected based on the direction of the object and the distance to the object.

以下では、上記仮想面における反射波の入射角度につき、受波面が向けられた向きに沿う方向から複数の超音波センサの配列された方向(以下、配列方向と記載する)に反れる角度を、角度θと記載する場合がある。 Below, regarding the incident angle of the reflected wave on the virtual plane, the angle of deflection from the direction along the direction in which the wave receiving surface is directed to the direction in which the plurality of ultrasonic sensors are arranged (hereinafter referred to as the arrangement direction) is expressed as follows: It may be written as angle θ.

本発明に係る対象物位置検出センサの更なる特徴構成は、前記角度θの検出範囲が、前記受波面が向けられた向きを基準として角度θmaxから角度-θmaxに設定されている場合に、前記角度θmax、前記反射波の波長λ、及び前記差分αの関係が、下記式()を満たす点にある。
λ≧2・α・sin(θmax) 式(
A further characteristic configuration of the object position detection sensor according to the present invention is that when the detection range of the angle θ is set from the angle θmax to the angle -θmax with reference to the direction in which the wave receiving surface is directed, The relationship between the angle θmax, the wavelength λ of the reflected wave, and the difference α satisfies the following formula ( 2 ).
λ≧2・α・sin(θmax) Formula ( 2 )

組間位相差の絶対値が180°を超えると、差分αと組間位相差とのみに基づいて角度θを求めることができないが、上記構成によれば、組間位相差の絶対値が180°以下になるため、差分αと組間位相差とのみに基づいて角度θを求めることができる。 If the absolute value of the inter-group phase difference exceeds 180°, the angle θ cannot be determined based only on the difference α and the inter-group phase difference. However, according to the above configuration, the absolute value of the inter-group phase difference is 180°. The angle θ can be determined based only on the difference α and the inter-group phase difference.

本発明に係る対象物位置検出センサの更なる特徴構成は、前記センサ群は、第一の超音波センサ、第二の超音波センサ、及び第三の超音波センサからなり、前記第一の超音波センサと前記第二の超音波センサとが前記ある一組を構成し、前記第二の超音波センサと前記第三の超音波センサとが前記他の一組を構成する点にある。 A further characteristic configuration of the object position detection sensor according to the present invention is that the sensor group includes a first ultrasonic sensor, a second ultrasonic sensor, and a third ultrasonic sensor, and the first ultrasonic sensor The sonic sensor and the second ultrasonic sensor constitute one set, and the second ultrasonic sensor and the third ultrasonic sensor constitute the other set.

上記構成によれば、第一の超音波センサ、第二の超音波センサ、及び第三の超音波センサの高々3つのセンサのみで、正確に角度θを求めることができる。 According to the above configuration, the angle θ can be accurately determined using at most three sensors: the first ultrasonic sensor, the second ultrasonic sensor, and the third ultrasonic sensor.

本発明に係る対象物位置検出センサの更なる特徴構成は、前記センサ群における前記複数の超音波センサのそれぞれの前記受波面の重心が直線上に配設されている点にある。 A further feature of the object position detection sensor according to the present invention is that the centers of gravity of the wave receiving surfaces of the plurality of ultrasonic sensors in the sensor group are arranged on a straight line.

上記構成のごとく超音波センサのそれぞれの受波面の重心を直線上に配設することで、角度θを求める場合の精度が向上する。 By arranging the center of gravity of each wave receiving surface of the ultrasonic sensor on a straight line as in the above configuration, the accuracy in determining the angle θ is improved.

本発明に係る対象物位置検出センサの更なる特徴構成は、前記センサ群として、第一方向に沿い前記3つ以上の超音波センサが配設された第一センサ群と、前記第一方向に交差する第二方向に沿い前記3つ以上の超音波センサが配設された第二センサ群と、を含み、
前記検出部は、前記第一方向における前記対象物の位置と、前記第二方向における前記対象物の位置とを検出する点にある。
A further characteristic configuration of the object position detection sensor according to the present invention is that the sensor group includes a first sensor group in which the three or more ultrasonic sensors are arranged along the first direction; a second sensor group in which the three or more ultrasonic sensors are arranged along a second intersecting direction;
The detection unit detects the position of the object in the first direction and the position of the object in the second direction.

上記構成によれば、対象物からの反射波につき、受波面が向けられた向きに沿う方向と、第一方向とに沿う仮想面における第一センサ群の超音波センサへの入射角度を、対象物の位置として検出することができる。また、対象物からの反射波につき、受波面が向けられた向きに沿う方向と、第二方向とに沿う仮想面における第二センサ群の超音波センサへの入射角度を、対象物の位置として検出することができる。これにより、第一方向と第二方向とにおける対象物の位置を検出できる。 According to the above configuration, for the reflected wave from the target object, the angle of incidence on the ultrasonic sensor of the first sensor group in the direction along the direction in which the wave receiving surface is directed and the first direction is It can be detected as the position of an object. In addition, regarding the reflected wave from the target object, the angle of incidence on the ultrasonic sensor of the second sensor group in the direction along the direction in which the wave receiving surface is directed and the second direction is defined as the position of the target object. can be detected. Thereby, the position of the object in the first direction and the second direction can be detected.

対象物の検出位置精度が高い対象物位置検出センサを提供することができる。 It is possible to provide an object position detection sensor with high detection position accuracy of the object.

検出器の全体構成を示す図Diagram showing the overall configuration of the detector センサ本体における超音波センサの配列を示す図Diagram showing the arrangement of ultrasonic sensors in the sensor body 第一センサ群における反射波の受信と障害物Tの位置検出を説明する図Diagram explaining reception of reflected waves and position detection of obstacle T in the first sensor group

図1から図3に基づいて、本発明の実施形態に係る対象物位置検出センサついて説明する。 An object position detection sensor according to an embodiment of the present invention will be described based on FIGS. 1 to 3.

〔検出器の構成について〕
図1には、対象物位置検出センサの一例として障害物T(対象物の一例)の検出器1の全体構成を示している。検出器1は、一例として、車両(図示せず)の障害物検出器として用いられる。検出器1は、超音波センサ11,12,13,14,15(複数の超音波センサの一例、以下、超音波センサ11~15と記載する)が配設されたセンサ本体2と、制御部8(検出部の一例)や、所定の電気信号を発信および受信する送受波回路(図示せず)を有する制御本体9とを備えている。超音波センサ11~15のうちのいずれか一つを意味する場合、単に、センサと記載する。
[About the detector configuration]
FIG. 1 shows the overall configuration of a detector 1 for an obstacle T (an example of an object) as an example of an object position detection sensor. The detector 1 is used, for example, as an obstacle detector for a vehicle (not shown). The detector 1 includes a sensor body 2 in which ultrasonic sensors 11, 12, 13, 14, and 15 (an example of a plurality of ultrasonic sensors, hereinafter referred to as ultrasonic sensors 11 to 15) are disposed, and a control unit. 8 (an example of a detection section), and a control main body 9 having a wave transmitting/receiving circuit (not shown) that transmits and receives a predetermined electric signal. When referring to any one of the ultrasonic sensors 11 to 15, it is simply written as a sensor.

超音波センサ11~15は、超音波振動子(図示せず)と、超音波振動子が発信した超音波Wを外部へ発信し、外部の超音波(例えば、超音波Wの反射波R)を受信する振動板(図示せず)の送受波面S(受波面の一例)などを備えている。超音波センサ11~15は、制御本体9から送信される電気信号に対応する所定の波長λ(所定の周波数)の超音波Wを外部に発信し、受信した反射波Rなどに対応する電気信号を制御本体9へ送信する。送受波面Sは、本実施形態では円形状である。本実施形態の超音波センサ11~15はそれぞれ同一規格のものである。 The ultrasonic sensors 11 to 15 each include an ultrasonic transducer (not shown) and an ultrasonic wave W emitted by the ultrasonic transducer to the outside, and an external ultrasonic wave (for example, a reflected wave R of the ultrasonic wave W). It includes a wave transmitting/receiving surface S (an example of a wave receiving surface) of a diaphragm (not shown) that receives the waves. The ultrasonic sensors 11 to 15 externally transmit ultrasonic waves W having a predetermined wavelength λ (predetermined frequency) corresponding to the electrical signals transmitted from the control main body 9, and generate electrical signals corresponding to the received reflected waves R, etc. is transmitted to the control main body 9. The transmitting/receiving wave surface S has a circular shape in this embodiment. The ultrasonic sensors 11 to 15 of this embodiment are of the same standard.

超音波センサ11~15は、一例として、円筒状の本体を有する。当該本体の直径は、一例として、12mmである。 The ultrasonic sensors 11 to 15 have, for example, a cylindrical main body. The diameter of the main body is, for example, 12 mm.

超音波センサ11~15が発信する超音波Wの所定の周波数は、一例として58kHzである。この場合、音速を340m/secと仮定すると、超音波Wの波長λは、約5.86mmである。以下では、超音波センサ11~15が発信する超音波Wの波長λを、単に波長λと記載する。 The predetermined frequency of the ultrasonic waves W emitted by the ultrasonic sensors 11 to 15 is, for example, 58 kHz. In this case, assuming that the sound speed is 340 m/sec, the wavelength λ of the ultrasonic wave W is approximately 5.86 mm. In the following, the wavelength λ of the ultrasonic waves W emitted by the ultrasonic sensors 11 to 15 will be simply referred to as wavelength λ.

センサ本体2は、超音波センサ11~15が基板などに固定されたユニットである。センサ本体2では、超音波センサ11~15が、それぞれの送受波面Sが同一の向きになるように配設されている。センサ本体2では、超音波センサ11~15が、それぞれ所定の間隔を隔てて配設されている。 The sensor body 2 is a unit in which ultrasonic sensors 11 to 15 are fixed to a substrate or the like. In the sensor body 2, the ultrasonic sensors 11 to 15 are arranged so that their respective wave transmitting and receiving surfaces S are oriented in the same direction. In the sensor body 2, ultrasonic sensors 11 to 15 are arranged at predetermined intervals.

図2には、センサ本体2の超音波センサ11~15を、送受波面Sが向く側から見た平面図であり、センサ本体2における超音波センサ11~15の配列を示している。本実施形態では、超音波センサ11~15は、防振ゴムなどの制振材10で被覆された状態で基板などに固定されている。なお、制振材10は、必須の部材では無い。 FIG. 2 is a plan view of the ultrasonic sensors 11 to 15 of the sensor body 2 viewed from the side toward which the wave transmitting/receiving surface S faces, and shows the arrangement of the ultrasonic sensors 11 to 15 in the sensor body 2. In this embodiment, the ultrasonic sensors 11 to 15 are fixed to a substrate or the like while being covered with a vibration damping material 10 such as vibration isolating rubber. Note that the damping material 10 is not an essential member.

センサ本体2には、超音波センサ11,12,13が第一方向に沿い配設されている。第一方向は、本実施形態では一例として、水平方向である。以下では、超音波センサ11,12,13(それぞれ、第一の超音波センサ、第二の超音波センサ、及び第三の超音波センサの一例)の群を第一センサ群G1と称する。 Ultrasonic sensors 11, 12, and 13 are arranged in the sensor body 2 along the first direction. In this embodiment, the first direction is, for example, the horizontal direction. Hereinafter, the group of ultrasonic sensors 11, 12, and 13 (each an example of a first ultrasonic sensor, a second ultrasonic sensor, and a third ultrasonic sensor) will be referred to as a first sensor group G1.

また、センサ本体2には、超音波センサ14,12,15(それぞれ、第一の超音波センサ、第二の超音波センサ、及び第三の超音波センサの他の一例)が第二方向に沿い配設されている。第二方向は、本実施形態では一例として、垂直方向である。以下では、超音波センサ14,12,15の群を第二センサ群G2と称する。 Further, in the sensor body 2, ultrasonic sensors 14, 12, and 15 (respectively, another example of a first ultrasonic sensor, a second ultrasonic sensor, and a third ultrasonic sensor) are arranged in a second direction. It is located along. In this embodiment, the second direction is, for example, the vertical direction. Below, the group of ultrasonic sensors 14, 12, and 15 will be referred to as a second sensor group G2.

図2中、仮想線Aは、第一方向に沿う直線である。超音波センサ11,12,13のそれぞれの送受波面Sの中心(重心)は、仮想線Aと重複している。超音波センサ11,12間の距離(第一のセンサ間距離)は距離mに設定されており、超音波センサ12,13間の距離(第二のセンサ間距離)は距離nに設定されている。距離mは、距離nよりも大きく、その差は差分αである。距離mは例えば23.6mmであり、距離nは例えば21.0mmである。この場合、差分αは2.6mmである。 In FIG. 2, a virtual line A is a straight line along the first direction. The centers (centers of gravity) of the wave transmitting and receiving surfaces S of the ultrasonic sensors 11, 12, and 13 overlap with the virtual line A. The distance between the ultrasonic sensors 11 and 12 (first inter-sensor distance) is set to distance m, and the distance between ultrasonic sensors 12 and 13 (second inter-sensor distance) is set to distance n. There is. The distance m is greater than the distance n, and the difference therebetween is the difference α. The distance m is, for example, 23.6 mm, and the distance n is, for example, 21.0 mm. In this case, the difference α is 2.6 mm.

図2中、仮想線Bは、第二方向に沿う直線である。超音波センサ14,12,15のそれぞれの送受波面Sの中心(重心)は、仮想線Bと重複している。超音波センサ14,12間の距離は距離jに設定されており、超音波センサ12,15間の距離は距離kに設定されている。本実施形態では距離jは距離mと等しい。また、本実施形態では距離kは距離nと等しい。 In FIG. 2, a virtual line B is a straight line along the second direction. The centers (centers of gravity) of the wave transmitting/receiving surfaces S of the ultrasonic sensors 14, 12, and 15 overlap with the virtual line B. The distance between the ultrasonic sensors 14 and 12 is set to a distance j, and the distance between the ultrasonic sensors 12 and 15 is set to a distance k. In this embodiment, distance j is equal to distance m. Further, in this embodiment, the distance k is equal to the distance n.

センサ本体2は、超音波センサ11~15の少なくとも一つのセンサ(本実施形態では一例として超音波センサ12)が発信した超音波Wが障害物T(対象物の一例)に反射して生じた反射波Rを、超音波センサ11~15の全てのセンサで受信する。超音波センサ11~15は、反射波Rを受信すると、反射波Rに対応する電気信号を制御本体9(図1参照)に送信する。本実施形態では、一例として超音波センサ12が発信した超音波Wの反射波Rを、超音波センサ11~15の全てのセンサで受信するように構成されている。 The sensor body 2 is configured to generate ultrasonic waves W emitted by at least one of the ultrasonic sensors 11 to 15 (in this embodiment, the ultrasonic sensor 12 as an example) is reflected by an obstacle T (an example of a target object). The reflected wave R is received by all the ultrasonic sensors 11 to 15. When the ultrasonic sensors 11 to 15 receive the reflected wave R, they transmit electrical signals corresponding to the reflected wave R to the control main body 9 (see FIG. 1). In this embodiment, as an example, all the ultrasonic sensors 11 to 15 are configured to receive the reflected wave R of the ultrasonic wave W emitted by the ultrasonic sensor 12.

超音波センサ11~15は、それぞれ所定の間隔を隔てて配設されているため、障害物Tから超音波センサ11~15のそれぞれまでの距離は、それぞれ異なる。そのため、超音波センサ11~15はそれぞれ、反射波Rを異なるタイミングで受信する。具体的には、障害物Tから近いセンサほど、早いタイミングで反射波Rを受信する。一方、障害物Tから遠いセンサほど、遅いタイミングで反射波Rを受信する。そのため、超音波センサ11~15が受信する反射波Rには、障害物Tと超音波センサ11~15との距離に対応して位相ズレが生じる。 Since the ultrasonic sensors 11 to 15 are arranged at predetermined intervals, the distances from the obstacle T to each of the ultrasonic sensors 11 to 15 are different. Therefore, the ultrasonic sensors 11 to 15 each receive the reflected wave R at different timings. Specifically, the closer the sensor is to the obstacle T, the earlier the reflected wave R is received. On the other hand, the farther the sensor is from the obstacle T, the later the reflected wave R is received. Therefore, the reflected waves R received by the ultrasonic sensors 11 to 15 have a phase shift corresponding to the distance between the obstacle T and the ultrasonic sensors 11 to 15.

制御本体9は、制御部8の指令に基づいて、送受波回路により、センサ(一例として、超音波センサ12)から所定の超音波Wを発信させるための電気信号を生成してセンサに送信する。制御本体9は、反射波Rの受信によりセンサから出力された電気信号を送受波回路に入力し、制御部8により当該電気信号から所定の情報を取得する。制御部8は、超音波センサ11~15が受信した反射波Rの位相ズレを求め、これら位相ズレに基づいて、障害物Tの位置を検出する。 Based on a command from the control unit 8, the control body 9 uses a wave transmitting/receiving circuit to generate an electric signal for causing a sensor (for example, the ultrasonic sensor 12) to emit a predetermined ultrasonic wave W, and transmits it to the sensor. . The control main body 9 inputs the electric signal output from the sensor upon reception of the reflected wave R to the wave transmitting/receiving circuit, and the control unit 8 acquires predetermined information from the electric signal. The control unit 8 determines the phase shifts of the reflected waves R received by the ultrasonic sensors 11 to 15, and detects the position of the obstacle T based on these phase shifts.

〔第一センサ群における検出について〕
図3に基づいて、第一センサ群G1における反射波Rの受信と、障害物Tの位置検出について説明する。図3には、超音波センサ11,12,13、仮想線A、超音波センサ11,12,13の送受波面Sが向く方向に沿う、送受波面Sの軸心P、超音波センサ11,12,13のそれぞれに入射する所定の波長の反射波Rが伝搬する軌跡である伝搬路r、及び障害物Tを図示している。この説明では、説明の簡便のため、障害物Tの少なくとも一部が、仮想線Aと軸心Pとを含む平面と重複する場合を図示して説明する。障害物Tが仮想線Aと軸心Pとを含む平面と重複しない場合は、障害物T、伝搬路r、及び伝搬路rでセンサに入射する超音波Wの反射波Rのそれぞれについては、これらを当該平面に正射影した場合におけるそれぞれの射影像に基づけばよい。
[About detection in the first sensor group]
Based on FIG. 3, reception of the reflected wave R in the first sensor group G1 and detection of the position of the obstacle T will be explained. FIG. 3 shows the ultrasonic sensors 11, 12, 13, the imaginary line A, the axis P of the transmitting/receiving wave surface S along the direction in which the transmitting/receiving wave surface S of the ultrasonic sensors 11, 12, 13 faces, and the ultrasonic sensors 11, 12. , 13, a propagation path r, which is a locus along which a reflected wave R of a predetermined wavelength propagates, and an obstacle T are illustrated. In this description, for the sake of simplicity, a case will be illustrated in which at least a portion of the obstacle T overlaps a plane including the virtual line A and the axis P. If the obstacle T does not overlap with the plane containing the virtual line A and the axis P, then for each of the obstacle T, the propagation path r, and the reflected wave R of the ultrasonic wave W incident on the sensor at the propagation path r, It may be based on the respective projected images obtained by orthogonally projecting these onto the plane.

図3中、角度θは、伝搬路rと軸心Pとの交差角度である。すなわち、障害物Tは、第一センサ群G1から見て、軸心Pから仮想線Aに沿う方向に角度θだけ反れた位置に存在している。 In FIG. 3, the angle θ is the intersection angle between the propagation path r and the axis P. That is, the obstacle T is located at a position deviated from the axis P by an angle θ in the direction along the virtual line A when viewed from the first sensor group G1.

図3中、超音波センサ11と超音波センサ12との組(ある一組の一例)につき、障害物Tに対する超音波センサ11の距離と、障害物Tに対する超音波センサ12の距離との差を距離差d12と定義する。なお、距離差d12は、m・sinθに等しい。 In FIG. 3, for a pair of ultrasonic sensors 11 and 12 (one example of a certain pair), the difference between the distance of the ultrasonic sensor 11 to the obstacle T and the distance of the ultrasonic sensor 12 to the obstacle T is shown. is defined as the distance difference d12. Note that the distance difference d12 is equal to m·sinθ.

図3中、超音波センサ12と超音波センサ13との組(他の一組の一例)につき、障害物Tに対する超音波センサ12の距離と、障害物Tに対する超音波センサ13の距離との差を距離差d23と定義する。なお、距離差d23は、n・sinθに等しい。 In FIG. 3, for a pair of ultrasonic sensors 12 and 13 (an example of another pair), the distance of the ultrasonic sensor 12 to the obstacle T and the distance of the ultrasonic sensor 13 to the obstacle T are shown. The difference is defined as a distance difference d23. Note that the distance difference d23 is equal to n·sin θ.

距離差d12はm・sinθに等しく、距離差d23はn・sinθに等しいため、距離差d12と距離差d23との差を相対距離差と定義した場合、距離mと距離nの差は差分αなので、相対距離差は、α・sinθに等しい。 The distance difference d12 is equal to m・sinθ, and the distance difference d23 is equal to n・sinθ. Therefore, if the difference between the distance difference d12 and the distance difference d23 is defined as the relative distance difference, the difference between the distance m and the distance n is the difference α Therefore, the relative distance difference is equal to α·sinθ.

検出器1では、検出器1における角度θの検出範囲が角度θmaxから角度-θmaxに設定されている場合に、波長λ、角度θmax、及び差分αの関係が、下記式(1)を満たすように設定されている。
λ≧2・α・sin(θmax) 式(1)
In the detector 1, when the detection range of the angle θ in the detector 1 is set from the angle θmax to the angle -θmax, the relationship between the wavelength λ, the angle θmax, and the difference α satisfies the following formula (1). is set to .
λ≧2・α・sin(θmax) Formula (1)

つまり、検出器1では、検出器1における角度θの検出範囲において、相対距離差の絶対値の最大値が1/2λ以下になるように設定されている。 That is, the detector 1 is set so that the maximum absolute value of the relative distance difference is 1/2λ or less in the detection range of the angle θ in the detector 1.

本実施形態における検出器1では、一例として、角度θmaxを90°に設定している。すなわち、検出器1における角度θの検出範囲を90°から-90°に設定しており、sin(θmax)の値は、1である。上述のごとく、本実施形態における差分αは2.6mmであり、波長λは約5.86mmであるから、差分αは1/2λ以下、すなわち波長λは差分αの二倍以上となり、上記式(1)を満たしている。 In the detector 1 in this embodiment, the angle θmax is set to 90°, as an example. That is, the detection range of the angle θ in the detector 1 is set from 90° to −90°, and the value of sin(θmax) is 1. As mentioned above, the difference α in this embodiment is 2.6 mm and the wavelength λ is about 5.86 mm, so the difference α is less than 1/2λ, that is, the wavelength λ is more than twice the difference α, and the above formula (1) is satisfied.

超音波センサ11に受信された反射波Rの位相と超音波センサ12に受信された反射波Rの位相との位相差(ただし、-90°から90°)を以下では第一位相差と定義する。また、超音波センサ12に受信された反射波Rの位相と超音波センサ13に受信された反射波Rの位相との位相差(ただし、-90°から90°)を以下では第二位相差と定義する。さらに、第一位相差と第二位相差との差を組間位相差と定義する。この場合、上述のごとく、検出器1では相対距離差の絶対値の最大値が1/2λ以下になるように設定されているため、組間位相差を求めると、-180°から180°以下(組間位相差の絶対値が180°以下)になる。 The phase difference between the phase of the reflected wave R received by the ultrasonic sensor 11 and the phase of the reflected wave R received by the ultrasonic sensor 12 (from -90° to 90°) is defined as the first phase difference below. do. In addition, the phase difference (however, from -90° to 90°) between the phase of the reflected wave R received by the ultrasonic sensor 12 and the phase of the reflected wave R received by the ultrasonic sensor 13 is hereinafter referred to as a second phase difference. It is defined as Furthermore, the difference between the first phase difference and the second phase difference is defined as an inter-group phase difference. In this case, as mentioned above, detector 1 is set so that the maximum absolute value of the relative distance difference is 1/2λ or less. (The absolute value of the inter-group phase difference is 180° or less).

組間位相差が求まると、相対距離差は、λ・(組間位相差/360°)で得られる。相対距離差はα・sinθに等しく、差分αは既知であるため、差分αと相対距離差とにより角度θを求めることができる。 When the inter-group phase difference is determined, the relative distance difference is obtained as λ·(inter-group phase difference/360°). Since the relative distance difference is equal to α·sin θ and the difference α is known, the angle θ can be determined from the difference α and the relative distance difference.

制御部8は、既知の差分αと、超音波センサ11,12,13がそれぞれ受信した反射波Rの位相から相対距離差を求め、差分αと相対距離差とにより、障害物Tの位置として、軸心Pと仮想線Aとに重複する平面上において第一センサ群G1から見て、障害物Tが軸心Pから仮想線Aに沿う方向に反れた角度θを求める。 The control unit 8 calculates the relative distance difference from the known difference α and the phase of the reflected waves R received by the ultrasonic sensors 11, 12, and 13, and determines the position of the obstacle T based on the difference α and the relative distance difference. , on a plane overlapping the axis P and the imaginary line A, as seen from the first sensor group G1, the angle θ at which the obstacle T curves from the axis P in the direction along the imaginary line A is determined.

〔第二センサ群における検出について〕
第二センサ群G2における検出は、第一センサ群G1における検出と同様に行う。第二センサ群G2では、第一センサ群G1における超音波センサ11,12,13を第二センサ群G2における超音波センサ14,12,15に置き換えた場合と同様である。
[About detection in the second sensor group]
Detection in the second sensor group G2 is performed in the same way as the detection in the first sensor group G1. The second sensor group G2 is similar to the case where the ultrasonic sensors 11, 12, and 13 in the first sensor group G1 are replaced with the ultrasonic sensors 14, 12, and 15 in the second sensor group G2.

制御部8は、第二センサ群G2における既知の差分αと、超音波センサ14,12,15がそれぞれ受信した反射波Rの位相から第二センサ群G2における相対距離差を求め、第一センサ群G1の場合と同様に、障害物Tの位置として、軸心Pと仮想線Bとに重複する平面上において第二センサ群G2から見て、障害物Tが軸心Pから仮想線Bに沿う方向に反れた角度を求める。 The control unit 8 calculates the relative distance difference in the second sensor group G2 from the known difference α in the second sensor group G2 and the phase of the reflected waves R received by the ultrasonic sensors 14, 12, and 15, and calculates the relative distance difference in the second sensor group G2. As in the case of group G1, the position of the obstacle T is such that the obstacle T moves from the axis P to the imaginary line B when viewed from the second sensor group G2 on a plane that overlaps the axis P and the imaginary line B. Find the angle of warpage in the direction along.

このようにして、制御部8は、軸心P、仮想線A、及び仮想線Bの三軸で定義される空間での障害物Tの位置を求める。 In this way, the control unit 8 determines the position of the obstacle T in the space defined by the three axes of the axis P, the virtual line A, and the virtual line B.

以上のようにして、検出位置精度が高い対象物位置検出センサを提供することができる。すなわち、検出器1は、超音波センサの直径が大きくてセンサ間距離を小さくすることができない場合にも、組間位相差を利用して角度θを検出可能であり、超音波センサを近接して配設したのと同じ効果を得ることができる。また、検出器1は、位相差により角度θを検出するため、例えば特許文献1に記載されるような、包絡線を用いて障害物Tの位置を検出する装置よりも、高い検出精度で障害物Tの位置を検出することができる。 As described above, it is possible to provide an object position detection sensor with high detection position accuracy. In other words, even when the diameter of the ultrasonic sensors is large and the distance between the sensors cannot be made small, the detector 1 can detect the angle θ by using the phase difference between the sets, and it is possible to detect the angle θ by using the phase difference between the sets. You can get the same effect as if you placed the In addition, since the detector 1 detects the angle θ based on the phase difference, it can detect obstacles with higher precision than a device that detects the position of the obstacle T using an envelope, such as that described in Patent Document 1. The position of the object T can be detected.

〔別実施形態〕
(1)上記実施形態では、センサ本体2には超音波センサ11~15が配設されている場合を例示して説明した。しかし、センサ本体2は、少なくとも超音波センサ11,12,13(第一センサ群G1)、もしくは超音波センサ14,12,15(第二センサ群G2)を備えていればよい。
[Another embodiment]
(1) In the above embodiment, the case where the ultrasonic sensors 11 to 15 are disposed in the sensor body 2 has been described as an example. However, the sensor body 2 only needs to include at least the ultrasonic sensors 11, 12, and 13 (first sensor group G1) or the ultrasonic sensors 14, 12, and 15 (second sensor group G2).

(2)上記実施形態では、第一センサ群G1は超音波センサ11,12,13の群である場合を例示して説明したが、第一センサ群G1として、4つ以上のセンサを含めてもよい。第二センサ群G2についても同様である。 (2) In the above embodiment, the first sensor group G1 is a group of ultrasonic sensors 11, 12, and 13. However, the first sensor group G1 may include four or more sensors. Good too. The same applies to the second sensor group G2.

(3)上記実施形態では、第一センサ群G1や第二センサ群G2のセンサの送受波面Sの中心(重心)が、仮想線Aや仮想線Bと重複している場合を説明した。しかし、第一センサ群G1や第二センサ群G2のセンサの送受波面Sが少なくとも仮想線Aや仮想線Bと重複して直線状に配設されていれば足りる。 (3) In the above embodiment, a case has been described in which the centers (centers of gravity) of the wave transmitting/receiving surfaces S of the sensors of the first sensor group G1 and the second sensor group G2 overlap with the virtual line A and the virtual line B. However, it is sufficient that the wave transmitting/receiving surfaces S of the sensors of the first sensor group G1 and the second sensor group G2 are arranged in a straight line so as to overlap at least the virtual lines A and B.

(4)上記実施形態では、特に角度θmaxが90°である場合を例示して説明したが、角度θmaxは60°、45°、30°、15°など、0°を超え、90°以下の値を取り得る。 (4) In the above embodiment, the case in which the angle θmax is 90° has been specifically explained. Can take a value.

(5)上記実施形態では、距離mは、距離nよりも大きく、距離jは距離mと等しく、また、距離kは距離nと等しい場合を説明した。しかし、距離j,kは、それぞれ距離m,nと等しい場合に限られない。距離jが距離kよりも大きければ良い。 (5) In the above embodiment, a case has been described in which the distance m is larger than the distance n, the distance j is equal to the distance m, and the distance k is equal to the distance n. However, distances j and k are not limited to being equal to distances m and n, respectively. It is sufficient that the distance j is greater than the distance k.

なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above embodiments (including other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction, and The embodiments disclosed in this specification are illustrative, and the embodiments of the present invention are not limited thereto, and can be modified as appropriate without departing from the purpose of the present invention.

本発明は、対象物位置検出センサに適用できる。 The present invention can be applied to an object position detection sensor.

1 :検出器(対象物位置検出センサ)
2 :センサ本体
8 :制御部(検出部)
11 :超音波センサ
12 :超音波センサ
13 :超音波センサ
14 :超音波センサ
15 :超音波センサ
A :仮想線(直線)
B :仮想線(直線)
G1 :第一センサ群
G2 :第二センサ群
P :軸心(受波面が向けられた向き)
R :反射波(超音波)
S :送受波面(受波面)
T :障害物(対象物)
W :超音波
j :距離(センサ間距離)
k :距離(センサ間距離)
m :距離(センサ間距離)
n :距離(センサ間距離)
α :差分
θ :角度
θmax :角度
1: Detector (object position detection sensor)
2: Sensor body 8: Control section (detection section)
11: Ultrasonic sensor 12: Ultrasonic sensor 13: Ultrasonic sensor 14: Ultrasonic sensor 15: Ultrasonic sensor A: Virtual line (straight line)
B: Virtual line (straight line)
G1: First sensor group G2: Second sensor group P: Axis center (direction in which the wave receiving surface is directed)
R: Reflected wave (ultrasonic wave)
S: Transmitting and receiving wave surface (receiving wave surface)
T: Obstacle (object)
W: Ultrasonic wave j: Distance (distance between sensors)
k: Distance (distance between sensors)
m: Distance (distance between sensors)
n: Distance (distance between sensors)
α: Difference θ: Angle θmax: Angle

Claims (5)

対象物に反射した超音波の反射波を受信する3つ以上の複数の超音波センサを含むセンサ群と、
前記超音波センサに対する前記対象物の方向と、前記超音波センサから前記対象物までの距離とに基づいて前記対象物の位置を検出する検出部とを備え、
前記センサ群における前記複数の超音波センサはそれぞれ、同じ向きに受波面を向けられており、かつ、直線状に配設されており、
前記センサ群における、任意の2つの前記超音波センサを一つの組と定義した場合、ある一組の2つの前記超音波センサ間の距離である第一のセンサ間距離が他の一組の2つの前記超音波センサ間の距離である第二のセンサ間距離を超え、
前記検出部は、
前記超音波センサが超音波を送信してから受信するまでの時間に基づいて前記距離を算出し、
前記対象物の方向として、前記受波面が向けられた向きを基準として前記直線状に配設されている方向に反れる角度θを検出するように設定されており、
前記ある一組の2つの前記超音波センサ間における前記各超音波センサが受信した前記反射波の位相差と、前記他の一組の2つの前記超音波センサ間における前記各超音波センサが受信した前記反射波の位相差との差分である組間位相差、前記第一のセンサ間距離と前記第二センサ間距離との差分α、前記反射波の波長λ、前記角度θが満たす式(1)に基づいて前記角度θを求めることにより、前記方向を算出する対象物位置検出センサ。
α・sinθ=λ・(組間位相差/360°) 式(1)
a sensor group including three or more ultrasonic sensors that receive reflected waves of ultrasonic waves reflected from a target object;
a detection unit that detects the position of the object based on the direction of the object with respect to the ultrasonic sensor and the distance from the ultrasonic sensor to the object,
The plurality of ultrasonic sensors in the sensor group each have their wave receiving surfaces directed in the same direction and are arranged in a straight line,
When any two ultrasonic sensors in the sensor group are defined as one set, the first inter-sensor distance, which is the distance between the two ultrasonic sensors in one set, is the distance between the two ultrasonic sensors in the other set. exceeding a second inter-sensor distance that is a distance between two of the ultrasonic sensors;
The detection unit includes:
Calculating the distance based on the time from when the ultrasonic sensor transmits the ultrasonic wave until it receives the ultrasonic wave,
It is set to detect, as the direction of the target object, an angle θ that bends in the direction in which the wave receiving surface is arranged in a straight line with reference to the direction in which the wave receiving surface is directed;
The phase difference between the reflected waves received by each of the ultrasonic sensors between the two ultrasonic sensors of the certain set and the reflected waves received by the ultrasonic sensors between the two ultrasonic sensors of the other set. The expression (( 1) An object position detection sensor that calculates the direction by determining the angle θ.
α・sinθ=λ・(intergroup phase difference/360°) Formula (1)
前記検出部における前記角度θの検出範囲が、前記受波面が向けられた向きを基準として角度θmaxから角度-θmaxに設定されている場合に、
前記角度θmax、前記反射波の波長λ、及び前記差分αの関係が、下記式(2)を満たす請求項1に記載の対象物位置検出センサ。
λ≧2・α・sin(θmax) 式(2)
When the detection range of the angle θ in the detection unit is set from angle θmax to angle -θmax with reference to the direction in which the wave receiving surface is directed,
The object position detection sensor according to claim 1, wherein a relationship among the angle θmax, the wavelength λ of the reflected wave, and the difference α satisfies the following formula (2).
λ≧2・α・sin(θmax) Formula (2)
前記センサ群は、第一の超音波センサ、第二の超音波センサ、及び第三の超音波センサからなり、
前記第一の超音波センサと前記第二の超音波センサとが前記ある一組を構成し、前記第二の超音波センサと前記第三の超音波センサとが前記他の一組を構成する請求項1または2に記載の対象物位置検出センサ。
The sensor group consists of a first ultrasonic sensor, a second ultrasonic sensor, and a third ultrasonic sensor,
The first ultrasonic sensor and the second ultrasonic sensor constitute the certain set, and the second ultrasonic sensor and the third ultrasonic sensor constitute the other set. The object position detection sensor according to claim 1 or 2.
前記センサ群における前記複数の超音波センサのそれぞれの前記受波面の重心が直線上に配設されている請求項1から3のいずれか一項に記載の対象物位置検出センサ。 The object position detection sensor according to any one of claims 1 to 3, wherein the center of gravity of the wave receiving surface of each of the plurality of ultrasonic sensors in the sensor group is arranged on a straight line. 前記センサ群として、第一方向に沿い前記3つ以上の超音波センサが配設された第一センサ群と、前記第一方向に交差する第二方向に沿い前記3つ以上の超音波センサが配設された第二センサ群と、を含み、
前記検出部は、前記第一方向における前記対象物の位置と、前記第二方向における前記対象物の位置とを検出する請求項1から4のいずれか一項に記載の対象物位置検出センサ。
The sensor group includes a first sensor group in which the three or more ultrasonic sensors are arranged along a first direction, and a first sensor group in which the three or more ultrasonic sensors are arranged in a second direction intersecting the first direction. a second sensor group disposed;
The object position detection sensor according to any one of claims 1 to 4, wherein the detection unit detects a position of the object in the first direction and a position of the object in the second direction.
JP2019064430A 2019-03-28 2019-03-28 Object position detection sensor Active JP7367322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064430A JP7367322B2 (en) 2019-03-28 2019-03-28 Object position detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064430A JP7367322B2 (en) 2019-03-28 2019-03-28 Object position detection sensor

Publications (2)

Publication Number Publication Date
JP2020165705A JP2020165705A (en) 2020-10-08
JP7367322B2 true JP7367322B2 (en) 2023-10-24

Family

ID=72714843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064430A Active JP7367322B2 (en) 2019-03-28 2019-03-28 Object position detection sensor

Country Status (1)

Country Link
JP (1) JP7367322B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085201A (en) 2002-08-22 2004-03-18 Chubu Electric Power Co Inc Vibration source probing system
JP2008089312A (en) 2006-09-29 2008-04-17 Kddi Corp Signal arrival direction estimation apparatus and method, signal separation apparatus and method, and computer program
JP2010286402A (en) 2009-06-12 2010-12-24 Toshiba Corp Apparatus and method for estimating radio wave arrival angle
JP2016127430A (en) 2014-12-29 2016-07-11 株式会社熊谷組 Sound source direction estimation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186029A (en) * 1996-12-20 1998-07-14 Kaijo Corp Underwater position detecting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085201A (en) 2002-08-22 2004-03-18 Chubu Electric Power Co Inc Vibration source probing system
JP2008089312A (en) 2006-09-29 2008-04-17 Kddi Corp Signal arrival direction estimation apparatus and method, signal separation apparatus and method, and computer program
JP2010286402A (en) 2009-06-12 2010-12-24 Toshiba Corp Apparatus and method for estimating radio wave arrival angle
JP2016127430A (en) 2014-12-29 2016-07-11 株式会社熊谷組 Sound source direction estimation device

Also Published As

Publication number Publication date
JP2020165705A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
US7821872B2 (en) Method for ultrasonic wave transmission and apparatus for ultrasonic wave transmission
US20080048907A1 (en) Object direction detection method and apparatus for determining target object direction based on rectified wave phase information obtained from plurality of pairs of receiver elements
US7792313B2 (en) High precision beamsteerer based on fixed beamforming approach beampatterns
JP2005530370A (en) Cylindrical ultrasonic transceiver
JP2007127503A (en) Object location detection apparatus
JP7367322B2 (en) Object position detection sensor
EP0928640A1 (en) Ultrasonic transducer with a horn and phased array using such ultrasonic transducers
WO2017141402A1 (en) Ultrasonic transmission/reception apparatus, wall member, and method for attaching ultrasonic sensor to wall member
JP2009121936A (en) Ultrasonic sensor
JPH0854926A (en) Guidance device for autonomous mobile robot
Stancovici et al. Relative positioning system using inter-robot ultrasonic localization turret
JP4462220B2 (en) Autonomous mobile device and autonomous mobile system
WO2016106154A1 (en) Differential endfire array ultrasonic rangefinder
JP4239742B2 (en) Ultrasonic distance measuring device
WO2018211589A1 (en) Ultrasonic sensor device and obstacle detection device
CN104166133A (en) Method for detecting objects by adaptive beamforming
JP6311230B2 (en) Target detection apparatus, target detection method, program, and recording medium
JP2019138629A (en) Rotation angle sensor and robot using the same
JP7163425B2 (en) Ultrasonic distance measuring device, ultrasonic distance measuring method and controller
JP2005049301A (en) Ultrasonic sensor
JP2007205906A (en) Distance-measuring equipment and autonomously travelling device
Kreczmer Phase shift determination for azimuth angle estimation of echo arrival direction
JP2006162328A (en) Ultrasonic range finder and ultrasonic clinometer
JP2009174968A (en) Obstacle detection apparatus
JP2022154533A (en) Object detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7367322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150