JP7356048B2 - 光導波路部品 - Google Patents

光導波路部品 Download PDF

Info

Publication number
JP7356048B2
JP7356048B2 JP2021543840A JP2021543840A JP7356048B2 JP 7356048 B2 JP7356048 B2 JP 7356048B2 JP 2021543840 A JP2021543840 A JP 2021543840A JP 2021543840 A JP2021543840 A JP 2021543840A JP 7356048 B2 JP7356048 B2 JP 7356048B2
Authority
JP
Japan
Prior art keywords
core
optical waveguide
substrate
optical
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021543840A
Other languages
English (en)
Other versions
JPWO2021044517A1 (ja
Inventor
優生 倉田
雄一郎 伊熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021044517A1 publication Critical patent/JPWO2021044517A1/ja
Application granted granted Critical
Publication of JP7356048B2 publication Critical patent/JP7356048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12014Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the wavefront splitting or combining section, e.g. grooves or optical elements in a slab waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide

Description

本発明は、光通信システムに応用可能であり、フォトダイオード、レーザーダイオード等の光素子を実装する際に用いられる光導波路部品に関する。
近年、光ファイバ伝送の普及に伴い、多数の光機能素子を高密度に集積する技術が求められている。その一つとして、石英系の平面光波回路(Planar Lightwave Circuit:以下、PLCと表記する)が知られている。PLCは低損失、高信頼性、高い設計自由度といった優れた特徴を有する導波路型光デバイスであり、実際に光通信伝送端における伝送装置には合分波器、分岐・結合器等の機能を集積したPLCが搭載されている。
また、伝送装置内には、PLC以外の光デバイスとして、光と電気信号とを変換するフォトダイオード(Photo Diode:以下、PDと表記する)、レーザーダイオード(Laser Diode:以下、LDと表記する)等の光素子も搭載されている。更に、通信容量の拡大に向けて、光信号処理を行うPLC等の光導波路と光電変換を行うPD等の光デバイスと、を集積した高機能な光電子集積型デバイスが求められている。
このような集積型光デバイスのプラットフォームとしてPLCは有望である。その周知技術には、PD及びPLCのチップをハイブリッドに集積した「光導波路部品およびその作製方法」(特許文献1参照)が挙げられる。
特開2005-70365号公報
この特許文献1では、光導波路の一部の領域に光路変換部としての45度ミラーを設け、その光導波路上にPDを実装している。これにより、光導波路を伝搬する光を45度ミラーで垂直に光路変換し、PDとの光結合を行う技術を開示している。
このようにPLCとPD等の光素子とを組み合わせて実装する光電子集積型デバイスでは、小型化、回路設計の自由度の面で利点がある。更に、近年では、通信容量を一層拡大させるため、光信号の合分波機能を持たせたPLCにおいて、アレイ化した複数の光素子を低損失となるように結合し、多チャネル化し得る機能が光電子集積型デバイスに求められている。
上述した特許文献1の光電子集積型デバイスにおいて、例えばPLC及び光素子のそれぞれの光導波路を突き合わせて結合することを想定する。この場合、PLCの光導波路の材料である石英系ガラスの屈折率が1.5程度であるのに対し、光素子の光導波路に関するInP等の化合物半導体、Siといった材料の屈折率は3以上となり、屈折率が大きく異なっている。
そこで、それぞれの光導波路の材料でシングルモード用導波路を作製した場合、屈折率が高い光素子の光導波路の方が光の閉じ込めが強くなる。このため、光導波路を伝搬する光のモードフィールド径(MFD)を比較すると、光素子の方がPLCよりも小さくなっている。
このように、モードフィールド径が異なる光導波路同士を突き合せて結合し、光電子集積型デバイスを構成する場合、モードフィールドのミスマッチによって、光損失が発生し、特性劣化を引き起こすことになる。このため、本来、こうした光損失の問題を対策するため、例えば光素子のモードフィールド径を拡大してミスマッチを減少させ、光損失を抑制する必要がある。
図1は、周知の光電子集積型デバイスをモードフィールド径の異なるコアを持つ光導波路部品10と光素子20とを結合して構成する様子を結合前の状態で一部破断して示した斜視図である。
図1を参照すれば、この光電子集積型デバイスにおける光導波路部品10は、基板1の主面上に光導波路2が備えられる。光導波路2は、積層されたアンダークラッド2aと、コア3と、オーバークラッド2bとを有し、基板1の端面付近に結合される光素子20との間で信号を入出力可能となっている。光素子20は、先細りテーパ形状の角板状部3a´に直線状に延びた直線角板状部3b´を結合した2重構造のコア3´がクラッド2cで覆われて構成される。
光導波路部品10の光導波路2のコア3と光素子20のコア3´とは、突き合わせ方向Mで光学的に結合される。このため、光素子20のコア3´には、モードフィールドを拡大するスポットサイズ変換器(SSC)としての機能が持たされる。図1に示す例では、光素子20のコア3´を2重構造とし、光入力側の角板状部3a´をテーパ形状としてコア3´の幅を細くし、光導波路2のコア3との光学的結合時の光損失の抑制を図っている。
こうした光損失を抑制する対策には、場合によって、コア3´の幅を太くするためにテーパを設ける構造を採用したり、或いは、コア3´の周囲をSiOで覆うことで2重コアにする構造が採用されることもある。何れにしても、作製工程を比較的複雑化させないで済む範囲とすることが望ましい。しかしながら、こうした光素子20側のコア3´へのモードフィールド対策では、光損失を十分に低減できるモードフィールドまで拡大するのが困難である場合が多い。
これに対し、PLC等の光導波路部品10側のモードフィールドは、シングルモード条件のコア3の径から小さくしていくと、光の閉じ込めが弱くなり、モードフィールドが拡大する方向に作用する。このため、モードフィールドを小さくすることは一般に困難である。また、光導波路部品10におけるコア3とクラッド(アンダークラッド2a又はオーバークラッド2bを示す)との間の屈折率差を大きくし、モードフィールドを小さくする手法も考えられる。この場合、屈折率差を変更すると、光導波路部品10に含まれる光回路(光導波路2)の特性も変化するため、特性を維持することが困難になってしまう。
このように、PLC等の光導波路部品10と光素子20との突き合わせ実装に際して、光素子20に比較的容易な工程で実現可能なスポットサイズ変換器を用いても、光導波路同士のモードフィールドのミスマッチが発生する。このため、簡便に光損失の低減化を具現し難いという問題がある。そこで、光素子20のスポットサイズ変換器に更に複雑な構造を採用すれば、更にモードフィールドを拡大できる余地がある。ところが、こうした構造を採用すると、反面的に作製工程が煩雑になってしまうという問題が発生する。従って、係る手法は、簡便に低光損失を具現しようとする観点からすれば、好適な手法と言えない。
要するに、光導波路部品10をプラットフォームとして、光素子20を結合するハイブリッド集積により光電子集積型デバイスを構成する場合、低光結合損失で簡便に光導波路同士を結合し得る光導波路部品が現状で具現化されていない。
本発明に係る実施形態は、上記問題点を解決するためになされたものである。本発明に係る実施形態の目的は、光素子を結合してのハイブリッド集積により光電子集積型デバイスを構成するとき、低光結合損失で簡便に光導波路同士を結合し得る光導波路部品を提供することにある。
上記目的を達成するため、本発明の一態様は、基板の主面上に光導波路が備えられ、当該光導波路は、積層されたアンダークラッドと、コアと、オーバークラッドと、を有すると共に、当該基板の端面付近に結合される光素子との間で信号を入出力可能な光導波路部品であって、基板の水平方向における端面付近の光導波路のコアの両側に、当該基板の垂直方向に対して断面方向でコアよりも深く形成され、当該コアを覆う当該光導波路の延在方向に沿って並設された溝部を有し、溝部を占める媒質の屈折率は、アンダークラッド及びオーバークラッドの屈折率よりも低いことを特徴とする。
上記構成の光導波路部品は、光素子を結合してのハイブリッド集積により光電子集積型デバイスを構成するとき、低光結合損失で簡便に光導波路同士を結合し得るようになる。
周知の光電子集積型デバイスをモードフィールド径の異なるコアを持つ光導波路部品と光素子とを結合して構成する様子を結合前の状態で一部破断して示した斜視図である。 本発明の実施形態1に係る光電子集積型デバイスをモードフィールド径の異なるコアを持つ光導波路部品と光素子とを結合して構成する様子を結合前の状態で一部破断して示した斜視図である。 図2に示す光導波路部品の構造を適用したPLCと光素子の適用例であるPDとの光学的結合の様子を示した斜視図である。 図3に示すPLCの光導波路における出口領域側の細部構造を一部破断して示した斜視図である。 図3に示すPLCに光を入力し、光導波路の基板の端面におけるモードフィールド径をチャネル毎に測定した結果を、コアの側面と溝部の側面との距離との対応関係で示した図である。 図3に示すPLC及びPDの結合時に測定されるPDのチャネル毎の光電流から受光感度を求め、上記距離に対する光結合損失を算出した結果を示すものである。 本発明の実施形態2に係るPLCと光素子の適用例であるPDとの光学的結合の様子を示した斜視図である。 図7に示すPLCの光導波路における出口領域側の細部構造を一部破断して示した斜視図である。 図7に示すPLCに光を入力し、光導波路の基板の端面におけるモードフィールド径をチャネル毎に測定した結果を、出口領域側のコアの幅との対応関係で示した図である。 図7に示すPLC及びPDの結合時に測定されるPDのチャネル毎の光電流から受光感度を求め、上記出口領域におけるコアの幅に対する光結合損失を算出した結果を示すものである。
以下、本発明の実施形態に係る光導波路部品について、幾つかの実施形態を挙げ、図面を参照して詳細に説明する。
(実施形態1)
図2は、本発明の実施形態1に係る光電子集積型デバイスをモードフィールド径の異なるコアを持つ光導波路部品10Aと光素子20とを結合して構成する様子を結合前の状態で一部破断して示した斜視図である。
図2を参照すれば、この光電子集積型デバイスにおける光導波路部品10Aの場合も、Si等による基板1の主面上に光導波路2が備えられる。ここでの光導波路2の場合も、積層されたアンダークラッド2aと、コア3と、オーバークラッド2bと、を有し、基板1の端面付近に結合される光素子20との間で信号を入出力可能となっている。光素子20は、図1を参照して説明した構成と同じであり、先細りテーパ形状の角板状部3a´に直線状に延びた直線角板状部3b´を結合した2重構造のコア3´がクラッド2cで覆われて構成される。
この光導波路部品10Aの場合、基板1の水平方向における端面付近の光導波路2のコア3の両側に、基板1の垂直方向に対して断面方向でコア3よりも深い溝部4が、コア3を覆う光導波路2の延在方向に沿って並設されている。但し、これらの溝部4を占める媒質の屈折率は、アンダークラッド2a及びオーバークラッド2bの屈折率よりも低くなっている。このような媒質は、汎用性の高い空気として良いものである。溝部4は、以下も同様であるが、基板1の主面上の水平方向において、コア3の両側に係るモードフィールドよりも十分幅がある領域で、その底面がコア3よりも基板1の主面との垂直方向で深い領域を示す。
溝部4には、テーパ形状を持たせている。このテーパ形状は、基板1の水平方向における光導波路2のコア3の側面と基板1の光導波路2の両側に設けられた溝部4の側面との距離が基板1の端面の反対方向から端面の方向に向かって小さくなるようにして、形成している。これにより、溝部4は、基板1の端面の反対方向側のテーパ状凹部4aと基板1の端面の方向に向かって直線状に延在する直線状凹部4bとが繋がる形態となっている。また、基板1の端面側の溝部4の直線状凹部4bの端部は、壁を持たない切り欠かれた空間となっている。尚、基板1の水平方向における光導波路2のコア3の側面とコア3の両側に設けられた溝部4の側面との距離は、コア3の幅を基準として規定することができる。係る距離は、コア3の延在方向と垂直な方向におけるコア3の幅の1/2以下であり、且つ零よりも大きいことが好ましい。
この光導波路部品10Aにおいても、光導波路2のコア3と光素子20のコア3´とは、突き合わせ方向Mで光学的に結合される。このため、光素子20のコア3´には、図1を参照して説明した場合と同様に、モードフィールドを拡大するスポットサイズ変換器(SSC)としての機能が持たされる。図2に示す例においても、光素子20のコア3´を2重構造とし、光入力側の角板状部3a´をテーパ形状としてコア3´の幅を細くし、光導波路2のコア3との光学的結合時の光損失の抑制を図っている。しかしながら、光素子20側のコア3´へのモードフィールド対策では、上述したように、光損失を十分に低減するモードフィールドまで拡大するのが困難である。
この点について、実施形態1に係る光導波路部品10Aでは、基板1の光導波路2のコア3の両側に設けられた溝部4がアンダークラッド2a及びオーバークラッド2bよりも低い屈折率の媒質で占められている。このため、光導波路2を伝搬する光のモードフィールドを光導波路2で小さくするように調整することができる。これにより、モードフィールドのミスマッチによる光損失を低減することができる。尚、この光導波路部品10Aは、PLCへの適用が好適である。
ところで、モードフィールドをより効果的に縮小させるため、基板1の水平方向における光導波路2のコア3の幅は、光導波路2に接続する光素子20の光導波路のコア3´の幅よりも小さいことが望ましい。また、上述したように、光導波路2のコア3の側面と、コア3の両側に設けられた溝部4の側面との距離が、片側でコア3の幅の1/2以下であることが望ましい。更に、光導波路2の基板1の垂直方向におけるコア3の高さは、光導波路2に接続する光素子20の光導波路のコア3´の高さよりも小さいことが望ましい。
ここで、モードフィールドを縮小する際に、光導波路2とその光導波路2に接続する光素子20の光導波路のそれぞれのモードフィールドにミスマッチがあると、接続部分で光損失が生じてしまう。そこで、基板1の水平方向における光導波路2のコア3の側面と、コア3の両側に設けられた溝部4の側面との距離が、基板1の端面の反対方向から端面方向に向かって小さくなるテーパ形状を導入すれば良い。これにより、基板1の端面の光導波路2に向けてモードフィールドを徐々に変換することができる。このとき、光導波路2のコア3の幅を小さくする場合には、同様にコア3の幅にもテーパ構造を採用し、徐々にコア3の幅を変化させることが望ましい。
一般的に、PLCの断面構造は、Si、SiO等による基板1の主面上に、SiOの薄膜が、アンダークラッド2aとして約20μm、コア3として3~10μm、オーバークラッド2bとして約20μm堆積される。基板1の端面領域に形成された光導波路2を光の入出力を行う入出力導波路として想定すれば、基板1の端面におけるモードフィールドで光結合されることになる。基板1の端面において小さいモードフィールドを得るため、入出力導波路の両側に、PLCの基板1に対して、水平方向における入出力導波路を伝搬する光の進行方向に沿った溝部4を設ける。効果的にモードフィールドを小さくするため、アンダークラッド2a及びオーバークラッド2bのクラッド材料の屈折率よりも低い空気、樹脂等の媒質によって溝部4の内部が占められることが望ましい。
また、PLCの基板1に対して垂直方向における溝部4の深さが、コア3の底面の深さよりも深いことが望ましい。これにより、コア3を伝搬する光の基底モードにおける等価屈折率を高めることで、強い光の閉じ込め効果が得られる。その結果として、モードフィールドを小さくすることができるが、特に基板1の水平方向のモードフィールド対して効果的に作用する。このようなモードフィールド調整用の溝部4を設けるためには、溝部4を設ける領域に対してフォトリソグラフィーによるパターニングとドライエッチングとによる手法が用いられる。従って、特殊な工程を要することなく、簡便に実施することが可能である。
更に、入出力導波路部のみに適用される構造であるため、既存のPLCの設計に対して導入するのも容易である。PLCを対象としての溝部形成工程は、PLCの熱光学効果を利用した光スイッチにおける断熱溝部形成でも行われるため、断熱溝部の形成とモードフィールド調整用の溝部4との形成とを同時に行うことができる。このような場合には、工程を追加することなく実施することが可能である。例えば、光導波路2は、光回路領域から溝部4の設けられた光結合端面の入出力領域に至る箇所において、コア3の両側に溝部4が無い構造を有する。また、光導波路2は、入出力領域でコア3の両側の溝部4を介してアンダークラッド2a及びオーバークラッド2bの少なくとも何れかによるクラッドが残る構造を有する場合を好適な例として、挙げられる。
通常、モードフィールドを小さくするには、屈折率の高いコア材料を用いてPLCを作製するか、或いは入出力導波路部に屈折率の高い第2のコア材料を追加して堆積した後、コア形状加工を行う手法が挙げられる。ところが、これらの手法のうち、前者は、光回路の再設計が必要であると同時に、光素子20以外との信号の入出力に用いられる光ファイバとの光結合損失がモーフィールドのミスマッチにより増加する問題がある。後者は、追加するコア材料の堆積及び加工だけでなく、余分な領域に堆積された第2コア材料の除去をサブミクロン以下の精度で除去する必要もあるため、PLCの作製工程が複雑化するという問題がある。これに対し、実施形態1の手法では、PLCの光回路領域の設計を変更することなく導入でき、簡便な作製工程で実現することが可能である。
図3は、上述した光導波路部品10Aの構造を適用したPLC100Aと光素子20の適用例であるPD6との光学的結合の様子を示した斜視図である。このPLC100Aは、Siによる基板1の主面上に下記の規格による光導波路2を形成した石英系で構成される。即ち、光導波路2の規格として、サイズが縦5mm、横10mmであり、コア3の径が4.5μm、コア3の上面からみたオーバークラッド2bの膜厚を15.5μm、コア3の下面のアンダークラッド2aの膜厚を20μmとする。また、コア3とアンダークラッド2a及びオーバークラッド2bとの屈折率差が2.0%の光導波路2であるとする場合を例示できる。
このPLC100Aにおける光導波路2では、光入力を基板1の短辺側に設けられた図3中の手前側の入口領域E1から行い、光出力を入口領域E1と反対側の短辺側に形成される図3中の奥側の出口領域E2から行う。光導波路2は、4チャネルのコア3が250μmピッチで設けられ、それぞれ入口領域E1側から総計8個の溝部40が形成される部分付近に至るまでの間のコア3をS字型部とする構造が採用されている。これにより、コア3は、溝部40が延在する方向に沿って、それらの間隔に位置される直線部とS字型部とが結合された構造となっている。また、ここでの溝部40の構造は、図2を参照して説明した光導波路部品10Aの溝部4の構造の場合とは細部が相違している。図3に示す溝部40は、光出力側の基板1の端面まで貫通せずに端面からオフセットした箇所まで形成されている。
図4は、図3に示すPLC100Aの光導波路2における出口領域E2側の細部構造を一部破断して示した斜視図である。図4を参照すれば、コア3の直線部の両側に設けられた溝部40は、コア3の光出力の方向に沿って、基板1の端面に向けて500μmの全長として、出口領域E2となる基板1の端面の壁部から5μmの箇所まで形成されている。即ち、出口領域E2となる基板1の端面を貫通せずに壁部を有する構造になっている。尚、基板1の端面は、チップ端と呼ばれても良い。
即ち、この溝部40の場合も、テーパ状凹部40a及び直線状凹部40bを有する形状であり、それぞれ250μmの長さで形成されている。即ち、溝部40において、出口領域E2側の基板1の端面と反対側方向のテーパ状凹部40aは、出口領域E2側の基板1の端面側の直線状凹部40bの箇所から250μm離れた箇所に至るまで形成されている。但し、これらのテーパ状凹部40a及び直線状凹部40bの寸法形状は、あくまでも一例であり、任意に変更することが可能である。
更に、溝部40の出口領域E2側では、コア3の側面と直線状凹部40bの側面との距離dを一定としている。但し、このコア3の側面と直線状凹部40bの側面との距離dは、図3に示すように複数のコア3が設けられる場合には、コア3毎に変更することが可能である。また、基板1の端面の反対側方向に向け、コア3の側面とテーパ状凹部40aの側面との距離dが次第に大きくなるように、溝部40のテーパ状凹部40aのテーパ構造を設定している。このコア3の側面とテーパ状凹部40aの側面との距離dは、基板1の端面の反対側方向におけるテーパ状凹部40aの端部で最大値を示す10μmとなっている。これにより、溝部40の形状は、テーパ状凹部40a及び直線状凹部40bが繋がって形成され、基板1の端面と反対側で最も隔てられたテーパ状凹部40aの端部で幅が最小となっている。尚、溝部40の直線状凹部40bにおける幅Wは、50μmとしている。
そこで、図3に示す4チャネル分のコア3について、出口領域E2のコア3の側面と溝部40の直線状凹部40bの側面の距離dをそれぞれ0μm、1μm、2μm、3μmとした。この溝部40は、ドライエッチングにより深さがコア3よりも深くなるように形成される。溝部40の作製方法で作用効果が限定されるものではないが、ドライエッチングにより溝部40を作製すれば、高精度で、且つ自由度の高いレイアウトが可能となる。上述した光導波路部品10Aに設けた溝部4及びPLC100Aに設けた溝部40の何れについても、特記しない限り、空気が充填されているとみなして構わない。
このような構造のPLC100Aに突き合わせ結合するPD6は、光導波路にスポットサイズ変換器が設けられる。図3を参照して、具体的に説明すれば、光強度分布の強度が1/eとなる全幅のモードフィールド径がチップの垂直方向及び水平方向に対してそれぞれ3μmとなるコア3´が光入力用とされ、光電変換部3c´に結合される。スポットサイズ変換器を介してコア3´に入力された光は、PD6の光導波路を伝搬し、光電変換部3c´で電気信号に変換される。尚、光結合損失を除いたPD6の単体での受光感度は波長1.55μmで1.0A/Wである。
PLC100AとPD6との突き合わせ結合では、PLC100Aのコア3の出力領域E2から出力された光に対し、PD6の受光感度が最大になるように、PLC100Aの光導波路2とPD6の光導波路との位置をアライメントする。そして、PLC100Aのコア3とアンダークラッド2a及びオーバークラッド2bとの屈折率に近い赤外領域で透明な樹脂をPLC100A及びPD6間に充填する。そして、樹脂の硬化による固着・固定を行う。このようにして、光電子集積型デバイスを構成することができる。但し、PD6の光導波路となる端面には、充填する樹脂の屈折率に対応した反射防止膜を設けることが好ましい。
PLC100A及びPD6の結合により、4チャネルの集積型受光デバイスが構成される。PLC100Aの光導波路2の入口領域E1に入力された光は、4チャネル分のコア3を通って出口領域E2から突き合わせ結合部に伝搬される。そして、この突き合わせ結合部を介してPD6側の光導波路で光結合された後、コア3´を通ってそれぞれの光電変換部3c´で光電変換され、電気信号として出力される。
ところで、PLC100A及びPD6間の固着・固定用として、接続部分に光学接着剤を導入し、PLC100A及びPD6間の機械的な接着と屈折率差の整合とを図ることも可能である。この際に、コア3の両側の溝部40が基板1の端面まで貫通していれば、溝部40の内部に光学接着剤が流れ込むことにより、アンダークラッド2a及びオーバークラッド2bと溝部40とを占める媒質との屈折率差が減少してしまうことが考えられる。この結果、モードフィールド縮小の効果が十分に働かない可能性がある。
そこで、光学接着剤が溝部40の内部に流れ込まないように、PD6との接続前にアンダークラッド2a及びオーバークラッド2bよりも低い屈折率の媒質を予め溝部40の内部に導入しておくことが有効である。図4を参照して説明した例では、コア3の両側の溝部40の直線状凹部40bが基板1の端面まで貫通せず、基板1の端面からオフセットした箇所まで形成される壁部を持つ構造としている。これにより、光学接着剤の流れ込みを防止し、屈折率差の減少を防止する構造を得ている。
尚、上述したPLC100A及びPD6の結合では、使用する波長帯に応じて透明な樹脂を用いることが一般的であるが、実施形態1の作用効果はそれに依存するものでない。例えば、光導波路同士をアライメントした後、YAGレーザ等を用いて端面同士を融着する手法を採用すれば、溝部40の内部に樹脂が入り込む可能性を除去し、安定した光結合構造を形成することが可能である。
図5は、PLC100Aに光を入力し、光導波路2の基板1の端面におけるモードフィールド径[μm]をチャネル毎に測定した結果を、コア3の側面と溝部40の側面との距離d[μm]との対応関係で示した図である。尚、ここではPLC100Aに対し、波長1.55μmの光をファイバで入力し、従来の溝部無しの場合を含めた結果を得たものとする。
図5からは、溝部無しの場合、基板1の垂直方向及び水平方向のモードフィールド径は約4.8μmとなっていることが判る。これに対し、光導波路2の出口領域E2側に溝部40を設けた場合、コア3の側面と溝部40の直線状凹部40bの側面との距離dが3μmから2μmの間で水平方向のモードフィールド径が僅かに小さくなることが判った。更に、距離dを低減して0μmとしたとき、垂直方向におけるモードフィールド径はほぼ一定のままであるが、水平方向におけるモードフィールド径は約3.6μmと大幅に小さくできることが判った。この距離d=0μmでの水平方向におけるモードフィールド径約3.6μmは、PD6の光導波路のコア3´のモードフィールド径へと近付けられる値である。
図6は、PLC100A及びPD6の結合時に測定されるPD6のチャネル毎の光電流から受光感度を求め、上記距離d[μm]に対する光結合損失Lоss[dB]を算出した結果を示すものである。尚、ここでは、PD6の単体の受光感度から距離d[μm]に対する光結合損失Lоss[dB]を算出した結果を、従来の溝部無しの場合を含めて得たとする。
図6からは、溝部無しの場合、1dB弱の光結合損失が生じていることが判る。これに対し、光導波路2の出口領域E2側に溝部40を設けた場合、コア3の側面と溝部40の直線状凹部40bの側面との距離d=3μm~2μmの間で僅かに光結合損失が減少し、更に距離dを低減して0μmとしたとき、約0.5dBまで光結合損失を低減できることが判る。このような溝部40の構造は、図1に示したような従来の溝部無しの光導波路2にそのまま導入することが可能であり、光導波路2におけるモードフィールド径を、複雑な構造を導入することなく簡便に小さくできることを示す。
以上の結果からは、PLC100A及びPD6の結合時にモードフィールド径が小さい光導波路のPD6への突き合わせ結合を実施しても、光結合損失を低減できることが判った。即ち、実施形態1に係る光導波路部品10Aと光素子20との結合時における光結合損失の低減効果、更には光導波路部品10Aを適用したPLC100A及びPD6の結合時における光結合損失の低減効果を確認できた。従って、実施形態1に係る光導波路部品10Aは、光素子20を結合してのハイブリッド集積により光電子集積型デバイスを構成するとき、低光結合損失で簡便に光導波路同士を結合し得る。このため、より低光損失が要求される光デバイスへの適用が有効になる。
要するに、実施形態1に係る光導波路部品10Aでは、光導波路2のコア3の両側にコア3よりも深い溝部4が、コア3を覆う光導波路2の延在する方向に沿って並設されている。そして、これらの溝部4を占める媒質の屈折率をアンダークラッド2a及びオーバークラッド2bの屈折率よりも低くし、等価的にコア3とアンダークラッド2a及びオーバークラッド2bとの間の屈折率差を大きくしている。これにより、光導波路2のコア3を伝搬する光の閉じ込めを強くすることが可能となり、伝搬する光のモードフィールドを小さくする方向に調整を行うことができる。この結果、上記作用効果を奏するようになる。
(実施形態2)
図7は、本発明の実施形態2に係るPLC100Bと光素子20の適用例であるPD6´との光学的結合の様子を示した斜視図である。このPLC100Bは、PLC100Aと比べ、光導波路2´の多重構造のコア3″のチャネル数、溝部4´の総数が増設され、光導波路2´と基板1の端面との成す角度θを傾けて設定した点が相違している。即ち、このPLC100Bでは、光導波路2´の多重構造のコア3″が5チャネル分、溝部4´の総計が10個に増設され、光導波路2´のコア3″と基板1の端面との成す角度θが90度を基準とした場合、8度傾いて設定される。また、PD6´の光入力用とする光導波路も、同じ傾きで設定されている。
このPLC100Bにおける溝部4´の構造は、図4を参照して説明した溝部40の構造とは細部が相違しており、全長750μmで光出力側の基板1の端面まで貫通しており、壁部を持たない構造となっている。但し、溝部4´の形状は、テーパ状凹部4a´及び直線状凹部4b´が繋がって形成され、基板1の端面と反対側の最も隔てられたテーパ状凹部4a´の端部で幅が最小となっている点は同じである。尚、ここでも基板1の水平方向における光導波路2´のコア3″の側面とコア3″の両側に設けられた溝部4´の側面との距離は、コア3″の幅に基づいて規定することができる。係る距離についても、コア3″の延在方向と垂直な方向におけるコア3″の幅の1/2以下であり、且つ零よりも大きいことが好ましい。
図8は、図7に示すPLC100Bの光導波路2´における出口領域E2側の細部構造を一部破断して示した斜視図である。この溝部4´の場合も、テーパ状凹部4a´及び直線状凹部4b´を有する形状であり、直線状凹部4b´が250μm、テーパ状凹部4a´が500μmの長さで形成され、クラッド材料の屈折率よりも低い空気で満たされている。但し、これらのテーパ状凹部4a´及び直線状凹部4b´の寸法形状は、あくまでも一例であり、任意に変更することが可能である。
更に、多重構造のコア3″は、コア3のS字型部から延びて端部となる直線部分の箇所に2重構造を成すテーパ形状の角板状部3a″と直線角板状部3b″とを結合した3重構造として構成される。コア3″の直線角板状部3b″の側面と溝部4´の直線状凹部4b´の側面との距離dは、一定の1.5μmにしている。尚、溝部4´の直線状凹部4b´における幅Wは、50μmとしている。ここで、コア3″の側面に存在するオーバークラッド2bをエッチングすれば、溝部4´の幅Wが規定されない構造についても具現し得る。しかし、PD6´との突き合せ結合を行う際にコア3″を含む光結合端面が接触により破損することを防ぐ役割を考慮すれば、光結合端面でコア3″の両側に溝部4´を介してクラッドが残る構造とする方が望ましい。この光導波路2´も、光回路領域から溝部4´の設けられた光結合端面の入出力領域に至る箇所において、コア3″の両側に溝部4´が無い構造を有し、且つ入出力領域でコア3″の両側の溝部4´を介してクラッドが残る構造を有する。要するに、光導波路2´の光回路領域は、必要な部分だけに溝部4´が設けられ、全ての領域のコア3″の両側に溝部4´が設けられる訳ではない。この点については、実施形態1に係る光導波路2についても同様である。
また、基板1の端面の反対側方向に向け、コア3″の直線角板状部3b″及び角板状部3a″の側面と溝部4´のテーパ状凹部4a´の側面との距離dが次第に大きくなるように、溝部4´のテーパ状凹部4a´のテーパ構造を設定している。このコア3″の側面と溝部4´のテーパ状凹部4a´の側面との距離dは、基板1の端面の反対側方向におけるテーパ状凹部4a´の端部で最大値を示す10μmとなっている。
更に、溝部4´のテーパ状凹部4a´の領域範囲内で、基板1の水平方向におけるコア3″の幅についても、直線角板状部3b″の一定の幅4.5μmから直線角板状部3b″に結合される角板状部3a″にテーパ構造を採用している。即ち、角板状部3a″では、直線角板状部3b″との結合箇所へ向けて、次第に小さくなるようにテーパ構造を採用している。
加えて、コア3″のテーパ構造を採用した角板状部3a″から直線角板状部3b″にかけてのコア3″の基板1の垂直方向における高さh1を3μmとしている。この高さh1は、図8中に示される2重構造に結合されるコア3の高さh=4.5μmよりも低く設定される。また、高さh1は、PD6´のコア3´の高さよりも小さいことが望ましい。係る2段の高さを有するコア″の3重構造は、通常高さhのコア3を形成した後、2重構造を成す角板状部3a″のテーパ構造と直線角板状部3b″とを形成する領域以外をマスクしてドライエッチングする工程を追加すれば形成できる。これは追加工程を要するものの、直線角板状部3b″周囲のアンダークラッド2bも同時にエッチングされるため、その後の溝部4´を形成する際のドライエッチングにおけるエッチング時間を短縮できるという副次的な効果をもたらす。
その他、PLC100Bでは、コア3″の結合界面からの反射戻り光を抑制するため、光導波路2´のコア3″と基板1の端面との成す角度θ(基準90度)=8度として、傾いた設定にした。そして、図7に示す5チャネル分のコア3″について、出口領域E2側のコア3″の直線角板状部3b″の幅を2~4μmとして設定した。
このような構造のPLC100Bに突き合わせ結合するPD6´は、8度傾いた光導波路にスポットサイズ変換器が設けられる。図7を参照して、具体的に説明すれば、光強度分布の強度が1/eとなる全幅のモードフィールド径がチップの垂直方向及び水平方向に対してそれぞれ3μmとなるコア3´が光入力用とされ、光電変換部3c´に結合される。スポットサイズ変換器を介してコア3´に入力された光は、PD6´の8度傾いた光導波路を伝搬し、光電変換部3c´で電気信号に変換される。尚、光結合損失を除いたPD6´の単体での受光感度は波長1.55μmで1.0A/Wである。
PLC100Bに対するPD6´の突き合わせ結合に先立って、PLC100Bの出口領域E2側のコア3″の直線角板状部3b″の側面の溝部4´にシリコーン樹脂を充填する。これにより固着・硬化させた後、ダイシング、研磨等によって、接続面を形成する。PD6´の突き合わせ結合は、PLC100Bのコア3″の直線角板状部3b″から出力される光に対し、PD6´の受光感度が最大になるように、PLC100Bの光導波路2´とPD6´の光導波路との位置をアライメントする。そして、PLC100Bのコア3″とアンダークラッド2a及びオーバークラッド2bとの屈折率に近い赤外領域で透明な樹脂をPLC100B及びPD6´間に充填する。そして、樹脂の硬化による固着・固定を行う。このようにして、光電子集積型デバイスを構成することができる。但し、ここでも、PD6´の光導波路となる端面には、充填する樹脂の屈折率に対応した反射防止膜を設けることが好ましい。
樹脂による固定後に樹脂を外せば、溝部4´内に樹脂が入り込むことを抑制しつつ、固定を行うことができる。ここでは、シリコーン樹脂を用いて、固定後に外す場合を例示できる。但し、アンダークラッド2a及びオーバークラッド2bよりも屈折率の低い樹脂を用いて溝部4´を充填した場合には、固定後に樹脂を外さなくても良い。
実施形態2に係るPLC100Bでは、充填する樹脂による光導波路2´のコア3″の汚染を防ぐため、コア3″が露出しないように出口領域E2側のコア3″の直線角板状部3b″と溝部4´との間の距離dを1.5μmとした。尚、コア3″が露出する構造は、水分等の影響によりコア3″の屈折率が変動し、特性劣化を引き起こす虞がある。このため、信頼性上の観点から、コア3″の直線角板状部3b″と溝部4´との間の距離dを零にしないことが望ましい。こうした構造とするためには、予めコア3″側面にクラッドが残るように溝部4´を形成する手法、溝部4´の形成後にCVD法、スパッタ法等によりSiO等の材料で表面保護膜を形成する手法等を適用させることができる。
図9は、PLC100Bに光を入力し、光導波路2´の基板1の端面におけるモードフィールド径[μm]をチャネル毎に測定した結果を、出口領域E2側のコア3の幅[μm]との対応関係で示した図である。尚、ここではPLC100Bに対し、波長1.55μmの光をファイバで入力したものとする。
図9からは、基板1の垂直方向におけるモードフィールド径は、3重構造のコア3″の2重構造部の高さh1を3μmとしたことにより、コア3の高さhの4.5μmのときから小さくなり、約4.0μmとなったことが判る。また、コア3″の幅の減少に対し、基板1の垂直方向におけるモードフィールド径は、3.9μmから4.1μmまで僅かに大きくなった。これに対し、基板1の水平方向のモードフィールド径は、4.4μmから3.2μmまで大幅に小さくなった。こうした結果から、PLC100Bでは、溝部無しの場合と比較して、水平方向及び垂直方向のモードフィールド径が小さくなり、PD6´の光入力用の光導波路のモードフィールド径に近付けられることが判った。
図10は、PLC100B及びPD6´の結合時に測定されるPD6´のチャネル毎の光電流から受光感度を求め、上記出口領域E2におけるコア3″の幅に対する光結合損失Lоss[dB]を算出した結果を示すものである。尚、ここではPD6の単体の受光感度から光結合損失Lоss[dB]を算出した結果を得たものとする。
図10からは、コア3″の幅4μmでは0.9dB程あった光結合損失が、コア3″の幅を2.5μm以下とすることで、0.7dB以下まで低減させられることが判った。実施形態1では、コア3の側面と溝部40の直線状凹部40bの側面との距離dが1μmでも0.8dB程度までの光結合損失の低減であったのに対し、実施形態2の構造を適用すれば、更に光結合損失を低減させることができる。即ち、実施形態2の構造の特徴は、コア3″の側面が外環境に晒されないように、コア3″及び溝部4´間に薄いクラッドが設けられた構造である。
実施形態2の構造による光結合損失の効果は、PLC100Bの光導波路2´のコア3″の多重構造における高さ変更によるモードフィールド径の変換損失の低減(約0.5dB)を含んでいる。この損失を低減する光導波路2´の構造(コア3″の多重構造)を導入することにより、更に光結合損失を低減させることができる。これらの結果より、実施形態2に係る光結合損失の低減効果を確認できた。
更に、実施形態2の構造による光結合損失の効果は、光導波路2´の多重構造のコア3″の結合に伴う反射戻り光の発生防止を含んでいる。即ち、使用する各部の材料、光導波路2´の設計の違いにより、光導波路部品と光素子との間には屈折率差が生じる。特に、屈折率界面で発生する反射の影響、突き合わせ結合では光結合距離が短いため、通信用デバイスとして好ましくない反射戻り光が発生し易い。これは、屈折率界面で反射した光が光導波路部品に戻る際に、その一部が光導波路2´に結合することで発生する。反射戻り光は、光信号の伝送品質に大きく影響することから、特に光導波路部品を光通信システムに適用する場合、30~40dB以上損失させることが求められる。この反射戻り光を低減するため、実施形態2の構造では、基板1の端面の垂直方向に対する光導波路2´の角度θを8度にしている。尚、上述した角度θは、8度以上であれば良いが、あくまでも多重構造のコア3″の結合に伴う反射戻り光の発生防止を意図するものであり、必要以上に過度な傾斜を示すものではない。
以上に説明したように、実施形態2に係るPLC100Bでは、実施形態1で説明した構成に加え、光導波路2´の多重構造のコア3″における高さ変更、基板1の端面の垂直方向に対する光導波路2´の傾斜角設定を導入している。この結果、光導波路を有する光素子を結合してのハイブリッド集積により光電子集積型デバイスを構成するとき、実施形態1の場合よりも低光結合損失で簡便に光導波路同士を結合できる。従って、より低光損失が要求される光デバイスへの適用が一層有効になる。

Claims (4)

  1. 基板の主面上に光導波路が備えられ、当該光導波路は、積層されたアンダークラッドと、コアと、オーバークラッドと、を有すると共に、当該基板の端面付近に結合される光素子との間で信号を入出力可能な光導波路部品であって、
    前記基板の水平方向における前記端面付近の前記光導波路の前記コアの両側に、当該基板の垂直方向に対して断面方向で前記コアよりも深く形成され、当該コアを覆う当該光導波路の延在方向に沿って並設された溝部を有し、
    前記溝部を占める媒質の屈折率は、前記アンダークラッド及び前記オーバークラッドの屈折率よりも低く、
    前記基板の水平方向における前記光導波路の前記コアの側面と当該コアの両側に設けられた前記溝部の側面との距離が、当該コアの延在方向と垂直な方向における当該コアの幅の1/2以下であり、且つ零よりも大きく、
    前記基板の前記光導波路の両側に設けられた前記溝部は、当該基板の端面まで貫通せずに当該端面からオフセットした箇所まで形成され、壁を有することを特徴とする光導波路部品。
  2. 基板の主面上に光導波路が備えられ、当該光導波路は、積層されたアンダークラッドと、コアと、オーバークラッドと、を有すると共に、当該基板の端面付近に結合される光素子との間で信号を入出力可能な光導波路部品であって、
    前記基板の水平方向における前記端面付近の前記光導波路の前記コアの両側に、当該基板の垂直方向に対して断面方向で前記コアよりも深く形成され、当該コアを覆う当該光導波路の延在方向に沿って並設された溝部を有し、
    前記溝部を占める媒質の屈折率は、前記アンダークラッド及び前記オーバークラッドの屈折率よりも低く、
    前記基板の水平方向における前記光導波路の前記コアの側面と当該コアの両側に設けられた前記溝部の側面との距離が、当該コアの延在方向と垂直な方向における当該コアの幅の1/2以下であり、且つ零よりも大きく、
    前記光導波路は、光回路領域から前記溝部の設けられた光結合端面の入出力領域に至る箇所において、前記コアの両側に当該溝部が無い構造を有し、且つ当該入出力領域で当該コアの両側の当該溝部を介して前記アンダークラッド及び前記オーバークラッドの少なくとも何れかによるクラッドが残る構造を有することを特徴とする光導波路部品。
  3. 前記基板の水平方向における前記光導波路の前記コアの側面と当該コアの両側に設けられた前記溝部の側面との距離が、当該基板の端面の反対方向から当該端面の方向に向かって小さくなるように、当該溝部にテーパ形状を持たせた
    ことを特徴とする請求項1または2に記載の光導波路部品。
  4. 前記基板の水平方向における前記光導波路と当該基板の端面との成す角度が90度を基準とした場合、8度以上傾いている
    ことを特徴とする請求項1乃至3のいずれか1項に記載の光導波路部品。
JP2021543840A 2019-09-03 2019-09-03 光導波路部品 Active JP7356048B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034620 WO2021044517A1 (ja) 2019-09-03 2019-09-03 光導波路部品

Publications (2)

Publication Number Publication Date
JPWO2021044517A1 JPWO2021044517A1 (ja) 2021-03-11
JP7356048B2 true JP7356048B2 (ja) 2023-10-04

Family

ID=74852345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021543840A Active JP7356048B2 (ja) 2019-09-03 2019-09-03 光導波路部品

Country Status (3)

Country Link
US (1) US20220334309A1 (ja)
JP (1) JP7356048B2 (ja)
WO (1) WO2021044517A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115390186A (zh) * 2022-08-29 2022-11-25 赛丽科技(苏州)有限公司 一种低插损端面耦合器
CN117950110A (zh) * 2022-10-19 2024-04-30 苏州极刻光核科技有限公司 模斑转换结构和光子器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006168A (ja) 2000-06-26 2002-01-09 Furukawa Electric Co Ltd:The 光導波路モジュール
JP2005301301A (ja) 2005-05-23 2005-10-27 Nec Corp 光結合器
JP2006017914A (ja) 2004-06-30 2006-01-19 Tdk Corp 複合光ファイバおよび複合光ファイバアレイ
JP2007079225A (ja) 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子の接続方法および接続部材
US20070153858A1 (en) 2006-01-03 2007-07-05 Samsung Electronics Co.; Ltd Optical spot size converter integrated laser device and method for manufacturing the same
JP2009031780A (ja) 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd 光モジュール
JP2016161915A (ja) 2015-03-05 2016-09-05 日本碍子株式会社 光導波路素子および光学デバイス

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297809A (ja) * 1986-06-18 1987-12-25 Sumitomo Electric Ind Ltd バンチフアイバ接続用光導波型接続部材およびそれを用いたコネクタ
JPH05288944A (ja) * 1992-04-15 1993-11-05 Sumitomo Electric Ind Ltd 光導波路およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006168A (ja) 2000-06-26 2002-01-09 Furukawa Electric Co Ltd:The 光導波路モジュール
JP2006017914A (ja) 2004-06-30 2006-01-19 Tdk Corp 複合光ファイバおよび複合光ファイバアレイ
JP2005301301A (ja) 2005-05-23 2005-10-27 Nec Corp 光結合器
JP2007079225A (ja) 2005-09-15 2007-03-29 Nippon Telegr & Teleph Corp <Ntt> 波長変換素子の接続方法および接続部材
US20070153858A1 (en) 2006-01-03 2007-07-05 Samsung Electronics Co.; Ltd Optical spot size converter integrated laser device and method for manufacturing the same
JP2009031780A (ja) 2007-06-26 2009-02-12 Panasonic Electric Works Co Ltd 光モジュール
JP2016161915A (ja) 2015-03-05 2016-09-05 日本碍子株式会社 光導波路素子および光学デバイス

Also Published As

Publication number Publication date
JPWO2021044517A1 (ja) 2021-03-11
US20220334309A1 (en) 2022-10-20
WO2021044517A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
US10656333B2 (en) Two-stage adiabatically coupled photonic systems
JP3749652B2 (ja) 光合分波器、光導波路モジュールおよび光通信装置
US7561765B2 (en) Optical integrated circuit and optical integrated circuit module
KR101639602B1 (ko) 광합류분기기, 쌍방향 광전파기, 및 광송수신 시스템
KR100893805B1 (ko) 광도파로를 포함하는 광시스템
US20100111468A1 (en) Optical integrated circuit and optical integrated circuit module
KR100897887B1 (ko) 광섬유어레이를 이용한 평판형 광도파로 소자와 능동소자의하이브리드 집적구조
JP3434986B2 (ja) 光合分波回路
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP7356048B2 (ja) 光導波路部品
US7024079B2 (en) Optical waveguide module
JP3344446B2 (ja) 光送受信モジュール
US8615146B2 (en) Planar optical waveguide
JP3703401B2 (ja) 光波回路モジュール
CN113589429A (zh) 一种基于辅助波导的阵列波导光栅
US7289702B2 (en) Optical waveguide apparatus
US20230266534A1 (en) Optical Waveguide Device and Method for Manufacturing the Same
WO2020209284A1 (ja) 光導波路部品及びその製造方法
Takato Recent progress on practical PLC devices for optical access systems and dense WDM systems
JP3897231B2 (ja) 光分岐器
JP4792422B2 (ja) 平面光波回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7356048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150