JP7344077B2 - Collision determination device - Google Patents

Collision determination device Download PDF

Info

Publication number
JP7344077B2
JP7344077B2 JP2019187639A JP2019187639A JP7344077B2 JP 7344077 B2 JP7344077 B2 JP 7344077B2 JP 2019187639 A JP2019187639 A JP 2019187639A JP 2019187639 A JP2019187639 A JP 2019187639A JP 7344077 B2 JP7344077 B2 JP 7344077B2
Authority
JP
Japan
Prior art keywords
vehicle
collision
intersection
distance
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019187639A
Other languages
Japanese (ja)
Other versions
JP2021064096A (en
Inventor
敦 小林
真澄 福万
明宏 貴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2019187639A priority Critical patent/JP7344077B2/en
Publication of JP2021064096A publication Critical patent/JP2021064096A/en
Application granted granted Critical
Publication of JP7344077B2 publication Critical patent/JP7344077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、衝突判定装置に関する。 The present invention relates to a collision determination device.

従来、自車両周辺の物体を検知し、検知された物体と自車両との衝突を予測する装置が知られている(例えば、特許文献1)。この装置では、自車両の前端部に組み付けられたレーダセンサから送受信される超音波に基づいて、自車両周辺の物体を検知する。 2. Description of the Related Art Conventionally, there has been known a device that detects objects around a host vehicle and predicts a collision between the detected object and the host vehicle (for example, Patent Document 1). This device detects objects around the vehicle based on ultrasonic waves transmitted and received from a radar sensor installed at the front end of the vehicle.

特開2004-230947号公報Japanese Patent Application Publication No. 2004-230947

既存の衝突判定装置は、自車両周辺の物体として自車両周辺の他車両を検知した場合、自車両の位置と他車両の他車進路とに基づいて、自車両と他車両との衝突可能性を判定する。この場合において、他車両の幅方向中心の位置で他車進路が定められていると、他車両が自車両に衝突するまでに要する衝突距離が正しく把握できないことが懸念される。 Existing collision detection devices detect the possibility of a collision between the own vehicle and the other vehicle based on the position of the own vehicle and the path of the other vehicle when detecting other vehicles around the own vehicle as objects around the own vehicle. Determine. In this case, if the other vehicle's course is determined at the center position in the width direction of the other vehicle, there is a concern that the collision distance required for the other vehicle to collide with the own vehicle may not be accurately determined.

つまり、自車両進行方向の斜め前方から他車両が接近する場合において、他車両の幅方向中心位置、幅方向左端位置、幅方向右端位置では、それぞれ自車両に対する他車両の衝突距離が相違し、それに起因して衝突判定の精度に影響が及ぶことが懸念される。 In other words, when another vehicle approaches from diagonally ahead in the direction of travel of the own vehicle, the collision distance of the other vehicle with respect to the own vehicle is different at the center position in the width direction, the left end position in the width direction, and the right end position in the width direction of the other vehicle. There is a concern that this may affect the accuracy of collision determination.

本発明は、上記事情に鑑みてなされたものであり、その目的は、他車両が自車両に衝突するまでに要する衝突距離を適切に算出できる衝突判定装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a collision determination device that can appropriately calculate the collision distance required for another vehicle to collide with the own vehicle.

上記課題を解決する手段は、自車両の位置と、自車両周辺の他車両の走行進路である他車進路とに基づいて、自車両と他車両との衝突可能性を判定する衝突判定装置であって、自車両の進行方向前面から自車両の幅方向に直線状に延びる延長線を作成する延長線作成部と、自車両の進行方向前方に存在する他車両の前記他車進路として、自車両から見て他車両の左側側面に沿う左側進路と右側側面に沿う右側進路とを定めるとともに、それら左側進路及び右側進路と前記延長線との交点をそれぞれ第1交点、第2交点として算出する交点算出部と、自車両の進行方向前面における左右の両角部のうち他車両に近い側の角部が前記第1交点と前記第2交点との間に位置している場合に、その角部を、自車両において他車両に最も近い最短衝突点として算出する衝突点算出部と、前記衝突点算出部により算出された前記最短衝突点と他車両の位置とに基づいて、他車両が自車両に衝突するまでに要する衝突距離を算出する衝突距離算出部と、を備える。 A means for solving the above problem is a collision determination device that determines the possibility of a collision between the own vehicle and another vehicle based on the position of the own vehicle and the travel path of other vehicles surrounding the own vehicle. an extension line creation unit that creates an extension line that extends linearly from the front of the own vehicle in the width direction of the own vehicle; A left course along the left side of the other vehicle as seen from the vehicle and a right course along the right side of the vehicle are determined, and the intersections of these left and right courses with the extension line are calculated as a first intersection and a second intersection, respectively. and an intersection calculation unit, when the corner on the side closer to the other vehicle among the left and right corners of the front surface of the own vehicle in the traveling direction is located between the first intersection point and the second intersection point, a collision point calculation unit that calculates the shortest collision point of the own vehicle as the closest collision point to the other vehicle, and the other vehicle determines whether the other vehicle a collision distance calculation unit that calculates a collision distance required until the vehicle collides with the vehicle.

自車両と他車両との衝突判定では、走行中の自車両の位置と他車両の他車進路とに基づいて衝突可能性が判定される。この場合、他車両の幅方向中心の位置で他車進路が定められていると、他車両が自車両に衝突するまでに要する衝突距離が正しく把握できないことが懸念される。つまり、自車両進行方向の斜め前方から他車両が接近する場合において、他車両の幅方向中心位置、幅方向左端位置、幅方向右端位置では、それぞれ自車両に対する他車両の衝突距離が相違し、それに起因して衝突判定の精度に影響が及ぶことが懸念される。 In determining a collision between the own vehicle and another vehicle, the possibility of a collision is determined based on the position of the own vehicle while the vehicle is running and the path of the other vehicle. In this case, if the other vehicle's course is determined at the center position in the width direction of the other vehicle, there is a concern that the collision distance required for the other vehicle to collide with the own vehicle may not be accurately determined. In other words, when another vehicle approaches from diagonally ahead in the direction of travel of the own vehicle, the collision distance of the other vehicle with respect to the own vehicle is different at the center position in the width direction, the left end position in the width direction, and the right end position in the width direction of the other vehicle. There is a concern that this may affect the accuracy of collision determination.

この点、上記構成では、自車両の進行方向前面から自車両の幅方向に直線状に延びる延長線が作成され、その延長線に対する他車両の左側進路と右側進路との交点がそれぞれ第1交点、第2交点として算出される。自車両の進行方向前面における左右の両角部のうち、他車両に近い側の角部が第1交点と第2交点との間に位置している場合に、その角部が、自車両において他車両に最も近い最短衝突点として算出される。そして、その最短衝突点と他車両の位置とに基づいて、他車両が自車両に衝突するまでに要する衝突距離が算出される。これにより、自車両進行方向の斜め前方から他車両が接近する場合においても、自車両と他車両との衝突距離を適正に算出することができる。その結果、自車両と他車両との衝突判定を適正に実施することができる。 In this regard, in the above configuration, an extension line is created that extends straight from the front of the own vehicle in the direction of travel in the width direction of the own vehicle, and the intersections of the left course and right course of other vehicles with the extension line are the first intersections. , is calculated as the second intersection point. If the corner on the side closer to another vehicle is located between the first intersection point and the second intersection point among the left and right corners of the front surface of the own vehicle in the direction of travel, Calculated as the shortest collision point closest to the vehicle. Then, based on the shortest collision point and the position of the other vehicle, the collision distance required for the other vehicle to collide with the host vehicle is calculated. Thereby, even when another vehicle approaches from diagonally ahead in the direction of travel of the host vehicle, it is possible to appropriately calculate the collision distance between the host vehicle and the other vehicle. As a result, it is possible to appropriately determine a collision between the own vehicle and another vehicle.

運転支援システムの全体構成図。The overall configuration diagram of the driving support system. 距離算出処理の手順を示すフローチャート。5 is a flowchart showing the procedure of distance calculation processing. 自車両と他車両との位置関係を示す説明図。FIG. 3 is an explanatory diagram showing the positional relationship between the host vehicle and other vehicles.

(実施形態)
以下、本発明に係る制御装置を、車載の運転支援システム100に適用した実施形態について、図面を参照しつつ説明する。
(Embodiment)
Hereinafter, an embodiment in which a control device according to the present invention is applied to an on-vehicle driving support system 100 will be described with reference to the drawings.

図1に示すように、本実施形態に係る運転支援システム100は、カメラ11と、ソナー装置12と、画像処理ECU21と、車両ECU22と、安全装置30と、を備えている。 As shown in FIG. 1, the driving support system 100 according to the present embodiment includes a camera 11, a sonar device 12, an image processing ECU 21, a vehicle ECU 22, and a safety device 30.

カメラ11は、例えば単眼カメラである。カメラ11は、自車両の前端、後端、及び両側面にそれぞれ取り付けられており、自車両周辺を撮像する。カメラ11は、撮像した撮像画像の画像情報を画像処理ECU21に送信する。なお、本実施形態において、カメラ11が「撮像装置」に相当する。 The camera 11 is, for example, a monocular camera. The cameras 11 are attached to the front end, the rear end, and both sides of the own vehicle, and take images of the surroundings of the own vehicle. The camera 11 transmits image information of the captured image to the image processing ECU 21. Note that in this embodiment, the camera 11 corresponds to an "imaging device."

ソナー装置12は、例えば、超音波を送信波とする超音波センサ、又はミリ波帯の高周波信号を送信波とするレーダ装置である。ソナー装置12は、自車両の前端、後端、及び両側面にそれぞれ搭載されており、自車両周辺の物体までの距離を計測する。具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物体上の複数の検出点を検出し、これにより当該物体までの距離を計測する。加えて、複数のアンテナが受信した反射波の位相差により、物体の方位を算出する。物体までの距離及び物体の方位が算出できれば、その物体の自車両に対する位置情報を特定することができる。 The sonar device 12 is, for example, an ultrasonic sensor that uses ultrasonic waves as a transmission wave, or a radar device that uses a high-frequency signal in the millimeter wave band as a transmission wave. The sonar devices 12 are mounted on the front end, rear end, and both sides of the host vehicle, and measure distances to objects around the host vehicle. Specifically, a probe wave is transmitted at a predetermined period, and reflected waves are received by a plurality of antennas. A plurality of detection points on the object are detected based on the transmission time of the exploration wave and the reception time of the reflected wave, and the distance to the object is thereby measured. In addition, the direction of the object is calculated based on the phase difference between the reflected waves received by multiple antennas. If the distance to the object and the direction of the object can be calculated, the position information of the object relative to the own vehicle can be specified.

また、ソナー装置12は、物体で反射された反射波の、ドップラー効果により変化した周波数により、物体の移動速度を算出する。これにより、自車両周辺に存在している物体が静止物であると検知される。具体的には、物体の移動速度と自車両の車速との和がゼロとなる場合に、物体が静止物であると検知される。ソナー装置12は、自車両周辺の静止物の検知情報を車両ECU22に送信する。なお、静止物の検知情報には、静止物の自車両に対する位置の情報が含まれる。 Furthermore, the sonar device 12 calculates the moving speed of the object based on the frequency of the reflected wave reflected by the object, which has changed due to the Doppler effect. As a result, objects existing around the host vehicle are detected as stationary objects. Specifically, when the sum of the moving speed of the object and the vehicle speed of the host vehicle becomes zero, the object is detected as a stationary object. The sonar device 12 transmits detection information of stationary objects around the host vehicle to the vehicle ECU 22. Note that the stationary object detection information includes information on the position of the stationary object with respect to the own vehicle.

ECU21,22は、CPU、ROM、RAM、フラッシュメモリ等からなる周知のマイクロコンピュータを備えた制御装置である。ECU21,22は、各種信号を取得し、取得した情報に基づき、各種制御を実施する。 The ECUs 21 and 22 are control devices equipped with well-known microcomputers including a CPU, ROM, RAM, flash memory, and the like. The ECUs 21 and 22 acquire various signals and perform various controls based on the acquired information.

具体的には、画像処理ECU21は、カメラ11の撮像画像に基づいて、自車両周辺の移動物を検知する。具体的には、画像処理ECU21は、カメラ11の撮像画像に写る各物体の自車両に対する位置を算出する。また、画像処理ECU21は、この位置に基づいて、各物体の移動速度を算出する。画像処理ECU21は、カメラ11から所定周期毎に送信される画像情報に基づき、物体のオプティカルフローを算出し、算出したオプティカルフローに基づいて当該物体の移動速度を算出する。ここで、オプティカルフローとは、画像中において輝度変化した境界線を構築する点としての境界点を複数検出し、検出した複数の境界点を動きベクトルとして表したものである。これにより、自車両周辺に存在している移動物が検知される。 Specifically, the image processing ECU 21 detects moving objects around the host vehicle based on images captured by the camera 11. Specifically, the image processing ECU 21 calculates the position of each object appearing in the captured image of the camera 11 with respect to the own vehicle. Furthermore, the image processing ECU 21 calculates the moving speed of each object based on this position. The image processing ECU 21 calculates the optical flow of the object based on the image information transmitted from the camera 11 at predetermined intervals, and calculates the moving speed of the object based on the calculated optical flow. Here, the optical flow is a method in which a plurality of boundary points are detected as points that construct a boundary line whose brightness has changed in an image, and the detected plurality of boundary points are expressed as a motion vector. As a result, moving objects existing around the host vehicle are detected.

そして、画像処理ECU21は、位置及び移動速度に基づいて、移動物の移動進路を算出する。つまり、画像処理ECU21は、カメラ11の撮像画像に基づいて移動物の移動進路を算出する。画像処理ECU21は、移動物の検知情報を車両ECU22に送信する。なお、検知情報には、検知された移動物の自車両に対する位置、移動速度、及び移動進路の情報が含まれる。 The image processing ECU 21 then calculates the moving path of the moving object based on the position and moving speed. That is, the image processing ECU 21 calculates the moving path of the moving object based on the captured image of the camera 11. The image processing ECU 21 transmits moving object detection information to the vehicle ECU 22. Note that the detection information includes information on the position of the detected moving object with respect to the own vehicle, the moving speed, and the moving route.

車両ECU22は、画像処理ECU21から送信される自車両周辺の移動物の検知情報に基づいて、安全装置30を作動させる。安全装置30は、自車両と物体との衝突を回避又は衝突被害を軽減する装置であり、ブレーキ装置31と、シートベルト装置32と、警報装置33と、を備えている。なお、本実施形態において、車両ECU22が「衝突判定装置」に相当する。 Vehicle ECU 22 operates safety device 30 based on detection information of moving objects around the vehicle transmitted from image processing ECU 21 . The safety device 30 is a device that avoids a collision between the host vehicle and an object or reduces collision damage, and includes a brake device 31, a seat belt device 32, and a warning device 33. Note that in this embodiment, the vehicle ECU 22 corresponds to a "collision determination device."

ブレーキ装置31は、車両ECU22から出力される衝突回避信号に基づいて、自車両を減速させる。シートベルト装置32は、車両ECU22から出力される衝突回避信号に基づいて、シートベルトを巻き取ってシートベルトを緊張させる。警報装置33は、車両ECU22から出力される衝突回避信号に基づいて、運転者等に衝突可能性を報知する装置であり、例えば自車の車室内に設置されたスピーカやブザー等の聴覚的に報知する装置、ディスプレイ等の視覚的に報知する装置が存在する。 The brake device 31 decelerates the own vehicle based on a collision avoidance signal output from the vehicle ECU 22. The seatbelt device 32 winds up the seatbelt based on a collision avoidance signal output from the vehicle ECU 22 to tighten the seatbelt. The warning device 33 is a device that notifies the driver of the possibility of a collision based on a collision avoidance signal output from the vehicle ECU 22, and is, for example, an audible device such as a speaker or a buzzer installed in the passenger compartment of the own vehicle. There are devices that provide notification and devices that provide visual notification, such as displays.

車両ECU22には、ヨーレートセンサ13、操舵角センサ14、車速センサ15が接続されている。ヨーレートセンサ13は、たとえば自車両の中央位置に設けられており、自車両の操舵量の変化速度に応じたヨーレート信号を車両ECU22に出力する。操舵角センサ14は、たとえば車両のステアリングロッドに取り付けられており、運転者の操作に伴うステアリングホイールの操舵角の変化に応じた操舵角信号を車両ECU22に出力する。車速センサ15は、たとえば自車両のホイール部分に取り付けられており、車輪の回転方向を検出するとともに、車輪速度に応じた車速信号を車両ECU22に出力する。車両ECU22は、ヨーレート信号、操舵角信号、及び車速信号に基づいて、自車両の走行進路である自車進路を算出する。 A yaw rate sensor 13, a steering angle sensor 14, and a vehicle speed sensor 15 are connected to the vehicle ECU 22. The yaw rate sensor 13 is provided, for example, at the center of the host vehicle, and outputs a yaw rate signal to the vehicle ECU 22 in accordance with the rate of change in the steering amount of the host vehicle. The steering angle sensor 14 is attached to, for example, a steering rod of the vehicle, and outputs a steering angle signal to the vehicle ECU 22 in response to changes in the steering angle of the steering wheel caused by operations by the driver. The vehicle speed sensor 15 is attached to, for example, a wheel portion of the own vehicle, and detects the rotation direction of the wheel, and outputs a vehicle speed signal corresponding to the wheel speed to the vehicle ECU 22. The vehicle ECU 22 calculates the own vehicle course, which is the traveling course of the own vehicle, based on the yaw rate signal, the steering angle signal, and the vehicle speed signal.

ところで、自車両周辺の物体として自車両周辺の他車両を検知した場合、自車両の位置と他車両の移動進路(走行進路)である他車進路Wとに基づいて、自車両と他車両との衝突可能性を判定する。ここで他車進路Wは、例えば他車両の幅方向の中心位置における中心進路WAであり、例えば画像処理ECU21において移動物の検知情報として算出される。この場合において、他車両の幅方向中心の位置で他車進路Wが定められていると、他車両が自車両に衝突するまでに要する衝突距離DXが正しく把握できないことが懸念される。 By the way, when other vehicles around the own vehicle are detected as objects around the own vehicle, the distance between the own vehicle and the other vehicle is determined based on the position of the own vehicle and the other vehicle's path W, which is the movement path (driving path) of the other vehicle. Determine the possibility of collision. Here, the other vehicle course W is, for example, a center course WA at the center position of the other vehicle in the width direction, and is calculated, for example, as moving object detection information in the image processing ECU 21. In this case, if the other vehicle's course W is determined at the center position in the width direction of the other vehicle, there is a concern that the collision distance DX required for the other vehicle to collide with the own vehicle may not be accurately determined.

つまり、自車両進行方向の斜め前方から他車両が接近する場合において、他車両の幅方向中心位置、幅方向左端位置、幅方向右端位置では、それぞれ自車両に対する他車両の衝突距離DXが相違し、それに起因して衝突判定の精度に影響が及ぶことが懸念される。 In other words, when another vehicle approaches from diagonally ahead in the direction of travel of the own vehicle, the collision distance DX of the other vehicle with respect to the own vehicle is different at the center position in the width direction, the left end position in the width direction, and the right end position in the width direction of the other vehicle. There is a concern that this may affect the accuracy of collision determination.

そこで、本実施形態では、衝突回避処理を実施する。衝突回避処理では、自車両の進行方向前面から自車両の幅方向に直線状に延びる延長線LXを作成し、その延長線LXに対する他車両の左側進路WBと右側進路WCとの交点をそれぞれ第1交点P1、第2交点P2として算出する。自車両の進行方向前面における左右の両角部のうち、他車両に近い側の角部が第1交点P1と第2交点P2との間に位置している場合に、その角部が、自車両において他車両に最も近い最短衝突点PXとして算出する。そして、最短衝突点PXと他車両の位置とに基づいて、他車両が自車両に衝突するまでに要する衝突距離DXを算出するようにしている。 Therefore, in this embodiment, collision avoidance processing is performed. In the collision avoidance process, an extension line LX extending linearly from the front in the direction of travel of the host vehicle in the width direction of the host vehicle is created, and the intersections of the left course WB and right course WC of the other vehicle with respect to the extension line LX are determined as respective points. The first intersection point P1 and the second intersection point P2 are calculated. If the corner on the side closer to the other vehicle is located between the first intersection P1 and the second intersection P2 among the left and right corners of the front surface of the own vehicle in the traveling direction, that corner is calculated as the shortest collision point PX closest to the other vehicle. Then, based on the shortest collision point PX and the position of the other vehicle, the collision distance DX required for the other vehicle to collide with the host vehicle is calculated.

図2に、自車両CAの進行方向前方に存在する他車両CBに基づき実施される衝突回避処理のフローチャートを示す。車両ECU22は、自車両の走行時において、所定周期毎に距離算出処理を繰り返し実施する。また、図3(a),(b)は、自車両CAと他車両CBとの位置関係を示す説明図である。 FIG. 2 shows a flowchart of collision avoidance processing performed based on another vehicle CB existing in front of the own vehicle CA in the traveling direction. The vehicle ECU 22 repeatedly performs distance calculation processing at predetermined intervals when the own vehicle is traveling. Moreover, FIGS. 3(a) and 3(b) are explanatory diagrams showing the positional relationship between the host vehicle CA and the other vehicle CB.

衝突回避処理を開始すると、まずステップS11において、画像処理ECU21から受信した他車両CBの検知情報に基づいて、自車両CAの進行方向前方に他車両CBが存在しているか否かを判定する。ステップS11で否定判定すると、衝突回避処理を終了する。一方、ステップS11で肯定判定すると、後続のステップS12に進む。 When the collision avoidance process is started, first in step S11, it is determined whether or not another vehicle CB exists in front of the host vehicle CA in the traveling direction based on the detection information of the other vehicle CB received from the image processing ECU 21. If a negative determination is made in step S11, the collision avoidance process ends. On the other hand, if an affirmative determination is made in step S11, the process advances to subsequent step S12.

ステップS12では、他車両CBの走行進路である他車進路Wとして、他車両CBの幅方向中央の中心進路WAを取得し、続くステップS13において、他車両CBの中心進路WAに基づいて、自車両CAから見て他車両の左側側面に沿う左側進路WBと右側側面に沿う右側進路WCとを設定する。 In step S12, the center course WA at the center in the width direction of the other vehicle CB is acquired as the other vehicle course W, which is the travel course of the other vehicle CB.In the subsequent step S13, the center course WA of the other vehicle CB is A left course WB along the left side of another vehicle as seen from the vehicle CA and a right course WC along the right side of the other vehicle are set.

なお、画像処理ECU21から受信した他車両の検知情報に、他車両の中心進路WAに加えて、他車両の左側進路WB及び右側進路WCが含まれている場合には、ステップS13の処理は不要である。 Note that if the other vehicle detection information received from the image processing ECU 21 includes the other vehicle's left course WB and right course WC in addition to the other vehicle's center course WA, the process of step S13 is unnecessary. It is.

図3(a),(b)では、自車両CAの左前方から他車両CBが接近しており、車両ECU22は、他車両CBについて中心進路WA、左側進路WB、右側進路WCをそれぞれ把握する。 In FIGS. 3(a) and 3(b), another vehicle CB is approaching from the left front of the host vehicle CA, and the vehicle ECU 22 determines the center course WA, left course WB, and right course WC for the other vehicle CB, respectively. .

続くステップS14において、自車両CAの進行方向前面から自車両CAの幅方向に直線状に延びる延長線LXを作成する。延長線LXは、例えば自車両CAの所定高さにおける進行方向前面の断面を、直線近似することで作成する。延長線LXには、自車両CAの進行方向前面における左右の両角部が含まれる。なお、本実施形態において、ステップS14の処理が「延長線作成部」に相当する。 In the subsequent step S14, an extension line LX is created that extends linearly from the front of the host vehicle CA in the traveling direction in the width direction of the host vehicle CA. The extension line LX is created, for example, by linearly approximating a cross section of the front surface of the host vehicle CA at a predetermined height in the traveling direction. The extension line LX includes both left and right corners of the front of the host vehicle CA in the traveling direction. In this embodiment, the process of step S14 corresponds to the "extension line creation section".

ステップS15において、他車両CBの左側進路WB及び右側進路WCと延長線LXとの交点をそれぞれ第1交点P1、第2交点P2として算出する。続くステップS16において、自車両CAの進行方向前面における左右の両角部のうち、他車両CBに近い側の角部が第1交点P1と第2交点P2との間に位置しているか否かを判定する。なお、本実施形態において、ステップS15の処理が「交点算出部」に相当する。 In step S15, the intersections of the left course WB and right course WC of the other vehicle CB with the extension line LX are calculated as the first intersection P1 and the second intersection P2, respectively. In the following step S16, it is determined whether or not the corner on the side closer to the other vehicle CB is located between the first intersection P1 and the second intersection P2 among the left and right corners of the front surface of the own vehicle CA in the traveling direction. judge. Note that in this embodiment, the process of step S15 corresponds to the "intersection point calculation unit".

図3(a),(b)で言えば、図3(a)では、自車両CAの進行方向前面において左角部が他車両CBに近い側の角部であり、その角部が第1交点P1と第2交点P2との間に位置している。この場合には、ステップS16で肯定判定して、ステップS17に進む。これに対して、図3(b)では、自車両CAの進行方向前面において左角部(他車両CBに近い側の角部)が第1交点P1と第2交点P2との間に位置していない。この場合には、ステップS16で否定判定して、ステップS20に進む。 Speaking of FIGS. 3(a) and (b), in FIG. 3(a), the left corner of the front surface in the traveling direction of the own vehicle CA is the corner on the side closer to the other vehicle CB, and that corner is the first corner. It is located between the intersection point P1 and the second intersection point P2. In this case, an affirmative determination is made in step S16, and the process proceeds to step S17. On the other hand, in FIG. 3(b), the left corner (the corner on the side closer to the other vehicle CB) of the front of the own vehicle CA in the traveling direction is located between the first intersection P1 and the second intersection P2. Not yet. In this case, a negative determination is made in step S16, and the process proceeds to step S20.

ステップS17では、自車両CAの進行方向前面において他車両CBに近い側の角部を、自車両CAにおいて他車両CBに最も近い最短衝突点PXとして算出する。このとき、他車両CBが自車両CAの左斜め前方から接近する場合には、最短衝突点PXが、自車両CAの進行方向前面の左角部とされ、他車両CBが自車両CAの右斜め前方から接近する場合には、最短衝突点PXが、自車両CAの進行方向前面の右角部とされる。なお、本実施形態において、ステップS17の処理が「衝突点算出部」に相当する。 In step S17, the corner of the front surface of the host vehicle CA in the direction of travel that is closer to the other vehicle CB is calculated as the shortest collision point PX of the host vehicle CA that is closest to the other vehicle CB. At this time, when the other vehicle CB approaches the own vehicle CA from diagonally in front of the left, the shortest collision point PX is the left corner of the front of the own vehicle CA in the direction of travel, and the other vehicle CB approaches the right side of the own vehicle CA. When approaching diagonally from the front, the shortest collision point PX is the right corner of the front of the host vehicle CA in the direction of travel. In addition, in this embodiment, the process of step S17 corresponds to a "collision point calculation unit".

続くステップS18,S19において、最短衝突点PXと他車両CBの位置とに基づいて、他車両CBが自車両CAに衝突するまでに要する衝突距離DXを算出する。衝突距離DXの算出について図3(a)を用いて具体的に説明する。まず、ステップS18において、他車両CBの左側進路WB上において第1交点P1までの距離を基準距離D1として算出する。 In subsequent steps S18 and S19, the collision distance DX required for the other vehicle CB to collide with the host vehicle CA is calculated based on the shortest collision point PX and the position of the other vehicle CB. Calculation of the collision distance DX will be specifically explained using FIG. 3(a). First, in step S18, the distance to the first intersection P1 on the left course WB of the other vehicle CB is calculated as the reference distance D1.

続くステップS19において、ステップS18で算出した基準距離D1に対して、他車両CBの左側進路WBと延長線LXとが交わる交差角度θと、最短衝突点PX及び第1交点P1の離間距離D2とに基づいてオフセット距離D3を算出する。そして、基準距離D1にオフセット距離D3を加算して衝突距離DXを算出する。つまり、基準距離D1に、交差角度θと離間距離D2とに基づくオフセット補正を行うことで、衝突距離DXを算出する。オフセット距離D3は、交差角度θと離間距離D2とを用いて、(式1)のように表される。 In the following step S19, the intersection angle θ where the left course WB of the other vehicle CB and the extension line LX intersect, and the separation distance D2 between the shortest collision point PX and the first intersection P1 are determined with respect to the reference distance D1 calculated in step S18. An offset distance D3 is calculated based on. Then, the collision distance DX is calculated by adding the offset distance D3 to the reference distance D1. That is, the collision distance DX is calculated by performing offset correction on the reference distance D1 based on the intersection angle θ and the separation distance D2. The offset distance D3 is expressed as in (Equation 1) using the intersection angle θ and the separation distance D2.

D3=D2×cosθ・・・(式1)
なお、図示は省略するが、衝突距離DXは、他車両CBの右側進路WC上の距離を用いて算出してもよい。この場合、他車両CBの右側進路WC上において第2交点P2までの距離を基準距離D1として算出し、その基準距離D1に対して、他車両CBの右側進路WCと延長線LXとが交わる交差角度θと、最短衝突点PX及び第2交点P2の離間距離D2とに基づいてオフセット距離D3を算出する。そして、基準距離D1からオフセット距離D3を減算して衝突距離DXを算出する。
D3=D2×cosθ...(Formula 1)
Although not shown, the collision distance DX may be calculated using the distance on the right course WC of the other vehicle CB. In this case, the distance to the second intersection P2 on the right course WC of the other vehicle CB is calculated as the reference distance D1, and the intersection where the right course WC of the other vehicle CB and the extension line LX intersect with respect to the reference distance D1. An offset distance D3 is calculated based on the angle θ and the separation distance D2 between the shortest collision point PX and the second intersection P2. Then, the collision distance DX is calculated by subtracting the offset distance D3 from the reference distance D1.

一方、ステップS20では、第1交点P1又は第2交点P2のうち他車両CBに近い側の交点を最短衝突点PXとして算出する。図3(b)では、第1交点P1が他車両CBに近い交点であり、第1交点P1を最短衝突点PXとして算出する。続くステップS18において、他車両CBの左側進路WB上において第1交点P1までの距離を基準距離D1として算出する。なお、本実施形態において、ステップS18,S21の処理が「基準距離算出部」に相当する。なお、本実施形態において、ステップS19,S22の処理が「衝突距離算出部」に相当する。 On the other hand, in step S20, one of the first intersection P1 and the second intersection P2 that is closer to the other vehicle CB is calculated as the shortest collision point PX. In FIG. 3(b), the first intersection P1 is an intersection close to the other vehicle CB, and the first intersection P1 is calculated as the shortest collision point PX. In subsequent step S18, the distance to the first intersection P1 on the left course WB of the other vehicle CB is calculated as a reference distance D1. In addition, in this embodiment, the processing of steps S18 and S21 corresponds to a "reference distance calculation section". Note that in this embodiment, the processes in steps S19 and S22 correspond to a "collision distance calculation section".

ステップS16~S22では、他車進路Wが自車両CAに対して斜めに交わる場合において、自車両CAの進行方向前面において他車両CBに近い側の角部がP1-P2間に位置していれば、他車両CBから第1交点P1(又は第2交点P2)までの基準距離D1と、他車両CBが自車両CAに衝突するまでに要する衝突距離DXとが相違する。そのため、基準距離D1をオフセット補正して衝突距離DXが算出される。これに対して、同角部がP1-P2間に位置していなければ、他車両CBから第1交点P1(又は第2交点P2)までの基準距離D1と、他車両CBが自車両CAに衝突するまでに要する衝突距離DXとが一致する。そのため、基準距離D1が、オフセット補正されずに衝突距離DXとされる。 In steps S16 to S22, when the path W of another vehicle intersects diagonally with respect to the own vehicle CA, the corner on the side closer to the other vehicle CB in the front direction of the own vehicle CA in the traveling direction is located between P1 and P2. For example, the reference distance D1 from the other vehicle CB to the first intersection P1 (or the second intersection P2) is different from the collision distance DX required for the other vehicle CB to collide with the own vehicle CA. Therefore, the collision distance DX is calculated by offset-correcting the reference distance D1. On the other hand, if the same corner is not located between P1 and P2, the reference distance D1 from the other vehicle CB to the first intersection P1 (or second intersection P2) and the distance between the other vehicle CB and the own vehicle CA. The collision distance DX required until the collision coincides. Therefore, the reference distance D1 is set as the collision distance DX without being offset corrected.

その後、ステップS23において、ステップS19,S22で算出された衝突距離DXに基づいて、他車両CBに対する衝突を回避するための衝突回避制御を実施し、衝突回避処理を終了する。 Thereafter, in step S23, based on the collision distance DX calculated in steps S19 and S22, collision avoidance control for avoiding a collision with another vehicle CB is performed, and the collision avoidance process is ended.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to this embodiment described in detail above, the following effects can be obtained.

・本実施形態では、自車両の進行方向前面から自車両の幅方向に直線状に延びる延長線LXが作成され、その延長線LXに対する他車両の左側進路WBと右側進路WCとの交点がそれぞれ第1交点P1、第2交点P2として算出される。自車両の進行方向前面における左右の両角部のうち、他車両に近い側の角部が第1交点P1と第2交点P2との間に位置している場合に、その角部が、自車両において他車両に最も近い最短衝突点PXとして算出される。そして、最短衝突点PXと他車両の位置とに基づいて、他車両が自車両に衝突するまでに要する衝突距離DXが算出される。これにより、自車両進行方向の斜め前方から他車両が接近する場合においても、自車両と他車両との衝突距離DXを適正に算出することができる。その結果、自車両と他車両との衝突判定を適正に実施することができる。 - In this embodiment, an extension line LX is created that extends linearly in the width direction of the own vehicle from the front in the traveling direction of the own vehicle, and the intersections of the left course WB and right course WC of other vehicles with respect to the extension line LX are respectively The first intersection point P1 and the second intersection point P2 are calculated. If the corner on the side closer to the other vehicle is located between the first intersection P1 and the second intersection P2 among the left and right corners of the front surface of the own vehicle in the traveling direction, that corner is calculated as the shortest collision point PX closest to the other vehicle. Then, based on the shortest collision point PX and the position of the other vehicle, the collision distance DX required for the other vehicle to collide with the host vehicle is calculated. Thereby, even when another vehicle approaches from diagonally ahead in the direction of travel of the host vehicle, the collision distance DX between the host vehicle and the other vehicle can be appropriately calculated. As a result, it is possible to appropriately determine a collision between the own vehicle and another vehicle.

・本実施形態では、左側進路WB(又は右側進路WC)が延びる方向において他車両から第1交点P1(又は第2交点P2)までの基準距離D1を算出するとともに、基準距離D1に対して、左側進路WB(又は右側進路WC)と延長線LXとが交わる交差角度θと、最短衝突点PXと第1交点P1(又は第2交点P2)との離間距離D2とに基づくオフセット補正を行うことで、衝突距離DXを算出するようにした。この場合、他車両について、自車両に対する交差角度θと自車両幅方向のオフセット量とを加味しつつ、衝突距離DXを適正に算出することができる。 - In the present embodiment, a reference distance D1 from another vehicle to the first intersection P1 (or second intersection P2) in the direction in which the left course WB (or right course WC) extends is calculated, and with respect to the reference distance D1, Offset correction is performed based on the intersection angle θ where the left course WB (or right course WC) and the extension line LX intersect, and the separation distance D2 between the shortest collision point PX and the first intersection P1 (or second intersection P2). Then, the collision distance DX was calculated. In this case, the collision distance DX can be appropriately calculated for the other vehicle while taking into consideration the intersection angle θ with respect to the own vehicle and the offset amount in the width direction of the own vehicle.

・本実施形態では、他車進路Wが自車両CAに対して斜めに交わる場合において、自車両CAの進行方向前面において他車両CBに近い側の角部がP1-P2間に位置していれば、他車両CBから第1交点P1(又は第2交点P2)までの基準距離D1と、他車両CBが自車両CAに衝突するまでに要する衝突距離DXとが相違する。そのため、基準距離D1をオフセット補正して衝突距離DXが算出される。これに対して、同角部がP1-P2間に位置していなければ、他車両CBから第1交点P1(又は第2交点P2)までの基準距離D1と、他車両CBが自車両CAに衝突するまでに要する衝突距離DXとが一致する。そのため、基準距離D1が、オフセット補正されずに衝突距離DXとされる。この場合、自車両CAに対する他車両CBの接近の向き及び位置を加味しつつ、衝突距離DXを適正に算出することができる。 - In the present embodiment, when the path W of another vehicle intersects diagonally with respect to the own vehicle CA, the corner on the side closer to the other vehicle CB at the front of the own vehicle CA in the traveling direction must be located between P1 and P2. For example, the reference distance D1 from the other vehicle CB to the first intersection P1 (or the second intersection P2) is different from the collision distance DX required for the other vehicle CB to collide with the own vehicle CA. Therefore, the collision distance DX is calculated by offset-correcting the reference distance D1. On the other hand, if the same corner is not located between P1 and P2, the reference distance D1 from the other vehicle CB to the first intersection P1 (or second intersection P2) and the distance between the other vehicle CB and the own vehicle CA. The collision distance DX required until the collision coincides. Therefore, the reference distance D1 is set as the collision distance DX without being offset corrected. In this case, the collision distance DX can be appropriately calculated while taking into account the approaching direction and position of the other vehicle CB with respect to the host vehicle CA.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Note that each of the above embodiments may be modified and implemented as follows.

・カメラ11は、単眼カメラに限られず、例えばステレオカメラでもよい。 - The camera 11 is not limited to a monocular camera, and may be a stereo camera, for example.

・上記実施形態では、自車両CAの進行方向前面における左右の両角部のうち他車両CBに近い側の角部を選出する際に、左側進路WB(又は右側進路WC)と延長線LXとが交わる交差角度θに基づいて、同角部を選出してもよい。 - In the above embodiment, when selecting the corner on the side closer to the other vehicle CB among the left and right corners of the front surface of the own vehicle CA in the traveling direction, the left course WB (or right course WC) and the extension line LX are selected. The same corner portions may be selected based on the intersection angle θ.

また、自車両幅方向における他車両の移動方向に基づいて、自車両CAの進行方向前面における左右の両角部のうち他車両CBに近い側の角部を選出してもよい。具体的には、自車両幅方向において、他車両が左側から右側に移動している場合には、左角部を他車両CBに近い側の角部として選出してもよい。また、自車両幅方向において、他車両が右側から左側に移動している場合には、右角部を他車両CBに近い側の角部として選出してもよい。 Also, based on the moving direction of the other vehicle in the width direction of the own vehicle, the corner on the side closer to the other vehicle CB may be selected from both the left and right corners of the front surface of the own vehicle CA in the traveling direction. Specifically, when the other vehicle is moving from the left side to the right side in the width direction of the host vehicle, the left corner portion may be selected as the corner portion on the side closer to the other vehicle CB. Further, in the width direction of the own vehicle, when the other vehicle is moving from the right side to the left side, the right corner portion may be selected as the corner portion on the side closer to the other vehicle CB.

・上記実施形態では、車両ECU22が制御装置に相当する例を示したが、これに限られず、画像処理ECU21と車両ECU22とを合わせたものが制御装置に相当してもよい。つまり、制御装置が撮像装置の撮像画像に基づいて、自車両周辺の移動物の検知情報を生成してもよい。 - Although the above-mentioned embodiment showed the example where vehicle ECU22 corresponds to a control device, it is not restricted to this, and what combined image processing ECU21 and vehicle ECU22 may correspond to a control device. That is, the control device may generate detection information of moving objects around the host vehicle based on images captured by the imaging device.

22…車両ECU、DX…衝突距離、LX…延長線、P1…第1交点、P2…第2交点、PX…最短衝突点、W…他車進路、WB…左側進路、WC…右側進路。 22...Vehicle ECU, DX...Collision distance, LX...Extension line, P1...First intersection, P2...Second intersection, PX...Shortest collision point, W...Other vehicle course, WB...Left course, WC...Right course.

Claims (3)

自車両の位置と、自車両周辺の他車両の走行進路である他車進路(W)とに基づいて、自車両と他車両との衝突可能性を判定する衝突判定装置(22)であって、
自車両の進行方向前面から自車両の幅方向に直線状に延びる延長線(LX)を作成する延長線作成部と、
自車両の進行方向前方に存在する他車両の前記他車進路として、自車両から見て他車両の左側側面に沿う左側進路(WB)と右側側面に沿う右側進路(WC)とを定めるとともに、それら左側進路及び右側進路と前記延長線との交点をそれぞれ第1交点(P1)、第2交点(P2)として算出する交点算出部と、
自車両の進行方向前面における左右の両角部のうち他車両に近い側の角部が前記第1交点と前記第2交点との間に位置している場合に、その角部を、自車両において他車両に最も近い最短衝突点(PX)として算出するとともに、当該角部が前記第1交点と前記第2交点との間に位置していない場合に、前記第1交点及び前記第2交点のうち他車両に近い側の交点を前記最短衝突点として算出する衝突点算出部と、
前記衝突点算出部により算出された前記最短衝突点と他車両の位置とに基づいて、他車両が自車両に衝突するまでに要する衝突距離(DX)を算出する衝突距離算出部と、
を備える衝突判定装置。
A collision determination device (22) that determines the possibility of a collision between the own vehicle and another vehicle based on the position of the own vehicle and the other vehicle path (W) that is the traveling route of other vehicles around the own vehicle, ,
an extension line creation unit that creates an extension line (LX) extending linearly from the front of the host vehicle in the width direction of the host vehicle;
As the other vehicle course of another vehicle existing in front of the own vehicle in the traveling direction, a left course (WB) along the left side of the other vehicle as seen from the own vehicle and a right course (WC) along the right side of the other vehicle are determined, and an intersection calculation unit that calculates the intersections of the left course and the right course with the extension line as a first intersection (P1) and a second intersection (P2), respectively;
If the corner of the left and right corners of the front surface of the own vehicle in the direction of travel, which is closer to the other vehicle, is located between the first intersection point and the second intersection point, that corner is It is calculated as the shortest collision point (PX) closest to the other vehicle, and if the corner is not located between the first intersection and the second intersection, a collision point calculation unit that calculates an intersection closer to the other vehicle as the shortest collision point ;
a collision distance calculation unit that calculates a collision distance (DX) required for another vehicle to collide with the host vehicle based on the shortest collision point calculated by the collision point calculation unit and the position of the other vehicle;
A collision determination device comprising:
前記他車進路が延びる方向において他車両から前記第1交点又は前記第2交点までの距離を基準距離(D1)として算出する基準距離算出部を備え、
前記衝突距離算出部は、前記基準距離に対して、前記他車進路と前記延長線とが交わる交差角度(θ)と、前記最短衝突点と前記第1交点又は前記第2交点との離間距離(D3)とに基づくオフセット補正を行うことで、前記衝突距離を算出する請求項1に記載の衝突判定装置。
comprising a reference distance calculation unit that calculates a distance from the other vehicle to the first intersection point or the second intersection point as a reference distance (D1) in the direction in which the other vehicle path extends;
The collision distance calculation unit calculates, with respect to the reference distance, an intersection angle (θ) at which the other vehicle's path intersects with the extension line, and a separation distance between the shortest collision point and the first intersection point or the second intersection point. The collision determination device according to claim 1, wherein the collision distance is calculated by performing offset correction based on (D3).
前記衝突距離算出部は、自車両の進行方向前面において他車両に近い側の角部が前記第1交点と前記第2交点との間に位置していれば、前記基準距離をオフセット補正して前記衝突距離を算出し、当該角部が前記第1交点と前記第2交点との間に位置していなければ、前記基準距離をオフセット補正せずに前記衝突距離とする請求項2に記載の衝突判定装置。 The collision distance calculation unit offset-corrects the reference distance if a corner of the front of the own vehicle in the traveling direction on the side closer to the other vehicle is located between the first intersection point and the second intersection point. 3. The collision distance is calculated, and if the corner is not located between the first intersection point and the second intersection point, the reference distance is set as the collision distance without offset correction. Collision determination device.
JP2019187639A 2019-10-11 2019-10-11 Collision determination device Active JP7344077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187639A JP7344077B2 (en) 2019-10-11 2019-10-11 Collision determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187639A JP7344077B2 (en) 2019-10-11 2019-10-11 Collision determination device

Publications (2)

Publication Number Publication Date
JP2021064096A JP2021064096A (en) 2021-04-22
JP7344077B2 true JP7344077B2 (en) 2023-09-13

Family

ID=75486290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187639A Active JP7344077B2 (en) 2019-10-11 2019-10-11 Collision determination device

Country Status (1)

Country Link
JP (1) JP7344077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181885A (en) * 2021-05-27 2022-12-08 キヤノン株式会社 Lens device, imaging device, and on-board system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245953A (en) 2006-03-16 2007-09-27 Honda Motor Co Ltd Operation assistance device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245953A (en) 2006-03-16 2007-09-27 Honda Motor Co Ltd Operation assistance device

Also Published As

Publication number Publication date
JP2021064096A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US9905132B2 (en) Driving support apparatus for a vehicle
JP6819431B2 (en) Attention device
US11136013B2 (en) Vehicle control apparatus and vehicle control method
US10569769B2 (en) Vehicle control device
JP4655961B2 (en) Structure shape estimation device, obstacle detection device, and structure shape estimation method
JP2020021179A (en) Driving support device
JP6504078B2 (en) Collision prediction device
JP2008149860A (en) Travel control device
JP7344077B2 (en) Collision determination device
US20230166730A1 (en) Vehicle control device
US20230227030A1 (en) Vehicle control device
US20220227362A1 (en) Control device for controlling safety device in vehicle
JP2008040819A (en) Obstacle recognition device
WO2021176825A1 (en) Sensing system
JP7377055B2 (en) Collision determination device
JP7377054B2 (en) Control device
JP7275000B2 (en) Control device
US11816990B2 (en) Moving-object detection apparatus for vehicle
JP7265971B2 (en) Control device
WO2017154471A1 (en) Crossing determination device
WO2023153124A1 (en) Periphery monitoring device and program
JP2023069937A (en) Object recognition device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230901

R150 Certificate of patent or registration of utility model

Ref document number: 7344077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150