JP7296064B2 - Platoon follow-up control method - Google Patents

Platoon follow-up control method Download PDF

Info

Publication number
JP7296064B2
JP7296064B2 JP2018021411A JP2018021411A JP7296064B2 JP 7296064 B2 JP7296064 B2 JP 7296064B2 JP 2018021411 A JP2018021411 A JP 2018021411A JP 2018021411 A JP2018021411 A JP 2018021411A JP 7296064 B2 JP7296064 B2 JP 7296064B2
Authority
JP
Japan
Prior art keywords
vehicle
control
following
follow
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021411A
Other languages
Japanese (ja)
Other versions
JP2019128929A (en
JP2019128929A5 (en
Inventor
陽一郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2018021411A priority Critical patent/JP7296064B2/en
Publication of JP2019128929A publication Critical patent/JP2019128929A/en
Publication of JP2019128929A5 publication Critical patent/JP2019128929A5/ja
Application granted granted Critical
Publication of JP7296064B2 publication Critical patent/JP7296064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は車両の隊列走行追従制御に於ける「path following 制御則」(非特許文献1)の応用に関する(図1参照)The present invention relates to the application of the "path following control rule" (Non-Patent Document 1) in platooning follow-up control of vehicles (see FIG. 1).

車両の隊列走行に於ける追従制御に「path following 制御則」として知られている制御則が応用されている(非特許文献2、3参照)。A control law known as a "path following control law" is applied to follow-up control in platooning of vehicles (see Non-Patent Documents 2 and 3).

″A Stable Tracking Control Method for an Autonomous Mobile Robot″by Kanayama,Yutaka et al.,in Proc.IEEE International Conference on Robotics and Automation,pp.384-389,May 1990."A Stable Tracking Control Method for an Autonomous Mobile Robot" by Kanayama, Yutaka et al. , in Proc. IEEE International Conference on Robotics and Automation, pp. 384-389, May 1990. トラックのPath Following 制御に基く自動運転 深尾隆則 他 日本機械学会論文集(C編)77巻 783号(2011-11)Autonomous driving based on path following control of truck Takanori Fukao et al. Transactions of the Japan Society of Mechanical Engineers (C edition) Vol.77 No.783 (2011-11) トラックの隊列走行における制御技術 深尾隆則 他 システム/制御/情報 VoL.58,No.5 pp.175-180,2014Control Technology for Truck Platoon Takanori Fukao et al. System/Control/Information Vol. 58, No. 5 pp. 175-180, 2014

車間維持を必要をとする隊列走行追従制御に「path following制御則」(式(1)(2))を応用する場合、制御則式(2)の方位角偏差の値として式(5)の定義に従って先行車と追従車との方位角偏差を用いると、旋回時に横偏差(式(4))が生じる。この横偏差を抑えることが本発明の課題である。

Figure 0007296064000001
When applying the "path following control law" (formulas (1) and (2)) to platooning follow-up control that requires vehicle-to-vehicle distance maintenance, the value of the azimuth angle deviation in the control law formula (2) is given by formula (5). Using the azimuth angle deviation between the preceding and following vehicles according to the definition, a lateral deviation (equation (4)) occurs when turning. It is an object of the present invention to suppress this lateral deviation.
Figure 0007296064000001

式(1)及び(2)の制御則は式(6)及び(7)に示す非ホロノミックな拘束条件を持って走行する先行車の軌跡、即ち先行車の回転中心(重心)の軌跡を同じ非ホロノミックな拘束条件を持って走行する追従車即ち、追従車の回転中心(重心)が正確になぞることが出来る特性を有する。The control laws of equations (1) and (2) are such that the trajectory of the preceding vehicle running under the non-holonomic constraint conditions shown in equations (6) and (7), that is, the trajectory of the center of rotation (center of gravity) of the preceding vehicle, is the same. It has the characteristic that the center of rotation (the center of gravity) of the following vehicle that runs under non-holonomic restraint conditions, that is, the following vehicle, can be accurately traced.

従って、車間距離を維持しつつ先行車に追従させる隊列走行追従制御に於いては式(1)(2)に於ける縦偏差、横偏差及び方位角偏差の値として、先行車との偏差を用いるのではなく、先行車が車間距離Lだけ前に通過した点における先行車の位置方位角との偏差を用いることによりこの制御則の正確な追従特性が得られる。Therefore, in the platooning follow-up control that follows the preceding vehicle while maintaining the inter-vehicle distance, the deviation from the preceding vehicle is used as the values of the longitudinal deviation, lateral deviation and azimuth angle deviation in equations (1) and (2). Accurate follow-up characteristics of this control law can be obtained by using the deviation from the position and azimuth angle of the preceding vehicle at the point where the preceding vehicle has passed the inter-vehicle distance L before.

旋回している先行車を、車間距離を維持して追従する場合に式(2)に於いて先行車との方位角偏差を制御量としてそのまま用いると必然的に横偏差を生じる。以下にその点を説明する。When following a turning preceding vehicle while maintaining the inter-vehicle distance, if the azimuth angle deviation from the preceding vehicle is used as a control amount in Equation (2), a lateral deviation will inevitably occur. This point will be explained below.

定常旋回中には追従車のヨー角速度は先行車のヨー角速度と等しくなっているので、式(2)の第2項は0となっている。従って式(2)第2項の括弧中の2つの項の和は0であるが、車間距離を維持して旋回しているので先行車との方位角差が生じている。このため、方位角差が正(左旋回の場合)なら、負の横偏差、方位角差が負(右旋回の場合)なら、正の横偏差が生じることになる。Since the yaw angular velocity of the following vehicle is equal to the yaw angular velocity of the preceding vehicle during a steady turn, the second term of Equation (2) is zero. Therefore, the sum of the two terms in the parenthesis of the second term of the formula (2) is 0, but since the vehicle is turning while maintaining the inter-vehicle distance, there is an azimuth angle difference with the preceding vehicle. Therefore, if the azimuth angle difference is positive (left turn), a negative lateral deviation will occur, and if the azimuth angle difference is negative (right turn), a positive lateral deviation will occur.

道路の曲率半径をR、車間距離(ここでは先行車と追従車の重心間距離)をLとし、L/R〈〈1の範囲を考えれば方位角偏差はL/Rであるから、式(2)の第2項の括弧中の2つの項の和が0であるとの条件から横偏差の値は式(8)で算出される。R is the radius of curvature of the road, L is the inter-vehicle distance (here, the distance between the center of gravity of the preceding vehicle and the following vehicle), and considering the range of L/R<<1, the azimuth angle deviation is L/R. From the condition that the sum of the two terms in the parentheses of the second term in 2) is 0, the value of the lateral deviation is calculated by equation (8).

式(8)の分母の定数を大きくすると横偏差の値は小さくなるが、この定数を大きくすることに関して制御系の安定性の面からの制限がある。その点を次に説明する。If the constant of the denominator of equation (8) is increased, the value of the lateral deviation will be decreased, but there is a limit to the stability of the control system when increasing this constant. This point will be explained below.

図1に示す隊列走行追従制御系に於いて、車両の動的な特性(図(1)に於いて「車両直進運動」、「車両回転運動」、「速度制御装置」及び「舵角制御装置」の部分)を無視し速度一定として方位角偏差が微小な範囲で線形化すると図(1)の制御系のヨー回転運動系は2次系となり、その固有角周波数と減衰定数は式(9)に示される(非特許文献1)。In the platooning follow-up control system shown in FIG. 1, the dynamic characteristics of the vehicle (in FIG. ) is ignored and the yaw rotation motion system of the control system in FIG. ) (Non-Patent Document 1).

一方速度一定として線形化した車両回転運動(ヨー回転運動)系も2次系とり、その固有角周波数は速度及び車両諸元より算出される。制御系の安定性の面から式(9)の固有角周波数を、この車両回転運動系の固有角周波数より十分小さくする必要があり、制御定数の値は制限される。On the other hand, the vehicle rotational motion (yaw rotational motion) system linearized at a constant speed is also a quadratic system, and its natural angular frequency is calculated from the speed and vehicle specifications. From the standpoint of stability of the control system, the natural angular frequency of equation (9) must be sufficiently smaller than the natural angular frequency of the vehicle rotational motion system, and the value of the control constant is limited.

又式(9)の減衰定数を1前後に選ぶとすればこの面からも制御定数の値が制限される。Also, if the damping constant of the equation (9) is selected to be around 1, the value of the control constant is also restricted from this point of view.

高速道路本線のようにその曲率半径が維持すべき車間距離より十分大である場合は、方位角偏差に対しL/R分の補正を行うことにより旋回中の横偏差をなくすことが出来、課題が解決される。曲率半径Rは速度とヨー角速度の比より得られるので補正項は式(2a)に示す形となる(解決策1)。When the radius of curvature is sufficiently larger than the inter-vehicle distance to be maintained, such as on a highway main line, it is possible to eliminate the lateral deviation during turning by correcting the azimuth angle deviation by the L/R portion. is resolved. Since the radius of curvature R is obtained from the ratio of the velocity and the yaw angular velocity, the correction term has the form shown in Equation (2a) (Solution 1).

汎用的な解決策として、先行車が距離L前に通過した時点の速度ヨー角速度及び位置方位角データを追従車に渡す方法により制御則(1)(2)式の正確な追従特性を得ることが出来、本発明の課題が解決される(解決策2)。As a general-purpose solution, obtain accurate follow-up characteristics of the control laws (1) and (2) by a method of passing the speed yaw angular velocity and position and azimuth angle data at the time when the preceding vehicle passed the distance L ahead to the following vehicle. is made, and the problem of the present invention is solved (solution 2).

高速道路本線の最小曲率半径での隊列走行旋回に於いても横偏差が抑えられる(解決策1,解決策2)。Lateral deviation can be suppressed even in platooning turns at the minimum radius of curvature of the highway main line (solution 1, solution 2).

車両の最小回転半径レベルの旋回に於いても、同程度の大きさの車両の軌跡をなぞり追従することが出来る(解決策2)。Even when the vehicle turns at the minimum turning radius level, it is possible to trace and follow the trajectory of a vehicle of similar size (Solution 2).

道路白線検出(非特許文献3参照)に依存しないので車線変更に対応出来る(解決策2)。Since it does not depend on road white line detection (see Non-Patent Document 3), lane changes can be handled (solution 2).

隊列走行追従制御系のブロック図を示す。追従車が先行車から速度ヨー角速度データを受け取り、先行車との偏差を検出して、path following 制御則により演算した操作量を速度制御装置及び舵角制御装置に与えて追従制御する制御系を示す。ここでの追従車は隊列走行に於ける次の後続車の先行車となる。 2 shows a block diagram of a platooning follow-up control system; FIG. A control system in which the following vehicle receives speed yaw angular velocity data from the preceding vehicle, detects the deviation from the preceding vehicle, and gives the operation amount calculated by the path following control rule to the speed control device and the steering angle control device to perform follow-up control. show. The following vehicle here is the leading vehicle of the following vehicle in the platoon. path following 制御則の制御量である縦偏差、横偏差及び方位角偏差の定義を示す。 Definitions of longitudinal deviation, lateral deviation, and azimuth angle deviation, which are control amounts of the path following control law, are shown.

解決策1は割算演算と加算演算を追加することで既存の装置に組み込むことが出来る。微小な正の値を速度信号にバイアスする等、0割算を防ぐ手段を講じる。Solution 1 can be incorporated into existing equipment by adding division and addition operations. Measures are taken to prevent division by zero, such as biasing the velocity signal with a small positive value.

解決策2は先行車側で
(1)車間距離L[m]に対して余裕を持たせた距離、例えば30[m]の間を、一定距離間隔s[m]例えば0.05[m]毎に速度ヨー角速度及び位置方位角データを格納するバッファ、各速度ヨー角速度及び位置方位角データに対して各々 600の数値を格納するバッファを用意する。
(2)速度を積分して通過累積距離を得て、積分出力がs[m]となる毎に積分器をリセットし、その時点の速度ヨー角速度及び位置方位角データを各バッファの最前段の位置に格納しバッファを1段分シフトする、最後段のデータは捨てられる、又はサーキュラーシフトとしても良い。
(3)或る時間間隔で、例えば5[ms]毎に、追従車に(L/s)番目のバッファ上のデータ、即ち距離L前に通過した時点の速度ヨー角速度及び位置方位角データを追従車に送信する。
Solution 2 is on the preceding vehicle side. A buffer for storing velocity yaw angular velocity and position azimuth angle data for each position and a buffer for storing 600 numerical values for each velocity yaw angular velocity and position azimuth angle data are prepared.
(2) Integrate the velocity to obtain the cumulative distance traveled, reset the integrator each time the integrated output reaches s [m], and store the velocity yaw angular velocity and position azimuth angle data at that time in the frontmost stage of each buffer. The data may be stored in the position and shifted by one stage, the data in the last stage may be discarded, or circular shift may be performed.
(3) At a certain time interval, for example, every 5 [ms], the data on the (L/s)th buffer, that is, the speed, yaw angle, and position/azimuth angle data at the time when the following vehicle passed the distance L before. Send to following vehicle.

追従車は
(4)先行車から送信された位置方位角データを用いて、偏差定義式(3)(4)(5)により偏差を算出し、同じく送信された速度ヨー角速度データと共に式(1)及び(2)の変数の数値を算出し更新する。
(4) Using the position and azimuth angle data transmitted from the preceding vehicle, the following vehicle calculates the deviation according to the deviation definition formulas (3), (4) and (5), and calculates the deviation with the speed yaw angular velocity data also transmitted by the formula (1 ) and (2) are calculated and updated.

先行車側及び追従車で
(5)ヨー回転速度の検出はヨーレートセンサーで行うことが出来る。
(6)方位角検出はヨーレートセンサー出力の積分、磁気方位センサー出力、GPSドップラより得られる方位角を統合して算出することが出来る。
(7)位置検出は式(6)(7)の積分によって得られる値とGPS-RTK受信機より得られる位置データを統合して算出することが出来る。
(8)速度は車輪の回転より得られる速度信号、GPS ドップラより得られる速度データを統合して得られる。
(5) The yaw rotation speed can be detected by a yaw rate sensor.
(6) The azimuth angle detection can be calculated by integrating the azimuth angle obtained from the integration of the yaw rate sensor output, the magnetic azimuth sensor output, and the GPS Doppler.
(7) Position detection can be calculated by integrating the values obtained by integration of equations (6) and (7) and the position data obtained from the GPS-RTK receiver.
(8) Velocity is obtained by integrating velocity signals obtained from wheel rotation and velocity data obtained from GPS Doppler.

トラック、バス等の隊列走行追従制御システム Platoon follow-up control system for trucks, buses, etc.

Claims (1)

車間距離を維持し追従する車両の隊列走行追従制御方法に於いて、先行車及び追従車の位置座標を各々(xr,yr)、(xc,yc) とし、先行車及び追従車の方位角を各々 θ r 、θ c として、縦偏差、横偏差及び方位角偏差を各々(数1)式(3)、(4) 及び (5)にて定義される xe、ye、θe とし、先行車及び追従車の速度を各々 vr、 vc とし、先行車のヨーレートを ωr とし、先行車と追従車の重心間距離を L とし、制御定数を Kx、Ky、Kθ として式(1)、(2) を制御則として適用する際に、式(2)右辺第2項の正弦関数の引数に式(2a)に示すように補正項を加えることにより、定常旋回中の横偏差を生じさせること無しに隊列走行追従制御を可能とする隊列走行追従制御方法。
(数1)
v = vrcosθe + Kxxe ... (1)
ω = ωr + vr(Kyye + Kθsinθe) ... (2)
ω = ωr + vr(Kyye + Kθsin(θe - (ωr/vr)L)) ... (2a)
xe = (xr - xc)cosθc + (yr - yc)sinθc ... (3)
ye = -(xr - xc)sinθc + (yr - yc)cosθc ... (4)
θe = θr - θc ... (5)
In a vehicle platoon following control method for maintaining and following a distance between vehicles, position coordinates of a preceding vehicle and a following vehicle are set to (x r , y r ) and (x c , y c ), respectively, and the preceding vehicle and the following vehicle are Let θ r and θ c be the azimuth angles of , respectively, and x e , y e , and Let θe be the velocities of the preceding and following vehicles, vr and vc respectively, the yaw rate of the preceding vehicle be ωr , the distance between the centers of gravity of the preceding and following vehicles be L, and the control constants be Kx and Ky , K θ as the control law, by adding a correction term as shown in Equation (2a) to the argument of the sine function in the second term on the right side of Equation (2), A platooning follow-up control method that enables platooning follow-up control without causing lateral deviation during steady turning.
(Number 1)
v = v r cos θ e + K x x e ... (1)
ω = ω r + v r (K y y e + K θ sin θ e ) ... (2)
ω = ω r + v r (K y y e + K θ sin(θ e - (ω r /v r )L)) ... (2a)
x e = (x r - x c ) cos θ c + (y r - y c ) sin θ c ... (3)
y e = -(x r - x c ) sin θ c + (y r - y c ) cos θ c ... (4)
θ e = θ r - θ c ... (5)
JP2018021411A 2018-01-22 2018-01-22 Platoon follow-up control method Active JP7296064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021411A JP7296064B2 (en) 2018-01-22 2018-01-22 Platoon follow-up control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021411A JP7296064B2 (en) 2018-01-22 2018-01-22 Platoon follow-up control method

Publications (3)

Publication Number Publication Date
JP2019128929A JP2019128929A (en) 2019-08-01
JP2019128929A5 JP2019128929A5 (en) 2021-05-06
JP7296064B2 true JP7296064B2 (en) 2023-06-22

Family

ID=67473152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021411A Active JP7296064B2 (en) 2018-01-22 2018-01-22 Platoon follow-up control method

Country Status (1)

Country Link
JP (1) JP7296064B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110850895B (en) * 2019-08-05 2023-04-07 中国第一汽车股份有限公司 Path tracking method, device, equipment and storage medium
CN111661048B (en) * 2020-06-10 2023-04-07 中车株洲电力机车有限公司 Multi-articulated vehicle and track following control method and system thereof
CN112925323B (en) * 2021-01-28 2022-03-15 北京科技大学 Rule-based mobile robot speed adjusting method and system
CN113353078A (en) * 2021-06-24 2021-09-07 中汽创智科技有限公司 Method and device for determining automatic following track without lane line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149636A (en) 2008-12-24 2010-07-08 Equos Research Co Ltd Vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120499A (en) * 1997-06-27 1999-01-26 Mitsubishi Motors Corp Automatic follow up type traveling system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149636A (en) 2008-12-24 2010-07-08 Equos Research Co Ltd Vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yutaka Kanayama, Yoshihiko Kimura, Fumio Miyazaki, Tetsuo Noguchi,"A Stable Tracking Control Method for an Autonomous Mobile Robot",Proceedings., IEEE International Conference on Robotics and Automation,IEEE,1990年

Also Published As

Publication number Publication date
JP2019128929A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
JP7296064B2 (en) Platoon follow-up control method
CN109421709B (en) Driving support device for vehicle
US9789905B2 (en) Vehicle traveling control apparatus
US9283967B2 (en) Accurate curvature estimation algorithm for path planning of autonomous driving vehicle
Jo et al. GPS-bias correction for precise localization of autonomous vehicles
Gruyer et al. Map-aided localization with lateral perception
CN103309349A (en) Method and device for determining a direction of travel
BR112015012788B1 (en) VEHICLE LOCATION ESTIMATION APPARATUS AND METHOD
TWI522258B (en) Based on electronic map, global navigation satellite system and vehicle motion detection technology Lane identification method
WO2015122121A1 (en) Host vehicle travel position specification device and host vehicle travel position specification program product
CN111051817B (en) Method, control device and computing device for determining the position of a motor vehicle
KR20190104360A (en) Memory history storage method, driving trajectory model generation method, magnetic position estimation method, and driving history storage device
CN102466802B (en) Dead reckoning is used to follow the trail of the method at vehicle location and vehicle heading angle and realize the follow-up mechanism of the method
WO2018168956A1 (en) Own-position estimating device
US11946746B2 (en) Method for satellite-based detection of a vehicle location by means of a motion and location sensor
US20220242481A1 (en) Vehicle drive assist apparatus
CN112433531A (en) Trajectory tracking method and device for automatic driving vehicle and computer equipment
CN104864867A (en) Method for correcting positioning error of vehicle in VSYR (vehicle speed and yaw rate) blind area by using GNSS (global navigation satellite system)
Zindler et al. Real-time ego-motion estimation using Lidar and a vehicle model based Extended Kalman Filter
CN111857121A (en) Patrol robot walking obstacle avoidance method and system based on inertial navigation and laser radar
Alrifaee et al. Satellite-and map-based long range cooperative adaptive cruise control system for road vehicles
Lin et al. Integrating odometry and inter-vehicular communication for adaptive cruise control with target detection loss
Zubača et al. Extended H∞ filter adaptation based on innovation sequence for advanced ego-vehicle motion estimation
Kuyt et al. Mixed kinematics and camera based vehicle dynamic sideslip estimation for an rc scaled model
JP7020750B2 (en) How to generate a target trajectory

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210103

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7296064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150