JP7281726B2 - Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof - Google Patents

Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof Download PDF

Info

Publication number
JP7281726B2
JP7281726B2 JP2018133715A JP2018133715A JP7281726B2 JP 7281726 B2 JP7281726 B2 JP 7281726B2 JP 2018133715 A JP2018133715 A JP 2018133715A JP 2018133715 A JP2018133715 A JP 2018133715A JP 7281726 B2 JP7281726 B2 JP 7281726B2
Authority
JP
Japan
Prior art keywords
gas diffusion
metal
carbon
diffusion layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018133715A
Other languages
Japanese (ja)
Other versions
JP2020013662A (en
Inventor
直樹 立花
稔 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2018133715A priority Critical patent/JP7281726B2/en
Publication of JP2020013662A publication Critical patent/JP2020013662A/en
Application granted granted Critical
Publication of JP7281726B2 publication Critical patent/JP7281726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、金属空気電池または燃料電池のガス拡散電極に使用されるガス拡散層とそれを用いたガス拡散電極およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to a gas diffusion layer used for a gas diffusion electrode of a metal-air battery or a fuel cell, a gas diffusion electrode using the same, and a method for producing the same.

金属空気電池は、金属あるいは金属化合物を負極活物質とし、酸素を正極活物質として用いる化学反応のエネルギーを電気エネルギーとして取り出すエネルギーデバイスである。金属空気電池は正極活物質として空気中の酸素を利用するため、空気極を非常に薄くすることができ、電池に占める空気極の重量や体積は極めて小さい。したがって、通常の電池に必要な正極活物質を含む材料を電池内部に含まないため、現行の電池の中で大きなエネルギー密度をもつリチウムイオン電池と比較しても、その理論エネルギー密度は極めて大きい。金属空気電池は、自動車車載用電源、家庭や工場等の定置式分散電源、あるいは携帯電子機器用の電源等として利用することができる。 A metal-air battery is an energy device that extracts the energy of a chemical reaction using a metal or metal compound as a negative electrode active material and oxygen as a positive electrode active material as electrical energy. Since the metal-air battery uses oxygen in the air as a positive electrode active material, the air electrode can be made very thin, and the weight and volume of the air electrode occupying the battery are extremely small. Therefore, since the battery does not contain a material containing a positive electrode active material, which is necessary for a normal battery, its theoretical energy density is extremely high compared to lithium ion batteries, which have a high energy density among current batteries. A metal-air battery can be used as a power source for vehicles, a stationary distributed power source for homes and factories, or a power source for portable electronic devices.

金属空気電池の空気極は、通常、ガス拡散電極が使用される。ガス拡散電極とは気体反応物質の電気化学的酸化還元反応を直接起こさせることができる電極である。空気極では空気中の酸素を活物質として使用し、その還元反応が進行する。低電流密度域では酸素還元反応の電荷移動が律速になり、一方、高電流密度域では、酸素供給が律速となって限界拡散電流密度に近づくにつれて急速に電圧が低下する(非特許文献1)。したがって、高出力な金属空気電池を得るためには活性の高い触媒を使用して酸素還元反応の電荷移動を円滑に進行させるだけでなく酸素がスムーズに拡散して大きな電流が得られるような構造が必要である。 A gas diffusion electrode is usually used for the air electrode of a metal-air battery. A gas diffusion electrode is an electrode that can directly initiate an electrochemical redox reaction of a gaseous reactant. At the air electrode, oxygen in the air is used as an active material, and its reduction reaction proceeds. In the low current density region, the charge transfer of the oxygen reduction reaction becomes rate-limiting, while in the high current density region, oxygen supply becomes rate-limiting, and the voltage drops rapidly as the critical diffusion current density is approached (Non-Patent Document 1). . Therefore, in order to obtain a high-power metal-air battery, a highly active catalyst is used to facilitate charge transfer in the oxygen reduction reaction, and oxygen is smoothly diffused to obtain a large current. is necessary.

金属空気電池の正極に使用されるガス拡散電極は、一般的に電解液側から順に触媒層、ガス拡散層、集電体から構成される。触媒層は、例えば、触媒、親水性カーボン等の導電性を持つ触媒担体およびPTFE等の結着材を含む。ガス拡散層は、例えば、疎水性カーボンおよびPTFE等の結着材を含む。ガス拡散層は、スムーズなガス拡散パスを形成し、かつ電解液の漏出および空気側からの水分の混入を防ぐ(非特許文献2)。アセチレンガスから製造したカーボンブラック(アセチレンブラック)は、高ストラクチャーであるため粒子間空隙が発達してガスの拡散パスを有効に形成し、また、表面官能基が少なく疎水性が高いためガス拡散層に好適である。集電体は、酸素の拡散を妨げないようにNiメッシュ(非特許文献3)やカーボン繊維織布(特許文献1)が通常使用される。しかし、これらは金属線あるいは炭素繊維を編み込んだものであるため、その線同士あるいは繊維同士は固定されていないため電気的な接触が不安定であり、また、しなやかすぎるため接合しているガス拡散層との形状を保持できず、剥離してしまう虞がある。 A gas diffusion electrode used for the positive electrode of a metal-air battery is generally composed of a catalyst layer, a gas diffusion layer, and a current collector in this order from the electrolyte side. The catalyst layer contains, for example, a catalyst, a conductive catalyst carrier such as hydrophilic carbon, and a binder such as PTFE. The gas diffusion layer contains, for example, hydrophobic carbon and a binder such as PTFE. The gas diffusion layer forms a smooth gas diffusion path and prevents leakage of the electrolytic solution and contamination of moisture from the air side (Non-Patent Document 2). Carbon black produced from acetylene gas (acetylene black) has a high structure, so inter-particle voids develop to effectively form gas diffusion paths. is suitable for As the current collector, Ni mesh (Non-Patent Document 3) or carbon fiber woven fabric (Patent Document 1) is usually used so as not to hinder the diffusion of oxygen. However, since these are woven metal wires or carbon fibers, the wires or fibers are not fixed to each other, so the electrical contact is unstable. The shape of the layer cannot be maintained, and there is a risk of peeling off.

特許文献2では、ガス拡散電極としてNi多孔体を使用し、この多孔体は、気孔率が55~85%であることが好ましく、また孔径が200μm以上550μm以下であることが好ましいとされている。このガス拡散電極は、プロトン伝導型固体高分子(Nafion等)を電解質として使用した固体高分子型燃料電池用であり、このNi多孔体は孔径が大きくかつ撥水性を有さないため、金属空気電池用ガス拡散層に必要な電解液の漏出および空気側からの水分の混入を防ぐ機能を有さず、使用に適さない。 In Patent Document 2, a Ni porous body is used as the gas diffusion electrode, and the porous body preferably has a porosity of 55 to 85% and a pore diameter of 200 μm or more and 550 μm or less. . This gas diffusion electrode is for a polymer electrolyte fuel cell using a proton-conducting solid polymer (Nafion, etc.) as an electrolyte. It is not suitable for use because it does not have the function of preventing leakage of the electrolyte solution and contamination of moisture from the air side, which are necessary for the gas diffusion layer for batteries.

特許文献3では非導電性不織布の片面側に特定の第1の導電層、前記片面とは反対の面側に特定の第2の導電層を形成することで、第2の導電層(導電性多孔質基材)を構成する導電性炭素材料として導電性炭素繊維を用いた場合にも、第2の導電層を構成する導電性炭素繊維が第1の導電層内に突き出すのを抑制することで、導電層をクラックの少ない膜とした燃料電池や金属空気電池等の電池が得られる導電性多孔質層を提供できることを見出しているが、二つの導電層を活物質である空気が拡散する必要があるため、ガス拡散距離が長くなってガス拡散性が低下して出力が小さくなる。 In Patent Document 3, a second conductive layer (conductive Even when conductive carbon fibers are used as the conductive carbon material constituting the porous substrate), the conductive carbon fibers constituting the second conductive layer are prevented from protruding into the first conductive layer. found that it is possible to provide a conductive porous layer that can be used in batteries such as fuel cells and metal-air batteries in which the conductive layer is a film with few cracks. Therefore, the gas diffusion distance becomes long, the gas diffusibility decreases, and the output decreases.

特開昭58-165254号公報JP-A-58-165254 特開2017-33917号公報JP 2017-33917 A 特開2014-197477号公報JP 2014-197477 A

Electrochemistry, 2010, 78, pp 629-632.Electrochemistry, 2010, 78, pp 629-632. Electrochemistry, 2010, 78, pp. 529-539.Electrochemistry, 2010, 78, pp. 529-539. Chemistry of Materials, 2013, 25, pp. 3072-3079.Chemistry of Materials, 2013, 25, pp. 3072-3079.

以上のように、従来の金属メッシュやカーボン繊維織布を集電体として用いたガス拡散電極は、ガス拡散層と集電体との接触が不安定であり、容易に剥離する問題や、ガス拡散距離が長くなってガス拡散性が低下する問題があった。 As described above, conventional gas diffusion electrodes using a metal mesh or carbon fiber woven fabric as a current collector have unstable contact between the gas diffusion layer and the current collector, resulting in problems such as easy peeling and gas diffusion. There is a problem that the diffusion distance becomes long and the gas diffusibility decreases.

本発明は、以上の事情に鑑みてなされたものであり、優れたガス拡散性を有し、かつ、剛性が高く電気的な接触が安定した金属空気電池または燃料電池のガス拡散電極に使用されるガス拡散層とそれを用いたガス拡散電極およびその製造方法を提供することを課題としている。 The present invention has been made in view of the above circumstances, and is used for gas diffusion electrodes of metal-air batteries or fuel cells that have excellent gas diffusibility, high rigidity, and stable electrical contact. It is an object of the present invention to provide a gas diffusion layer, a gas diffusion electrode using the same, and a method for manufacturing the same.

本発明者らは、前記課題を解決するために鋭意検討した結果、カーボン材料と樹脂結着材を含む懸濁液を発泡金属に塗布し、これを加圧することで発泡金属とカーボン材料と樹脂結着材とが隙間なく一層を形成し、そのように成形された複合層は、発泡金属とカーボン材料が複雑に絡み合うため電気的接触が安定することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention applied a suspension containing a carbon material and a resin binder to a metal foam and pressurized it to obtain The binding material forms a single layer without gaps, and in the composite layer thus formed, the foam metal and the carbon material are intricately entwined, so that the electrical contact is stable, and the present invention has been completed. .

すなわち本発明のガス拡散層は、金属空気電池または燃料電池のガス拡散電極に使用されるガス拡散層であって、発泡金属、カーボン材料、および樹脂結着材を含み、ガス拡散層における少なくとも一部に、カーボン材料および樹脂結着材が発泡金属に充填された複合層を有することを特徴としている。 That is, the gas diffusion layer of the present invention is a gas diffusion layer used for a gas diffusion electrode of a metal-air battery or a fuel cell, comprising a foam metal, a carbon material, and a resin binder, and containing at least one It is characterized by having a composite layer in which a foam metal is filled with a carbon material and a resin binder in the part.

本発明のガス拡散電極は、前記ガス拡散層を有する。 The gas diffusion electrode of the present invention has the gas diffusion layer.

本発明の金属空気電池は、前記ガス拡散層を正極に有する。 The metal-air battery of the present invention has the gas diffusion layer as a positive electrode.

本発明の燃料電池は、前記ガス拡散層を正極に有する。 The fuel cell of the present invention has the gas diffusion layer as a positive electrode.

本発明のガス拡散電極の製造方法は、金属空気電池または燃料電池に使用されるガス拡散電極の製造方法であって、以下の工程(A1)および(A2)を含む:
(A1)カーボン材料および樹脂結着材を分散させた懸濁液(a)を発泡金属に塗布し、厚み方向に加圧する第1工程;および
(A2)工程(A1)の後、樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する工程。
The method for producing a gas diffusion electrode of the present invention is a method for producing a gas diffusion electrode used in metal-air batteries or fuel cells, comprising the following steps (A1) and (A2):
(A1) A first step of applying a suspension (a) in which a carbon material and a resin binder are dispersed to a foam metal and applying pressure in the thickness direction; and (A2) After step (A1), resin binding A process of heating and pressing in the thickness direction at a temperature at which the material softens or flows.

前記方法における好ましい態様では、以下の工程(B)をさらに含む:
(B)工程(A1)の後、懸濁液(a)を塗布した面に、さらにカーボン材料、樹脂結着材、および触媒を含む懸濁液(b)を塗布し、厚み方向に加圧する工程。
A preferred embodiment of the method further comprises the following step (B):
(B) After step (A1), a suspension (b) containing a carbon material, a resin binder, and a catalyst is further applied to the surface to which the suspension (a) has been applied, and pressure is applied in the thickness direction. process.

前記方法における好ましい態様では、工程(A2)において、工程(A1)と(B)の後、懸濁液(a)および(b)の各樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する。 In a preferred embodiment of the above method, in step (A2), after steps (A1) and (B), each resin binder of suspensions (a) and (b) softens or flows in the thickness direction at a temperature at which it softens or flows. Apply heat and pressure.

本発明によれば、優れたガス拡散性を有し、かつ、剛性が高く電気的な接触が安定した金属空気電池または燃料電池のガス拡散電極に使用されるガス拡散層とそれを用いたガス拡散電極およびその製造方法が提供される。そのような優れたガス拡散層によって、従来よりも支持体や補強材を簡素化でき、安価で、かつ出力が安定した金属空気電池や燃料電池の製造に資するものと期待される。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a gas diffusion layer having excellent gas diffusibility, high rigidity, and stable electrical contact, which is used for a gas diffusion electrode of a metal-air battery or a fuel cell, and a gas using the same. Diffusion electrodes and methods of making same are provided. Such an excellent gas diffusion layer is expected to contribute to the manufacture of metal-air batteries and fuel cells that are inexpensive and have stable output, since the support and reinforcing materials can be made simpler than before.

(a)は実施例1のガス拡散電極断面の2次電子像、(b)は炭素の元素マップ、(c)はニッケルの元素マップである。(a) is a secondary electron image of the cross section of the gas diffusion electrode of Example 1, (b) is an elemental map of carbon, and (c) is an elemental map of nickel. (a)は実施例2のガス拡散電極断面の2次電子像、(b)は炭素の元素マップ、(c)はニッケルの元素マップである。(a) is a secondary electron image of the cross section of the gas diffusion electrode of Example 2, (b) is an elemental map of carbon, and (c) is an elemental map of nickel. (a)は実施例3のガス拡散電極断面の2次電子像、(b)は炭素の元素マップ、(c)はニッケルの元素マップである。(a) is a secondary electron image of the cross section of the gas diffusion electrode of Example 3, (b) is an elemental map of carbon, and (c) is an elemental map of nickel. (a)は比較例1のガス拡散電極断面の2次電子像、(b)は炭素の元素マップ、(c)はニッケルの元素マップである。(a) is a secondary electron image of the cross section of the gas diffusion electrode of Comparative Example 1, (b) is an elemental map of carbon, and (c) is an elemental map of nickel. 発泡ニッケルの光学写真である。It is an optical photograph of foamed nickel. 実施例1~3、比較例1のマグネシウム空気電池の電流密度-電圧特性を示す図である。1 is a diagram showing current density-voltage characteristics of magnesium air batteries of Examples 1 to 3 and Comparative Example 1. FIG. 実施例3および比較例1のマグネシウム空気電池の定電流特性を示す図である。FIG. 5 is a graph showing constant current characteristics of magnesium-air batteries of Example 3 and Comparative Example 1; 定電流測定後の比較例1のガス拡散電極断面の二次電子像である。4 is a secondary electron image of a cross section of the gas diffusion electrode of Comparative Example 1 after constant current measurement.

以下、本発明を詳細に説明する。
(ガス拡散層)
本発明のガス拡散層に使用される発泡金属は、ガス拡散電極の集電体として機能する。本発明のガス拡散層は、集電体となる発泡金属の空孔にカーボン材料が隙間なく充填され、カーボン材料が絡んだ構造となっているため電気的な接触が安定し、安定した電池出力が得られる。
The present invention will be described in detail below.
(Gas diffusion layer)
The foam metal used in the gas diffusion layer of the present invention functions as a current collector for the gas diffusion electrode. The gas diffusion layer of the present invention has a structure in which the pores of the foamed metal, which serves as a current collector, are filled with a carbon material without gaps, and the carbon material is entangled, so that electrical contact is stable and battery output is stable. is obtained.

発泡金属は、ガスによる小さな空間を多量に有する金属のセル状の構造物であり、気孔を大量に有している特徴を持ち、例えば、その75~95%が空洞である。 Metal foams are metallic cellular structures with a large amount of small gas spaces and are characterized by a large amount of porosity, eg, 75-95% void.

発泡金属の材料としては、例えば、ニッケル、チタン、アルミニウムおよびそれらの合金等が挙げられる。これらの中でも、集電体としての機能面や価格等の観点を考慮すると、ニッケルを材料とする発泡ニッケルが好ましい。 Examples of foam metal materials include nickel, titanium, aluminum and alloys thereof. Among these, foamed nickel made of nickel is preferable from the viewpoint of functionality as a current collector and cost.

アセチレンブラックのアグロメレートのような疎水性カーボン等のカーボン材料の径を考慮すると、これを充填する発泡金属の平均孔径はこれよりも十分に大きいことが必要であり、一方で孔径が大き過ぎると充填したカーボン材料と発泡金属との接着点が少なくなって導電パスが減少し、電極の剛性も低下する。このような点から、発泡金属の平均孔径は、200μm以上5mm以下が好ましい。ここで平均孔径は、顕微鏡像から任意に選択した空孔100個の平均値であり、各空孔の径は、最長径として求める。例えば発泡金属のうち、発泡ニッケルは、三角柱状の骨格が3次元に連なった、連続気孔を持つ金属多孔体である。 Considering the diameter of carbon materials such as hydrophobic carbon such as agglomerate of acetylene black, the average pore diameter of the foam metal to be filled with this must be sufficiently larger than this. The number of adhesion points between the carbon material and the foamed metal is reduced, the number of conductive paths is reduced, and the rigidity of the electrode is also reduced. From this point of view, the average pore size of the foam metal is preferably 200 μm or more and 5 mm or less. Here, the average pore diameter is the average value of 100 pores arbitrarily selected from the microscopic image, and the diameter of each pore is determined as the longest diameter. For example, among foamed metals, foamed nickel is a metal porous body having continuous pores in which a triangular prism-shaped skeleton is connected three-dimensionally.

発泡金属のうち、発泡ニッケルの市販品としては、例えば、住友電気工業製「セルメット」、長峰製作所製「金属多孔質体」等が使用できる。発泡ニッケルの比表面積は250~5800m/mが好ましい。 Among foamed metals, commercial products of foamed nickel include, for example, "Celmet" manufactured by Sumitomo Electric Industries, "Metal Porous Body" manufactured by Nagamine Seisakusho, and the like. The specific surface area of foamed nickel is preferably 250 to 5800 m 2 /m 3 .

本発明のガス拡散層に使用されるカーボン材料は、細孔形成によって導電パスを形成し、かつ電極内部への水の浸透を抑制する疎水性を付与する。 The carbon material used for the gas diffusion layer of the present invention forms a conductive path by forming pores, and imparts hydrophobicity to suppress permeation of water into the electrode.

カーボン材料としては、疎水性カーボンが好ましい。疎水性カーボンは、表面に酸素官能基等を多数有する親水性カーボンとは異なり疎水性を有するものであり、例えば、カーボンブラック、カーボンナノチューブ、グラフェン等が挙げられる。その中でも、多孔質であり、電気抵抗が低く、安価である点から、カーボンブラックが好ましい。疎水性カーボンであるカーボンブラックの例としては、アセチレンブラック、ファーネスブラック等が挙げられる。 Hydrophobic carbon is preferable as the carbon material. Hydrophobic carbon is different from hydrophilic carbon having a large number of oxygen functional groups on its surface, and is hydrophobic. Examples thereof include carbon black, carbon nanotubes, and graphene. Among them, carbon black is preferable because it is porous, has low electrical resistance, and is inexpensive. Examples of carbon black, which is hydrophobic carbon, include acetylene black and furnace black.

カーボン材料の平均粒径は、20nm以上50nm以下が好ましい。このような平均粒径を持つカーボン材料は、前記したような発泡金属の空孔に充填した際に、緻密な導電パスを形成し、集電体となる発泡金属とカーボン材料が絡んだ構造となるため電気的な接触が安定し、安定した電池出力が得られる。ここで平均粒径は、走査透過電子顕微鏡による観察像において、任意の100個の粒子を選択し、それぞれの外径を計測し、その数平均値として算出したものである。カーボンブラックは一般に、ストラクチャーを持つアグリゲート(1次凝集体)が、ファン・デルワールス力等の物理的な力によりアグロメレート(2次凝集体)を構成するが、カーボン材料がカーボンブラックである場合、平均粒径はアグリゲートの1次粒子の平均粒径である。 The average particle size of the carbon material is preferably 20 nm or more and 50 nm or less. A carbon material having such an average particle diameter forms a dense conductive path when filled in the pores of the foam metal as described above, and has a structure in which the foam metal and the carbon material, which serve as a current collector, are entwined. Therefore, the electrical contact is stable, and a stable battery output can be obtained. Here, the average particle diameter is obtained by selecting 100 arbitrary particles in an image observed by a scanning transmission electron microscope, measuring the outer diameter of each particle, and calculating the number average value thereof. In carbon black, aggregates (primary aggregates) having a structure generally form agglomerates (secondary aggregates) due to physical forces such as van der Waals force, but when the carbon material is carbon black, The average particle size is the average particle size of the primary particles of the aggregate.

本発明のガス拡散層に使用される樹脂結着材は、カーボン材料を結着させるバインダー機能と、ガス拡散層に撥水性を付与する機能を有する。 The resin binder used in the gas diffusion layer of the present invention has a binder function to bind the carbon material and a function to impart water repellency to the gas diffusion layer.

樹脂結着材としては、撥水性を有する樹脂、例えばフッ素樹脂が挙げられる。その中でも、フッ素樹脂が好ましい。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロスルフォン酸ポリマー、ポリフッ化ビニリデン(PVdF)、テトラフルオロエチレン共重合体(FEP)、(PFE)等が挙げられる。その中でも、ポリテトラフルオロエチレン、パーフルオロスルフォン酸ポリマーが好ましい。 Resin binders include water-repellent resins such as fluororesins. Among these, fluororesins are preferred. Examples of fluororesins include polytetrafluoroethylene (PTFE), perfluorosulfonic acid polymer, polyvinylidene fluoride (PVdF), tetrafluoroethylene copolymers (FEP) and (PFE). Among them, polytetrafluoroethylene and perfluorosulfonic acid polymer are preferred.

ガス拡散層に使用するカーボン材料と樹脂結着材の質量比は、樹脂結着材がバインダー機能、撥水付与機能を発揮する観点を考慮すると、30:70~95:5が好ましく、60:40~90:10がより好ましい。 The mass ratio of the carbon material and the resin binder used in the gas diffusion layer is preferably 30:70 to 95:5, and 60:5, considering that the resin binder exerts a binder function and a water repellent function. 40 to 90:10 is more preferred.

ガス拡散層の製造において添加する樹脂結着材の形態は、特に限定されないが、カーボン材料と混合されて分散する微粒子状が好ましく、カーボン材料と樹脂結着材を溶媒に分散した懸濁液をガス拡散層の製造に用いることができる。この場合、予めカーボン材料と樹脂結着材を水系溶媒に分散後、乾燥して溶媒を除去する等の方法によって、樹脂結着材を担持したカーボン材料を作製しておき、この樹脂結着材を担持したカーボン材料を有機溶媒に分散することによって懸濁液を調製してもよい。 The form of the resin binder added in the production of the gas diffusion layer is not particularly limited, but it is preferably in the form of fine particles that are mixed with the carbon material and dispersed. It can be used for the production of gas diffusion layers. In this case, after dispersing the carbon material and the resin binder in an aqueous solvent in advance, a carbon material supporting the resin binder is prepared by drying to remove the solvent, and the resin binder is prepared. A suspension may be prepared by dispersing the carbon material supporting the in an organic solvent.

本発明のガス拡散層は、発泡金属、カーボン材料、および樹脂結着材を含み、ガス拡散層における少なくとも一部に、カーボン材料および樹脂結着材が発泡金属に充填された複合層を有する。 The gas diffusion layer of the present invention contains a foam metal, a carbon material, and a resin binder, and at least a part of the gas diffusion layer has a composite layer in which the carbon material and the resin binder are filled in the foam metal.

製造工程に応じて、ある態様では、本発明のガス拡散層は、発泡金属からなる層と、当該層から厚み方向に連続する複合層とを有する。この場合、カーボン材料および樹脂結着材が、製造工程における加圧によって発泡金属の空孔に一部充填されて、発泡金属の厚み方向のうち一部が複合層となる。別の態様では、厚み方向の全体が複合層である。この場合、カーボン材料および樹脂結着材が、製造工程における加圧によって発泡金属の空孔にほぼ全てが充填され、残りの発泡金属の空孔は押し潰されて、発泡金属のみからなる部分は殆ど確認できず、発泡金属の厚み方向の全体が複合層となる。従って厚み方向の全体が複合層であるとは、走査型電子顕微鏡の観察において、発泡金属の空孔に、カーボン材料および樹脂結着材が厚み方向の全体に分布し、特に炭素の元素マップにおいて、カーボン材料に由来する炭素が厚み方向の全体に確認されることを含む。例えば、ニッケル等の発泡金属の元素マップにおいて金属が分布する厚みのうち、80%以上、90%以上、あるいは95%以上の範囲に、炭素の元素マップにおいて炭素が存在すること、およびカーボン材料の全てが発泡金属内に充填されることを含む。以上の態様の中でも、安定した電池出力が得られる点を考慮すると、後者のように発泡金属の厚み方向の全体が複合層となる態様が好ましい。 Depending on the manufacturing process, in one aspect, the gas diffusion layer of the present invention has a layer made of foamed metal and a composite layer continuous from the layer in the thickness direction. In this case, the pores of the metal foam are partially filled with the carbon material and the resin binder by pressurization in the manufacturing process, and part of the metal foam in the thickness direction becomes the composite layer. In another aspect, the entire thickness direction is a composite layer. In this case, almost all of the pores of the foam metal are filled with the carbon material and the resin binder by pressurization in the manufacturing process, the remaining pores of the foam metal are crushed, and the portion consisting only of the foam metal is Almost unrecognizable, the entire thickness direction of the foam metal becomes a composite layer. Therefore, when the entire thickness direction is a composite layer, observation with a scanning electron microscope shows that the carbon material and the resin binder are distributed throughout the thickness direction in the pores of the foam metal, and in particular, in the elemental map of carbon, , including that carbon derived from the carbon material is confirmed throughout the thickness direction. For example, carbon is present in the carbon element map in the range of 80% or more, 90% or more, or 95% or more of the thickness in which the metal is distributed in the element map of the foam metal such as nickel, and the carbon material All including being filled in foam metal. Among the above embodiments, the latter embodiment, in which the metal foam is entirely formed as a composite layer in the thickness direction, is preferable in view of obtaining a stable battery output.

本発明のガス拡散層の厚みは、0.5mm以上1.5mm以下が好ましく、0.7mm以上1.3mm以下がより好ましい。発泡金属からなる層が存在する場合には当該層と、複合層との合計厚みはガス拡散の最短距離となるため、電解液の漏出および空気側からの水分の混入を抑制する限りにおいて、ガス拡散層は薄いほど空気中の酸素の拡散に有利であるが、ガス拡散層の厚みが上記範囲内であると、電解液の漏出および空気側からの水分の混入を抑制しつつガスが拡散し、金属空気電池や燃料電池の正極として好適である。このようにガス拡散層の厚みを小さくしても、本発明のガス拡散層は、集電体となる発泡金属の空孔にカーボン材料が隙間なく充填された構造であるため、剛性が高く、電気的な接触が安定し、安定した電池出力が得られる。 The thickness of the gas diffusion layer of the present invention is preferably 0.5 mm or more and 1.5 mm or less, more preferably 0.7 mm or more and 1.3 mm or less. When there is a layer made of foam metal, the total thickness of the layer and the composite layer is the shortest distance for gas diffusion. The thinner the diffusion layer, the more advantageous it is for the diffusion of oxygen in the air. However, if the thickness of the gas diffusion layer is within the above range, the leakage of the electrolyte and the contamination of moisture from the air side can be suppressed while the gas diffuses. , and is suitable as a positive electrode for metal-air batteries and fuel cells. Even if the thickness of the gas diffusion layer is reduced in this way, the gas diffusion layer of the present invention has a structure in which the pores of the foamed metal serving as the current collector are filled with the carbon material without gaps. Electrical contact is stable, and stable battery output can be obtained.

(ガス拡散電極とその製造方法)
本発明のガス拡散電極は、以上に説明した本発明のガス拡散層を有している。さらに、このガス拡散層に隣接する触媒層を備えている。本発明のガス拡散電極は、本発明のガス拡散層の高い剛性によって、従来のガス拡散電極に使用される電極支持体を省略することが可能である。
(Gas diffusion electrode and manufacturing method thereof)
The gas diffusion electrode of the present invention has the gas diffusion layer of the present invention described above. Further, a catalyst layer is provided adjacent to this gas diffusion layer. The gas diffusion electrode of the present invention can omit the electrode support used in conventional gas diffusion electrodes due to the high rigidity of the gas diffusion layer of the present invention.

本発明のガス拡散電極における触媒層の構成は、特に限定されないが、例えば、触媒、担体、および樹脂結着材を含む。 The composition of the catalyst layer in the gas diffusion electrode of the present invention is not particularly limited, but includes, for example, a catalyst, a carrier, and a resin binder.

触媒は、放電時には酸素還元反応、充電時には酸素酸化反応を促進させるものであれば特に限定されないが、例えば、白金等の貴金属触媒、金属酸化物触媒、カーボン触媒等が挙げられる。担体が親水性カーボン等である場合、担体自体が触媒機能を有するものであってもよい。 The catalyst is not particularly limited as long as it promotes the oxygen reduction reaction during discharge and the oxygen oxidation reaction during charge. Examples thereof include noble metal catalysts such as platinum, metal oxide catalysts, and carbon catalysts. When the carrier is hydrophilic carbon or the like, the carrier itself may have a catalytic function.

担体としては、例えば、導電性のカーボン材料を用いることができる。導電性のカーボン材料としては、親水性カーボンが好ましい。親水性カーボンは、表面に酸素官能基等の親水性官能基を多数有するものであり、例えば、親水性カーボンブラック、表面を官能基で修飾したカーボンブラック、カーボンナノチューブ、グラフェン等が挙げられる。その中でも、多孔質であり、電気抵抗が低く、安価である点から、親水性カーボンブラックが好ましい。親水性カーボンブラックの例としては、ケッチェンブラック、Vulcan等が挙げられる。 As the carrier, for example, a conductive carbon material can be used. Hydrophilic carbon is preferable as the conductive carbon material. Hydrophilic carbon has many hydrophilic functional groups such as oxygen functional groups on its surface, and examples thereof include hydrophilic carbon black, carbon black whose surface is modified with functional groups, carbon nanotubes, graphene, and the like. Among them, hydrophilic carbon black is preferable because it is porous, has low electrical resistance, and is inexpensive. Examples of hydrophilic carbon black include Ketjenblack, Vulcan, and the like.

樹脂結着材としては、例えばフッ素樹脂等が挙げられる。フッ素樹脂としては、例えば、ガス拡散層に使用される樹脂結着材として前記に例示したものが挙げられる。 Examples of the resin binder include fluororesin and the like. Examples of the fluororesin include those exemplified above as the resin binder used for the gas diffusion layer.

本発明のガス拡散電極を製造する方法は、好ましい態様において、本発明のガス拡散層を構成するカーボン材料および樹脂結着材を分散させた懸濁液(a)を発泡金属に塗布し、厚み方向に加圧する工程を含む。 In a preferred embodiment of the method for producing the gas diffusion electrode of the present invention, the suspension (a) in which the carbon material and the resin binder constituting the gas diffusion layer of the present invention are dispersed is applied to the foam metal, and the thickness It includes the step of applying pressure in a direction.

懸濁液(a)は、カーボン材料および樹脂結着材を含むものであれば特に限定されないが、予め、湿式分散によって微粒子状の樹脂結着材をカーボン材料に担持し、この樹脂結着材を担持したカーボン材料を、溶媒に分散して調製することが好ましい。この場合、樹脂結着材の粒径としては0.1~0.5μmが好ましい。溶媒としては、水や有機溶媒が好ましく、例えば、イソプロピルアルコール、エタノール、アセトン、n-ブタノール等のアルコール系溶媒、ベンゼン、ヘキサン等が挙げられる。 The suspension (a) is not particularly limited as long as it contains a carbon material and a resin binder. is preferably prepared by dispersing in a solvent. In this case, the particle size of the resin binder is preferably 0.1 to 0.5 μm. As the solvent, water and organic solvents are preferable, and examples thereof include alcoholic solvents such as isopropyl alcohol, ethanol, acetone, and n-butanol, benzene, and hexane.

懸濁液(a)を発泡金属に塗布する方法としては、特に限定されないが、例えば、スプレー塗布、スクリーン印刷、バーコーター、スピンコーター、ブレードを用いた方法等が挙げられる。 The method of applying the suspension (a) to the foam metal is not particularly limited, but examples thereof include spray coating, screen printing, bar coater, spin coater, and blade method.

懸濁液(a)を発泡金属に塗布し、厚み方向に加圧する工程は、樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する工程、つまり樹脂結着材による結着を促進させるホットプレス工程であってもよいが、カーボン材料および樹脂結着材を発泡金属の空孔により多く充填させて複合層の厚みを大きくし、ガス拡散層の厚みをより小さくするためには、懸濁液(a)を発泡金属に塗布後、厚み方向に加圧した後(以下、懸濁液充填プレス工程とも言う。)、ホットプレス工程を行うことが好ましい。 The step of applying the suspension (a) to the foam metal and applying pressure in the thickness direction is a step of applying heat and pressure in the thickness direction at a temperature at which the resin binder softens or flows, that is, promotes binding by the resin binder. However, in order to increase the thickness of the composite layer by filling more of the pores of the foamed metal with the carbon material and the resin binder, and to reduce the thickness of the gas diffusion layer, After the suspension (a) is applied to the foam metal and pressurized in the thickness direction (hereinafter also referred to as a suspension filling press step), it is preferable to perform a hot press step.

ホットプレス工程および懸濁液充填プレス工程に使用される装置は、加圧成形が可能な装置であれば特に限定されないが、例えば、油圧プレス機を用いることができる。油圧プレス機の一軸加圧成形によって電極の剛性が高まるため、大型電極の作製に好適であり、手動式の油圧プレスで作製可能であるため特殊な生産設備を必要とせず、シンプルな製造プロセスで大量生産に適している。 The apparatus used in the hot pressing step and suspension filling pressing step is not particularly limited as long as it is capable of pressure molding, and for example, a hydraulic press can be used. The rigidity of the electrode is increased by the uniaxial pressure molding of the hydraulic press machine, so it is suitable for the production of large electrodes, and since it can be produced with a manual hydraulic press, it does not require special production equipment, and the manufacturing process is simple. Suitable for mass production.

ガス拡散層と触媒層を形成するために、触媒層の成分を含む懸濁液(b)を調製し、懸濁液(a)を塗布した面に、さらに懸濁液(b)を塗布し、厚み方向に加圧してもよい。 In order to form the gas diffusion layer and the catalyst layer, a suspension (b) containing components of the catalyst layer is prepared, and the suspension (b) is further applied to the surface to which the suspension (a) has been applied. , may be pressurized in the thickness direction.

懸濁液(b)は、例えば、カーボン材料、樹脂結着材、および触媒を含む。 Suspension (b) contains, for example, a carbon material, a resin binder, and a catalyst.

懸濁液(a)の発泡金属への塗布、懸濁液(a)を塗布した面への懸濁液(b)の塗布と、ホットプレス工程、懸濁液充填プレス工程においては、これらの手順の前後は任意であり、加圧はホットプレス工程のみで行ってもよく、懸濁液充填プレス工程を含めて行ってもよい。例えば、懸濁液(a)の発泡金属への塗布、懸濁液(a)を塗布した面への懸濁液(b)の塗布を行った後、ホットプレス工程で加圧する態様や、懸濁液(a)の発泡金属への塗布を行った後、懸濁液充填プレス工程を行い、その後懸濁液(a)を塗布した面への懸濁液(b)の塗布、懸濁液充填プレス工程を行い、さらにホットプレス工程を行う態様等であってよいが、好ましい態様では、以下の工程(A1)および(A2)を含む:
(A1)カーボン材料および樹脂結着材を分散させた懸濁液(a)を発泡金属に塗布し、厚み方向に加圧する工程(懸濁液充填プレス工程);および
(A2)工程(A1)の後、樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する工程(ホットプレス工程)。
In the application of the suspension (a) to the foam metal, the application of the suspension (b) to the surface to which the suspension (a) is applied, the hot press step, and the suspension filling press step, these The steps before and after the procedure are arbitrary, and the pressurization may be performed only in the hot press step, or may be performed including the suspension filling press step. For example, after applying the suspension (a) to the foam metal, applying the suspension (b) to the surface coated with the suspension (a), pressurizing in a hot press process, or After applying the suspension (a) to the foam metal, a suspension filling press step is performed, and then the suspension (b) is applied to the surface to which the suspension (a) has been applied, and the suspension is It may be an embodiment in which the filling press step is performed and then the hot press step is performed, but in a preferred embodiment, the following steps (A1) and (A2) are included:
(A1) A step of applying a suspension (a) in which a carbon material and a resin binder are dispersed to a foamed metal and applying pressure in the thickness direction (suspension filling press step); and (A2) step (A1). After that, a step of heating and pressing in the thickness direction at a temperature at which the resin binder softens or flows (hot pressing step).

さらに好ましい態様では、以下の工程(B)をさらに含む:
(B)工程(A)の後、懸濁液(a)を塗布した面に、さらにカーボン材料、樹脂結着材、および触媒を含む懸濁液(b)を塗布し、厚み方向に加圧する工程。
A further preferred embodiment further comprises the following step (B):
(B) After step (A), a suspension (b) containing a carbon material, a resin binder, and a catalyst is further applied to the surface to which the suspension (a) has been applied, and pressure is applied in the thickness direction. process.

特に好ましい態様では、工程(A2)において、工程(A1)と(B)の後、懸濁液(a)および(b)の各樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する。 In a particularly preferred embodiment, in step (A2), after steps (A1) and (B), the resin binders of suspensions (a) and (b) are heated in the thickness direction at a temperature at which they soften or flow. pressure.

懸濁液充填プレス工程における荷重は、特に限定されないが、工程(A1)では100~500kgfcm-2が好ましく、300~450kgfcm-2がより好ましい。工程(B)では10~50kgfcm-2が好ましく、30~45kgfcm-2がより好ましい。懸濁液充填プレス工程によって、カーボン材料同士が樹脂結着材によって結着されない状態で、カーボン材料および樹脂結着材を発泡金属の空孔により多く充填させて複合層の厚みを大きくし、ガス拡散層の厚みをより小さくすることができる。その結果として、電解液の漏出および空気側からの水分の混入を抑制しつつガスが拡散し、金属空気電池や燃料電池の正極として好適であると共に、ガス拡散層の厚みを小さくしても、集電体となる発泡金属の空孔にカーボン材料が隙間なく充填された構造であるため、剛性が高く、電気的な接触が安定し、安定した電池出力が得られる。 The load in the suspension filling press step is not particularly limited, but in step (A1) it is preferably 100 to 500 kgfcm −2 , more preferably 300 to 450 kgfcm −2 . In step (B), 10 to 50 kgfcm -2 is preferable, and 30 to 45 kgfcm -2 is more preferable. In the suspension filling press step, the pores of the foamed metal are filled with more carbon material and resin binder in a state where the carbon materials are not bound together by the resin binder, thereby increasing the thickness of the composite layer and increasing the thickness of the composite layer. The thickness of the diffusion layer can be made smaller. As a result, the gas is diffused while suppressing the leakage of the electrolyte and the contamination of moisture from the air side. Due to the structure in which the pores of the foamed metal used as the current collector are filled with the carbon material without any gaps, the rigidity is high, the electrical contact is stable, and the stable battery output can be obtained.

以上において、加圧をホットプレス工程のみで行う場合や、懸濁液充填プレス工程を含めて行う場合に関わらず、ホットプレス工程を行う際における荷重は、特に限定されないが、50~300kgfcm-2が好ましく、100~200kgfcm-2がより好ましい。ホットプレス工程における温度は、特に限定されないが、PTFE等のフッ素樹脂の場合、その溶融温度以上で分解等が生じない範囲、例えば330~380℃が好ましい。 In the above, regardless of whether pressurization is performed only in the hot press process or when the suspension filling press process is included, the load during the hot press process is not particularly limited, but is 50 to 300 kgfcm −2 . is preferred, and 100 to 200 kgfcm −2 is more preferred. The temperature in the hot pressing process is not particularly limited, but in the case of fluororesin such as PTFE, it is preferably in a range where decomposition does not occur above its melting temperature, for example 330 to 380°C.

ホットプレス工程や懸濁液充填プレス工程によって加圧を行った後、懸濁液(a)や(b)の溶媒を除去するために、乾燥機等の加熱装置によって乾燥処理を行うことが好ましい。 After pressurization by the hot press step or the suspension filling press step, it is preferable to perform a drying treatment with a heating device such as a dryer in order to remove the solvent of the suspensions (a) and (b). .

(金属空気電池および燃料電池)
本発明のガス拡散電極は、金属空気電池および燃料電池に用いることができる。金属空気電池および燃料電池は、ガス拡散電極を正極に備えている。
(metal-air battery and fuel cell)
The gas diffusion electrodes of the present invention can be used in metal-air batteries and fuel cells. Metal-air batteries and fuel cells have a gas diffusion electrode at the positive electrode.

金属空気電池は、負極活物質として金属を用いるものであり、燃料電池は、負極活物質として水素などの金属以外の物質を用いるものである。 A metal-air battery uses a metal as a negative electrode active material, and a fuel cell uses a substance other than a metal such as hydrogen as a negative electrode active material.

金属空気電池および燃料電池は、正極として空気極が設置され、電解質を介して、負極として金属空気電池では金属極、燃料電池では燃料極が設置される。 In the metal-air battery and the fuel cell, an air electrode is installed as a positive electrode, and a metal electrode is installed as a negative electrode in the metal-air battery and a fuel electrode in the fuel cell through an electrolyte.

電解質としては、水系の金属空気電池および燃料電池の場合、これらの電解液として通常用いられる水系電解液を用いることができる。 As the electrolyte, in the case of water-based metal-air batteries and fuel cells, water-based electrolytes that are commonly used as these electrolytes can be used.

金属空気電池における金属極としては、亜鉛、アルミニウム、マグネシウムなどの金属などを用いることができる。具体的な金属極の構造は、公知の金属空気電池と同様とすればよい。燃料電池における燃料極の構造についても特に限定はなく、公知の燃料電池の燃料極の構造と同様とすればよい。燃料極用の触媒としても、従来公知の金属、金属合金、金属錯体や、触媒微粒子を炭素材料や金属酸化物などの担体に担持した触媒などを用いることができる。 Metals such as zinc, aluminum, and magnesium can be used as the metal electrode in the metal-air battery. A specific structure of the metal electrode may be the same as that of a known metal-air battery. The structure of the fuel electrode in the fuel cell is also not particularly limited, and may be the same as the structure of the fuel electrode of known fuel cells. As the catalyst for the fuel electrode, conventionally known metals, metal alloys, metal complexes, and catalysts in which fine catalyst particles are supported on a carrier such as a carbon material or a metal oxide can be used.

正極である空気極側には、酸素または空気を供給あるいは自然拡散させればよい。また、燃料電池には、燃料極側に燃料となる物質を供給する必要がある。燃料物質としては、水素ガスの他、メタノールのようなアルコール類などが使用できる。 Oxygen or air may be supplied or naturally diffused to the air electrode, which is the positive electrode. In addition, it is necessary to supply a fuel substance to the fuel electrode side of the fuel cell. As the fuel substance, in addition to hydrogen gas, alcohols such as methanol can be used.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
<1>PTFE担持疎水性カーボン、PTFE担持親水性カーボンの作製
ガス拡散層用の疎水性カーボンとして市販のアセチレンブラック(HS-100、電気化学工業製)を蒸留水中に分散させ、60質量%PTFEディスパージョン(粒径:0.22μm、D-210c、ダイキン工業製)をアセチレンブラックに対して30質量%となるように添加した。これを、超音波分散して、PTFEディスパージョンをアセチレンブラックに均一に分散担持させ、混合液をろ過して120℃で乾燥してPTFE担持疎水性カーボンを作製した。触媒層に用いる親水性カーボンとしては市販のカーボンブラック(ケッチェンブラック、ライオン製)を使用し、同様の方法でPTFEを担持した。なお、表面に酸素官能基を多数有するこの親水性カーボンは、触媒として酸素還元反応を促進する。
EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.
[Example 1]
<1> Preparation of PTFE-supported hydrophobic carbon and PTFE-supported hydrophilic carbon Commercially available acetylene black (HS-100, manufactured by Denki Kagaku Kogyo) was dispersed in distilled water as a hydrophobic carbon for the gas diffusion layer, and 60% by mass of PTFE was added. Dispersion (particle size: 0.22 μm, D-210c, manufactured by Daikin Industries) was added so as to be 30% by mass with respect to acetylene black. This was ultrasonically dispersed to uniformly disperse and support the PTFE dispersion on the acetylene black, and the mixed liquid was filtered and dried at 120° C. to produce PTFE-supported hydrophobic carbon. Commercially available carbon black (Ketjenblack, manufactured by Lion) was used as the hydrophilic carbon used in the catalyst layer, and PTFE was supported in the same manner. In addition, this hydrophilic carbon having a large number of oxygen functional groups on its surface promotes the oxygen reduction reaction as a catalyst.

<2>ガス拡散電極の作製
2-プロパノールにPTFE担持疎水性カーボンを分散させてカーボンインキを作製し、これを3.5×3.8cmに切断した発泡ニッケル(厚み:1.6mm、セルメット#7、住友電気工業製)に1cmあたり14mgになるように塗布して乾燥させた。同様に2-プロパノール中に分散させたPTFE担持親水性カーボンインキを、作製した発泡ニッケル-疎水性カーボンの疎水性カーボン上に1cmあたり6mgになるように塗布して乾燥させた後、これを電気炉で急加熱して360℃まで昇温させてPTFEを融解させ、油圧プレス機を用いて38kgfcm-2の荷重でプレスした後、急冷却した。最後に120℃に保持した乾燥機に移し、溶媒の2-プロパノールを完全に除去してガス拡散電極を得た。
<2> Preparation of gas diffusion electrode Carbon ink was prepared by dispersing PTFE-supported hydrophobic carbon in 2 -propanol. #7, manufactured by Sumitomo Electric Industries, Ltd.), and dried so as to be 14 mg per 1 cm 2 . Similarly, the PTFE-supporting hydrophilic carbon ink dispersed in 2-propanol was coated on the hydrophobic carbon of the foamed nickel-hydrophobic carbon so that it was 6 mg per 1 cm 2 and dried. The material was rapidly heated in an electric furnace to a temperature of 360° C. to melt the PTFE, pressed with a load of 38 kgfcm −2 using a hydraulic press, and then rapidly cooled. Finally, it was transferred to a dryer maintained at 120° C. to completely remove the solvent 2-propanol to obtain a gas diffusion electrode.

<3>電池性能評価
上記のように作製したガス拡散電極(電極面積:13.3cm)を正極として、マグネシウム合金(Mg:90%、Al:9%、Zn:1%、厚み:0.5cm、電極面積:3.8×5.8cm)を負極としてセルに取り付け、電極間の距離を1cmに固定し、23質量%のNaCl水溶液に浸した状態で電子付加装置を正極、負極に接続して、電子負荷装置を用いて任意の定抵抗を接続し、電極間の電圧値と電流値を測定した。電子付加装置は菊水電子工業製PLZ664WAを用いた。
<3> Evaluation of battery performance Magnesium alloy (Mg: 90%, Al: 9%, Zn: 1%, thickness: 0.2%, thickness: 0.3%, magnesium alloy (Mg: 90%, Al: 9%, Zn: 1%, thickness: 0.3%) was used as the positive electrode for the gas diffusion electrode (electrode area: 13.3 cm 2 ) produced as described above. 5 cm, electrode area: 3.8 × 5.8 cm 2 ) was attached to the cell as a negative electrode, the distance between the electrodes was fixed to 1 cm, and the electron addition device was placed on the positive electrode and the negative electrode while being immersed in a 23 mass% NaCl aqueous solution. After connecting, an arbitrary constant resistance was connected using an electronic load device, and the voltage value and current value between the electrodes were measured. PLZ664WA manufactured by Kikusui Denshi Kogyo Co., Ltd. was used as an electronic addition device.

[実施例2]
実施例1と同様の方法によりPTFE担持疎水性カーボン、PTFE担持親水性カーボンを作製した。実施例1と同サイズに切断した発泡ニッケルを金属やすりを用いて厚みが0.7mmになるまで研磨した。2-プロパノールにPTFE担持疎水性カーボンを分散させてカーボンインキを作製し、これを研磨した発泡ニッケルに1cmあたり14mgになるように塗布して乾燥させた。同様に2-プロパノール中に分散させたPTFE担持親水性カーボンインキを、作製した発泡ニッケル-疎水性カーボンの疎水性カーボン上に1cmあたり6mgになるように塗布して乾燥させた後、これを電気炉で急加熱して360℃まで昇温させてPTFEを融解させ、油圧プレス機を用いて38kgfcm-2の荷重でプレスした後、急冷却した。最後に120℃に保持した乾燥機に移し、溶媒の2-プロパノールを完全に除去してガス拡散電極を得た。電池性能評価は実施例1と同様の方法で行った。
[Example 2]
A PTFE-supporting hydrophobic carbon and a PTFE-supporting hydrophilic carbon were produced in the same manner as in Example 1. Foamed nickel cut into the same size as in Example 1 was polished with a metal file until the thickness became 0.7 mm. PTFE-supported hydrophobic carbon was dispersed in 2-propanol to prepare a carbon ink, which was applied to polished foamed nickel in an amount of 14 mg/cm 2 and dried. Similarly, the PTFE-supporting hydrophilic carbon ink dispersed in 2-propanol was coated on the hydrophobic carbon of the foamed nickel-hydrophobic carbon so that it was 6 mg per 1 cm 2 and dried. The material was rapidly heated in an electric furnace to a temperature of 360° C. to melt the PTFE, pressed with a load of 38 kgfcm −2 using a hydraulic press, and then rapidly cooled. Finally, it was transferred to a dryer maintained at 120° C. to completely remove the solvent 2-propanol to obtain a gas diffusion electrode. Battery performance evaluation was performed in the same manner as in Example 1.

[実施例3]
実施例1と同様の方法によりPTFE担持疎水性カーボン、PTFE担持親水性カーボンを作製した。2-プロパノールにPTFE担持疎水性カーボンを分散させてカーボンインキを作製し、これを実施例1と同じサイズに切断した発泡ニッケルに1cmあたり14mgになるように塗布して乾燥させ、これを油圧プレス機を用いて376kgfcm-2の荷重でプレスして発泡ニッケル/疎水性カーボン複合体を得た。同様に2-プロパノール中に分散させたPTFE担持親水性カーボンインキを、作製した発泡ニッケル/疎水性カーボン複合体に1cmあたり6mgになるように塗布して乾燥させ、油圧プレス機を用いて150kgfcm-2の荷重でプレスし、これを電気炉で急加熱して360℃まで昇温させてPTFEを融解させ、油圧プレス機を用いて38kgfcm-2の荷重でプレスした後、急冷却した。最後に120℃に保持した乾燥機に移し、溶媒の2-プロパノールを完全に除去してガス拡散電極を得た。電池性能評価は実施例1と同様の方法で行った。定電流測定は電流密度を23mAcm-2に固定し、電池電圧を測定した。
[Example 3]
A PTFE-supporting hydrophobic carbon and a PTFE-supporting hydrophilic carbon were produced in the same manner as in Example 1. A carbon ink was prepared by dispersing PTFE-supported hydrophobic carbon in 2-propanol, and this was applied to nickel foam cut into the same size as in Example 1 so as to be 14 mg per 1 cm 2 and dried. A pressing machine was used to press with a load of 376 kgfcm −2 to obtain a foamed nickel/hydrophobic carbon composite. Similarly, the PTFE-supporting hydrophilic carbon ink dispersed in 2-propanol was applied to the prepared foamed nickel/hydrophobic carbon composite so as to be 6 mg per 1 cm 2 , dried, and dried to 150 kgfcm using a hydraulic press. It was pressed with a load of −2 , rapidly heated in an electric furnace to a temperature of 360° C. to melt the PTFE, pressed with a load of 38 kgfcm −2 using a hydraulic press, and then rapidly cooled. Finally, it was transferred to a dryer maintained at 120° C. to completely remove the solvent 2-propanol to obtain a gas diffusion electrode. Battery performance evaluation was performed in the same manner as in Example 1. In the constant current measurement, the current density was fixed at 23 mAcm -2 and the cell voltage was measured.

[比較例1]
実施例1と同様の方法によりPTFE担持疎水性カーボン、PTFE担持親水性カーボンを作製した。2-プロパノールにPTFE担持疎水性カーボンを分散させてカーボンインキを作製し、これを3.5×3.8cmに切断したニッケルメッシュ(100mesh、ニラコ製)に1cmあたり14mgになるように塗布し、同様に2-プロパノールに分散させたPTFE担持親水性カーボンインキを、さらに疎水性カーボン上に1cmあたり6mgになるように塗布し、これを電気炉で急加熱し、温度を360℃まで昇温させてPTFEを融解させ、油圧プレス機を用いて38kgfcm-2の荷重でプレスした後、急冷却した。最後に120℃に保持した乾燥機に移し、溶媒の2-プロパノールを完全に除去してガス拡散電極を得た。電池性能評価は実施例1と同様の方法で行った。定電流測定は実施例3と同様の方法で行った。
[Comparative Example 1]
A PTFE-supporting hydrophobic carbon and a PTFE-supporting hydrophilic carbon were produced in the same manner as in Example 1. Carbon ink was prepared by dispersing PTFE-supported hydrophobic carbon in 2-propanol, and this was applied to a nickel mesh (100 mesh, manufactured by Nilaco) cut to 3.5 × 3.8 cm 2 so that 14 mg per 1 cm 2 Then, the PTFE-supporting hydrophilic carbon ink dispersed in 2-propanol was applied to the hydrophobic carbon in an amount of 6 mg per 1 cm 2 , and this was rapidly heated in an electric furnace to a temperature of 360°C. The temperature was raised to melt the PTFE, pressed with a load of 38 kgfcm −2 using a hydraulic press, and then quenched. Finally, it was transferred to a dryer maintained at 120° C. to completely remove the solvent 2-propanol to obtain a gas diffusion electrode. Battery performance evaluation was performed in the same manner as in Example 1. Constant current measurement was performed in the same manner as in Example 3.

図1~図4は走査型電子顕微鏡(JSM-6490LA、日本電子製)を用いて観察したそれぞれ実施例1~3、比較例1のガス拡散電極断面の二次電子線像、炭素およびニッケルの元素マップである。図5は発泡ニッケルの光学写真である。実施例1、2は部分的に発泡ニッケル/疎水性カーボン複合層を形成しているが、一部の発泡ニッケルは疎水性カーボンと複合しておらず、特徴的な発泡ニッケルの孔(100~500μm)が確認できる。一方、実施例3で作製したガス拡散電極は、376kgfcm-2でのプレスによって元の発泡ニッケルの特徴的な孔は確認できなくなり、疎水性カーボンが隙間なく充填され、圧縮されて潰れた発泡ニッケルと疎水性カーボンからなる複合層の一層を確認した。 1 to 4 are secondary electron beam images of cross sections of gas diffusion electrodes of Examples 1 to 3 and Comparative Example 1, respectively, observed using a scanning electron microscope (JSM-6490LA, manufactured by JEOL Ltd.), carbon and nickel Element map. FIG. 5 is an optical photograph of foamed nickel. In Examples 1 and 2, a foamed nickel/hydrophobic carbon composite layer is partially formed, but a part of the foamed nickel is not combined with the hydrophobic carbon, and the characteristic nickel foam pores (100 to 500 μm) can be confirmed. On the other hand, in the gas diffusion electrode produced in Example 3, the characteristic pores of the original nickel foam cannot be confirmed by pressing at 376 kgfcm −2 , and the hydrophobic carbon is filled without gaps, and the nickel foam that has been compressed and crushed and one layer of the composite layer consisting of hydrophobic carbon.

図6は実施例1~3、比較例1のマグネシウム空気電池の電流密度-電圧特性である。空気中の酸素が正極活物質である金属空気電池や燃料電池は、空気極での酸素還元反応が進行するが、電流密度が大きくなると酸素供給が律速となって急激に電池電圧が低下する。したがって、電解液の漏出および空気側からの水分の混入を防ぐ限りは、ガス拡散層は薄いほど空気中の酸素の拡散に有利である。実施例1、2のガス拡散電極は、発泡ニッケルおよび発泡ニッケル/疎水性カーボン複合層を併せた厚みはそれぞれ1250μm、964μmであるため、空気中の酸素が触媒層まで達するガス拡散パスの最短距離はそれぞれ1250μm、964μmである。実施例3のガス拡散電極の発泡ニッケル/疎水性カーボン複合層の厚みは724μmであるため、空気中の酸素が触媒層まで達するガス拡散パスの最短距離は724μmである。実施例1~3の電極はガス拡散パスの最短距離が短くなるほど、約10mAcm-2以上の高電流密度域で高い電池電圧が得られ、その最高出力はそれぞれ41.6、68.1、80.8mWcm-2となり、実施例2、3は、従来のニッケルメッシュを使用したガス拡散電極を用いたマグネシウム空気電池の最高出力46.5mWcm-2より高い性能を示した。 6 shows the current density-voltage characteristics of the magnesium-air batteries of Examples 1 to 3 and Comparative Example 1. FIG. In metal-air batteries and fuel cells, in which oxygen in the air is the positive electrode active material, the oxygen reduction reaction proceeds at the air electrode. Therefore, the thinner the gas diffusion layer, the more advantageous the diffusion of oxygen in the air, as long as the leakage of the electrolyte and the contamination of moisture from the air side are prevented. In the gas diffusion electrodes of Examples 1 and 2, the combined thicknesses of the foamed nickel and foamed nickel/hydrophobic carbon composite layers were 1250 μm and 964 μm, respectively. are 1250 μm and 964 μm, respectively. Since the foamed nickel/hydrophobic carbon composite layer of the gas diffusion electrode of Example 3 has a thickness of 724 μm, the shortest distance of the gas diffusion path for oxygen in the air to reach the catalyst layer is 724 μm. In the electrodes of Examples 1 to 3, the shorter the shortest distance of the gas diffusion path, the higher the battery voltage obtained in the high current density region of about 10 mAcm −2 or more, and the maximum output was 41.6, 68.1, 80, respectively. 0.8 mWcm −2 , and Examples 2 and 3 showed performance higher than the maximum output of 46.5 mWcm −2 of the conventional magnesium-air battery using a gas diffusion electrode using nickel mesh.

図7は実施例3および比較例1のマグネシウム空気電池の定電流特性である。実施例3のマグネシウム空気電池の電池電圧は比較的安定していたが、比較例1のマグネシウム空気電池は約30分から電池電圧が減少し、約50分で電池電圧が不安定になった。図8は定電流測定後の比較例1のガス拡散電極断面の二次電子線像である。部分的にガス拡散層である疎水性カーボンから集電体であるNiメッシュの剥離が確認されたため、メッシュがガス拡散層との接触形状を保持できずに電池電圧が不安定になったものと示唆された。 7 shows the constant current characteristics of the magnesium-air batteries of Example 3 and Comparative Example 1. FIG. The battery voltage of the magnesium-air battery of Example 3 was relatively stable, but the battery voltage of the magnesium-air battery of Comparative Example 1 decreased from about 30 minutes and became unstable after about 50 minutes. FIG. 8 is a secondary electron beam image of the cross section of the gas diffusion electrode of Comparative Example 1 after constant current measurement. It was confirmed that the Ni mesh, which is a current collector, was partially separated from the hydrophobic carbon, which is the gas diffusion layer, so the mesh could not maintain the shape of contact with the gas diffusion layer, and the battery voltage became unstable. It was suggested.

Claims (13)

水系電解液を用いる金属空気電池または燃料電池のガス拡散電極に使用されるガス拡散層であって、
発泡金属、カーボン材料、および樹脂結着材を含み、
前記ガス拡散層の厚み方向における少なくとも一部に、前記カーボン材料および前記樹脂結着材が前記発泡金属の空孔隙間なく充填され、当該発泡金属の空孔のうち前記カーボン材料および前記樹脂結着材が充填されなかった部分については押し潰された複合層を有し、
前記発泡金属の平均孔径が200μm以上5mm以下であり、
前記カーボン材料が疎水性カーボンである、ガス拡散層。
A gas diffusion layer used in a gas diffusion electrode of a metal-air battery or fuel cell using an aqueous electrolyte,
including foam metals, carbon materials, and resin binders,
At least part of the gas diffusion layer in the thickness direction is filled with the carbon material and the resin binder without gaps in the pores of the metal foam. Having a crushed composite layer for the portion not filled with the adhesive material ,
The average pore size of the foam metal is 200 μm or more and 5 mm or less,
A gas diffusion layer , wherein the carbon material is hydrophobic carbon .
前記発泡金属からなる層と、当該層から厚み方向に連続する前記複合層とを有する、請求項1に記載のガス拡散層。 2. The gas diffusion layer according to claim 1, comprising a layer made of said foamed metal and said composite layer continuous from said layer in the thickness direction. 厚み方向の全体が前記複合層である、請求項1に記載のガス拡散層。 2. The gas diffusion layer according to claim 1, wherein the entire thickness direction is the composite layer. 厚みが0.5以上1.5mm以下である、請求項1~3のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 3, having a thickness of 0.5 to 1.5 mm. 前記発泡金属が発泡ニッケルである、請求項1~4のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 4, wherein said foam metal is foam nickel. 前記カーボン材料の平均粒径が20nm以上50nm以下である、請求項1~5のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 5, wherein the carbon material has an average particle size of 20 nm or more and 50 nm or less. 前記樹脂結着材がフッ素樹脂である、請求項1~のいずれか一項に記載のガス拡散層。 The gas diffusion layer according to any one of claims 1 to 6 , wherein the resin binder is a fluororesin. 請求項1~のいずれか一項に記載のガス拡散層を有するガス拡散電極。 A gas diffusion electrode comprising the gas diffusion layer according to any one of claims 1-7 . 請求項に記載のガス拡散電極を正極に有する金属空気電池。 A metal-air battery having the gas diffusion electrode according to claim 8 as a positive electrode. 請求項に記載のガス拡散電極を正極に有する燃料電池。 A fuel cell having the gas diffusion electrode according to claim 8 as a positive electrode. 金属空気電池または燃料電池に使用されるガス拡散電極の製造方法であって、以下の工程(A1)および(A2)を含む、ガス拡散電極の製造方法:
(A1)カーボン材料および樹脂結着材を分散させた懸濁液(a)を発泡金属に塗布し、厚み方向に加圧する工程;および
(A2)前記工程(A1)の後、前記樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する工程。
A method for producing a gas diffusion electrode for use in a metal-air battery or fuel cell, the method comprising the following steps (A1) and (A2):
(A1) a step of applying a suspension (a) in which a carbon material and a resin binder are dispersed to a foamed metal and applying pressure in the thickness direction; and (A2) after the step (A1), the resin binding. A process of heating and pressing in the thickness direction at a temperature at which the material softens or flows.
以下の工程(B)をさらに含む、請求項11に記載のガス拡散電極の製造方法:
(B)前記工程(A1)の後、前記懸濁液(a)を塗布した面に、さらにカーボン材料、樹脂結着材、および触媒を含む懸濁液(b)を塗布し、厚み方向に加圧する工程。
12. The method for producing a gas diffusion electrode according to claim 11 , further comprising step (B) of:
(B) After the step (A1), a suspension (b) containing a carbon material, a resin binder, and a catalyst is further applied to the surface to which the suspension (a) has been applied. The process of pressurizing.
前記工程(A2)において、前記工程(A1)と(B)の後、前記懸濁液(a)および(b)の各樹脂結着材が軟化または流動する温度で厚み方向に加熱加圧する、請求項12に記載のガス拡散電極の製造方法。 In the step (A2), after the steps (A1) and (B), the resin binders of the suspensions (a) and (b) are heated and pressed in the thickness direction at a temperature at which they soften or flow. 13. A method for manufacturing a gas diffusion electrode according to claim 12 .
JP2018133715A 2018-07-13 2018-07-13 Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof Active JP7281726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018133715A JP7281726B2 (en) 2018-07-13 2018-07-13 Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018133715A JP7281726B2 (en) 2018-07-13 2018-07-13 Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020013662A JP2020013662A (en) 2020-01-23
JP7281726B2 true JP7281726B2 (en) 2023-05-26

Family

ID=69169967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133715A Active JP7281726B2 (en) 2018-07-13 2018-07-13 Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7281726B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259746A (en) * 2020-10-19 2021-01-22 成都新柯力化工科技有限公司 Metal tin bonded fuel cell flexible gas diffusion membrane and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041352A (en) 2006-08-03 2008-02-21 Toyota Motor Corp Gas diffusion layer and fuel cell
JP2008262822A (en) 2007-04-12 2008-10-30 Toyota Motor Corp Starting and stopping method of fuel cell, and starting and stopping system of fuel cell
JP2009009769A (en) 2007-06-27 2009-01-15 Canon Inc Alkaline fuel cell
US20110059355A1 (en) 2009-09-10 2011-03-10 Battelle Memorial Institute High-energy metal air batteries
WO2012035579A1 (en) 2010-09-15 2012-03-22 トヨタ自動車株式会社 Membrane electrode assembly and manufacturing method for same, and fuel cell using same
JP2014123428A (en) 2012-05-11 2014-07-03 Dainippon Printing Co Ltd Conductive porous layer for battery and manufacturing method of the same
US20140255801A1 (en) 2011-08-15 2014-09-11 Timm Lohmann Electrode and energy store including an electrode
JP2015001862A (en) 2013-06-17 2015-01-05 独立行政法人情報通信研究機構 Bilingual phrase learning device, statistical machine translation device, bilingual phrase learning method, and program
JP2017027654A (en) 2013-12-12 2017-02-02 住友電気工業株式会社 Carbon material-coated metal porous body, collector, electrode, and power storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018741B1 (en) * 2013-07-05 2018-01-17 Nissan Motor Co., Ltd. Metal gas diffusion layer for fuel cells, and production method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041352A (en) 2006-08-03 2008-02-21 Toyota Motor Corp Gas diffusion layer and fuel cell
JP2008262822A (en) 2007-04-12 2008-10-30 Toyota Motor Corp Starting and stopping method of fuel cell, and starting and stopping system of fuel cell
JP2009009769A (en) 2007-06-27 2009-01-15 Canon Inc Alkaline fuel cell
US20110059355A1 (en) 2009-09-10 2011-03-10 Battelle Memorial Institute High-energy metal air batteries
WO2012035579A1 (en) 2010-09-15 2012-03-22 トヨタ自動車株式会社 Membrane electrode assembly and manufacturing method for same, and fuel cell using same
US20140255801A1 (en) 2011-08-15 2014-09-11 Timm Lohmann Electrode and energy store including an electrode
JP2014123428A (en) 2012-05-11 2014-07-03 Dainippon Printing Co Ltd Conductive porous layer for battery and manufacturing method of the same
JP2015001862A (en) 2013-06-17 2015-01-05 独立行政法人情報通信研究機構 Bilingual phrase learning device, statistical machine translation device, bilingual phrase learning method, and program
JP2017027654A (en) 2013-12-12 2017-02-02 住友電気工業株式会社 Carbon material-coated metal porous body, collector, electrode, and power storage device

Also Published As

Publication number Publication date
JP2020013662A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
KR100761524B1 (en) Preparation of gas diffusion layer for fuel cell
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP3558134B2 (en) Flow field structure for membrane electrode assembly in fuel cells
JP5002939B2 (en) Fuel cell electrolyte membrane and membrane electrode assembly
JP6053251B2 (en) Solid polymer fuel cell gas diffusion layer
KR20020043610A (en) Electrochemical electrode for fuel cell
JP5915283B2 (en) Gas diffusion layer and fuel cell using the same
WO2003052844A1 (en) Diffusion film, electrode having the diffusion film, and process for producing diffusion film
JP7385014B2 (en) membrane electrode assembly
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP3504021B2 (en) Electrode for electrochemical device and method for producing the same
JP2004346411A (en) Porous board, and its production method
JP5636847B2 (en) Manufacturing method of gas diffusion layer for fuel cell
JP7281726B2 (en) Gas diffusion layer used for gas diffusion electrode of metal-air battery or fuel cell, gas diffusion electrode using the same, and manufacturing method thereof
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP5812168B2 (en) Manufacturing method of gas diffusion layer for fuel cell
KR20210092199A (en) Gas diffusion electrode, manufacturing method of gas diffusion electrode, membrane electrode assembly, fuel cell
WO2018105301A1 (en) Gas diffusion electrode and production method therefor
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method
JP2009140657A (en) Electrode catalyst for fuel cell
KR100761523B1 (en) Carbon slurry composition for preparation of gas diffusion layer for fuel cell
JP2006294267A (en) Catalyst ink for fuel cell electrode formation
JP7002974B2 (en) Electrodes, membrane electrode assemblies, electrochemical cells, stacks, fuel cells, vehicles and flying objects
EP2769429A1 (en) Gas diffusion substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230428

R150 Certificate of patent or registration of utility model

Ref document number: 7281726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150