JP7270324B2 - unmanned aerial vehicle - Google Patents

unmanned aerial vehicle Download PDF

Info

Publication number
JP7270324B2
JP7270324B2 JP2021010852A JP2021010852A JP7270324B2 JP 7270324 B2 JP7270324 B2 JP 7270324B2 JP 2021010852 A JP2021010852 A JP 2021010852A JP 2021010852 A JP2021010852 A JP 2021010852A JP 7270324 B2 JP7270324 B2 JP 7270324B2
Authority
JP
Japan
Prior art keywords
frame
unmanned aerial
aerial vehicle
anisotropic
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021010852A
Other languages
Japanese (ja)
Other versions
JP2022114550A (en
Inventor
貴之 岩渕
宏行 佐野
雄一 今中
博之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAILTECH CO., LTD.
Original Assignee
RAILTECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAILTECH CO., LTD. filed Critical RAILTECH CO., LTD.
Priority to JP2021010852A priority Critical patent/JP7270324B2/en
Publication of JP2022114550A publication Critical patent/JP2022114550A/en
Application granted granted Critical
Publication of JP7270324B2 publication Critical patent/JP7270324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

本発明は、複数の回転翼を有する無人航空機に関する。 The present invention relates to an unmanned aerial vehicle having multiple rotors.

従来から、鉄道の高架橋の点検は、主に高所作業車等を用いて行われている。高所作業車を使用できない箇所では、ロープ高所作業によって点検が行われる。ロープ高所作業とは、作業箇所の上方にある支持物にロープを緊結してつり下げ、そのロープに身体を保持するための器具を用いて行う作業である(労働安全衛生規則第三十六条参照)。そのような高所作業車を使用できない箇所における高所作業のいっそうの安全性向上が望まれる。 2. Description of the Related Art Conventionally, inspections of railway viaducts are mainly performed using aerial work vehicles and the like. In places where aerial work vehicles cannot be used, inspections are carried out by rope aerial work. Rope work at height refers to work performed by suspending a rope by tightening it from a support above the work site and using a device to hold the body on the rope (Occupational Safety and Health Regulations 36 (see article). It is desired to further improve the safety of high-elevation work in places where such high-elevation work vehicles cannot be used.

そこで、高所作業の代わりに、ドローン(通称)を用いて高所の検査対象物をカメラで撮像することが考えられる。ドローンは、日本産業規格(JIS)に規定されている無人航空機である(非特許文献1参照)。 Therefore, it is conceivable to use a drone (commonly known as) to take an image of an object to be inspected at a high place with a camera instead of working at a high place. A drone is an unmanned aerial vehicle defined by the Japanese Industrial Standards (JIS) (see Non-Patent Document 1).

検査に用いる無人航空機として、無人飛行検査機が知られている(特許文献1参照)。しかし、この無人飛行検査機は、球状の外枠(枠体)を有するので、撮像する画像にその外枠が映り込む。 An unmanned flight inspection machine is known as an unmanned aircraft used for inspection (see Patent Document 1). However, since this unmanned flight inspection machine has a spherical outer frame (frame body), the outer frame is reflected in the captured image.

複数のカメラを球状のフレーム(枠体)に設けた無人飛行体(無人航空機)が知られている(特許文献2参照)。カメラがフレームの外側に設けられるので、カメラ画像にフレームが映らない。しかし、この無人飛行体は、多数の枠材で構成される球状のフレームと、複数のカメラで重くなるので、プロペラ(回転翼)を駆動するモータの負荷が大きくなり、飛行時間が短くなる。 2. Description of the Related Art An unmanned flying object (unmanned aerial vehicle) in which a plurality of cameras are provided on a spherical frame (frame body) is known (see Patent Document 2). Since the camera is provided outside the frame, the frame is not visible in the camera image. However, this unmanned aerial vehicle is heavy due to a spherical frame made up of many frames and a plurality of cameras, which increases the load on the motor that drives the propeller (rotor blade) and shortens the flight time.

直方体の網枠(枠体)で覆われた検査用の小型無人飛行機(無人航空機)が知られている(特許文献3参照)。直方体の枠体は、球状の枠体よりも少ない枠材で構成できるが、機体に対する定位の角度が存在する。この小型無人航空機は、前進・後進しようとする際に網枠に対する機体の傾斜を許容するため、シャフト及び軸受等を有する。しかし、この小型無人航空機は、網枠に対して機体が左右方向には傾斜しないので、曲がって飛行する際、網枠が受ける遠心力が機体に直接伝わり、飛行が不安定になるおそれがある。 A small unmanned aerial vehicle for inspection (unmanned aerial vehicle) covered with a rectangular parallelepiped net frame (frame body) is known (see Patent Document 3). A rectangular parallelepiped frame can be constructed with fewer frame members than a spherical frame, but there is an orientation angle with respect to the fuselage. This small unmanned aerial vehicle has shafts, bearings, etc., in order to allow the body to tilt with respect to the mesh frame when moving forward or backward. However, since the fuselage of this small unmanned aerial vehicle does not incline to the left or right with respect to the mesh frame, the centrifugal force received by the mesh frame is directly transmitted to the fuselage when flying in a curved direction, and there is a risk that the flight may become unstable. .

また、筐体の外形を構成する枠体を備えた無人航空機が知られている(特許文献4参照)。この無人航空機は、検査対象の壁面(検査面)に枠体の車輪を押し付けて検査面上を移動する(壁面走行)。この無人航空機は、ロータが遊動可能に支持され、壁面走行時、壁面に対する枠体の姿勢を維持したまま、その遊動可能範囲内でロータのピッチ角およびロール角が変化する。しかし、この無人航空機は、壁面から離れて空中を飛行する時、枠体に対するロータの角度が遊動可能範囲内で定まらず、飛行が不安定になるおそれがある。また、ロータを遊動可能に支持する構成が複雑であり、無人航空機の重量が増加する。 Also, an unmanned aerial vehicle is known that includes a frame that forms the outer shape of a housing (see Patent Document 4). This unmanned aerial vehicle moves on the inspection surface by pressing the wheels of the frame against the wall surface (inspection surface) to be inspected (wall surface traveling). In this unmanned aerial vehicle, the rotor is movably supported, and when traveling on a wall surface, the pitch angle and roll angle of the rotor change within the movable range while maintaining the posture of the frame relative to the wall surface. However, when this unmanned aerial vehicle flies in the air away from the wall surface, the angle of the rotor with respect to the frame may not be fixed within the floatable range, and the flight may become unstable. In addition, the configuration for movably supporting the rotor is complicated, and the weight of the unmanned aerial vehicle increases.

特開2019-167017号公報JP 2019-167017 A 特開2016-180866号公報JP 2016-180866 A 特開2017-124691号公報JP 2017-124691 A 特開2018-144627号公報JP 2018-144627 A

JIS W 0141:2019「無人航空機-用語」JIS W 0141:2019 "Unmanned Aerial Vehicles - Vocabulary"

本発明は、上記問題を解決するものであり、機体を覆う枠体が撮像等に支障し難く、その枠体に生じる慣性力に対する飛行の安定性が高い無人航空機を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems, and to provide an unmanned aerial vehicle in which the frame covering the airframe hardly interferes with imaging, etc., and in which flight stability is high against the inertial force generated in the frame. .

本発明の無人航空機は、複数の回転翼を有するものであって、胴体及び前記回転翼を有する機体と、前記機体を覆う枠体とを備え、前記枠体は、複数の長尺状の枠材で構成された直方体の外形を有し、可撓性を有する異方性可撓部を介して前記胴体に支持され、前記異方性可撓部は、前記枠体の荷重を前記胴体に伝達するとともに、前記枠体に加わる左右方向の力によっても前後方向の力によっても弾性変形によって撓み、左右方向と前後方向の撓みやすさを異なる大きさに設定可能であることを特徴とする。 An unmanned aerial vehicle of the present invention has a plurality of rotor wings, and includes a body and a body having the rotor wings, and a frame covering the body, wherein the frame is a plurality of elongated frames. It has a rectangular parallelepiped outer shape made of a material and is supported by the body via an anisotropic flexible part having flexibility, and the anisotropic flexible part distributes the load of the frame to the body. In addition to transmitting, the frame body is flexed due to elastic deformation by both lateral force and longitudinal force applied to the frame, and the easiness of bending in the lateral direction and the longitudinal direction can be set to different magnitudes.

この無人航空機において、前記異方性可撓部は、左右に離間して配置された複数の可撓性部材から成り、前記各可性部材は、前記枠体と前記胴体を鉛直方向に連結し、水平方向の力に対して可撓性を有することが好ましい。 In this unmanned aerial vehicle, the anisotropic flexible section is composed of a plurality of flexible members that are spaced apart in the left and right direction, and each of the flexible members vertically connects the frame and the body. and is flexible against horizontal forces.

この無人航空機において、前記可撓性部材は、防振ゴムから成ることが好ましい。 In this unmanned aerial vehicle, it is preferable that the flexible member is made of anti-vibration rubber.

この無人航空機において、前記異方性可撓部は、左右及び前後に離間して配置された複数の可性部材から成り、前記各可性部材は、前記枠体と前記胴体を鉛直方向に連結し、水平方向の力に対して可撓性を有してもよい。 In this unmanned aerial vehicle, the anisotropic flexible section is composed of a plurality of flexible members that are spaced apart in the left-right and front-rear directions, and each of the flexible members vertically extends the frame and the body. and flexible against horizontal forces.

この無人航空機において、前記可撓性部材は、ばねであることが好ましい。 In this unmanned aerial vehicle, the flexible member is preferably a spring.

この無人航空機において、前記機体は、撮像装置を有し、前記撮像装置は、その撮像範囲に前記枠体が入らないように設けられることが好ましい。 In this unmanned aerial vehicle, it is preferable that the body has an imaging device, and the imaging device is provided so that the frame body does not enter the imaging range of the imaging device.

本発明の無人航空機によれば、機体を覆う枠体は、直方体の外形を有するので、球形の外形を有する枠体よりも少ない枠材で構成でき、撮像等に支障し難い。また、枠体は、左右方向及び前後方向の可撓性を有する異方性可撓部を介して胴体に支持されるので、枠体から胴体に伝達される水平方向の力が緩和され、無人航空機は、枠体に生じる慣性力に対する飛行の安定性が高くなる。さらに、異方性可撓部は、左右方向と前後方向の撓みやすさを異なる大きさに設定可能であるので、それぞれの方向における飛行の安定性に適した撓みやすさに設定することにより、無人航空機は、枠体に生じる慣性力に対する飛行の安定性がいっそう高くなる。 According to the unmanned aerial vehicle of the present invention, the frame that covers the airframe has a rectangular parallelepiped outer shape, so it can be configured with fewer frame members than a frame with a spherical outer shape, and it is less likely to interfere with imaging. In addition, since the frame is supported by the body via the anisotropic flexible portion having flexibility in the left-right direction and the front-rear direction, the horizontal force transmitted from the frame to the body is alleviated. The aircraft has high flight stability against the inertial force generated in the frame. Furthermore, the anisotropic flexible portion can be set to different degrees of flexibility in the left-right direction and in the front-back direction. The unmanned aerial vehicle is more stable in flight against the inertial force generated in the frame.

本発明の第1の実施形態に係る無人航空機の図面代用写真。1 is a drawing-substituting photograph of an unmanned aerial vehicle according to a first embodiment of the present invention; 同無人航空機における枠体の斜視図。A perspective view of a frame in the unmanned aerial vehicle. 同無人航空機における異方性可撓部及びその周辺部分の斜視図。FIG. 2 is a perspective view of the anisotropic flexible portion and its peripheral portion in the same unmanned aerial vehicle; 同異方性可撓部及びその周辺部分の図面代用写真。Drawing substitute photograph of the same anisotropic flexible part and its peripheral part. 本発明の第2の実施形態に係る無人航空機における異方性可撓部及びその周辺部分の斜視図。FIG. 8 is a perspective view of an anisotropically flexible portion and its peripheral portion in an unmanned aerial vehicle according to a second embodiment of the present invention; 同異方性可撓部及びその周辺部分の図面代用写真。Drawing substitute photograph of the same anisotropic flexible part and its peripheral part.

(第1の実施形態)
本発明の第1の実施形態に係る無人航空機について図1乃至図4を参照して説明する。日本産業規格によれば、「無人航空機」とは、航空の用に供することができる飛行機、回転翼航空機、滑空機、飛行船などであって、構造上人が乗ることができないもののうち、遠隔操作又は自動操縦によって飛行させることができるものである(非特許文献1の番号1001参照)。図1の全体写真に示すように、本実施形態の無人航空機1は、複数の回転翼2を有する回転翼無人航空機である(非特許文献1の番号1021参照)。無人航空機1は、ドローンとも呼ばれる。本実施形態では、回転翼2の数は4つである。
(First embodiment)
An unmanned aerial vehicle according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. According to Japanese Industrial Standards, "unmanned aerial vehicles" are airplanes, rotorcraft, gliders, airships, etc. that can be used for aviation, and which cannot be operated by humans due to their structure. Alternatively, it can be flown by autopilot (see No. 1001 of Non-Patent Document 1). As shown in the overall photograph of FIG. 1, the unmanned aerial vehicle 1 of this embodiment is a rotary wing unmanned aerial vehicle having a plurality of rotary wings 2 (see No. 1021 of Non-Patent Document 1). The unmanned aerial vehicle 1 is also called a drone. In this embodiment, the number of rotor blades 2 is four.

この無人航空機1は、機体3と、枠体5とを備える。機体3は、胴体4及び回転翼2を有する。枠体5は、機体3を覆う。枠体5は、ガードとも呼ばれる。 This unmanned aerial vehicle 1 includes a body 3 and a frame 5 . Airframe 3 has fuselage 4 and rotor 2 . A frame 5 covers the body 3 . The frame 5 is also called a guard.

機体3は、一般的なドローンの構成を有し、回転翼2を回転駆動するモータ、制御装置(フライトコントローラ)、GPS受信機、加速度センサ、無線受信機、蓄電池等を有する。 The airframe 3 has a configuration of a general drone, and includes a motor that rotates the rotor blades 2, a control device (flight controller), a GPS receiver, an acceleration sensor, a wireless receiver, a storage battery, and the like.

機体3は、上記の構成に加え、撮像装置6を有する。撮像装置6は、カメラ又は赤外線イメージセンサ等であり、検査対象物等を撮像するために用いられる。撮像装置6は、その撮像範囲に枠体5が入らないように設けられる。 The airframe 3 has an imaging device 6 in addition to the above configuration. The imaging device 6 is a camera, an infrared image sensor, or the like, and is used to image an inspection object or the like. The imaging device 6 is provided so that the frame body 5 does not enter its imaging range.

図2に示すように、枠体5は、複数の長尺状の枠材(511~515)で構成された直方体の外形を有する。 As shown in FIG. 2, the frame 5 has a rectangular parallelepiped outer shape made up of a plurality of elongated frame members (511 to 515).

図3及び図4に示すように、枠体5は、可撓性を有する異方性可撓部7を介して胴体4に支持される。なお、図3では、胴体4及び枠体5は、異方性可撓部7の近傍部分を表している。異方性可撓部7は、枠体5の荷重を胴体4に伝達する。異方性可撓部7は、枠体5に加わる左右方向の力によっても前後方向の力によっても弾性変形によって撓み、左右方向と前後方向の撓みやすさを異なる大きさに設定可能である。なお、可撓性とは、外力によって撓むことができる性質である。弾性力学によれば、異方性可撓部7の撓みやすさの大きさは、外力に対する異方性可撓部7の変形量によって定量的に表される。 As shown in FIGS. 3 and 4, the frame 5 is supported by the body 4 via an anisotropic flexible portion 7 having flexibility. In FIG. 3, the body 4 and the frame 5 represent the vicinity of the anisotropic flexible portion 7. As shown in FIG. The anisotropic flexible portion 7 transmits the load of the frame 5 to the body 4 . The anisotropic flexible portion 7 is elastically deformed by both the lateral force and the longitudinal force applied to the frame 5, and the easiness of bending in the lateral direction and the longitudinal direction can be set to different magnitudes. In addition, flexibility is a property of being able to bend by an external force. According to elastic mechanics, the flexibility of the anisotropic flexible portion 7 is quantitatively represented by the amount of deformation of the anisotropic flexible portion 7 with respect to external force.

ここで、枠体5の構成を詳述する。枠体5は、外枠51と、横梁52とを有する(図2参照)。外枠51は、複数の長尺状の枠材を結合して直方体の外形にしたものである。横梁52は、外枠51内に延在し、その両端が外枠51の左右の面にある枠材に結合されている。外枠51は、少なくとも直方体の各辺に枠材を有する。その各辺にある枠材は、上下方向の4本の縦枠511と、左右方向の4本の横枠512と、前後方向の4本の側枠513である。外枠51の上下の面は、それぞれ横枠512と側枠513で囲まれ、補強のための枠材が無く、大きな開口となっている。縦枠511と側枠513とで囲まれた左右の各側面には、補強のための側柱514及び側梁515がある。各側柱514は、上下に対を成す側枠513の各中間部を上下方向に接続する。各側梁515は、前後に対を成す縦枠511及びその間にある側柱514の各中央部を前後方向に接続する。横梁52は、左右の側梁515の各中央部を左右方向に接続する。横梁52の中央部が異方性可撓部7を介して胴体4に支持される(図3参照)。 Here, the configuration of the frame body 5 will be described in detail. The frame 5 has an outer frame 51 and lateral beams 52 (see FIG. 2). The outer frame 51 has a rectangular parallelepiped shape by combining a plurality of elongated frame members. The cross beam 52 extends inside the outer frame 51 and has both ends coupled to frame members on the left and right surfaces of the outer frame 51 . The outer frame 51 has a frame member at least on each side of the rectangular parallelepiped. The frame members on each side are four vertical frames 511 in the vertical direction, four horizontal frames 512 in the horizontal direction, and four side frames 513 in the front-rear direction. The upper and lower surfaces of the outer frame 51 are surrounded by a horizontal frame 512 and a side frame 513, respectively, and have no frame material for reinforcement and form a large opening. Side columns 514 and side beams 515 for reinforcement are provided on the left and right sides surrounded by the vertical frame 511 and the side frames 513 . Each side pillar 514 vertically connects each intermediate portion of the side frames 513 forming a pair in the vertical direction. Each side sill 515 connects each central part of the longitudinal frame 511 and the side pillar 514 therebetween in the front-rear direction. The horizontal beam 52 connects the center portions of the left and right side beams 515 in the left-right direction. A central portion of the lateral beam 52 is supported by the body 4 via the anisotropic flexible portion 7 (see FIG. 3).

異方性可撓部7は、左右に離間して配置された複数の可撓性部材71から成る。各可性部材71は、枠体5と胴体4を鉛直方向に連結し、水平方向(左右方向と前後方向)の力に対して可撓性を有する。 The anisotropic flexible section 7 is composed of a plurality of flexible members 71 spaced apart in the left and right direction. Each flexible member 71 connects the frame 5 and the body 4 in the vertical direction and has flexibility against force in the horizontal direction (left-right direction and front-rear direction).

異方性可撓部7は、可撓性部材71の左右方向の数が多いほど左右方向に撓み難くなる。また、可撓性部材71の左右の間隔が大きいほど左右方向に撓み難くなる。本実施形態では、異方性可撓部7を構成する可性部材71は、2つであり、胴体4上において、左右対称に配置される。このため、この異方性可撓部7は、左右方向より前後方向のほうが撓みやすい。 As the number of flexible members 71 in the left-right direction increases, the anisotropic flexible portion 7 becomes more difficult to bend in the left-right direction. Also, the larger the horizontal distance between the flexible members 71, the more difficult it is to bend in the horizontal direction. In this embodiment, the number of flexible members 71 constituting the anisotropic flexible section 7 is two, and they are arranged symmetrically on the body 4 . Therefore, the anisotropic flexible portion 7 is more flexible in the front-rear direction than in the left-right direction.

本実施形態では、可撓性部材71は、防振ゴムからなる。防振ゴムとは、機械設備に取り付けて荷重を支えると同時に振動の伝達を防止するゴムであり、日本産業規格JIS K 6200「ゴム-用語」、及びJIS K 6386「防振ゴム-ゴム材料の区分」に規定されている。可撓性部材71の防振ゴムの具体的な選択は設計事項であり、異方性可撓部7が受ける力によって適度に弾性変形して塑性変形しない防振ゴムが用いられる。 In this embodiment, the flexible member 71 is made of anti-vibration rubber. Anti-vibration rubber is rubber that is attached to mechanical equipment to support load and prevent transmission of vibration. Category”. The specific selection of the vibration-isolating rubber for the flexible member 71 is a matter of design, and a vibration-isolating rubber that is elastically deformed moderately by the force applied to the anisotropic flexible portion 7 but not plastically deformed is used.

上記のように構成された無人航空機1において、無人航空機1が水平面上で静止している時、無人航空機1は鉛直方向の重力を受け、機体3及び枠体5は、定位の姿勢及び位置となる。すなわち、その時、機体3及び枠体5は、傾いていない。無人航空機1が飛行し、前後方向に加減速する時、枠体5に前後方向の慣性力が発生し、その慣性力は、異方性可撓部7によって胴体4に伝達される。その際、異方性可撓部7が前後方向に撓むので、胴体4に伝達される慣性力が緩和される。また、無人航空機1が左右方向に曲がって飛行する時(旋回時)、枠体5に遠心力(左右方向の慣性力)が発生し、その遠心力は、異方性可撓部7によって胴体4に伝達される。その際、異方性可撓部7が左右方向に撓むので、胴体4に伝達される遠心力が緩和される。異方性可撓部7は、弾性変形によって撓むので、枠体5の慣性力が無くなると、撓みが解消される。 In the unmanned aerial vehicle 1 configured as described above, when the unmanned aerial vehicle 1 is stationary on a horizontal plane, the unmanned aerial vehicle 1 receives vertical gravity, and the airframe 3 and the frame body 5 assume a normal posture and position. Become. That is, at that time, the body 3 and the frame 5 are not tilted. When the unmanned aerial vehicle 1 flies and accelerates or decelerates in the longitudinal direction, an inertial force in the longitudinal direction is generated in the frame 5 , and the inertial force is transmitted to the body 4 by the anisotropic flexible portion 7 . At that time, the anisotropic flexible portion 7 bends in the front-rear direction, so the inertial force transmitted to the body 4 is alleviated. Further, when the unmanned aerial vehicle 1 flies while turning in the left-right direction (at the time of turning), a centrifugal force (inertial force in the left-right direction) is generated in the frame 5 , and the centrifugal force is transferred to the fuselage by the anisotropic flexible portion 7 4. At that time, the anisotropic flexible portion 7 bends in the left-right direction, so that the centrifugal force transmitted to the body 4 is alleviated. Since the anisotropic flexible portion 7 bends due to elastic deformation, the bending is canceled when the inertial force of the frame 5 disappears.

以上、本実施形態に係る無人航空機1によれば、機体3を覆う枠体5は、直方体の外形を有するので、球形の外形を有する枠体よりも少ない枠材で構成でき、撮像等に支障し難い。また、枠体5は、左右方向及び前後方向の可撓性を有する異方性可撓部7を介して胴体4に支持されるので、枠体5から胴体4に伝達される水平方向の力が緩和され、無人航空機1は、枠体5に生じる慣性力に対する飛行の安定性が高くなる。さらに、異方性可撓部7は、左右方向と前後方向の撓みやすさを異なる大きさに設定可能であるので、それぞれの方向における飛行の安定性に適した撓みやすさに設定することにより、無人航空機1は、枠体5に生じる慣性力に対する飛行の安定性がいっそう高くなる。 As described above, according to the unmanned aerial vehicle 1 according to the present embodiment, the frame body 5 that covers the airframe 3 has a rectangular parallelepiped outer shape, so that it can be configured with fewer frame members than a frame body having a spherical outer shape. hard to do In addition, since the frame 5 is supported by the body 4 via the anisotropic flexible portion 7 having flexibility in the left-right direction and the front-rear direction, the horizontal force transmitted from the frame 5 to the body 4 is is relaxed, and the flight stability of the unmanned aerial vehicle 1 against the inertial force generated in the frame 5 is enhanced. Furthermore, since the anisotropic flexible portion 7 can be set to different degrees of flexibility in the left-right direction and in the front-to-rear direction, it is possible to set the degree of flexibility suitable for flight stability in each direction. , the unmanned aerial vehicle 1 is more stable in flight against the inertial force generated in the frame 5 .

また、異方性可撓部7は、枠体5の荷重を胴体4に伝達するとともに、枠体5に加わる左右方向の力によっても前後方向の力によっても弾性変形によって撓むので、枠体5を支持するために回り対偶の軸受が不要である。このため、無人航空機1は、構成がシンプルになって軽量化される。 In addition, the anisotropic flexible portion 7 transmits the load of the frame 5 to the body 4, and at the same time, it is elastically deformed by both the left-right force and the front-rear force applied to the frame 5. No swivel bearings are required to support 5. Therefore, the unmanned aerial vehicle 1 has a simple configuration and is lightweight.

異方性可撓部7は、左右に離間して配置された複数の可撓性部材71から成るので、可撓性部材71の左右方向の数、及び可撓性部材71の左右の間隔によって、左右方向と前後方向の撓みやすさを異なる大きさに容易に設定可能である。 Since the anisotropic flexible section 7 is composed of a plurality of flexible members 71 spaced apart in the left and right direction, depending on the number of flexible members 71 in the left and right direction and the distance between the flexible members 71 in the left and right direction, , the degree of flexing in the left-right direction and in the front-rear direction can be easily set to different sizes.

第1の実施形態では、可撓性部材71は、防振ゴムから成るので、左右方向の力によっても前後方向の力によっても弾性変形によって撓むとともに、胴体4に対する枠体5の揺れが減衰する。 In the first embodiment, since the flexible member 71 is made of anti-vibration rubber, the flexible member 71 is elastically deformed by both lateral force and longitudinal force, and the vibration of the frame 5 with respect to the body 4 is damped. .

枠体5は直方体の外形を有するので、機体3を枠体5で覆っても、撮像装置6は、その撮像範囲に枠体5が入らないように機体3に設けることが容易である。 Since the frame 5 has a rectangular parallelepiped outer shape, the imaging device 6 can be easily installed on the fuselage 3 so that the frame 5 does not enter the imaging range even when the fuselage 3 is covered with the frame 5 .

(第2の実施形態)
本発明の第2の実施形態に係る無人航空機1について図5及び図6を参照して説明する。本実施形態の無人航空機1は、第1の実施形態と同様の構成を有し、異方性可撓部の構成が異なる。第1の実施形態と同等の箇所には同じ符号を付している。以下の説明において、第1の実施形態と同等の箇所の説明は省略する。
(Second embodiment)
An unmanned aerial vehicle 1 according to a second embodiment of the present invention will be described with reference to FIGS. 5 and 6. FIG. The unmanned aerial vehicle 1 of this embodiment has the same configuration as that of the first embodiment, except for the configuration of the anisotropically flexible portion. The same reference numerals are assigned to portions equivalent to those of the first embodiment. In the following description, the description of parts equivalent to those of the first embodiment will be omitted.

図5及び図6に示すように、本実施形態では、異方性可撓部70は、左右及び前後に離間して配置された複数の可性部材72から成る。各可性部材72は、枠体5と胴体4を鉛直方向に連結し、水平方向の力に対して可撓性を有する。 As shown in FIGS. 5 and 6, in this embodiment, the anisotropic flexible portion 70 is composed of a plurality of flexible members 72 spaced apart in the left-right and front-rear directions. Each flexible member 72 connects the frame 5 and the body 4 in the vertical direction and has flexibility against horizontal force.

異方性可撓部70は、可撓性部材72の左右方向の数が多いほど左右方向に撓み難くなり、前後方向の数が多いほど前後方向に撓み難くなる。また、異方性可撓部70は、可撓性部材72の左右の間隔が大きいほど左右方向に撓み難くなり、前後の間隔が大きいほど前後方向に撓み難くなる。本実施形態では、異方性可撓部70を構成する可性部材72は、左右2つ×前後2つの計4つ、すなわち左右方向と前後方向が同数であり、胴体4上において、左右対称に配置される。可撓性部材72の間隔は、前後方向より左右方向が大きい。このため、この異方性可撓部70は、左右方向より前後方向のほうが撓みやすい。 The anisotropic flexible portion 70 becomes less likely to bend in the left-right direction as the number of flexible members 72 in the left-right direction increases, and becomes more difficult to bend in the front-rear direction as the number of flexible members 72 increases in the front-rear direction. In addition, the anisotropic flexible portion 70 is less likely to bend in the left-right direction as the left-right interval of the flexible member 72 increases, and becomes less likely to bend in the front-rear direction as the front-rear interval increases. In this embodiment, the number of flexible members 72 constituting the anisotropic flexible section 70 is two in the left and right direction and two in the front and back direction, i.e., the same number in the left and right direction and the front and back direction. arranged symmetrically. The interval between the flexible members 72 is larger in the left-right direction than in the front-rear direction. Therefore, the anisotropic flexible portion 70 is more flexible in the front-rear direction than in the left-right direction.

第2の実施形態では、可撓性部材72は、ばねである。そのばねは、コイルばねであり、水平方向の力を受けていない静止時に軸方向が鉛直である。可撓性部材72のばねの具体的な選択は設計事項であり、異方性可撓部70が受ける力によって適度に弾性変形して塑性変形しないばねが用いられる。 In a second embodiment, flexible member 72 is a spring. The spring is a coil spring and is axially vertical at rest when not subjected to horizontal forces. The specific selection of the spring of the flexible member 72 is a matter of design, and a spring that is appropriately elastically deformed by the force applied to the anisotropic flexible portion 70 but not plastically deformed is used.

上記のように構成された無人航空機1において、無人航空機1が水平面上で静止している時、無人航空機1は鉛直方向の重力を受け、機体3及び枠体5は、定位の姿勢及び位置となっている。すなわち、その時、機体3及び枠体5は、傾いていない。無人航空機1が飛行し、前後方向に加減速する時、枠体5に前後方向の慣性力が発生し、その慣性力は、異方性可撓部70によって胴体4に伝達される。その際、異方性可撓部70が前後方向に撓むので、胴体4に伝達される慣性力が緩和される。また、無人航空機1が左右方向に曲がって飛行する時、枠体5に遠心力が発生し、その遠心力は、異方性可撓部70によって胴体4に伝達される。その際、異方性可撓部70が左右方向に撓むので、胴体4に伝達される遠心力が緩和される。異方性可撓部70は、弾性変形によって撓むので、枠体5の慣性力が無くなると、撓みが解消される。 In the unmanned aerial vehicle 1 configured as described above, when the unmanned aerial vehicle 1 is stationary on a horizontal plane, the unmanned aerial vehicle 1 receives vertical gravity, and the airframe 3 and the frame body 5 assume a normal posture and position. It's becoming That is, at that time, the body 3 and the frame 5 are not tilted. When the unmanned aerial vehicle 1 flies and accelerates or decelerates in the longitudinal direction, an inertial force in the longitudinal direction is generated in the frame 5 , and the inertial force is transmitted to the body 4 by the anisotropic flexible portion 70 . At that time, the anisotropic flexible portion 70 bends in the front-rear direction, so the inertial force transmitted to the body 4 is alleviated. In addition, when the unmanned aerial vehicle 1 flies while bending in the horizontal direction, a centrifugal force is generated in the frame 5 , and the centrifugal force is transmitted to the body 4 by the anisotropic flexible portion 70 . At that time, the anisotropic flexible portion 70 bends in the left-right direction, so that the centrifugal force transmitted to the body 4 is alleviated. Since the anisotropic flexible portion 70 bends due to elastic deformation, the bending is canceled when the inertial force of the frame 5 disappears.

以上、本実施形態に係る無人航空機1によれば、異方性可撓部70は、左右及び前後に離間して配置された複数の可撓性部材72から成るので、可撓性部材72の左右方向及び前後方向の数、及び可撓性部材72の左右及び前後の間隔によって、左右方向と前後方向の撓みやすさを異なる大きさに容易に設定可能である。 As described above, according to the unmanned aerial vehicle 1 according to the present embodiment, the anisotropic flexible section 70 is composed of a plurality of flexible members 72 that are spaced apart in the left-right and front-rear directions. Depending on the number of flexible members 72 in the left-right direction and the front-rear direction, and the distance between the flexible members 72 in the left-right direction and the front-rear direction, the easiness of bending in the left-right direction and the front-rear direction can be easily set to different magnitudes.

第2の実施形態では、可撓性部材72は、ばねであるので、弾性係数の大きさを容易に設定でき、左右方向の力によっても前後方向の力によっても弾性変形によって撓む。胴体4に対する枠体5の揺れは、ばねの内部損失によって減衰する。なお、本実施形態の変形例として、ばねに並列に防振ゴムを設けることにより、異方性可撓部70の減衰係数をばね単独よりも大きくしてもよい。 In the second embodiment, since the flexible member 72 is a spring, the magnitude of the elastic modulus can be easily set, and the flexible member 72 bends due to elastic deformation due to both lateral force and longitudinal force. The swinging of the frame 5 with respect to the body 4 is attenuated by the internal loss of the spring. As a modification of this embodiment, the damping coefficient of the anisotropic flexible portion 70 may be made larger than that of the spring alone by providing an anti-vibration rubber in parallel with the spring.

本発明の実施例として、無人航空機1を作った(図1参照)。そして、その無人航空機1を飛行させる試験を実施した。 As an example of the present invention, an unmanned aerial vehicle 1 was made (see FIG. 1). Then, a test of flying the unmanned aerial vehicle 1 was conducted.

(比較例)
比較例として、無人航空機1の異方性可撓部7、70を省略し、枠体5を機体3に剛結した。
(Comparative example)
As a comparative example, the anisotropic flexible portions 7 and 70 of the unmanned aerial vehicle 1 were omitted, and the frame 5 was rigidly connected to the airframe 3 .

この比較例の無人航空機は、墜落することがあった。枠体5(ガード)の反復振動によって、機体3に設けられた加速度センサが過大に反応したためである。 The unmanned aerial vehicle of this comparative example sometimes crashed. This is because the repetitive vibration of the frame 5 (guard) causes the acceleration sensor provided on the airframe 3 to react excessively.

実施例1として、防振ゴムから成る可性部材71を有する異方性可撓部7を無人航空機1に設けた。この構成は、第1の実施形態の無人航空機1である(図4参照)。 As Example 1, an unmanned aerial vehicle 1 is provided with an anisotropic flexible section 7 having a flexible member 71 made of anti-vibration rubber. This configuration is the unmanned aerial vehicle 1 of the first embodiment (see FIG. 4).

実施例1の無人航空機1は、飛行の安定性が高かった。特に、曲がって飛行する時の安定性が比較例と比べて向上した。また、撮像装置6(カメラ)は、その前方に枠体5の枠材が無いため、焦点が合った。無人航空機1は、球形の枠体を有する球形ドローンよりも軽量化された。球形ドローンは、飛行モード(フライトモード)がスポーツモードである。それに対して、実施例1の無人航空機1は、トライポッドモード、GPSモード、スポーツモードの全ての飛行モードに対応することができた。この無人航空機1は、トライポットモードで飛行できるので、操縦が容易である。 The unmanned aerial vehicle 1 of Example 1 had high flight stability. In particular, the stability during curved flight was improved compared to the comparative example. In addition, the imaging device 6 (camera) is in focus because there is no frame member of the frame 5 in front of it. The unmanned aerial vehicle 1 is lighter than a spherical drone having a spherical frame. The flight mode (flight mode) of the spherical drone is sports mode. On the other hand, the unmanned aerial vehicle 1 of Example 1 was able to respond to all flight modes including tripod mode, GPS mode, and sport mode. Since this unmanned aerial vehicle 1 can fly in the tripod mode, it is easy to operate.

実施例2では、可性部材72がばねである異方性可撓部70を無人航空機1に設けた。それ以外の構成は実施例1と同じにした。この構成は、第2の実施形態の無人航空機1である(図6参照)。 In Example 2, the unmanned aerial vehicle 1 is provided with the anisotropic flexible portion 70 in which the flexible member 72 is a spring. Other configurations were the same as those of the first embodiment. This configuration is the unmanned aerial vehicle 1 of the second embodiment (see FIG. 6).

実施例2の無人航空機1は、実施例1と同様、飛行の安定性が高かった。 The unmanned aerial vehicle 1 of Example 2 had high flight stability as in Example 1.

比較例、実施例1及び実施例2により、異方性可撓部7、70による飛行の安定性向上が確認された。 According to the comparative example, Example 1, and Example 2, it was confirmed that the anisotropic flexible portions 7 and 70 improved flight stability.

なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、防振ゴムから成る可撓性部材71は、左右方向と前後方向の寸法によって、それぞれの方向の撓みやすさを設定してもよい。 The present invention is not limited to the configurations of the above-described embodiments, and various modifications are possible without changing the gist of the invention. For example, the flexibility of the flexible member 71 made of vibration-isolating rubber may be set according to the lateral and longitudinal dimensions.

1 無人航空機
2 回転翼
3 機体
4 胴体
5 枠体
6 撮像装置
7、70 異方性可撓部
71 可撓性部材(防振ゴム)
72 可撓性部材(ばね)
1 Unmanned aerial vehicle 2 Rotor 3 Body 4 Body 5 Frame 6 Imaging device 7, 70 Anisotropic flexible section 71 Flexible member (anti-vibration rubber)
72 flexible member (spring)

Claims (5)

複数の回転翼を有する無人航空機であって、
胴体及び前記回転翼を有する機体と、
前記機体を覆う枠体とを備え、
前記枠体は、複数の長尺状の枠材で構成された直方体の外形を有し、可撓性を有する異方性可撓部を介して前記胴体に支持され、
前記異方性可撓部は、前記枠体の荷重を前記胴体に伝達するとともに、前記枠体に加わる左右方向の力によっても前後方向の力によっても弾性変形によって撓み、左右方向と前後方向の撓みやすさを異なる大きさに設定可能であり、
前記異方性可撓部は、左右に離間して配置された複数の可撓性部材から成り、
前記各可撓性部材は、前記枠体と前記胴体を鉛直方向に連結し、水平方向の力に対して可撓性を有することを特徴とする無人航空機。
An unmanned aerial vehicle having multiple rotor blades,
a fuselage having a fuselage and the rotor;
and a frame covering the airframe,
The frame body has a rectangular parallelepiped outer shape made up of a plurality of elongated frame members, and is supported by the body via an anisotropic flexible portion having flexibility,
The anisotropic flexible portion transmits the load of the frame to the body, and is elastically deformed by both the left-right force and the front-rear force applied to the frame. Flexibility can be set to different sizes,
The anisotropic flexible portion is composed of a plurality of flexible members spaced apart from each other to the left and right,
The unmanned aerial vehicle, wherein each flexible member connects the frame and the body in a vertical direction and has flexibility against a force in a horizontal direction.
前記可撓性部材は、防振ゴムから成ることを特徴とする請求項に記載の無人航空機。 2. The unmanned aerial vehicle according to claim 1 , wherein said flexible member is made of anti-vibration rubber. 複数の回転翼を有する無人航空機であって、
胴体及び前記回転翼を有する機体と、
前記機体を覆う枠体とを備え、
前記枠体は、複数の長尺状の枠材で構成された直方体の外形を有し、可撓性を有する異方性可撓部を介して前記胴体に支持され、
前記異方性可撓部は、前記枠体の荷重を前記胴体に伝達するとともに、前記枠体に加わる左右方向の力によっても前後方向の力によっても弾性変形によって撓み、左右方向と前後方向の撓みやすさを異なる大きさに設定可能であり、
前記異方性可撓部は、左右及び前後に離間して配置された複数の可撓性部材から成り、
前記各可撓性部材は、前記枠体と前記胴体を鉛直方向に連結し、水平方向の力に対して可撓性を有することを特徴とする無人航空機。
An unmanned aerial vehicle having multiple rotor blades,
a fuselage having a fuselage and the rotor;
and a frame covering the airframe,
The frame has a rectangular parallelepiped outer shape made up of a plurality of elongated frame members, and is supported by the body via an anisotropic flexible portion having flexibility,
The anisotropic flexible portion transmits the load of the frame to the body, and is elastically deformed by both lateral and longitudinal forces applied to the frame. Flexibility can be set to different sizes,
The anisotropic flexible portion is composed of a plurality of flexible members spaced apart in the left-right and front-rear directions,
The unmanned aerial vehicle, wherein each flexible member connects the frame and the body in a vertical direction and has flexibility against a force in a horizontal direction.
前記可撓性部材は、ばねであることを特徴とする請求項に記載の無人航空機。 4. The unmanned aerial vehicle of claim 3 , wherein said flexible member is a spring. 前記機体は、撮像装置を有し、
前記撮像装置は、その撮像範囲に前記枠体が入らないように設けられることを特徴とする請求項1乃至請求項のいずれか一項に記載の無人航空機。
The aircraft has an imaging device,
The unmanned aerial vehicle according to any one of claims 1 to 4 , wherein the imaging device is provided so that the frame body does not enter an imaging range of the imaging device.
JP2021010852A 2021-01-27 2021-01-27 unmanned aerial vehicle Active JP7270324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021010852A JP7270324B2 (en) 2021-01-27 2021-01-27 unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021010852A JP7270324B2 (en) 2021-01-27 2021-01-27 unmanned aerial vehicle

Publications (2)

Publication Number Publication Date
JP2022114550A JP2022114550A (en) 2022-08-08
JP7270324B2 true JP7270324B2 (en) 2023-05-10

Family

ID=82747336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021010852A Active JP7270324B2 (en) 2021-01-27 2021-01-27 unmanned aerial vehicle

Country Status (1)

Country Link
JP (1) JP7270324B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131507A1 (en) 2012-11-14 2014-05-15 Arash Kalantari Hybrid aerial and terrestrial vehicle
US8874283B1 (en) 2012-12-04 2014-10-28 United Dynamics Advanced Technologies Corporation Drone for inspection of enclosed space and method thereof
WO2019198393A1 (en) 2018-04-13 2019-10-17 Nok株式会社 Anti-vibration device for unmanned aircraft
JP2019189196A (en) 2018-04-26 2019-10-31 宏介 津留 Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256700B2 (en) * 1989-09-11 2002-02-12 エヌイーシーアメニプランテクス株式会社 Sample protection method and device
JP2018069745A (en) * 2015-03-12 2018-05-10 パナソニックIpマネジメント株式会社 Unmanned flying body
JP6597040B2 (en) * 2015-08-17 2019-10-30 富士通株式会社 Flying machine frame structure, flying machine, how to use flying machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131507A1 (en) 2012-11-14 2014-05-15 Arash Kalantari Hybrid aerial and terrestrial vehicle
US8874283B1 (en) 2012-12-04 2014-10-28 United Dynamics Advanced Technologies Corporation Drone for inspection of enclosed space and method thereof
WO2019198393A1 (en) 2018-04-13 2019-10-17 Nok株式会社 Anti-vibration device for unmanned aircraft
JP2019189196A (en) 2018-04-26 2019-10-31 宏介 津留 Universal head mounted on unmanned aircraft for fixing positional relations between antenna and sensor, and stabilizing posture

Also Published As

Publication number Publication date
JP2022114550A (en) 2022-08-08

Similar Documents

Publication Publication Date Title
JP6693650B2 (en) Protective frame An aircraft that can run on land that can make the aircraft body horizontal independent of the axis tilt
US10710718B2 (en) Personal flight vehicle
EP2813428B1 (en) A vertical take-off and landing aerial vehicle
JP6188950B2 (en) Inertial detection device
US20160001875A1 (en) Vertical take-off and landing aerial vehicle
EP3856631B1 (en) Uav with protective outer cage
WO2017179160A1 (en) Unmanned aircraft vibration-damping structure
CN113260565A (en) Aircraft with decoupled degrees of freedom
US9365294B2 (en) Helicopter transmission mount system
US20150139800A1 (en) Helicopter transmission mount system
EP3194264B1 (en) Anti-vibration load generating aircraft actuation system
JP7244084B2 (en) Electronic parts and aircraft equipped with such electronic parts
JP7270324B2 (en) unmanned aerial vehicle
JP2019217932A (en) Vehicle with protection frame
CN107600444A (en) Three Degree Of Freedom underloading boat, which is taken the photograph, uses stabilized platform
CN116146663A (en) Linear spring vibration isolation system of photoelectric nacelle
US10787264B2 (en) Vibration filter mechanism for arranging between a piece of equipment and an aircraft fuselage, and a seat fitted with such a mechanism
KR20210107791A (en) Instrument mounts, mobile platforms including such instrument mounts, and use of such instrument mounts
WO2023085338A1 (en) Rotary mechanism, aerial vehicle, load attitude control device, and method
WO2022176967A1 (en) Rotary mechanism, flight vehicle, and device and method for controlling attitude of load
JP2020132098A (en) Multicopter
JP2022126001A (en) Rotating mechanism, flight body, attitude control device of loaded object, method
JP7081060B1 (en) Flying object
US11584521B2 (en) Pylon restraint system
WO2023053213A1 (en) Flight vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7270324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150