JP7190103B2 - How to distinguish rice production area - Google Patents

How to distinguish rice production area Download PDF

Info

Publication number
JP7190103B2
JP7190103B2 JP2018164704A JP2018164704A JP7190103B2 JP 7190103 B2 JP7190103 B2 JP 7190103B2 JP 2018164704 A JP2018164704 A JP 2018164704A JP 2018164704 A JP2018164704 A JP 2018164704A JP 7190103 B2 JP7190103 B2 JP 7190103B2
Authority
JP
Japan
Prior art keywords
rice
fluorescence
production area
excitation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164704A
Other languages
Japanese (ja)
Other versions
JP2020038093A (en
Inventor
寿子 久米
侑也 出澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Original Assignee
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp filed Critical Satake Corp
Priority to JP2018164704A priority Critical patent/JP7190103B2/en
Publication of JP2020038093A publication Critical patent/JP2020038093A/en
Application granted granted Critical
Publication of JP7190103B2 publication Critical patent/JP7190103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、励起蛍光マトリクスを用いた米の産地判別方法に関する。 The present invention relates to a method for discriminating rice production regions using an excitation fluorescence matrix.

「農林物資の規格化及び品質表示の適正化に関する法律(JAS法)」において、すべての生鮮食品に原産地表示が義務付けられている。また、食品の産地は消費者の大きな関心ごとであり、特に日本人の主食である米において、産地は品種と同様、価格に影響を与える重要な因子である。さらに、米の産地は今後、米の輸出入によってますます関心が高まるものと思われる。 Under the Law Concerning Standardization and Appropriate Labeling of Agricultural and Forestry Products (JAS Law), all perishable foods must be labeled with the country of origin. In addition, the place of production of food is a matter of great concern to consumers, and in particular, the place of production of rice, which is the staple food of the Japanese, is an important factor that affects the price as well as the variety. Furthermore, rice production areas are expected to gain more and more attention in the future due to the import and export of rice.

ところで、従来、食品の産地判別方法として、励起蛍光マトリクス(Excitation-Emission Matrix:EEM)を用いた産地判別方法が知られており、例えば特許文献1には、スパイス、特に黒こしょうの産地判別の記載がある。励起蛍光マトリクスは、照射する励起波長、及び観測する蛍光波長を所定の範囲内で段階的に変化させながら、試料の蛍光強度を測定することにより得られる、励起波長、蛍光波長、及び、蛍光強度の3次元データよりなる。1種類の励起光を試料に照射して、得られる蛍光スペクトルを解析する通常の蛍光分光法と比べて情報量が多く、わずかな成分の差異をも検出できることから、当該3次元データは各物質について特有のパターンを示す。 By the way, conventionally, as a method for determining the production area of food, a method for determining the production area using an excitation-emission matrix (EEM) is known. There is a description. The excitation fluorescence matrix is the excitation wavelength, fluorescence wavelength, and fluorescence intensity obtained by measuring the fluorescence intensity of the sample while changing the excitation wavelength to be irradiated and the fluorescence wavelength to be observed stepwise within a predetermined range. consists of three-dimensional data of Compared to ordinary fluorescence spectroscopy, which analyzes the fluorescence spectrum obtained by irradiating a sample with one type of excitation light, the amount of information is large and even slight differences in components can be detected. shows a peculiar pattern for

しかしながら、特許文献1には、日本人の主食である米の産地判別についての記載は全くない。そこで、本発明者らは、特許文献1記載の励起蛍光マトリクスを用いた方法で米の産地判別を試みてみたところ、精度のよい励起蛍光マトリクスを得ることができず、米の産地判別を行うことができなった(図5(a)参照)。
そこで、米の産地判別をする際は、煩雑な処理が不要な励起蛍光マトリクスによる方法ではなく、仕方なく、DNA判定や微量元素分析などによる煩雑な処理を要する測定に頼らなければならなかった。
However, Patent Literature 1 does not mention at all how to identify the production area of rice, which is the staple food of the Japanese people. Therefore, the present inventors tried to determine the production area of rice by the method using the excitation fluorescence matrix described in Patent Document 1, but could not obtain a highly accurate excitation fluorescence matrix, and determined the production area of rice. (See Fig. 5(a)).
Therefore, when determining the origin of rice, it was necessary to rely on measurements that require complicated processing such as DNA determination and trace element analysis, rather than methods using excitation fluorescence matrices that do not require complicated processing.

特開2017-036991号公報JP 2017-036991 A

そこで、本発明は上記問題点にかんがみ、煩雑な処理が不要な米の産地判別方法を提供することを技術的課題とする。 Therefore, in view of the above problems, it is a technical object of the present invention to provide a rice production area discriminating method that does not require complicated processing.

上記課題を解決するため本発明の米の産地判別方法は、蛍光分光光度計により米の励起蛍光マトリクスを得る工程と、得られた励起蛍光マトリクスを解析処理する工程とを備え、前記解析処理する工程にて解析処理したデータに基づいて米の産地判別を行う米の産地判別方法において、前記励起蛍光マトリクスを得る工程の前段には、米を粉砕して粉砕米を得る工程と、前記粉砕米を静置する水分均質化工程と、を備えた前処理工程を設け、前記水分均質工程は、加湿することで前記粉砕米の水分値を調整し、その水分値のばらつきを0.24パーセント以下に抑えるという技術的手段を講じた。
In order to solve the above- mentioned problems, the rice production area discrimination method of the present invention comprises the steps of obtaining an excitation fluorescence matrix of rice with a fluorescence spectrophotometer, and analyzing the obtained excitation fluorescence matrix. In the rice production area determination method for determining the rice production area based on the data analyzed in the step, the step of obtaining the excitation fluorescence matrix is preceded by the step of pulverizing rice to obtain pulverized rice, and the pulverized rice. and a moisture homogenization step of leaving the rice to stand still, and the moisture homogenization step adjusts the moisture value of the pulverized rice by humidifying, and reduces the variation of the moisture value to 0.24%. We have taken technical measures to reduce it to the following.

請求項記載の発明によれば、前記米は、精白米であることを特徴とする。
According to the invention of claim 2 , the rice is polished rice.

本発明の米の産地判別方法によれば、蛍光分光光度計により米の励起蛍光マトリクスを得る工程と、得られた励起蛍光マトリクスを解析処理する工程とを備え、前記解析処理する工程にて解析処理したデータに基づいて米の産地判別を行う米の産地判別方法において、前記励起蛍光マトリクスを得る工程の前段には、米を粉砕して粉砕米を得る工程と、前記粉砕米を静置する水分均質化工程とを備えた前処理工程を備えたので、前記米の水分を均一化することができ、精度の良い励起蛍光マトリクスを得ることができる。このため、煩雑な前処理が不要で、簡単な操作で米の産地判別することができる。 According to the rice production area determination method of the present invention, the step of obtaining the excitation fluorescence matrix of rice with a fluorescence spectrophotometer and the step of analyzing the obtained excitation fluorescence matrix are provided. In the method for determining the production area of rice for determining the production area of rice based on the processed data, the step of obtaining the excitation fluorescence matrix is preceded by the step of pulverizing the rice to obtain pulverized rice, and allowing the pulverized rice to stand still. Since the pretreatment step including the water homogenization step is provided, the water content of the rice can be made uniform, and an excited fluorescence matrix can be obtained with high precision. Therefore, no complicated pretreatment is required, and the country of origin of rice can be determined with a simple operation.

また、水分均質化工程を設け、粉砕米の水分値のばらつきを0.24パーセント以下としたので、米の水分値のばらつきに起因する励起蛍光マトリクスのばらつきを減少させることができる。このため、より精度の高い産地判別方法を提供できる。
In addition, a moisture homogenization process is provided to reduce the variation in the moisture content of the pulverized rice to 0.00%. Since it is set to 24 % or less, it is possible to reduce variations in excitation fluorescence matrix due to variations in moisture content of rice. Therefore, it is possible to provide a more accurate locality determination method.

また、測定試料には、籾や玄米よりも蛍光物質が多く、測定の際、蛍光シグナルが強く表れる精白米としたので、産地ごとの励起蛍光マトリクスの特徴が顕著に表れる。このため、産地をより容易に判別することができるようになる。
さらに、精白米であれば、産地判別をより消費者に近い現場(精米工場など)で使用することができる。このため、産地情報を消費者によりタイムリーに提供することができる。
In addition, since the measurement sample contains more fluorescent substances than paddy or brown rice, and the polished rice that produces a strong fluorescence signal is used for the measurement, the characteristics of the excitation fluorescence matrix for each production area can be clearly seen. Therefore, it becomes possible to more easily determine the place of production.
Furthermore, in the case of polished rice, production area discrimination can be used at sites (rice milling factories, etc.) closer to consumers. For this reason, it is possible to provide consumers with timely production area information.

蛍光分光光度計の概略斜視図である。1 is a schematic perspective view of a fluorescence spectrophotometer; FIG. 蛍光分光光度計の光学部概略図である。It is the optical part schematic of a fluorescence spectrophotometer. 前処理装置である。It is a pretreatment device. 励起蛍光マトリクスの一例である。An example of an excitation fluorescence matrix. 産地判別結果図である。It is a production center discrimination|determination result figure. 水分均質化工程前後における米の水分の値である(平均値や標準偏差など)。Moisture value of rice before and after the moisture homogenization process (average value, standard deviation, etc.).

本発明を実施するための形態を図面を参照しながら説明する。
図1は、蛍光分光光度計の概略斜視図であり、図2は、蛍光分光光度計の光学部概略図であり、図3は、前処理装置であり、図4は、励起蛍光マトリクスの一例であり、図5は、産地判別結果図であり、図6は、水分均質化工程前後における米の水分の値である(平均値や標準偏差など)。
A mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view of a fluorescence spectrophotometer, FIG. 2 is a schematic diagram of an optical part of the fluorescence spectrophotometer, FIG. 3 is a pretreatment device, and FIG. 4 is an example of an excitation fluorescence matrix. and FIG. 5 is a diagram showing the result of production area discrimination, and FIG. 6 shows the moisture values of rice before and after the moisture homogenization process (average value, standard deviation, etc.).

図1は、本発明で使用する蛍光分光光度計1である。図1(a)は、測定部カバー3を閉じたもの、図1(b)は、被測定物(図示せず)を測定部4に配置できるように、測定部カバー3を開いたものである。
蛍光分光光度計1は、ケーブル(図示せず)によってコンピュータ(図1では図示せず)に接続され、該コンピュータを通じて、蛍光分光光度計1の設定変更、測定命令、結果表示などが行われる。
なお、本発明における蛍光分光光度計1は、一般的なものを使用すればよい。
FIG. 1 is a fluorescence spectrophotometer 1 used in the present invention. FIG. 1(a) shows the measurement part cover 3 closed, and FIG. 1(b) shows the measurement part cover 3 opened so that the object to be measured (not shown) can be placed on the measurement part 4 be.
The fluorescence spectrophotometer 1 is connected to a computer (not shown in FIG. 1) by a cable (not shown), and through the computer, the setting change of the fluorescence spectrophotometer 1, the measurement command, the result display, etc. are performed.
Note that a general one may be used as the fluorescence spectrophotometer 1 in the present invention.

図2は、蛍光分光光度計の光学部概略図である。
光源5から照射された励起光は励起側分光器6にて目的の波長のみを通過後、ハーフミラー7にて、試料ボックス8とリファレンス用に分光される。試料ボックス8側へ照射される励起光は試料ボックス8内の試料により励起され、この励起光の蛍光発光を蛍光側分光器9で分光後、蛍光検出器10bにて蛍光強度を測定する。その測定結果は、コンピュータ11に出力される。一方、ハーフミラー7にてリファレンス側へと分岐された励起光は、そのまま蛍光検出器10aにて測定され、コンピュータ11に出力されリファレンスとして使用される。
なお、矢印は励起光又は蛍光の流れを示している。リファレンスは必ずしも必要ではなく、ハーフミラー7を用いていない蛍光分光光度計であってもよい。また、試料ボックス8は、積分球(図示せず)を使用してもよい。
FIG. 2 is a schematic diagram of the optics of a fluorescence spectrophotometer.
The excitation light emitted from the light source 5 passes only the target wavelength through the excitation side spectroscope 6, and then is separated by the half mirror 7 into the sample box 8 and for reference. The excitation light irradiated to the sample box 8 side is excited by the sample in the sample box 8, and the fluorescence emission of this excitation light is spectroscopically separated by the fluorescence side spectroscope 9, and the fluorescence intensity is measured by the fluorescence detector 10b. The measurement results are output to the computer 11 . On the other hand, the excitation light branched to the reference side by the half mirror 7 is directly measured by the fluorescence detector 10a, output to the computer 11, and used as a reference.
Arrows indicate the flow of excitation light or fluorescence. A reference is not necessarily required, and a fluorescence spectrophotometer that does not use the half mirror 7 may be used. Also, the sample box 8 may use an integrating sphere (not shown).

図3は、本発明における前処理の様子を示したものである。
本発明の要部は、試料の水分のばらつきを抑えることである。そこで、粉砕した試料Sをシャーレ13に入れて、温度及び湿度を一定に維持することができる恒温槽12内に試料Sを挿入し、一定時間、例えば48時間以上、静置(水分均質化)する。
例えば、試料を乾燥させて水分のばらつきを抑えたい場合、恒温槽12として、デシケータを使用すればよい。
逆に、試料を加湿させて水分のばらつきを抑えたい場合、恒温槽12として、加湿器を使用すればよい。
どちらの場合も、恒温槽12の温度及び湿度は適宜調整すればよい。
なお、加湿器を使ったとしても、粉砕により米中の水分が蒸発するため、静置前の米の水分値よりも高くなるとは限らない。
FIG. 3 shows the state of pretreatment in the present invention.
A key part of the present invention is to reduce the variation in sample moisture. Therefore, the pulverized sample S is placed in a petri dish 13, the sample S is inserted in a constant temperature bath 12 that can maintain constant temperature and humidity, and left to stand for a certain period of time, for example, 48 hours or more (moisture homogenization). do.
For example, a desiccator may be used as the constant temperature bath 12 when it is desired to dry the sample to suppress variations in moisture content.
Conversely, if it is desired to humidify the sample to suppress variations in moisture content, a humidifier may be used as the constant temperature bath 12 .
In either case, the temperature and humidity of the constant temperature bath 12 may be adjusted as appropriate.
Note that even if a humidifier is used, the water content in the rice evaporates during the pulverization, so the water content may not always be higher than the water content of the rice before standing.

図4は、蛍光分光光度計で、試料(粉砕した米)を測定した際に得られる3次元蛍光スペクトル図である。縦軸に励起波長(nm)、横軸に蛍光波長(nm)をとり、等高線表示は蛍光強度を示している。
例えば、本3次元蛍光スペクトルでは、励起波長370nm、蛍光波長465nmにて大きなピークを示している。図4に示すように、蛍光分光光度計を用いると、励起蛍光マトリクスデータ、つまり3次元の莫大なデータを得ることができる。そして、これら莫大なデータを解析することで、より精度の高い判別方法を提供することが可能となる。
FIG. 4 is a three-dimensional fluorescence spectrum diagram obtained when measuring a sample (crushed rice) with a fluorescence spectrophotometer. The vertical axis represents the excitation wavelength (nm), the horizontal axis represents the fluorescence wavelength (nm), and the contour lines indicate the fluorescence intensity.
For example, this three-dimensional fluorescence spectrum shows large peaks at an excitation wavelength of 370 nm and a fluorescence wavelength of 465 nm. As shown in FIG. 4, a fluorescence spectrophotometer can be used to obtain excitation-fluorescence matrix data, ie, three-dimensional enormous data. By analyzing such huge amount of data, it becomes possible to provide a discrimination method with higher accuracy.

本発明の米の産地判別方法の実施例を説明する。
まず、既知の産地の米を用いて、産地別に米がどのような蛍光分布特性(励起蛍光マトリクス)を示すかを求めた。
(1)試料
国内産、中国産、タイ国産、米国産の白米(歩留まり約90パーセント)を用意し、各国ごとに4乃至6種類(品種)の試料を用意した。
(2)前処理
各試料30gを1分間ミルで粉砕後、5gずつシャーレ13に入れ、前記シャーレ13に入れた試料Sを恒温槽12に入れて静置(水分均質化)した。なお、恒温槽12内には複数の試料Sを同時に入れてもよく、例えば、同じ試料を予備として保管してもよい。
本実施例では48時間以上静置することで水分値のばらつきが小さくなることを確認した。一方で、もともとの試料の水分値のばらつきが小さい場合であれば、これより短い時間、例えば一晩静置することでもよい。
また、ばらつきが小さくなったか否かを判断するため、継時的に米の水分値を測定するという作業は不要である。例えば、48時間以上静置すれば、ばらつきが十分小さくなるという知見をもとに、判断すればよい。
(3)試料の測定
市販の蛍光分光光度計を用いて前記各試料の3次元蛍光スペクトルを得た。主な設定項目は、セルは合成石英セルを使用し、励起波長及び蛍光波長の範囲はともに200乃至600nmとした。ただし、波長幅は励起側が10nmなのに対し、蛍光側は5nmとした。測定時間は、1試料あたり約2分で測定でき、測定モードは3次元とした。
なお、上記設定は、あくまで一例であり、使用する蛍光分光光度計のメーカや機種によって適宜変更することは可能である。
(4)解析及び検量線の作成
得られた3次元蛍光スペクトルを、各国ごとの試料間の特性が最も顕著に表れるように多変量分析により解析を行った。
より具体的には、SAS institute社製のデータ分析ソフトウェアJMP12(登録商標)を用い、ステップワイズ変数選択(F値>3)により、F値の大きいものから順に変数として取り込み解析を行った。
(5)検量線(判別式)の作成
上記解析によって、最も産地を区別できる検量線を作成した。
本発明では、試料を乾燥させて水分のばらつきを抑えた場合の検量線と、試料を加湿させて水分のばらつきを抑えた場合の検量線の2種類を作成した。
なお、水分値ごとにさらに細かく検量線を作成してもよい。たとえば水分値を1パーセント刻みで検量線を作成し、産地未知の米の産地判別時に、該米の水分値に最も近い検量線を使って、産地判別をすることもできる。
(6)検量線の品質確認
上記検量線の品質を確認した。
図5は、産地判別結果図である。分かりやすいように2次元散布図により各国産の試料の分布状態を表している。
図5(a)は、従来の方法であり、水分値のばらつきを調整しなかったため、米国産以外は、産地ごとの判別ができていない。一方、図5(b)及び図5(c)は、本発明の方法であり、水分のばらつきを調整したため、産地ごとの判別の精度が高まっていることが示されている。なお、図5(b)は乾燥により水分値を調整したものであり、図5(c)は加湿により水分値を調整したものである。加湿によって水分値を調整した方が、水分値のばらつきがより少なかったため、産地判別をより明確にすることができたものと思われる。
An embodiment of the rice production area discrimination method of the present invention will be described.
First, the fluorescence distribution characteristics (excitation fluorescence matrix) of the rice were obtained by using rice from known production areas.
(1) Samples Domestic, Chinese, Thai, and US white rice (yield: about 90%) was prepared, and 4 to 6 types (varieties) of samples were prepared for each country.
(2) Pretreatment After 30 g of each sample was pulverized with a mill for 1 minute, 5 g of each sample was placed in a petri dish 13, and the sample S placed in the petri dish 13 was placed in a constant temperature bath 12 and allowed to stand (moisture homogenization). A plurality of samples S may be put into the constant temperature bath 12 at the same time, and for example, the same sample may be stored as a spare.
In the present example, it was confirmed that the dispersion of the moisture value was reduced by allowing to stand still for 48 hours or longer. On the other hand, if the variation in the moisture content of the original sample is small, the sample may be allowed to stand for a shorter period of time, such as overnight.
In addition, it is not necessary to measure the water content of rice over time in order to determine whether the variation has decreased. For example, the judgment can be made based on the finding that the variation is sufficiently reduced if left to stand for 48 hours or longer.
(3) Measurement of samples Using a commercially available fluorescence spectrophotometer, the three-dimensional fluorescence spectrum of each sample was obtained. Main setting items were that the cell used was a synthetic quartz cell, and the range of excitation wavelength and fluorescence wavelength was set to 200 to 600 nm. However, the wavelength width was 10 nm on the excitation side and 5 nm on the fluorescence side. The measurement time was about 2 minutes per sample, and the measurement mode was three-dimensional.
Note that the above setting is merely an example, and can be changed as appropriate depending on the manufacturer and model of the fluorescence spectrophotometer used.
(4) Analysis and Preparation of Calibration Curves The obtained three-dimensional fluorescence spectra were analyzed by multivariate analysis so that the characteristics between samples in each country would be most conspicuous.
More specifically, data analysis software JMP12 (registered trademark) manufactured by SAS Institute was used to perform stepwise variable selection (F value > 3), and incorporation analysis was performed as variables in descending order of F value.
(5) Preparation of calibration curve (discriminant) By the above analysis, a calibration curve that can best discriminate production areas was prepared.
In the present invention, two types of calibration curves were prepared: one for the case where the sample was dried to suppress variation in moisture content, and the other for the case where the sample was humidified to suppress variation in moisture content.
A more detailed calibration curve may be created for each moisture value. For example, it is possible to create a calibration curve with moisture values in increments of 1%, and use the calibration curve that is closest to the moisture value of the rice when determining the production area of rice whose production area is unknown.
(6) Quality check of calibration curve The quality of the calibration curve was checked.
FIG. 5 is a diagram showing the results of production area discrimination. To make it easier to understand, a two-dimensional scatter diagram shows the distribution of samples from each country.
Fig. 5(a) is a conventional method, and since the variation in moisture content was not adjusted, it was not possible to discriminate by production area except for those produced in the United States. On the other hand, FIGS. 5(b) and 5(c) show that the method of the present invention improves the accuracy of discrimination for each production area because the variation in water content is adjusted. In addition, FIG.5(b) adjusts a moisture value by drying, FIG.5(c) adjusts a moisture value by humidification. Adjusting the moisture content by humidification resulted in less variation in the moisture content, which is thought to have made it possible to more clearly identify the production area.

図6は、水分均質化工程により米の水分値がどのように変化したかを示す表である。表中、『静置後1』はデシケータにより乾燥させた場合、『静置後2』は加湿器により加湿した場合の値である。
デシケータによる乾燥、又は加湿器による加湿により、静置後の米の水分値が変わるのは当然であるが、水分のばらつき(標準偏差)が小さくなっていることが分かる。なお、図6の静置後の水分値は例示であり、ばらつきが一定の値以下になればよい。特に、本試験のように、0.37パーセント以下となれば、産地を十分に判別することが可能となる。
(7)検量線の追加データ
必要に応じて、本発明では使用していない産地の国(例えば韓国)の米を追加してもよい。この場合、必要に応じて、検量線の再検討を行う。
FIG. 6 is a table showing how the water content of rice changed due to the water homogenization process. In the table, "1 after stationary" is the value when drying with a desiccator, and "2 after stationary" is the value when humidifying with a humidifier.
Although it is natural that the water content of the rice after standing changes due to drying with a desiccator or humidification with a humidifier, it can be seen that the variation (standard deviation) of the water content is reduced. Note that the water content values after standing in FIG. 6 are examples, and it is sufficient if the variation is less than or equal to a certain value. In particular, as in this test, if the concentration is 0.37% or less, it becomes possible to sufficiently distinguish the place of production.
(7) Additional Data for Calibration Curve If necessary, rice from a country of origin not used in the present invention (for example, Korea) may be added. In this case, reexamine the calibration curve as necessary.

本発明では、水分値を均一化することが要部であるが、その際、何パーセントの水分値にするというよりも、試料間の水分のばらつきを小さくすることに重きを置いている。そのため、米の水分の平均値は特に重要ではない。しかし、試料を乾燥又は加湿しすぎると、時間及びエネルギーの無駄となったり、試料の痛みの原因や操作性の劣化となったりするので、適度な水分値にすることが望ましい。 In the present invention, uniformity of the moisture content is the essential part, but in this case, the emphasis is placed on reducing variations in moisture content between samples, rather than on the percentage of the moisture content. Therefore, the average moisture content of rice is not particularly important. However, excessive drying or humidification of the sample wastes time and energy, causes damage to the sample, and deteriorates operability.

水分均質化工程後の米の平均水分値は、水分均質化工程前と同じでも、高くても、低くてもよい。つまり、ばらつきが一定の範囲内に収まるのであればよい。
本試験では、国単位で産地判別を行ったが、例えば、日本国内の東日本産、西日本産のように、一つの国を細分化することも可能である。
The average moisture value of the rice after the moisture homogenization process may be the same as before the moisture homogenization process, higher or lower. In other words, it suffices if the variation falls within a certain range.
In this test, the production area was discriminated by country, but it is also possible to subdivide one country, for example, like East Japan production and West Japan production.

本発明は、上記実施の形態に限らず発明の範囲を逸脱しない限りにおいてその構成を適宜変更できることはいうまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and its configuration can be changed as appropriate without departing from the scope of the invention.

本発明の産地判別方法は、煩雑な処理が不要な米の産地判別方法を提供することができるので、非常に有用なものである。 INDUSTRIAL APPLICABILITY The method of the present invention for determining the production area of rice is very useful because it can provide a method for determining the production area of rice that does not require complicated processing.

1 蛍光分光光度計
2 本体
3 測定部カバー
4 測定部
5 光源
6 励起側分光器
7 ハーフミラー
8 試料ボックス
9 蛍光側分光器
10 蛍光検出器
11 コンピュータ
12 恒温槽(デシケータ/加湿器)
13 シャーレ
S 試料(米、米粉、玄米、白米)

1 fluorescence spectrophotometer 2 main body 3 measurement part cover 4 measurement part 5 light source 6 excitation side spectroscope 7 half mirror 8 sample box 9 fluorescence side spectroscope 10 fluorescence detector 11 computer 12 constant temperature bath (desiccator/humidifier)
13 Petri dish S Sample (rice, rice flour, brown rice, white rice)

Claims (2)

蛍光分光光度計により米の励起蛍光マトリクスを得る工程と、得られた励起蛍光マトリクスを解析処理する工程とを備え、
前記解析処理する工程にて解析処理したデータに基づいて米の産地判別を行う米の産地判別方法において、
前記励起蛍光マトリクスを得る工程の前段には、
米を粉砕して粉砕米を得る工程と、
前記粉砕米を静置する水分均質化工程と、
を備えた前処理工程を設け、
前記水分均質工程は、加湿することで前記粉砕米の水分値を調整し、その水分値のばらつきを0.24パーセント以下に抑えることを特徴とする米の産地判別方法。
A step of obtaining an excitation fluorescence matrix of rice with a fluorescence spectrophotometer, and a step of analyzing the obtained excitation fluorescence matrix,
In the rice production area determination method for determining the rice production area based on the data analyzed in the analysis process,
Before the step of obtaining the excitation fluorescence matrix,
a step of pulverizing rice to obtain pulverized rice;
a water homogenization step of leaving the pulverized rice still;
providing a pretreatment step comprising
The water homogenization step adjusts the water content of the pulverized rice by moistening, and suppresses the variation of the water content to 0.24% or less.
前記米は、精白米であることを特徴とする請求項1に記載の米の産地判別方法。 2. The method of determining a production area of rice according to claim 1, wherein the rice is milled rice.
JP2018164704A 2018-09-03 2018-09-03 How to distinguish rice production area Active JP7190103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164704A JP7190103B2 (en) 2018-09-03 2018-09-03 How to distinguish rice production area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164704A JP7190103B2 (en) 2018-09-03 2018-09-03 How to distinguish rice production area

Publications (2)

Publication Number Publication Date
JP2020038093A JP2020038093A (en) 2020-03-12
JP7190103B2 true JP7190103B2 (en) 2022-12-15

Family

ID=69737824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164704A Active JP7190103B2 (en) 2018-09-03 2018-09-03 How to distinguish rice production area

Country Status (1)

Country Link
JP (1) JP7190103B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298123A (en) 1999-04-13 2000-10-24 Bio Oriented Technol Res Advancement Inst Variety decision method for unpolished rice
JP2003139706A (en) 2001-10-31 2003-05-14 Satake Corp Method and device for evaluating quality of wash-free rice
JP2006177916A (en) 2004-12-20 2006-07-06 Toyo Univ Two-dimensional inspecting method of polished rice
JP2010185719A (en) 2009-02-10 2010-08-26 National Agriculture & Food Research Organization Method and apparatus for discriminating grain flour
JP2010266380A (en) 2009-05-15 2010-11-25 National Agriculture & Food Research Organization Component distribution analysis method and component distribution analyzer
JP2014041165A (en) 2013-12-06 2014-03-06 Visionbio Corp Method for determining production area of rice
JP2017036991A (en) 2015-08-10 2017-02-16 ハウス食品グループ本社株式会社 Method for discriminating production region of spice by excitation-emission matrix analysis
CN106525787A (en) 2016-10-21 2017-03-22 中国科学院植物研究所 Solid starch three-dimensional fluorescent fingerprint construction method
JP2018100834A (en) 2016-12-19 2018-06-28 日本電信電話株式会社 Method and system for estimating rice production place
US20180202938A1 (en) 2010-11-05 2018-07-19 Hoffmann-La Roche Inc. Spectroscopic finger-printing of raw materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298123A (en) 1999-04-13 2000-10-24 Bio Oriented Technol Res Advancement Inst Variety decision method for unpolished rice
JP2003139706A (en) 2001-10-31 2003-05-14 Satake Corp Method and device for evaluating quality of wash-free rice
JP2006177916A (en) 2004-12-20 2006-07-06 Toyo Univ Two-dimensional inspecting method of polished rice
JP2010185719A (en) 2009-02-10 2010-08-26 National Agriculture & Food Research Organization Method and apparatus for discriminating grain flour
JP2010266380A (en) 2009-05-15 2010-11-25 National Agriculture & Food Research Organization Component distribution analysis method and component distribution analyzer
US20180202938A1 (en) 2010-11-05 2018-07-19 Hoffmann-La Roche Inc. Spectroscopic finger-printing of raw materials
JP2014041165A (en) 2013-12-06 2014-03-06 Visionbio Corp Method for determining production area of rice
JP2017036991A (en) 2015-08-10 2017-02-16 ハウス食品グループ本社株式会社 Method for discriminating production region of spice by excitation-emission matrix analysis
CN106525787A (en) 2016-10-21 2017-03-22 中国科学院植物研究所 Solid starch three-dimensional fluorescent fingerprint construction method
JP2018100834A (en) 2016-12-19 2018-06-28 日本電信電話株式会社 Method and system for estimating rice production place

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
前原 峰雄 ほか,励起・蛍光マトリクスを用いた米の簡易産地判別法の検討,日本分析化学会第66年会 講演要旨集,2017年09月09日,B3008
高津 地志 ほか,励起蛍光マトリクスを用いた玄米の非破壊品質評価の検討,近畿大学次世代基盤技術研究報告書,2017年,Vol.8,61-68

Also Published As

Publication number Publication date
JP2020038093A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
Sandak et al. Assessing trees, wood and derived products with near infrared spectroscopy: hints and tips
Mu et al. Portable detection and quantification of olive oil adulteration by 473-nm laser-induced fluorescence
Jiang et al. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.)
Temma et al. Development of a portable near infrared sugar-measuring instrument
Sha et al. Evaluation of sample pretreatment method for geographic authentication of rice using Raman spectroscopy
Suciu et al. Application of fluorescence spectroscopy using classical right angle technique in white wines classification
CN106290292A (en) A kind of utilize the method for carotenoid content in copolymerization Jiao's microscopic Raman detection Folium Camelliae sinensis
Zhang et al. Laser perturbation two‐dimensional correlation Raman spectroscopy for quality control of bovine colostrum products
Wei et al. Identification of soybean origin by terahertz spectroscopy and chemometrics
Stavrakakis et al. Application of optical spectroscopic techniques and multivariate statistical analysis as a method of determining the percentage and type of adulteration of extra virgin olive oil
JP7190103B2 (en) How to distinguish rice production area
Kostryukov et al. Determination of lignin, cellulose, and hemicellulose in plant materials by FTIR spectroscopy
McTiernan et al. Use of near-infrared reflectance spectroscopy (NIRS) in palaeoecological studies of peat
Yahaya et al. Visible spectroscopy calibration transfer model in determining pH of Sala mangoes
Novaes¹ et al. Discrimination of amazonian forest species by NIR spectroscopy: wood surface effects
Missori et al. Optical reflectance spectroscopy of ancient papers with discoloration or foxing
Yi et al. Improved kernel entropy composition analysis method for transgenic cotton seeds recognition based on terahertz spectroscopy
Menesatti et al. Spectrophotometric qualification of Italian pasta produced by traditional or industrial production parameters
Shen et al. Evaluation of near‐infrared and mid‐infrared spectroscopy for the determination of routine parameters in Chinese rice wine
CN113092403B (en) Terahertz spectrum qualitative detection method for textile material of school uniform for students
Cui et al. Hyperspectral reflectance imaging for water content and firmness prediction of potatoes by optimum wavelengths
Ma et al. Fit-free analysis of fluorescence lifetime imaging data using chemometrics approach for rapid and nondestructive wood species classification
Yan et al. Simultaneous determination of antioxidant properties and total phenolic content of Siraitia grosvenorii by near infrared spectroscopy
Srikham et al. Milling quality assessment of Khao Dok Mali 105 milled rice by near-infrared reflectance spectroscopy technique
Kim et al. Accurate determination of polyethylene pellet density using transmission Raman spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R150 Certificate of patent or registration of utility model

Ref document number: 7190103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150