JP7185241B1 - Reflected light distribution measuring device and method - Google Patents

Reflected light distribution measuring device and method Download PDF

Info

Publication number
JP7185241B1
JP7185241B1 JP2021139043A JP2021139043A JP7185241B1 JP 7185241 B1 JP7185241 B1 JP 7185241B1 JP 2021139043 A JP2021139043 A JP 2021139043A JP 2021139043 A JP2021139043 A JP 2021139043A JP 7185241 B1 JP7185241 B1 JP 7185241B1
Authority
JP
Japan
Prior art keywords
light
measured
point
spherical surface
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021139043A
Other languages
Japanese (ja)
Other versions
JP2023032744A (en
Inventor
信一 井上
徳道 津村
美範 五十嵐
武幸 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Central Motor Wheel Co Ltd
Original Assignee
Chiba University NUC
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Central Motor Wheel Co Ltd filed Critical Chiba University NUC
Priority to JP2021139043A priority Critical patent/JP7185241B1/en
Application granted granted Critical
Publication of JP7185241B1 publication Critical patent/JP7185241B1/en
Publication of JP2023032744A publication Critical patent/JP2023032744A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】 被測定面が曲面である場合にも高精度にBRDF等を測定できる反射光分布測定装置及び方法を提供する。【解決手段】 反射光分布測定装置11は、投光側光学系20と受光側光学系30と測定部40とを備えている。投光側光学系20は、点光源21の点像から収束光22を生成し、収束光22を被測定球面50の焦点51に集光するように被測定球面50へ照射する。受光側光学系30は、被測定球面50で反射した平行光31を受光側コリメータレンズ32で受光して結像させ点像に戻す。測定部40は、結像した点像の光量分布を測定する。【選択図】図1A reflected light distribution measuring apparatus and method capable of measuring BRDF and the like with high accuracy even when a surface to be measured is curved is provided. SOLUTION: A reflected light distribution measuring device 11 includes a light projecting side optical system 20, a light receiving side optical system 30, and a measuring section 40. The projection-side optical system 20 generates convergent light 22 from a point image of a point light source 21 and irradiates the spherical surface 50 to be measured so that the convergent light 22 is condensed at a focal point 51 of the spherical surface 50 to be measured. In the light-receiving-side optical system 30, the parallel light 31 reflected by the spherical surface 50 to be measured is received by the light-receiving-side collimator lens 32, formed into an image, and returned to a point image. The measurement unit 40 measures the light intensity distribution of the formed point image. [Selection drawing] Fig. 1

Description

本発明は、被測定面から戻ってきた反射光について光量分布などを測定する反射光分布測定装置及び方法に関する。 The present invention relates to a reflected light distribution measuring apparatus and method for measuring the light intensity distribution of reflected light returned from a surface to be measured.

被測定面の角度を測定するオートコリメータは、平行光を投光し被測定面で反射した反射光をコリメータ光学系で点像とし、その点像の位置から被測定面の角度を測定する構成である。その被測定面には、平面でかつ鏡面反射の強い物体、一般的にはミラーが使われている。 An autocollimator for measuring the angle of a surface to be measured projects a collimated light and converts the light reflected by the surface to be measured into a point image with a collimator optical system, and measures the angle of the surface to be measured from the position of the point image. is. A flat object with strong specular reflection, generally a mirror, is used as the surface to be measured.

また、コリメータ光学系を用いて、物体の反射光の角度分布であるBRDF(Bidirectional Reflectance Distribution Function)を測定する技術は、本発明者により開示されている(特許文献1)。 Also, the inventor of the present invention has disclosed a technique for measuring a BRDF (Bidirectional Reflectance Distribution Function), which is the angular distribution of reflected light from an object, using a collimator optical system (Patent Document 1).

このBRDFとは、双方向反射率分布関数とも呼ばれる反射モデルの一つであり、反射表面上の点において、光がある方向から入射したとき他の方向へどれだけ反射されるか、を表す関数である。コンピュータグラフィックスの分野において、物体表面の質感を向上させるために、BRDFの情報は今後ますます重要になる。 This BRDF is one of the reflection models, also called the bidirectional reflectance distribution function, and is a function that expresses how much light is reflected in another direction when it is incident from one direction at a point on the reflective surface. is. In the field of computer graphics, BRDF information will become more and more important in order to improve the texture of the surface of an object.

特許5204723号公報「点像の鏡面反射光分布測定方法および測定装置」Japanese Patent No. 5204723 "Point image specular reflection light distribution measuring method and measuring apparatus"

しかしながら、コリメータ光学系を用いて物体のBRDFを測定する技術では、平面に対しては高精度な測定結果が得られるものの、曲面に対しては測定精度が落ちるという問題があった。特にコンピュータグラフィックスで表示したい対象(例えば工業製品や美術品等)は曲面で構成されている場合が多いため、曲面でも高精度にBRDFを測定できる技術が待望されている。 However, in the technique of measuring the BRDF of an object using a collimator optical system, there is a problem that although a highly accurate measurement result can be obtained for a flat surface, the measurement accuracy for a curved surface decreases. In particular, objects to be displayed by computer graphics (for example, industrial products, works of art, etc.) are often composed of curved surfaces, so there is a long-awaited technology that can measure BRDF even on curved surfaces with high accuracy.

そこで、本発明の目的は、被測定面が曲面である場合にも高精度にBRDF等を測定できる反射光分布測定装置及び方法を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a reflected light distribution measuring apparatus and method capable of measuring BRDF and the like with high precision even when the surface to be measured is curved.

本発明者は、上記従来技術において曲面の測定精度が落ちる理由について、実験及び考察を繰り返したところ、照射された平行光が曲面で反射して広がってしまい、反射光が平行光にならないことをつきとめた。本発明はこの知見に基づきなされたものである。 As a result of repeated experiments and considerations, the inventors of the present invention found that the incident parallel light is reflected by the curved surface and spreads, and the reflected light does not become parallel light. I found it. The present invention is made based on this finding.

すなわち、本発明に係る反射光分布測定装置は、
点光源の点像から収束光を生成し、前記収束光を被測定球面の焦点に集光するように前記被測定球面へ照射する投光側光学系と、
前記被測定球面で反射した平行光を受光側コリメータレンズで受光して結像させ点像に戻す受光側光学系と、
前記結像した点像の光量分布を測定する測定部と、
を備えた装置である。
That is, the reflected light distribution measuring device according to the present invention is
a projection-side optical system that generates convergent light from a point image of a point light source and irradiates the spherical surface to be measured with the converged light so that the convergent light is condensed at the focal point of the spherical surface to be measured;
a light-receiving-side optical system that receives the collimated light reflected by the spherical surface to be measured by a light-receiving-side collimator lens, forms an image, and returns the collimated light to a point image;
a measurement unit that measures the light amount distribution of the formed point image;
It is a device with

そして、本発明に係る反射光分布測定方法は、
投光側光学系によって、点光源の点像から収束光を生成し、前記収束光を被測定球面の焦点に集光するように前記被測定球面へ照射し、
受光側光学系によって、前記被測定球面で反射した平行光をコリメータレンズで受光して結像させ点像に戻し、
測定部によって、前記結像した点像の光量分布を測定する、
方法である。
And the reflected light distribution measuring method according to the present invention includes:
generating convergent light from a point image of a point light source by the projection-side optical system, and irradiating the spherical surface to be measured so that the convergent light is focused on the focal point of the spherical surface to be measured;
The collimator lens receives the parallel light reflected by the spherical surface to be measured by the light-receiving-side optical system, forms an image, and returns it to a point image;
measuring the light intensity distribution of the formed point image by a measurement unit;
The method.

本発明によれば、被測定面を曲面から球面に近似し、収束光を被測定球面の焦点に集光するように被測定球面へ照射することにより、被測定球面からの反射光が平行光になるので、コリメータレンズで精度よく点像に戻すことができ、被測定面が曲面である場合にも高精度にBRDF等を測定できる。 According to the present invention, the surface to be measured is approximated from a curved surface to a spherical surface, and the spherical surface to be measured is irradiated with convergent light so as to converge on the focal point of the spherical surface to be measured. Therefore, the collimator lens can be used to restore the point image with high accuracy, and even when the surface to be measured is curved, the BRDF and the like can be measured with high accuracy.

実施形態1の反射光分布測定装置を示す構成図である。1 is a configuration diagram showing a reflected light distribution measuring device of Embodiment 1. FIG. 図1の一部を拡大して示す部分拡大図である。FIG. 2 is a partially enlarged view showing an enlarged part of FIG. 1; 光軸方向の原点から点光源までの距離と投光側コリメータレンズから収束光の集光点までの距離(光路長)との関係について、一例を示すグラフである。7 is a graph showing an example of the relationship between the distance from the origin in the optical axis direction to the point light source and the distance (optical path length) from the projection-side collimator lens to the condensing point of the converging light. 実施形態1における凸面の測定原理を示す概念図である。4 is a conceptual diagram showing the measurement principle of a convex surface in Embodiment 1. FIG. 実施形態1における凹面の測定原理を示す概念図である。4 is a conceptual diagram showing the measurement principle of a concave surface in Embodiment 1. FIG. 実施形態2の反射光分布測定装置を示す構成図である。FIG. 10 is a configuration diagram showing a reflected light distribution measuring device according to Embodiment 2;

以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "embodiment") for implementing this invention is demonstrated, referring an accompanying drawing.

<実施形態1>
図1は、実施形態1の反射光分布測定装置を示す構成図である。図2は、図1の一部を拡大して示す部分拡大図である。以下、図1及び図2に基づき説明する。
<Embodiment 1>
FIG. 1 is a configuration diagram showing a reflected light distribution measuring apparatus according to Embodiment 1. FIG. FIG. 2 is a partially enlarged view showing an enlarged part of FIG. 1. FIG. The following description will be made with reference to FIGS. 1 and 2. FIG.

本実施形態1の反射光分布測定装置11は、投光側光学系20と受光側光学系30と測定部40とを備えている。投光側光学系20は、点光源21の点像から収束光22を生成し、収束光22を被測定球面50の焦点51に集光(収束)するように被測定球面50へ照射する。受光側光学系30は、被測定球面50で反射した平行光31を受光側コリメータレンズ32で受光して結像させ点像に戻す。測定部40は、結像した点像の光量分布を測定する。なお、図2では、収束光22及び平行光31を、被測定球面50よりもかなり拡大して示している。 The reflected light distribution measuring device 11 of Embodiment 1 includes a light projecting side optical system 20 , a light receiving side optical system 30 and a measuring section 40 . The projection-side optical system 20 generates convergent light 22 from the point image of the point light source 21 and irradiates the spherical surface 50 to be measured so that the convergent light 22 converges (converges) on the focal point 51 of the spherical surface 50 to be measured. In the light-receiving-side optical system 30, the parallel light 31 reflected by the spherical surface 50 to be measured is received by the light-receiving-side collimator lens 32, formed into an image, and returned to a point image. The measurement unit 40 measures the light amount distribution of the formed point image. In FIG. 2, the convergent light 22 and the parallel light 31 are shown considerably enlarged from the spherical surface 50 to be measured.

投光側光学系20は、投光側コリメータレンズ23と、投光側コリメータレンズ23及び点光源21の少なくとも一方を光軸方向xに移動自在に支持する投光側支持体24と、を有する。これにより、投光側光学系20は、収束光22が集光する集光点27を光軸方向xに自在に変えられる機能を実現している。図2では、集光点27を焦点51に一致させた状態を示している。 The projection-side optical system 20 includes a projection-side collimator lens 23 and a projection-side support 24 that supports at least one of the projection-side collimator lens 23 and the point light source 21 so as to be movable in the optical axis direction x. . As a result, the projection-side optical system 20 realizes the function of freely changing the condensing point 27 where the converging light 22 converges in the optical axis direction x. FIG. 2 shows a state in which the condensing point 27 is aligned with the focal point 51 .

なお、本実施形態1では、点光源21のみを光軸方向xに移動自在に支持する投光側支持体24を例示している。投光側光学系20は、投光側コリメータレンズ23の代わりに凹面鏡などを用いて構成してもよい。また、例えば可変焦点レンズ又は電気光学レンズなどを用いて、収束光22が集光する集光点27を光軸方向xに電気的に変えるようにしてもよい。 In addition, in this Embodiment 1, the light projection side support body 24 which supports only the point light source 21 movably in the optical axis direction x is illustrated. The projection-side optical system 20 may be configured using a concave mirror or the like instead of the projection-side collimator lens 23 . Alternatively, for example, a varifocal lens or an electro-optical lens may be used to electrically change the condensing point 27 where the converging light 22 converges in the optical axis direction x.

投光側光学系20は、点光源21、投光側コリメータレンズ23及び投光側支持体24の他に、絞り板25及びハーフミラー26を有している。点光源21は、発光ダイオード又は半導体レーザなどの光源21aと、光源21aの出射側に設けられたピンホール板21bとからなる。この構成によって、点光源21から点像が得られる。投光側支持体24は、例えば図示しないステージ、送りねじ及びパルスモータなどを有し、ステージ上の点光源21の位置を送りねじ及びパルスモータによって光軸方向xに自在に変えられる。なお、パルスモータの代わりに、手動によって送りねじを回転させるようにしてもよい。 The projection-side optical system 20 includes a point light source 21 , a projection-side collimator lens 23 , and a projection-side support 24 , as well as an aperture plate 25 and a half mirror 26 . The point light source 21 is composed of a light source 21a such as a light emitting diode or a semiconductor laser, and a pinhole plate 21b provided on the emission side of the light source 21a. With this configuration, a point image is obtained from the point light source 21 . The projection-side support member 24 has, for example, a stage, a feed screw and a pulse motor (not shown), and the position of the point light source 21 on the stage can be freely changed in the optical axis direction x by the feed screw and pulse motor. The feed screw may be manually rotated instead of the pulse motor.

受光側光学系30は、受光側コリメータレンズ32の他に、ハーフミラー26を有している。ハーフミラー26は、投光側光学系20と受光側光学系30との共用部品である。 The light receiving side optical system 30 has a half mirror 26 in addition to the light receiving side collimator lens 32 . The half mirror 26 is a component shared by the light-projecting side optical system 20 and the light-receiving side optical system 30 .

測定部40は、CCDセンサ又はCMOSセンサなどの二次元イメージセンサ41を有する。二次元イメージセンサ41の受光面は、受光側コリメータレンズ32の焦点に位置する。二次元イメージセンサ41の受光面に結像された点像は、二次元座標上のフォトセルごとの光量(すなわち光量分布)として電気信号に変換され、コンピュータへ出力されたり、ディスプレイなどに拡大表示されたりする。そのコンピュータには、入力した光量分布に基づき被測定球面50の変角光度及び偏角光度を算出する機能、及び、光量分布の半値幅が最小となるように投光側支持体24を制御する機能を、コンピュータプログラムによって実現してもよい。 The measurement unit 40 has a two-dimensional image sensor 41 such as a CCD sensor or a CMOS sensor. The light-receiving surface of the two-dimensional image sensor 41 is positioned at the focal point of the light-receiving side collimator lens 32 . The point image formed on the light-receiving surface of the two-dimensional image sensor 41 is converted into an electric signal as the amount of light (i.e., light amount distribution) for each photocell on the two-dimensional coordinates, and output to a computer or displayed enlarged on a display. be done. The computer has a function of calculating the variable angle luminous intensity and the deflection angle luminous intensity of the measured spherical surface 50 based on the input light quantity distribution, and controls the light projection side support 24 so that the half width of the light quantity distribution is minimized. Functions may be implemented by computer programs.

図1及び図2では、被測定球面50が凸面の場合を示している。被測定球面50は、実際の物体表面の曲面を球面に近似したものである。図2において、被測定球面50から焦点51までの距離が焦点距離rであり、被測定球面50から被測定球面50の中心52までの距離が曲率半径Rである。焦点51は幾何光学で定義される焦点であり、焦点51に向かう光線は被測定球面50で反射して光軸に平行な光線となる。中心52は、被測定球面50を外表面の一部とする球体の中心である。焦点51及び中心52は光軸上に位置する。幾何光学の分野において、曲率半径Rと焦点距離rはR=2rの関係にあることが知られている。 1 and 2 show the case where the spherical surface 50 to be measured is convex. The spherical surface 50 to be measured is an approximation of the curved surface of an actual object surface to a spherical surface. In FIG. 2, the distance from the spherical surface 50 to be measured to the focal point 51 is the focal length r, and the distance from the spherical surface 50 to be measured to the center 52 of the spherical surface 50 to be measured is the radius of curvature R. A focal point 51 is a focal point defined by geometrical optics, and a ray heading for the focal point 51 is reflected by the spherical surface 50 to be measured and becomes a ray parallel to the optical axis. The center 52 is the center of a sphere having the spherical surface 50 to be measured as part of its outer surface. A focal point 51 and a center 52 are located on the optical axis. In the field of geometrical optics, it is known that the radius of curvature R and the focal length r have a relationship of R=2r.

図3は、光軸方向xの原点x0から点光源21までの距離Xと投光側コリメータレンズ23から収束光22の集光点27までの距離(光路長)Yとの関係について、一例を示すグラフである。以下、図1及び図2に図3を加えて、反射光分布測定装置11の動作の一例を説明する。ここで、原点x0はコリメータレンズ23の焦点位置である。点光源21の位置は、ピンホール板21bのピンホール位置である。したがって、原点x0から点光源21までの距離Xは、点光源21の移動量である。距離Xが0.0のとき、点光源21はコリメータレンズ23の焦点位置であり、収束光22の焦点位置は無限大となり、これは平行光である。 FIG. 3 shows an example of the relationship between the distance X from the origin x0 in the optical axis direction x to the point light source 21 and the distance (optical path length) Y from the collimator lens 23 on the projection side to the condensing point 27 of the converging light 22. It is a graph showing. An example of the operation of the reflected light distribution measuring device 11 will be described below with reference to FIG. 3 in addition to FIGS. Here, the origin x 0 is the focal position of the collimator lens 23 . The position of the point light source 21 is the pinhole position of the pinhole plate 21b. Therefore, the distance X from the origin x0 to the point light source 21 is the amount of movement of the point light source 21 . When the distance X is 0.0, the point light source 21 is the focal position of the collimator lens 23, and the focal position of the converging light 22 is infinite, which is parallel light.

まず、反射光分布測定装置11に対向する定位置に、被測定球面50を設置する。反射光分布測定装置11をオンにすると、点光源21から点像が出射される。点像は投光側コリメータレンズ23で収束光22に変換され、収束光22はハーフミラー26で反射して被測定球面50へ向かう。図2に示すように、収束光22の集光点27が被測定球面50の焦点51に一致すれば、幾何光学で説明されるとおり、収束光22は被測定球面50で反射して平行光31になる。平行光31は、ハーフミラー26及び受光側コリメータレンズ32を透過し、二次元イメージセンサ41の受光面に点像として結像される。このとき、二次元イメージセンサ41で測定された光量分布の半値幅が最小になれば、収束光22の集光点27が被測定球面50の焦点51に完全に一致したことになる。 First, the spherical surface 50 to be measured is installed at a fixed position facing the reflected light distribution measuring device 11 . When the reflected light distribution measuring device 11 is turned on, a point image is emitted from the point light source 21 . The point image is converted into convergent light 22 by the collimator lens 23 on the projection side, and the convergent light 22 is reflected by the half mirror 26 toward the spherical surface 50 to be measured. As shown in FIG. 2, if the converging point 27 of the converging light 22 coincides with the focal point 51 of the spherical surface 50 to be measured, the converging light 22 is reflected by the spherical surface 50 to be measured and becomes a parallel light, as explained in geometrical optics. Become 31. The parallel light 31 passes through the half mirror 26 and the light-receiving side collimator lens 32 and forms a point image on the light-receiving surface of the two-dimensional image sensor 41 . At this time, if the half-value width of the light amount distribution measured by the two-dimensional image sensor 41 is minimized, the condensing point 27 of the convergent light 22 is perfectly aligned with the focal point 51 of the spherical surface 50 to be measured.

収束光22の集光点27が被測定球面50の焦点51に一致しない場合は、収束光22は被測定球面50で反射しても広がってしまい平行光31にはならない。そのため、二次元イメージセンサ41の受光面にはぼやけた像しか映らないので、光量分布の半値幅も大きくなる。この場合は、光量分布の半値幅が最小となるまで、投光側支持体24によって点光源21を光軸方向xに少しずつ移動させる。 If the converging point 27 of the converging light 22 does not coincide with the focal point 51 of the spherical surface 50 to be measured, the converging light 22 spreads even if it is reflected by the spherical surface 50 to be measured and does not become parallel light 31 . As a result, only a blurred image appears on the light receiving surface of the two-dimensional image sensor 41, and the half-value width of the light quantity distribution also increases. In this case, the point light source 21 is moved little by little in the optical axis direction x by the light projecting side support 24 until the half width of the light amount distribution is minimized.

図3において、横軸は光軸方向xの原点x0から点光源21までの距離X、縦軸は投光側コリメータレンズ23から収束光22の集光点27までの距離(光路長)Y、実線は計算値、▲は実測値である。ここで、点光源21が投光側コリメータレンズ23から離れる方向を、光軸方向xの正方向とする。図3に示すように、点光源21を光軸方向xの正方向へ移動させるほど(距離Xが大きくなるほど)、収束光22の集光点27は投光側コリメータレンズ23に近づく(距離Yは小さくなる)。 In FIG. 3, the horizontal axis is the distance X from the origin x0 of the optical axis direction x to the point light source 21, the vertical axis is the distance (optical path length) Y from the projection side collimator lens 23 to the converging point 27 of the converging light 22, The solid line is the calculated value, and the ▲ is the measured value. Here, the direction in which the point light source 21 separates from the projection-side collimator lens 23 is defined as the positive direction of the optical axis direction x. As shown in FIG. 3, the more the point light source 21 is moved in the positive direction of the optical axis direction x (the greater the distance X is), the closer the condensing point 27 of the converging light 22 is to the projection-side collimator lens 23 (the distance Y becomes smaller).

本実施形態1では、光軸方向xの原点x0を、投光側コリメータレンズ23の焦点位置としている。そのため、点光源21のピンホール板21bが原点x0に位置するときは、点光源21の点像が投光側コリメータレンズ23で収束光ではなく平行光になる。このとき、平面(被測定球面50の曲率半径Rが無限大)に対して、BRDF等の測定が可能となる。点光源21を原点x0から光軸方向xの正方向へ少しずつ移動させると(距離Xを少しずつ大きくすると)、収束光22の集光点27は無限遠から投光側コリメータレンズ23側へ少しずつ近づく(距離Yが少しずつ小さくなる)。換言すると、点光源21を原点x0から光軸方向xの正方向へ少しずつ移動させると、測定対象となる被測定球面50の曲率半径Rが無限大から少しずつ小さくなる。もちろん、これとは逆に、距離Xを少しずつ小さくすることにより、距離Yを少しずつ大きくするようにしてもよい。 In Embodiment 1, the origin x0 of the optical axis direction x is set as the focal position of the projection-side collimator lens 23 . Therefore, when the pinhole plate 21b of the point light source 21 is positioned at the origin x0, the point image of the point light source 21 becomes parallel light, not convergent light, by the collimator lens 23 on the projection side. At this time, BRDF and the like can be measured for a plane (the radius of curvature R of the spherical surface 50 to be measured is infinite). When the point light source 21 is gradually moved from the origin x0 in the positive direction of the optical axis direction x (when the distance X is gradually increased), the condensing point 27 of the convergent light 22 moves slightly from infinity toward the collimator lens 23 on the projection side. It approaches gradually (the distance Y becomes smaller little by little). In other words, when the point light source 21 is gradually moved from the origin x0 in the positive direction of the optical axis x, the radius of curvature R of the spherical surface 50 to be measured gradually decreases from infinity. Of course, on the contrary, by gradually decreasing the distance X, the distance Y may be gradually increased.

投光側支持体24は、被測定球面50の焦点51から被測定球面50までの距離(焦点距離r)を測定する測距部としても動作する。定位置に被測定球面50を設置したとき、投光側コリメータレンズ23から被測定球面50までの距離Y0は既知である。このとき、投光側支持体24の操作時に距離Xを測定しておけば、距離Xに対応する距離Yが図3から求められる。距離Yは投光側コリメータレンズ23から収束光22の集光点27(すなわち焦点51)までの距離であるから、r=Y-Y0となる。したがって、R=2rの関係から曲率半径Rが得られる。距離Xは、例えば、電気信号として出力することにより、又は、目盛りを読み取ることにより、測定可能である。なお、曲率半径Rを測定しない場合は、距離Y0が不要であるから、定位置ではなく任意の位置に被測定球面50を設置してもよい。 The light projecting side support 24 also operates as a distance measuring section that measures the distance (focal length r) from the focal point 51 of the spherical surface 50 to be measured to the spherical surface 50 to be measured. When the spherical surface 50 to be measured is installed at a fixed position, the distance Y0 from the collimator lens 23 on the projection side to the spherical surface 50 to be measured is known. At this time, if the distance X is measured when the light projecting side support member 24 is operated, the distance Y corresponding to the distance X can be obtained from FIG. Since the distance Y is the distance from the projection-side collimator lens 23 to the condensing point 27 (that is, the focal point 51) of the converging light 22, r=Y-Y0. Therefore, the radius of curvature R is obtained from the relationship R=2r. Distance X can be measured, for example, by outputting it as an electrical signal or by reading a scale. If the radius of curvature R is not measured, the distance Y0 is not necessary, so the spherical surface 50 to be measured may be placed at an arbitrary position instead of the fixed position.

図4は、実施形態1における凸面の測定原理を示す概念図である。図5は、実施形態1における凹面の測定原理を示す概念図である。以下、図1及び図2に図4及び図5を加えて説明する。 4A and 4B are conceptual diagrams showing the principle of measuring a convex surface according to the first embodiment. FIG. 5 is a conceptual diagram showing the measurement principle of a concave surface according to the first embodiment. 4 and 5 will be added to FIGS. 1 and 2 for explanation.

図4は被測定球面50が凸面の場合である。被測定球面50の焦点51及び中心52は被測定物「内」の光軸上に位置する。図4では、焦点51を集光点27に一致させた状態を示している。図5は被測定球面60が凹面の場合である。被測定球面60の焦点61及び中心62は、被測定物「外」の光軸上に位置する。中心62は、被測定球面60を内表面の一部とする球体の中心である。図5では、焦点61を集光点27に一致させた状態を示している。凸面も凹面も、収束光22をそれぞれ被測定球面50,60の焦点51,61に集光するように被測定球面50,60へ照射する、という点では同じである。そのため、収束光22は、被測定球面50,60のどちらで反射しても、平行光31になる。よって、被測定球面60が凹面の場合でも、被測定球面50が凸面の場合と同様に、BRDF等を測定可能である。 FIG. 4 shows the case where the spherical surface 50 to be measured is convex. The focal point 51 and the center 52 of the spherical surface 50 to be measured are located on the optical axis "inside" the object to be measured. FIG. 4 shows a state in which the focal point 51 is aligned with the condensing point 27 . FIG. 5 shows the case where the spherical surface 60 to be measured is concave. A focus 61 and a center 62 of the spherical surface 60 to be measured are located on the optical axis "outside" the object to be measured. A center 62 is the center of a sphere whose inner surface is the spherical surface 60 to be measured. FIG. 5 shows a state in which the focal point 61 is aligned with the condensing point 27 . The convex surface and the concave surface are the same in that the spherical surfaces 50 and 60 to be measured are irradiated with the convergent light 22 so as to converge on the focal points 51 and 61 of the spherical surfaces 50 and 60 to be measured, respectively. Therefore, the convergent light 22 becomes parallel light 31 regardless of which of the spherical surfaces 50 and 60 to be measured reflects. Therefore, even when the spherical surface 60 to be measured is concave, BRDF and the like can be measured in the same way as when the spherical surface 50 to be measured is convex.

図4からわかるように、収束光22が焦点51に集光する前に被測定球面50(凸面)で反射して平行光31になるとき、その光束は光軸に垂直な面において上下左右反転しない。しかし、図5からわかるように、収束光22が焦点61に集光した後に被測定球面60(凹面)で反射して平行光31になるとき、その光束は光軸に垂直な面において焦点61を境に上下左右反転する。この違いを利用して、被測定球面が凸面であるか凹面であるかを判定できる。例えば、光軸に垂直な直線に対して、点像(チャート像)を非対称とすればよい。 As can be seen from FIG. 4, when the convergent light 22 is reflected by the spherical surface 50 (convex surface) to be measured before condensing at the focal point 51 and becomes parallel light 31, the light flux is inverted vertically and horizontally on the plane perpendicular to the optical axis. do not do. However, as can be seen from FIG. 5, when the convergent light 22 is condensed at the focal point 61 and then reflected by the spherical surface 60 (concave surface) to be measured to become the parallel light 31, the light beam is directed to the focal point 61 on the plane perpendicular to the optical axis. is flipped vertically and horizontally. This difference can be used to determine whether the spherical surface to be measured is convex or concave. For example, a point image (chart image) may be made asymmetric with respect to a straight line perpendicular to the optical axis.

次に、反射光分布測定装置11の効果について説明する。 Next, the effect of the reflected light distribution measuring device 11 will be described.

(1)反射光分布測定装置11によれば、被測定面を曲面から球面に近似し、収束光22を被測定球面50の焦点51に集光するように被測定球面50へ照射することにより、被測定球面50からの反射光が平行光31になるので、受光側コリメータレンズ32で精度よく点像に戻すことができ、被測定面が曲面(被測定球面50)である場合にも高精度にBRDF等を測定できる。 (1) According to the reflected light distribution measuring apparatus 11, the surface to be measured is approximated from a curved surface to a spherical surface, and the spherical surface to be measured 50 is irradiated with the convergent light 22 so as to converge on the focal point 51 of the spherical surface to be measured 50. Since the reflected light from the spherical surface 50 to be measured becomes parallel light 31, it can be returned to a point image with high accuracy by the collimator lens 32 on the light receiving side. BRDF etc. can be measured with accuracy.

(2)投光側光学系20において収束光22が集光する集光点27を光軸方向xに自在に変えられる機能を有する場合は、広範囲の位置にある焦点51にも収束光22を集光できるので、広範囲の焦点距離rを持つ被測定球面50に対しても高精度にBRDF等を測定できる。 (2) If the projection-side optical system 20 has a function of freely changing the condensing point 27 where the converging light 22 converges in the optical axis direction x, the converging light 22 can also be focused on the focal point 51 located in a wide range. Since the light can be condensed, the BRDF and the like can be measured with high accuracy even for the spherical surface 50 to be measured having a wide range of focal lengths r.

(3)投光側光学系20において投光側コリメータレンズ23及び点光源21の少なくとも一方を光軸方向xに移動自在に支持する投光側支持体24を有する場合は、投光側コリメータレンズ23の焦点位置に点光源21を置くこともできるので、平面から曲面(凸面及び凹面)までの多様な被測定面に対しても高精度にBRDF等を測定できる。また、平面から曲面(凸面及び凹面)までの多様な被測定面の角度を測定できるオートコリメータとしても、利用可能である。 (3) When the projection-side optical system 20 has a projection-side support 24 that supports at least one of the projection-side collimator lens 23 and the point light source 21 so as to be movable in the optical axis direction x, the projection-side collimator lens Since the point light source 21 can be placed at the focal position of 23, the BRDF and the like can be measured with high precision on various surfaces to be measured, from flat surfaces to curved surfaces (convex and concave surfaces). It can also be used as an autocollimator capable of measuring the angles of various surfaces to be measured, from flat surfaces to curved surfaces (convex and concave surfaces).

(4)被測定球面50の焦点51から被測定球面50までの距離(焦点距離r)を測定する測距部を備えた場合は、焦点距離rを二倍すれば曲率半径Rを求められることから、BRDF等と同時に曲率半径Rも測定できる。しかも、曲率半径Rそのものを測定する場合に比べて半分の距離を測定すればよいので、曲率半径Rの測定を簡易化できる。 (4) If a rangefinder is provided to measure the distance (focal length r) from the focal point 51 of the spherical surface 50 to be measured to the spherical surface 50 to be measured, the radius of curvature R can be obtained by doubling the focal length r. Therefore, the radius of curvature R can be measured at the same time as the BRDF and the like. Moreover, the measurement of the radius of curvature R can be simplified because it is sufficient to measure half the distance compared to the case of measuring the radius of curvature R itself.

(5)反射光分布測定装置11の動作を方法の発明として捉えると、次の工程を含む反射光分布測定方法となる。
投光側光学系20によって、点光源21の点像から収束光22を生成し、収束光22を被測定球面50の焦点51に集光するように被測定球面50へ照射する工程。
受光側光学系30によって、被測定球面50で反射した平行光31を受光側コリメータレンズ32で受光して結像させ点像に戻す工程。
測定部40によって、結像した点像の光量分布を測定する工程。
この反射光分布測定方法も、反射光分布測定装置11と同等の作用及び効果を奏する。
(5) If the operation of the reflected light distribution measuring apparatus 11 is regarded as a method invention, it becomes a reflected light distribution measuring method including the following steps.
A step of generating a convergent light 22 from a point image of a point light source 21 by the projection-side optical system 20 and irradiating the spherical surface 50 to be measured so that the convergent light 22 is condensed at a focal point 51 of the spherical surface 50 to be measured.
A process in which the parallel light 31 reflected by the spherical surface 50 to be measured is received by the light-receiving-side collimator lens 32 by the light-receiving-side optical system 30 and is imaged to return to a point image.
A step of measuring the light amount distribution of the imaged point image by the measurement unit 40 .
This reflected light distribution measuring method also has the same functions and effects as the reflected light distribution measuring device 11 .

<実施形態2>
図6は、実施形態2の反射光分布測定装置を示す構成図である。以下、図2及び図6に基づき説明する。本実施形態2では、実施形態1と同じ構成要素には同じ符号を付すことにより、重複説明を省略する。
<Embodiment 2>
FIG. 6 is a configuration diagram showing the reflected light distribution measuring device of the second embodiment. A description will be given below with reference to FIGS. 2 and 6. FIG. In the second embodiment, the same reference numerals are assigned to the same components as in the first embodiment, and redundant explanations are omitted.

本実施形態2の反射光分布測定装置12は、投光側支持体24(図1)の代わりに、被測定球面50を光軸方向xに移動自在に支持する被測定側支持体70を備える点で、実施形態1と異なる。被測定側支持体70は、投光側支持体24(図1)と同様、例えば図示しないステージ、送りねじ及びパルスモータなどを有し、ステージ上の被測定物(被測定球面50)の位置を送りねじ及びパルスモータによって光軸方向xに自在に変えられる。本実施形態2における投光側光学系80では、点光源21が動かないように固定されている。すなわち、収束光22の集光点27の位置は固定されている。また、投光側光学系80は、投光側支持体24(図1)と同様、被測定球面50の焦点51から被測定球面50までの距離(焦点距離r)を測定する測距部として、動作するようにしてもよい。なお、光軸方向xの正方向は、被測定球面50が投光側光学系80に近づく方向とする。 The reflected light distribution measuring apparatus 12 of Embodiment 2 includes a measurement side support 70 that supports a measurement target spherical surface 50 so as to be movable in the optical axis direction x instead of the light projection side support 24 (FIG. 1). It is different from the first embodiment in this respect. Like the light projection side support 24 (FIG. 1), the measurement side support 70 has, for example, a stage (not shown), a feed screw, a pulse motor, and the like. can be freely changed in the optical axis direction x by a feed screw and a pulse motor. In the projection-side optical system 80 in Embodiment 2, the point light source 21 is fixed so as not to move. That is, the position of the converging point 27 of the converging light 22 is fixed. The projection-side optical system 80, like the projection-side support 24 (FIG. 1), serves as a distance measuring unit that measures the distance (focal length r) from the focal point 51 of the spherical surface 50 to be measured to the spherical surface 50 to be measured. , may work. The positive direction of the optical axis direction x is the direction in which the spherical surface 50 to be measured approaches the light projecting side optical system 80 .

次に、反射光分布測定装置12の動作の一例を説明する。例えば、収束光22の集光点27の位置(固定)を原点x0とし、原点x0に被測定球面50を設置する。この場合、反射光分布測定装置12をオンにすると、収束光22の集光点27が被測定球面50の焦点51に一致しないため、被測定球面50からの反射光は平行光31にはならない。そこで、二次元イメージセンサ41で測定される光量分布の半値幅が最小となるまで、被測定側支持体70によって被測定球面50を光軸方向xに少しずつ移動させる。つまり、被測定球面50が収束光22の集光点27(固定)に一致する位置から、被測定球面50の焦点51が収束光22の集光点27(固定)に一致する位置まで、被測定球面50を光軸方向xの正方向へ移動させる。このとき、図5に示すように、被測定球面60が凹面である場合は移動方向が逆になる。そして、その移動距離が焦点距離rに相当するので、焦点距離rを二倍することによって曲率半径Rも求められる。なお、曲率半径Rを測定しない場合は、被測定球面50の移動距離(焦点距離r)の測定が不要になるので、原点x0ではなく任意の位置に被測定球面50を設置してもよい。 Next, an example of the operation of the reflected light distribution measuring device 12 will be described. For example, the position (fixed) of the converging point 27 of the converging light 22 is defined as the origin x0, and the spherical surface 50 to be measured is set at the origin x0. In this case, when the reflected light distribution measuring device 12 is turned on, the condensing point 27 of the converging light 22 does not match the focal point 51 of the spherical surface 50 to be measured, so the reflected light from the spherical surface 50 to be measured does not become the parallel light 31. . Therefore, the spherical surface 50 to be measured is moved little by little in the optical axis direction x by the side support 70 to be measured until the half-value width of the light amount distribution measured by the two-dimensional image sensor 41 is minimized. That is, from the position where the spherical surface 50 to be measured coincides with the converging point 27 (fixed) of the converging light 22 to the position where the focal point 51 of the spherical surface 50 to be measured coincides with the converging point 27 (fixed) of the converging light 22, the The measurement spherical surface 50 is moved in the positive direction of the optical axis direction x. At this time, as shown in FIG. 5, if the spherical surface 60 to be measured is concave, the direction of movement is reversed. Since the moving distance corresponds to the focal length r, the radius of curvature R can also be obtained by doubling the focal length r. If the radius of curvature R is not measured, the moving distance (focal length r) of the spherical surface 50 to be measured does not need to be measured.

反射光分布測定装置12によれば、収束光22が集光する集光点27を光軸方向xに自在に変えられる機能を投光側光学系80に設けなくてよいので、投光側光学系80を簡素化できる。その結果、既存のオートコリメータを、僅かな変更を加えるだけで反射光分布測定装置12に利用できる。反射光分布測定装置12のその他の作用及び効果は、実施形態1の反射光分布測定装置11(図1)のそれらと同様である。なお、反射光分布測定装置12は、被測定側支持体70及び投光側支持体24(図1)の両方を備えるようにしてもよい。 According to the reflected light distribution measuring device 12, it is not necessary to provide the projection-side optical system 80 with a function to freely change the condensing point 27 where the converging light 22 is condensed in the optical axis direction x. System 80 can be simplified. As a result, an existing autocollimator can be used for the reflected light distribution measurement device 12 with only minor modifications. Other actions and effects of the reflected light distribution measuring device 12 are the same as those of the reflected light distribution measuring device 11 (FIG. 1) of the first embodiment. The reflected light distribution measuring device 12 may be provided with both the measured side support 70 and the light projection side support 24 (FIG. 1).

<その他>
以上、上記実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細については当業者が理解し得るさまざまな変更を加えることができ、そのように変更された技術も本発明に含まれる。
<Others>
Although the present invention has been described with reference to the above embodiments, the present invention is not limited to the above embodiments. Various modifications that can be understood by those skilled in the art can be made to the configuration and details of the present invention, and such modified techniques are also included in the present invention.

11,12反射光分布測定装置
20,80 投光側光学系
21 点光源
21a 光源
21b ピンホール板
22 収束光
23 投光側コリメータレンズ
24 投光側支持体
25 絞り板
26 ハーフミラー
27 集光点
30 受光側光学系
31 平行光
32 受光側コリメータレンズ
40 測定部
41 二次元イメージセンサ
50,60 被測定球面
51,61 焦点
52,62 中心
70 被測定側支持体
x 光軸方向
x0 原点
r 焦点距離
R 曲率半径
X,Y,Y0 距離
11, 12 reflected light distribution measuring device 20, 80 projection side optical system 21 point light source
21a light source
21b pinhole plate 22 convergent light 23 collimator lens 24 light-projecting side support 25 aperture plate 26 half mirror 27 condensing point 30 light-receiving side optical system 31 parallel light 32 light-receiving side collimator lens 40 measuring section 41 two-dimensional image sensor 50, 60 spherical surface to be measured 51, 61 focal point 52, 62 center 70 side support to be measured x optical axis direction x0 origin r focal length R radius of curvature X, Y, Y0 distance

Claims (6)

点光源の点像から収束光を生成し、前記収束光を被測定球面の焦点に集光するように前記被測定球面へ照射する投光側光学系と、
前記被測定球面で反射した平行光を受光側コリメータレンズで受光して結像させ点像に戻す受光側光学系と、
前記結像した点像の光量分布を測定する測定部と、
を備えた反射光分布測定装置。
a projection-side optical system that generates convergent light from a point image of a point light source and irradiates the spherical surface to be measured with the converged light so that the convergent light is condensed at the focal point of the spherical surface to be measured;
a light-receiving-side optical system that receives the collimated light reflected by the spherical surface to be measured by a light-receiving-side collimator lens, forms an image, and returns the collimated light to a point image;
a measurement unit that measures the light amount distribution of the formed point image;
Reflected light distribution measuring device with
前記投光側光学系は、前記収束光が集光する集光点を光軸方向に自在に変えられる機能を有する、
請求項1記載の反射光分布測定装置。
The light projecting side optical system has a function of freely changing the condensing point where the converging light is condensed in the optical axis direction,
The reflected light distribution measuring device according to claim 1.
前記投光側光学系は、投光側コリメータレンズと、前記投光側コリメータレンズ及び前記点光源の少なくとも一方を光軸方向に移動自在に支持する投光側支持体と、を有する、
請求項2記載の反射光分布測定装置。
The projection-side optical system has a projection-side collimator lens, and a projection-side support that supports at least one of the projection-side collimator lens and the point light source movably in an optical axis direction.
The reflected light distribution measuring device according to claim 2.
前記被測定球面を光軸方向に移動自在に支持する被測定側支持体を、
更に備えた請求項1乃至3のいずれか一つに記載の反射光分布測定装置。
a support on the side to be measured that supports the spherical surface to be measured so as to be movable in the direction of the optical axis;
4. The reflected light distribution measuring device according to claim 1, further comprising a reflected light distribution measuring device.
前記被測定球面の焦点から前記被測定球面までの距離を測定する測距部を、
更に備えた請求項1乃至4のいずれか一つに記載の反射光分布測定装置。
a distance measuring unit that measures the distance from the focal point of the spherical surface to be measured to the spherical surface to be measured,
5. The reflected light distribution measuring device according to claim 1, further comprising a reflected light distribution measuring device.
投光側光学系によって、点光源の点像から収束光を生成し、前記収束光を被測定球面の焦点に集光するように前記被測定球面へ照射し、
受光側光学系によって、前記被測定球面で反射した平行光をコリメータレンズで受光して結像させ点像に戻し、
測定部によって、前記結像した点像の光量分布を測定する、
反射光分布測定方法。
generating convergent light from a point image of a point light source by the projection-side optical system, and irradiating the spherical surface to be measured so that the convergent light is focused on the focal point of the spherical surface to be measured;
The collimator lens receives the parallel light reflected by the spherical surface to be measured by the light-receiving-side optical system, forms an image, and returns it to a point image;
measuring the light intensity distribution of the formed point image by a measurement unit;
Reflected light distribution measurement method.
JP2021139043A 2021-08-27 2021-08-27 Reflected light distribution measuring device and method Active JP7185241B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021139043A JP7185241B1 (en) 2021-08-27 2021-08-27 Reflected light distribution measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021139043A JP7185241B1 (en) 2021-08-27 2021-08-27 Reflected light distribution measuring device and method

Publications (2)

Publication Number Publication Date
JP7185241B1 true JP7185241B1 (en) 2022-12-07
JP2023032744A JP2023032744A (en) 2023-03-09

Family

ID=84357705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021139043A Active JP7185241B1 (en) 2021-08-27 2021-08-27 Reflected light distribution measuring device and method

Country Status (1)

Country Link
JP (1) JP7185241B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224988U (en) * 1975-08-11 1977-02-22
JPS5226848A (en) * 1975-08-25 1977-02-28 Ricoh Co Ltd Reflection factor measuring method of curved surface mirror
US20020080357A1 (en) * 2000-11-15 2002-06-27 Dana Kristin J. Apparatus and method for measuring spatially varying bidirectional reflectance distribution function
JP2009109414A (en) * 2007-10-31 2009-05-21 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method
JP5224988B2 (en) 2007-11-29 2013-07-03 株式会社ジャパンディスプレイセントラル Overdrive drive circuit, driver IC for display device, display device, and overdrive drive method
JP5226848B2 (en) 2011-11-07 2013-07-03 富士通セミコンダクター株式会社 Simulation apparatus and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224988U (en) * 1975-08-11 1977-02-22
JPS5226848A (en) * 1975-08-25 1977-02-28 Ricoh Co Ltd Reflection factor measuring method of curved surface mirror
US20020080357A1 (en) * 2000-11-15 2002-06-27 Dana Kristin J. Apparatus and method for measuring spatially varying bidirectional reflectance distribution function
JP2009109414A (en) * 2007-10-31 2009-05-21 Canon Inc Measurement apparatus, exposure apparatus, and device manufacturing method
JP5224988B2 (en) 2007-11-29 2013-07-03 株式会社ジャパンディスプレイセントラル Overdrive drive circuit, driver IC for display device, display device, and overdrive drive method
JP5226848B2 (en) 2011-11-07 2013-07-03 富士通セミコンダクター株式会社 Simulation apparatus and program

Also Published As

Publication number Publication date
JP2023032744A (en) 2023-03-09

Similar Documents

Publication Publication Date Title
US10362295B2 (en) Optical apparatus with beam steering and position feedback
JP5016245B2 (en) Measurement system for determining the six degrees of freedom of an object
EP2800945B1 (en) Non-contact sensor having improved laser spot
JP5372599B2 (en) Focus sensor
US20090195790A1 (en) Imaging system and method
CN111051813A (en) Distance measuring module
US7099001B2 (en) Auto-collimator
JP4224472B2 (en) Confocal inspection system
JP4500097B2 (en) Optical measuring device and distance calculating method in optical measuring device
CN111288927A (en) Free-form surface differential confocal measurement method and device based on normal tracking
CN111610534B (en) Image forming apparatus and image forming method
JP7185241B1 (en) Reflected light distribution measuring device and method
JPH09304036A (en) Angle measuring apparatus for solid component
WO2019176749A1 (en) Scanning device and measuring device
JP2022504127A (en) Optical engine for 3D detection and 3D detection device
JP2002296018A (en) Three-dimensional shape measuring instrument
JP2003035510A (en) Position detector
JPH0914935A (en) Measuring device for three-dimensional object
KR19980081410A (en) Method and apparatus for non-contact measurement of the shape of an object
US11650125B2 (en) Structured light measuring device
JP2007218931A (en) Method and instrument for measuring shape of optical face, and recording medium
KR20070015267A (en) Light displacement measuring apparatus
JPH08261734A (en) Shape measuring apparatus
CN220178394U (en) Focusing device
US11493606B1 (en) Multi-beam scanning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220620

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R150 Certificate of patent or registration of utility model

Ref document number: 7185241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150