JP7183057B2 - Image processing device, image processing method, program - Google Patents

Image processing device, image processing method, program Download PDF

Info

Publication number
JP7183057B2
JP7183057B2 JP2019013881A JP2019013881A JP7183057B2 JP 7183057 B2 JP7183057 B2 JP 7183057B2 JP 2019013881 A JP2019013881 A JP 2019013881A JP 2019013881 A JP2019013881 A JP 2019013881A JP 7183057 B2 JP7183057 B2 JP 7183057B2
Authority
JP
Japan
Prior art keywords
pixel
color
value
interest
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019013881A
Other languages
Japanese (ja)
Other versions
JP2020121443A (en
Inventor
直也 武末
尚 石川
顕季 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019013881A priority Critical patent/JP7183057B2/en
Priority to US17/281,696 priority patent/US20220024241A1/en
Priority to EP19213476.5A priority patent/EP3664429B1/en
Priority to EP22178813.6A priority patent/EP4099675A1/en
Priority to US16/704,257 priority patent/US11321596B2/en
Publication of JP2020121443A publication Critical patent/JP2020121443A/en
Priority to US17/708,601 priority patent/US11610087B2/en
Priority to JP2022186774A priority patent/JP7434502B2/en
Application granted granted Critical
Publication of JP7183057B2 publication Critical patent/JP7183057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Color, Gradation (AREA)
  • Color Electrophotography (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

本発明は、記録媒体に画像を形成するための量子化データを生成する画像処理技術に関する。 The present invention relates to image processing technology for generating quantized data for forming an image on a recording medium.

擬似階調法を用いて画像を記録する際の量子化方法として、ディザ法が知られている。ディザ法とは、個々の画素に対応づけられた閾値が配列されて成る閾値マトリクスを用いて、これら閾値と画像データが示す画素値とを比較して、ドットの記録または非記録を画素ごとに決定する方法である。 A dither method is known as a quantization method when recording an image using the pseudo-gradation method. The dithering method uses a threshold matrix in which thresholds associated with individual pixels are arranged, compares these thresholds with pixel values indicated by image data, and determines dot printing or non-printing for each pixel. How to decide.

特許文献1には、閾値マトリクスを用いて量子化する際に、他の色のドットの配置を考慮することで、過剰なドット重複を避け、分散性を向上する方法を記載している。具体的には、分散型の閾値マトリクスを用いて色毎に量子化する際に、先行して決定した色のドット配置に基づいて閾値をシフトさせることで、色間のドットを排他的に決定する。 Patent Document 1 describes a method of avoiding excessive dot overlap and improving dispersibility by considering the arrangement of dots of other colors when performing quantization using a threshold matrix. Specifically, when quantizing for each color using a distributed threshold matrix, by shifting the threshold based on the previously determined dot arrangement of the color, dots between colors are exclusively determined. do.

国際公開番号WO2002/005545International publication number WO2002/005545

しかしながら特許文献1に記載の方法では、画像のエッジ部分のような急峻に画素値が変化する領域において、異なる色間で互いに排他するようにドットを形成すると、優先順位の高い色のドットがエッジ部分に集中しやすい。その結果、優先順位の低い色のドットがエッジ部分の周りに配置されるため、鮮鋭性の低下や局所的な色付きなどが生じる場合がある。 However, in the method described in Patent Document 1, if dots are formed so that different colors are mutually exclusive in an area where pixel values change sharply, such as an edge portion of an image, dots of a color with a higher priority are formed on the edge. It's easy to focus on one part. As a result, dots of low-priority colors are arranged around the edge portion, which may cause deterioration of sharpness and local coloring.

そこで本発明は、異なる色の画像を量子化する際に、画像における特徴に応じて適切に色間のドットの重なり度合いを制御することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to appropriately control the degree of overlap of dots between colors according to the characteristics of the image when quantizing images of different colors.

上記課題を解決するため本発明は、複数の色材それぞれに対応する画像に基づいて、閾値マトリクスを用いて前記複数種類の色材それぞれについてのドットの配置を決定するための画像処理装置であって、前記複数種類の色材のうちドットの配置が決定された第1色に対応する注目画素の出力値を取得する取得手段と、前記第1色に対応する前記注目画素の出力値と、前記第1色における前記注目画素の画素値に基づいて、前記複数種類の色材のうちドットの配置が決定されていない第2色について、前記注目画素におけるドットの排他の度合いを制御するための排他制御値を算出する算出手段と、記第2色における前記注目画素の画素値と前記排他制御値と前記閾値マトリクスに基づいて、前記注目画素の前記第2色に対応する出力値を決定する決定手段を有することを特徴とする。 To solve the above-described problems, the present invention provides an image processing apparatus for determining the arrangement of dots for each of a plurality of types of colorants using a threshold matrix based on images corresponding to each of the plurality of colorants. acquiring means for acquiring an output value of a pixel of interest corresponding to a first color for which dot arrangement has been determined among the plurality of types of color materials; an output value of the pixel of interest corresponding to the first color; for controlling the degree of exclusion of dots in the pixel of interest for a second color, among the plurality of types of color materials, for which dot arrangement has not been determined, based on the pixel value of the pixel of interest in the first color; calculating means for calculating an exclusive control value; and determining an output value of the pixel of interest corresponding to the second color based on the pixel value of the pixel of interest in the second color, the exclusive control value, and the threshold matrix. It is characterized by having decision means.

本発明によれば、画像における特徴に応じて適切に色間のドットの重なり度合いを制御することができる。 According to the present invention, it is possible to appropriately control the degree of overlap of dots between colors according to the characteristics of an image.

記録装置および記録ヘッドの概略図Schematic diagram of recording device and recording head 制御の構成を説明するためのブロック図Block diagram for explaining the control configuration 画像処理の工程を説明するためのフローチャートFlowchart for explaining image processing steps ソフトウェア構成を説明するためのブロック図である。3 is a block diagram for explaining a software configuration; FIG. 量子化処理の工程を説明するためのフローチャートFlowchart for explaining steps of quantization processing 閾値マトリクス409の一例を示す図A diagram showing an example of the threshold matrix 409 処理領域の一例を示す図A diagram showing an example of a processing area 階調データIk、Ic、Imの一例を示す図A diagram showing an example of gradation data Ik, Ic, and Im Kインクの量子化処理の一例を示す図A diagram showing an example of quantization processing for K ink Cインクの量子化の過程を示す図Diagram showing the process of quantization of C ink ソフトウェア構成を説明するためのブロック図である。3 is a block diagram for explaining a software configuration; FIG. 量子化処理の工程を説明するためのフローチャートFlowchart for explaining steps of quantization processing 処理対象領域の分割例を示す図A diagram showing an example of dividing the processing target area 量子化処理の具体例を示す図Diagram showing a specific example of quantization processing Kインクの量子化処理の一例を示す図A diagram showing an example of quantization processing for K ink Cインクの量子化処理の一例を示す図A diagram showing an example of quantization processing for C ink. Mインクの量子化処理の一例を示す図A diagram showing an example of quantization processing for M ink Yインクの量子化処理の一例を示す図A diagram showing an example of quantization processing for Y ink. 色間排他処理および抑制処理の結果を示す図Diagram showing results of inter-color exclusion processing and suppression processing

以下、添付の図面を参照して、本発明を好適な実施形態に基づいて詳細に説明する。なお、以下の実施形態において示す構成は一例にすぎず、本発明は図示された構成に必ずしも限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on preferred embodiments with reference to the accompanying drawings. Note that the configurations shown in the following embodiments are merely examples, and the present invention is not necessarily limited to the illustrated configurations.

<第1の実施形態>
図1(a)および(b)は、本実施形態で使用する記録装置100及び記録ヘッド102の概略図である。本実施形態で使用する記録装置100は、シリアル型のインクジェット記録装置とする。図において、x方向は記録ヘッドの主走査方向、y方向は記録媒体Sの搬送方向、z方向は色材(インク)の吐出方向をそれぞれ示す。図1(b)に示すように、記録ヘッド102には、シアン(C)、マゼンタ(M)、イエロー(Y)およびブラック(K)のインクを夫々吐出するノズル列が、x方向に並列配置されている。また、夫々のノズル列には、記録データに従ってインクをz方向に吐出するノズル101が、y方向に複数配列されている。図1(a)に示すように、記録ヘッド102はキャリッジ103に装着され、キャリッジ103はキャリッジ軸107に沿って±x方向に移動可能である。キャリッジ103が±x方向に移動する間に、記録ヘッド102が記録データに従って吐出口101からインクを吐出することにより、記録媒体Sに1バンド分の画像が記録される。記録ヘッド102の吐出口面と対向する位置には、平板からなるプラテン105が配されている。プラテン105は、記録ヘッド102によって記録される領域の記録媒体Sを背面から支持し、記録ヘッド102の吐出口面と記録媒体Sとの距離を一定に保っている。
<First Embodiment>
1A and 1B are schematic diagrams of a printing apparatus 100 and a printing head 102 used in this embodiment. The printing apparatus 100 used in this embodiment is a serial type inkjet printing apparatus. In the drawing, the x direction indicates the main scanning direction of the print head, the y direction indicates the conveying direction of the print medium S, and the z direction indicates the ejection direction of the coloring material (ink). As shown in FIG. 1B, in the print head 102, nozzle arrays for ejecting cyan (C), magenta (M), yellow (Y), and black (K) inks are arranged in parallel in the x direction. It is In each nozzle row, a plurality of nozzles 101 for ejecting ink in the z-direction according to print data are arranged in the y-direction. As shown in FIG. 1A, the recording head 102 is mounted on a carriage 103, and the carriage 103 is movable along a carriage shaft 107 in ±x directions. While the carriage 103 is moving in the ±x direction, the print head 102 ejects ink from the ejection openings 101 according to print data, thereby printing an image for one band on the print medium S. FIG. A flat platen platen 105 is arranged at a position facing the ejection port surface of the recording head 102 . The platen 105 supports the print medium S in the area printed by the print head 102 from the back surface, and keeps the distance between the ejection port surface of the print head 102 and the print medium S constant.

記録ヘッド102による1バンド分の記録走査が完了すると、記録媒体Sを挟持する2組の搬送ローラ104が回転し、上記1バンド分に相当する距離だけ記録媒体を+y方向に搬送する。以上のような記録ヘッド102による1バンド分の記録走査と、搬送ローラ104による記録媒体Sの搬送動作とを交互に繰り返すことにより、記録媒体Sには段階的に画像が形成されていく。 When the print head 102 completes the print scan for one band, the two sets of conveying rollers 104 that sandwich the print medium S rotate to convey the print medium in the +y direction by a distance corresponding to the one band. By alternately repeating the printing scan for one band by the printing head 102 and the conveying operation of the printing medium S by the conveying roller 104 as described above, an image is formed on the printing medium S step by step.

図2は、本実施形態における制御の構成を説明するためのブロック図である。画像処理装置200はホストPCなどからなり、CPU201は、不揮発性の記憶部であるHDD203に保持されるプログラムに従って揮発性の記憶部であるRAM202をワークエリアとしながら各種処理を実行する。例えばCPU201は、キーボード・マウスI/F 205を介してユーザより受信したコマンドやHDD303に保持されるプログラムに従って、記録装置100が記録可能な記録データを生成し、これを記録装置100に出力する。また、データ転送I/F 204を介して記録装置100から受信した情報をディスプレイI/F 206を介して不図示のディスプレイに表示する。 FIG. 2 is a block diagram for explaining the configuration of control in this embodiment. The image processing apparatus 200 includes a host PC or the like, and a CPU 201 executes various processes according to a program held in an HDD 203, which is a nonvolatile storage, while using a RAM 202, which is a volatile storage, as a work area. For example, the CPU 201 generates print data that can be printed by the printing apparatus 100 according to commands received from the user via the keyboard/mouse I/F 205 and programs held in the HDD 303 , and outputs the print data to the printing apparatus 100 . Information received from the recording apparatus 100 via the data transfer I/F 204 is displayed on a display (not shown) via the display I/F 206 .

一方、記録装置100において、CPU211は、不揮発性の記憶部であるROM213に保持されるプログラムに従って揮発性の記憶部であるRAM212をワークエリアとしながら各種処理を実行する。更に、記録装置100は、高速な画像処理を行うための画像処理アクセラレータ216、記録ヘッド102を制御するためのヘッドコントローラ215を備えている。画像処理アクセラレータ216は、CPU211よりも高速に画像処理を実行可能なハードウェアである。画像処理アクセラレータ216は、CPU211が画像処理に必要なパラメータとデータをRAM212の所定のアドレスに書き込むことにより起動され、上記パラメータとデータを読み込んだ後、上記データに対し所定の画像処理を実行する。但し、画像処理アクセラレータ216は必須な要素ではなく、同等の処理はCPU211で実行してもよい。 On the other hand, in the recording apparatus 100, the CPU 211 executes various processes while using the RAM 212, which is a volatile storage unit, as a work area according to a program held in a ROM 213, which is a nonvolatile storage unit. Further, the printing apparatus 100 includes an image processing accelerator 216 for performing high-speed image processing and a head controller 215 for controlling the printing head 102 . The image processing accelerator 216 is hardware capable of executing image processing faster than the CPU 211 . The image processing accelerator 216 is activated when the CPU 211 writes parameters and data necessary for image processing to a predetermined address in the RAM 212. After reading the parameters and data, the image processing accelerator 216 executes predetermined image processing on the data. However, the image processing accelerator 216 is not an essential element, and equivalent processing may be executed by the CPU 211 .

ヘッドコントローラ215は、記録ヘッド102に記録データを供給するとともに、記録ヘッド102の記録動作を制御する。ヘッドコントローラ215は、CPU211が、記録ヘッド102が記録可能な記録データと制御パラメータをRAM212の所定のアドレスに書き込むことにより起動され、当該記録データに従って吐出動作を実行する。 A head controller 215 supplies print data to the print head 102 and controls the print operation of the print head 102 . The head controller 215 is activated when the CPU 211 writes print data that can be printed by the print head 102 and control parameters to a predetermined address in the RAM 212, and executes an ejection operation according to the print data.

キャリッジコントローラ217は、CPU211の指示に従ってキャリッジ103の±x方向への移動を制御する。また、搬送コントローラ218は、CPU211の指示に従って搬送ローラ104の回転即ち記録媒体Sの搬送を制御する。 A carriage controller 217 controls movement of the carriage 103 in the ±x directions according to instructions from the CPU 211 . Also, the transport controller 218 controls the rotation of the transport roller 104 , that is, the transport of the recording medium S according to instructions from the CPU 211 .

画像処理装置200のデータ転送I/F 204および記録装置100のデータ転送I/F 214における接続方式としては、USB、IEEE1394、LAN等を用いることができる。 USB, IEEE1394, LAN, or the like can be used as a connection method for the data transfer I/F 204 of the image processing apparatus 200 and the data transfer I/F 214 of the recording apparatus 100 .

図3は、印刷コマンドが発生した際に画像処理装置200のCPU201が実行する画像処理の工程を説明するためのフローチャートである。本処理は、CPU201が、HDD203に記憶されたプログラムに従ってRAM202をワークエリアとして利用しながら実行する。以下では、フローチャートにおける各ステップを「S」と表記することとする。 FIG. 3 is a flowchart for explaining image processing steps executed by the CPU 201 of the image processing apparatus 200 when a print command is issued. This processing is executed by the CPU 201 using the RAM 202 as a work area according to the program stored in the HDD 203 . Hereinafter, each step in the flowchart will be denoted as "S".

本処理が開始されると、CPU201は、まず、アプリケーションプログラムなどで作成された画像データを取得しRAM202に展開する。本実施形態では個々の画素についてレッド(R)、グリーン(G)、ブルー(B)それぞれの輝度を示す8bit(256階調)の画素値を有する画像データが取得されるものとする。以下、このように例えばR、G、Bのような複数の成分の画素値を有する画素によって構成される画像データを、その成分を用いてRGBデータのように表記する。 When this process is started, the CPU 201 first acquires image data created by an application program or the like and develops it in the RAM 202 . In this embodiment, it is assumed that image data having 8-bit (256 gradation levels) pixel values indicating the brightness of each of red (R), green (G), and blue (B) is acquired for each pixel. Image data composed of pixels having pixel values of a plurality of components such as R, G, and B is hereinafter referred to as RGB data using the components.

S301において、CPU201はRAM202に展開した画像データに対し、色補正処理を実行する。色補正処理とは、sRGB等の規格化された色空間を表現する画像データを、記録装置100が記録可能な色空間に対応づけた画像データに変換するための処理である。具体的には、CPU201は、予め記憶されたRGBの3次元ルックアップテーブルを参照し、8bit(256階調)の画素値を有するRGBデータを、8bit(256階調)の画素値を有するR´G´B´データに変換する。 In S<b>301 , the CPU 201 executes color correction processing on the image data developed in the RAM 202 . Color correction processing is processing for converting image data representing a standardized color space such as sRGB into image data associated with a color space printable by the printing apparatus 100 . Specifically, the CPU 201 refers to a pre-stored RGB three-dimensional lookup table, converts RGB data having 8-bit (256 gradation) pixel values to R data having 8-bit (256 gradation) pixel values. Convert to 'G'B' data.

S302において、CPU201はS301で生成したR´G´B´データに対し、色変換処理を実行する。色変換処理とは、輝度情報を示すR´G´B´データを、記録装置100が使用する色材の色(以下インク色)に対応した、K、C、M、及びYのそれぞれの濃度情報を示すデータに変換するための処理である。具体的には、CPU201は、予め記録された3次元ルックアップテーブルを参照し、各画素の8bit(256階調)のR´G´B´データを、8bit(256階調)のKCMYごとのデータに変換する。色変換処理された各インク色に対応したデータをまとめてKCMYデータと呼ぶ。 In S302, the CPU 201 executes color conversion processing on the R'G'B' data generated in S301. Color conversion processing converts R′G′B′ data representing luminance information into respective densities of K, C, M, and Y corresponding to colors of color materials (hereinafter referred to as ink colors) used by the printing apparatus 100. This is a process for converting into data representing information. Specifically, the CPU 201 refers to a prerecorded three-dimensional lookup table, and converts 8-bit (256 gradation) R′G′B′ data of each pixel into 8-bit (256 gradation) KCMY Convert to data. Data corresponding to each ink color that has undergone color conversion processing is collectively referred to as KCMY data.

S303において、CPU201はS302で生成したKCMYデータに対し、量子化処理を行う。量子化処理については後に詳しく説明するが、この量子化処理によって、8bit(256階調)のKCMYデータは、1bitのK´C´M´Y´データに変換される。本実施形態において、K´C´M´Y´データは、KCMYの各インク色について、ドットの記録(1)又は非記録(0)を画素ごとに指定する2値データとする。 In S303, the CPU 201 performs quantization processing on the KCMY data generated in S302. The quantization process will be described in detail later, but this quantization process converts 8-bit (256 gradation) KCMY data into 1-bit K'C'M'Y' data. In this embodiment, the K'C'M'Y' data is binary data that designates dot printing (1) or non-printing (0) for each pixel for each ink color of KCMY.

S304において、CPU201はS303で生成したK´C´M´Y´データを記録データとして記録装置100に出力する。以上で本処理が終了する。 In S304, the CPU 201 outputs the K'C'M'Y' data generated in S303 to the printing apparatus 100 as printing data. This completes the processing.

記録データを受信した記録装置100のCPU211は、記録データをRAM212に展開する。そして、ヘッドコントローラ215、キャリッジコントローラ217及び搬送コントローラ218を制御しながら、RAM212に展開した記録データに従って、記録媒体に画像を記録する。 なお、図3の各ステップで示したそれぞれの工程は、本実施形態のインクジェット記録システムにおいて処理されるが、どの工程までをホストPC200が行い、どの工程以降をプリンタ100が行うか、という切り分けは任意に設定できる。たとえば、量子化までをホストPC200が行う場合は、量子化済みのデータをプリンタ100に転送すればよい。また、プリンタ100の性能によっては、多値のRGB画像データを直接受け取って、S300~S304のすべての工程を行うことも可能である。 The CPU 211 of the printing apparatus 100 that has received the print data develops the print data in the RAM 212 . Then, while controlling the head controller 215 , the carriage controller 217 and the transport controller 218 , an image is printed on the printing medium according to the printing data developed in the RAM 212 . 3 are processed in the ink jet recording system of the present embodiment, but it is difficult to distinguish which process is performed by the host PC 200 and which process and thereafter is performed by the printer 100. Can be set arbitrarily. For example, in the case where the host PC 200 performs up to quantization, the quantized data may be transferred to the printer 100 . Also, depending on the performance of the printer 100, it is possible to directly receive multi-valued RGB image data and perform all the steps from S300 to S304.

図4は、本実施形態の量子化処理における機能構成を説明するためのブロック図である。以下、簡単に各ブロックの役割を説明する。S302のインク色分解処理で生成されたKCMYデータは、インク色ごとに領域選択部401に入力される。以下、KCMYデータを構成するインク色ごとのデータを、本明細書では階調データと称する。各階調データは、同じ画素数であり、縦方向の画素数および横方向の画素数も同じである。図4において、第1色はブラック(K)、第2色はシアン(C)、第3色はマゼンタ(M)、第4色はイエロー(Y)とする。 FIG. 4 is a block diagram for explaining the functional configuration in the quantization processing of this embodiment. The role of each block will be briefly described below. The KCMY data generated by the ink color separation processing in S302 is input to the area selection unit 401 for each ink color. Data for each ink color that constitutes the KCMY data is hereinafter referred to as gradation data in this specification. Each gradation data has the same number of pixels, and the number of pixels in the vertical direction and the number of pixels in the horizontal direction are also the same. In FIG. 4, the first color is black (K), the second color is cyan (C), the third color is magenta (M), and the fourth color is yellow (Y).

画素選択部401は、複数の画素で構成される階調データから1つの画素を注目画素として設定する。そして、設定した注目画素に対応する各色の階調値をインク色選択部402に提供する。つまりここでは、画素選択部401は、注目画素を設定すると、4色に対応する注目画素の階調値をインク色選択部402に出力する。 A pixel selection unit 401 sets one pixel as a target pixel from gradation data composed of a plurality of pixels. Then, the gradation value of each color corresponding to the set target pixel is provided to the ink color selection unit 402 . That is, here, when the target pixel is set, the pixel selection unit 401 outputs the gradation values of the target pixel corresponding to the four colors to the ink color selection unit 402 .

インク色選択部402は、メモリに保存されている量子化順情報408を参照し、第1色~第4色の中から処理対象色を選択し、選択したインク色の処理対象領域に対応する階調データを、閾値処理部403に提供する。量子化順情報408は、量子化処理を実行する色順を示す情報である。 The ink color selection unit 402 refers to the quantization order information 408 stored in the memory, selects a color to be processed from among the first to fourth colors, and selects a color to be processed corresponding to the selected ink color. The gradation data is provided to the threshold processing unit 403 . The quantization order information 408 is information indicating the color order for executing the quantization process.

閾値処理部403は、予めメモリ内に格納された閾値マトリクス409を用いて、画素毎に量子化処理を実行する。図6は、本実施形態で用いる閾値マトリクス409の一部を示す図である。閾値マトリクス409には、各画素に対応するように値の異なる複数の閾値がランダムに配置されている。閾値マトリクス409を、処理対象とする画像にタイル状に対応付けることで、画像における各画素は何れかの閾値に対応づけられる。また閾値処理部403は、CMYK各色の階調データに対して、同じ閾値マトリクス409を同様の位置に対応付けて用いるものとする。 A threshold processing unit 403 executes quantization processing for each pixel using a threshold matrix 409 stored in memory in advance. FIG. 6 is a diagram showing part of the threshold matrix 409 used in this embodiment. A plurality of threshold values having different values are randomly arranged in the threshold matrix 409 so as to correspond to each pixel. By associating the threshold matrix 409 with the image to be processed in a tiled manner, each pixel in the image is associated with any threshold. Also, the threshold processing unit 403 uses the same threshold matrix 409 in association with similar positions for the gradation data of each color of CMYK.

排他処理部404は、注目画素においてできるだけ異なる色のドットが重ならないように、次に処理する色に対応する閾値を制御する。そのため排他処理部404は、閾値処理部403が注目画素の階調値を量子化するたびに、注目画素に対応する閾値を更新する。 The exclusion processing unit 404 controls the threshold corresponding to the color to be processed next so that dots of different colors do not overlap in the pixel of interest as much as possible. Therefore, the exclusion processing unit 404 updates the threshold corresponding to the target pixel each time the threshold processing unit 403 quantizes the tone value of the target pixel.

コントラスト算出部405は、注目画素を含む近傍の領域におけるコントラストの度合いに相関のあるコントラスト値を算出する。近傍の領域において階調値の差が大きい場合はコントラストが高く、階調値の差があまりない場合はコントラストが低い。排他制御部406は、排他処理部404による排他効果の度合いを制御する。 A contrast calculation unit 405 calculates a contrast value that is correlated with the degree of contrast in a region near the pixel of interest. The contrast is high when there is a large difference in gradation value in neighboring areas, and the contrast is low when there is little difference in gradation value. The exclusion control unit 406 controls the degree of exclusion effect by the exclusion processing unit 404 .

量子化データ作成部407は、閾値処理部403が生成したドット配置データに基づいて、記録装置100が記録可能な量子化データを生成し、記録データとして記録装置100に出力する。ここで言う各色の量子化データは、図3のフローチャートで説明したK´C´M´Y´データに相当する。 A quantized data generation unit 407 generates quantized data printable by the printing apparatus 100 based on the dot arrangement data generated by the threshold processing unit 403, and outputs the quantized data to the printing apparatus 100 as print data. The quantized data of each color referred to here corresponds to the K'C'M'Y' data described in the flow chart of FIG.

なお、図4において、メモリは、図2で説明した画像処理装置200における不揮発性のHDD203と揮発性のRAM202を統合して示したものである。また、以上説明した各ブロックは、実質的には図2に示したCPU201が実行するソフトウェア上の機能単位である。なお、以下の説明では、単一ドットサイズであるとし、画素ごとにドットのON/OFFを示す1bitの量子化データがCMYKそれぞれについて生成するとして説明する。 Note that in FIG. 4, the memory is shown by integrating the nonvolatile HDD 203 and the volatile RAM 202 in the image processing apparatus 200 described in FIG. Each block described above is substantially a functional unit on software executed by the CPU 201 shown in FIG. In the following description, it is assumed that the dot size is a single dot size, and that 1-bit quantization data indicating dot ON/OFF for each pixel is generated for each of CMYK.

図5は、CPU201が、S303の量子化処理において、図4に示す各ブロックを用いながら実行する処理工程を説明するためのフローチャートである。以下、図6、図7(a)~(k)を参照しながら、図5に示すフローチャートに従って、本実施形態で実行する量子化処理を詳細に説明する。 FIG. 5 is a flowchart for explaining processing steps executed by the CPU 201 using each block shown in FIG. 4 in the quantization processing of S303. The quantization process performed in this embodiment will be described in detail below according to the flowchart shown in FIG. 5 with reference to FIGS. 6 and 7(a) to (k).

本処理が開始されると、まずS501において画素選択部401は、印刷対象となる画像から処理の対象とする画素(x,y)を注目画素として選択する。 When this process is started, first, in S501, the pixel selection unit 401 selects a pixel (x, y) to be processed from an image to be printed as a pixel of interest.

次にS502においてインク色選択部402は、ブラック(第1色)、シアン(第2色)、マゼンタ(第3色)、イエロー(第4色)の中から処理対象色を設定する。処理対象色に設定する色順序は、量子化順情報408としてHDD203のメモリに予め格納されており、インク色選択部402は、本工程が行われる度に新たな色を量子化順情報408が示す色順序に従って設定する。ここでは、量子化順はK→C→M→Yであるものとする。 Next, in S502, the ink color selection unit 402 sets a color to be processed from among black (first color), cyan (second color), magenta (third color), and yellow (fourth color). The color order to be set for the colors to be processed is stored in advance in the memory of the HDD 203 as quantization order information 408, and the ink color selection unit 402 selects a new color each time this process is performed. Set according to the color sequence shown. Here, it is assumed that the quantization order is K→C→M→Y.

S503において閾値処理部403は、色分解処理(図3のステップS302)により得られた階調データのうち、注目画素に対応する処理対象色の階調値I(x,y)を取得する。なお、本実施形態において階調データは、画素毎に0~255の階調値が格納された8bitデータとして説明する。 In S503, the threshold processing unit 403 acquires the gradation value I(x, y) of the processing target color corresponding to the pixel of interest from among the gradation data obtained by the color separation processing (step S302 in FIG. 3). In the present embodiment, gradation data is described as 8-bit data in which a gradation value of 0 to 255 is stored for each pixel.

S504において閾値処理部403は、注目画素の量子化処理に用いる閾値thを取得する。注目画素(x,y)に対応する閾値を閾値th(x,y)と表記する。 In S504, the threshold processing unit 403 acquires the threshold th used for quantization processing of the target pixel. A threshold corresponding to the pixel of interest (x, y) is denoted as threshold th(x, y).

次にS505において閾値処理部403は、階調値I(x,y)と閾値th(x,y)の大小を比較することにより、注目画素におけるドットのON、OFFを示す出力値を決定する。より詳細には、I(x,y)>th(x,y)であれば、S507へ進み、S507において注目画素(x,y)のドットをON(出力値=1)とする。一方で、I(x,y)≦th(x,y)であれば、S506へ進み、S506において注目画素(x,y)のドットをOFF(出力値=0)とする。 Next, in step S505, the threshold processing unit 403 compares the gradation value I(x, y) with the threshold th(x, y) to determine an output value indicating dot ON/OFF in the pixel of interest. . More specifically, if I(x, y)>th(x, y), the process advances to S507, where the dot of the target pixel (x, y) is turned ON (output value=1). On the other hand, if I(x, y)≤th(x, y), the process advances to S506, where the dot of the target pixel (x, y) is turned OFF (output value=0).

次にS508において排他処理部404は、後続の処理対象色の際に用いる注目画素に対応する閾値th(x,y)を変更する。より詳細には、S507においてドットONとなった注目画素(x,y)に、他の色のドットが配置されにくくなるように閾値th(x,y)を閾値th´(x、y)へと更新する。本実施形態においては、排他処理部404は、式(1)により閾値を更新する。
th´=th(x,y)-I(x,y) (1)
Next, in S508, the exclusion processing unit 404 changes the threshold th(x, y) corresponding to the pixel of interest used for the subsequent color to be processed. More specifically, the threshold th(x, y) is changed to the threshold th'(x, y) so that dots of other colors are less likely to be placed in the pixel of interest (x, y) for which the dot is ON in S507. and update. In this embodiment, the exclusion processing unit 404 updates the threshold according to Equation (1).
th′=th(x, y)−I(x, y) (1)

ここで算出される閾値th´に階調データの最大値255が加算されて量子化処理に用いられると、ドットが配置された画素は、元の閾値thよりも閾値th´の方が大きな値となるため、後続の処理ではドットが配置されにくくなり、排他効果が得られる。排他制御部は、新たな閾値th(x,y)をメモリに保存する。なお、このような閾値の更新により注目画素において色間のドットが排他的に配置されることについては、後述する。 When the maximum value 255 of the gradation data is added to the threshold th′ calculated here and used for the quantization process, the threshold th′ is larger than the original threshold th. Therefore, it becomes difficult for dots to be arranged in subsequent processes, and an exclusive effect is obtained. The exclusive control unit saves the new threshold th(x, y) in memory. It should be noted that the exclusive arrangement of dots between colors in the pixel of interest by updating the threshold will be described later.

次にステップS509においてコントラスト算出部405は、注目画素を中心とする所定の領域に含まれる各画素について、累積階調データSを算出する。たとえば、図7に示すように入力画像700において、画素701が注目画素であるとする。このときコントラスト算出部405は、注目画素701を中心とする3画素×3画素のブロックを処理領域とする。なお例えば画素702のように、画素位置が画像の端にあり、3画素×3画素の処理領域を確保できない場合には、2×2などより小さなブロックを処理領域とすることとする。本実施形態においてコントラスト算出部405は、注目画素において処理済の色の階調値および処理対象色の階調値Iの総和を累積階調データSとして算出する。 Next, in step S509, the contrast calculation unit 405 calculates cumulative tone data S for each pixel included in a predetermined area centered on the pixel of interest. For example, assume that a pixel 701 is a pixel of interest in an input image 700 as shown in FIG. At this time, the contrast calculation unit 405 sets a block of 3×3 pixels centering on the target pixel 701 as a processing area. For example, when the pixel position is at the edge of the image, such as the pixel 702, and a processing area of 3×3 pixels cannot be secured, a smaller block such as 2×2 is used as the processing area. In the present embodiment, the contrast calculation unit 405 calculates, as cumulative gradation data S, the sum of the gradation value of the processed color and the gradation value I of the color to be processed in the pixel of interest.

たとえば、注目画素における注目対象色がKであるとする。本実施形態では量子化順がK→C→M→Yなので、注目画素において処理済の色はまだ存在せず、処理領域における各画素の累積階調データSは、Kインクの階調値Ikとなる。また、注目対象色がCインクである場合、処理領域における各画素について、注目画素における処理済の色のKインクの階調値Ikと処理対象色Cインクの階調値Icとの和が累積階調データSとして算出される。同様に、注目画素において処理対象色がMインクである場合、処理領域の画素毎に階調値Ikと階調値Icと階調値Imとの和を累積階調データとして算出する。さらに、注目画素において処理対象色がYインクである場合、処理領域の画素毎に階調値Ik、Ic、Im、Iyの総和を累積階調データとして算出する。図8は、処理領域における各画素のK、C、Mインクそれぞれの階調値Ik、Ic、Imの例を示している。ここで注目画素における処理対象色がMインクである場合、S509において算出される各画素の累積階調データSはそれぞれ図8(d)に示す値となる。 For example, assume that K is the target color of the target pixel. In this embodiment, since the quantization order is K→C→M→Y, there is no processed color in the pixel of interest yet, and the cumulative gradation data S of each pixel in the processing area is the gradation value Ik of the K ink. becomes. When the target color is C ink, the sum of the processed color K ink gradation value Ik and the processing target color C ink gradation value Ic is accumulated for each pixel in the target pixel. It is calculated as gradation data S. Similarly, when the color to be processed in the pixel of interest is the M ink, the sum of the gradation value Ik, the gradation value Ic, and the gradation value Im is calculated as cumulative gradation data for each pixel in the processing area. Furthermore, when the color to be processed in the pixel of interest is Y ink, the sum of the tone values Ik, Ic, Im, and Iy is calculated as cumulative tone data for each pixel in the processing area. FIG. 8 shows examples of gradation values Ik, Ic, and Im of K, C, and M inks of each pixel in the processing area. Here, if the color to be processed in the target pixel is the M ink, the cumulative tone data S of each pixel calculated in S509 will be the values shown in FIG. 8D.

次にステップS510においてコントラスト算出部405は、処理領域における各画素の累積階調データSに基づいて、処理領域内のコントラストを示すコントラスト値cntを算出する。具体的に本実施形態においては、以下の式(2)によりコントラスト値cntを算出する。ただし、処理領域における各画素の累積階調データSのうち最大値をmax_S、最小値をmin_Sとする。
cnt=(max_S-min_S)/(max_S+min_S) (2)
Next, in step S510, the contrast calculation unit 405 calculates a contrast value cnt indicating the contrast within the processing area based on the accumulated tone data S of each pixel in the processing area. Specifically, in this embodiment, the contrast value cnt is calculated by the following equation (2). However, let max_S be the maximum value and min_S be the minimum value of the accumulated gradation data S of each pixel in the processing area.
cnt=(max_S−min_S)/(max_S+min_S) (2)

ただし、max_S=0の場合には、cnt=0とする。式(2)により算出されたコントラスト値cntは、0から1の間の値であり、処理領域においてコントラストが高いほど、大きい値になる。 However, when max_S=0, cnt=0. The contrast value cnt calculated by Equation (2) is a value between 0 and 1, and the higher the contrast in the processing area, the larger the value.

S511において排他制御部406は、注目画素に対応する処理領域内のコントラストcntに基づいて、注目画素に対する排他処理の強度を抑制する処理をおこなう。より詳細には、処理領域に対応するコントラスト値cntの値が大きい(コントラストが高い)ほど、S508における閾値の変更が打ち消されるように、注目画素に対応する閾値th(x,y)をさらに更新する。本実施形態では排他制御部406は、新たな閾値th´´を以下の式(3)により算出し、メモリ内に閾値th´´を注目画素に対応する閾値として保存する。
th´´=th´(x,y)+I(x,y)×cnt (3)
In S<b>511 , the exclusion control unit 406 performs processing for suppressing the intensity of exclusion processing for the pixel of interest based on the contrast cnt within the processing region corresponding to the pixel of interest. More specifically, the threshold th(x, y) corresponding to the pixel of interest is further updated such that the larger the contrast value cnt corresponding to the processing region (the higher the contrast), the more the threshold change in S508 is canceled out. do. In the present embodiment, the exclusive control unit 406 calculates a new threshold th'' using the following equation (3), and stores the threshold th'' in the memory as a threshold corresponding to the pixel of interest.
th″=th′(x, y)+I(x, y)×cnt (3)

式(3)においてI(x,y)×cntは、排他の度合いを制御する排他制御値として機能する。すなわち近傍領域においてコントラスト値が小さい(コントラストが低い)画素については、ドットを排他的に配置するための閾値th´が維持される。一方、近傍領域においてコントラスト値が大きい(コントラストが大きい)画素では、閾値th´が更新されることになる。特に注目画素のコントラスト値が1である場合、閾値は元の閾値thの値に更新されることになる。この処理の詳細については後述する。 In Equation (3), I(x, y)×cnt functions as an exclusion control value that controls the degree of exclusion. That is, for pixels with small contrast values (low contrast) in the neighboring area, the threshold th' for exclusively arranging dots is maintained. On the other hand, the threshold th' is updated for pixels having a large contrast value (large contrast) in the neighboring area. In particular, when the contrast value of the pixel of interest is 1, the threshold is updated to the original value of the threshold th. The details of this processing will be described later.

次にS512において排他制御部406は、閾値th´´(x,y)が0より小さいか否かを判定する。閾値th´´(x,y)が0より小さい場合、S513へと進む。S513において排他制御部406は、閾値th´´(x,y)に階調データにおいて上限値i_max(ここでは255)を加えた値を新たな閾値th´´´とすることにより、注目画素の閾値を更新する。一方で、閾値th´´(x,y)が0以上の場合には、S513をスキップしてS514へと進む。 Next, in S512, the exclusive control unit 406 determines whether or not the threshold th''(x, y) is smaller than zero. If the threshold th''(x, y) is smaller than 0, the process proceeds to S513. In S513, the exclusion control unit 406 adds the upper limit value i_max (here, 255) in the gradation data to the threshold th''(x, y) as a new threshold th''. Update the threshold. On the other hand, if the threshold th''(x, y) is 0 or more, skip S513 and proceed to S514.

次にS514においてインク色選択部402は、量子化順408に従って注目画素において全色の量子化処理を実行したか否かを判定する。注目画素における全色の量子化処理が完了していれば、S515へと進む。未処理の色がある場合には、S502へと進み、注目画素のおける処理対象色を選択し、注目画素における量子化処理を続行する。 Next, in S<b>514 , the ink color selection unit 402 determines whether quantization processing for all colors has been executed for the pixel of interest according to the quantization order 408 . If the quantization processing for all colors in the pixel of interest has been completed, the process proceeds to S515. If there is an unprocessed color, the process advances to S502 to select a color to be processed in the pixel of interest and continue quantization processing in the pixel of interest.

S515において量子化データ作成部407は、注目画素の各色の量子化値をRAM212に出力する。S516において画素選択部401は、入力画像の全画素について量子化処理を実行したか否かを判断する。たとえば、左上から順に画素を選択している場合には、最も右下の画素の量子化データを作成済みであるか否かを判定すればよい。判定の結果、入力画像の全画素について量子化処理を実行済みであれば、量子化処理を終了する。未作成の画素がある場合には、S501へと戻り、新たに注目画素を選択して量子化処理を続行する。 In S<b>515 , the quantized data creation unit 407 outputs the quantized value of each color of the pixel of interest to the RAM 212 . In S516, the pixel selection unit 401 determines whether quantization processing has been performed for all pixels of the input image. For example, when pixels are selected in order from the upper left, it is only necessary to determine whether or not the quantized data of the lower right pixel has been created. If the result of determination is that quantization processing has already been performed for all pixels of the input image, the quantization processing ends. If there is an uncreated pixel, the process returns to S501 to select a new pixel of interest and continue the quantization process.

以下、図9および図10を用いて、本実施形態における量子化処理について具体的に例をあげて説明する。図9(a)は、入力画像における部分領域のKインクの階調データを示す。矩形は1画素を示し、各画素には階調値が格納されている。図9(b)は、図9(a)に示す部分領域に対応する閾値群を示す。図9(c)は、Kインクの量子化処理の結果を示す。図9(c)において黒く塗りつぶされた画素は、Kインクのドット(以降、単にKドットとも記す)が配置される(出力値が1)ことを示している。Kインクは第1色なので、各画素の階調値が対応する閾値よりも大きい画素については、出力値が1となっている。Kインクの量子化処理を実行する際には、S508~S514の処理により、各画素に対応する閾値の少なくとも一部が更新される。図9(d)は、S508において式(1)により設定される閾値th´を示す。Kインクの出力値が0の画素については、閾値は変更されず、図9(b)に示す閾値と同じ閾値が保持されている。一方、Kインクの出力値が1の画素については、閾値から階調値を減算した値が、閾値th´として格納されている。ここで出力値が1ということは、画素の階調値が閾値よりも大きいことを意味している。そのため出力値が1の画素では必ず閾値th´が負の値となる。 A specific example of the quantization processing according to the present embodiment will be described below with reference to FIGS. 9 and 10. FIG. FIG. 9A shows gradation data of K ink in a partial area of the input image. A rectangle indicates one pixel, and each pixel stores a gradation value. FIG. 9(b) shows a threshold group corresponding to the partial area shown in FIG. 9(a). FIG. 9C shows the result of quantization processing for K ink. Pixels filled in black in FIG. 9C indicate that dots of K ink (hereinafter also simply referred to as K dots) are arranged (output value is 1). Since the K ink is the first color, the output value is 1 for pixels whose gradation value is greater than the corresponding threshold value. When the K ink quantization process is executed, at least part of the threshold corresponding to each pixel is updated by the processes of S508 to S514. FIG. 9(d) shows the threshold th' set by the equation (1) in S508. For pixels with a K ink output value of 0, the threshold is not changed, and the same threshold as that shown in FIG. 9B is retained. On the other hand, for pixels with a K ink output value of 1, a value obtained by subtracting the gradation value from the threshold is stored as the threshold th'. Here, an output value of 1 means that the gradation value of the pixel is greater than the threshold. Therefore, the pixel whose output value is 1 always has a negative value as the threshold value th'.

図9(e)は、S510で算出される各画素のコントラスト値cntを示す。ただし、コントラスト値を算出する処理領域は。注目画素を中心とする3画素×3画素の領域とする。近傍の領域において平坦(画素値の変化がない)でコントラストの低い画素については、コントラスト値が小さい(0.00)である。また近傍の領域においてコントラストの高い画素ほど、コントラスト値が大きいことがわかる。 FIG. 9E shows the contrast value cnt of each pixel calculated in S510. However, the processing area for calculating the contrast value is An area of 3×3 pixels centered on the pixel of interest is assumed. A low contrast pixel that is flat (no change in pixel value) in the neighboring region has a small contrast value (0.00). Also, it can be seen that a pixel having a higher contrast in a neighboring region has a larger contrast value.

図9(f)は、排他処理による強度を制御する排他制御値に基づいて算出された閾値th´´を示す。ただし、th´´<0の場合にはth´´にi_max=255を加えている。排他制御の結果、部分領域における右下の画素のようにKドットが配置され、かつコントラストの低い画素については、元の閾値19よりも大きな値が閾値として採用されている。また2列目の下2画素のようにKドットが配置され、かつコントラストの低い画素では、元の閾値より小さい値が採用され、排他処理の強度が抑制されていることがわかる。さらに、右上の画素や2列目2行目の画素のようにKドットが配置されない画素は、いずれも元の閾値より小さい値が採用されている。 FIG. 9(f) shows the threshold th'' calculated based on the exclusion control value that controls the strength of the exclusion process. However, when th''<0, i_max=255 is added to th''. As a result of exclusive control, a value greater than the original threshold value 19 is adopted as a threshold value for pixels in which K dots are arranged and the contrast is low, such as the lower right pixel in the partial area. Also, in pixels where K dots are arranged and the contrast is low, such as the lower two pixels in the second row, a value smaller than the original threshold value is adopted, and the strength of the exclusion process is suppressed. In addition, for pixels where K dots are not arranged, such as the pixel on the upper right and the pixel on the second row of the second column, a value smaller than the original threshold value is adopted.

次に、処理対象色としてCインクが選択される。図10(a)は、図9(a)に示す部分領域と同じ部分領域におけるCインクの階調データを示す。 Next, C ink is selected as the color to be processed. FIG. 10(a) shows the gradation data of C ink in the same partial area as the partial area shown in FIG. 9(a).

本実施形態では、図9(b)に示す閾値群ではなく、図9(f)に示す排他制御後の閾値群を用いて、図10(a)に示すCインクの各階調値を量子化する。この本実施形態における量子化の結果を図10(d)に示す。ここで本実施形態による効果を説明するため、図9(b)に示す閾値群を用いて量子化した結果を図10(b)に示す。また排他処理後の閾値th´を用いて量子化した結果を図9(c)に示す。なお図10において、図中で黒く塗りつぶされた画素に、Cインクのドット(以降、Cドットと記す)が配置されたことを示している。 In this embodiment, each gradation value of the C ink shown in FIG. 10A is quantized using the threshold group after exclusive control shown in FIG. 9F instead of the threshold group shown in FIG. 9B. do. The result of quantization in this embodiment is shown in FIG. 10(d). FIG. 10(b) shows the result of quantization using the threshold group shown in FIG. 9(b) in order to explain the effect of this embodiment. FIG. 9C shows the result of quantization using the threshold th' after exclusion processing. Note that FIG. 10 shows that dots of C ink (hereinafter referred to as C dots) are arranged in the blackened pixels in the drawing.

図9(c)および図10(b)より、同じ閾値群を用いてそれぞれの色の階調値を量子化した場合には、Kドットが形成されたいずれの画素にも、Cドットが形成されることがわかる。すなわち、異なるインク色について、同一の閾値群を使用した場合、色の異なるドットの重複率が大きくなる。図9(a)と図10(a)はいずれも左から2列目に1画素幅のラインがあるように、階調データの特徴が似ている場合は特に、同じ閾値群を用いて量子化するとドットの重複率は高くなりやすい。しかしながら、量子化データに基づいて記録装置200が記録媒体にインクを吐出すると、平坦な領域においてはドットの重なりと紙白の露出が混在してしまう。その結果、平坦な領域であるにも関わらずコントラストが高くなり、また重複したドットにより粒状性が悪化し、画質が損なわれる場合があった。図10(b)に示す部分領域においては、右3列については平坦な領域であり、ドットの重複による画質劣化が生じる可能性がある。また、重複したドット増えることにより紙白が増え、所望の濃度に達成しない場合があった。 From FIGS. 9(c) and 10(b), when the same threshold value group is used to quantize the gradation value of each color, C dots are formed in any pixels where K dots are formed. It can be seen that That is, if the same set of threshold values is used for different ink colors, the overlapping rate of dots of different colors will increase. 9(a) and 10(a) both have a line with a width of 1 pixel in the second column from the left. Especially when the characteristics of the gradation data are similar, the same threshold value group is used for the quantum calculation. Dot duplication rate tends to increase. However, when the printing apparatus 200 ejects ink onto the print medium based on the quantized data, overlapping dots and exposure of paper white are mixed in a flat area. As a result, the contrast is high even though the area is flat, and the graininess is deteriorated due to overlapping dots, and the image quality may be impaired. In the partial area shown in FIG. 10(b), the right three columns are flat areas, and there is a possibility that image quality deterioration may occur due to dot overlap. In addition, the increase in the number of overlapping dots increases the paper whiteness, and the desired density may not be achieved in some cases.

ここで、図9(d)に示す排他処理後の閾値th´を用いて各画素の階調値を量子化すると、図10(c)に示す量子化データが得られる。なお上述の通り排他効果のため、閾値th´<0の場合にはth´にi_max=255を加えて量子化している。図9(c)および図10(c)より、排他処理後の閾値th´を用いた場合には、Kドットが形成された画素には、Cドットが形成されないことがわかる。すなわち、S508における閾値の変更により、異なる色のドット同士が互いに排他的に配置されていることがわかる。このような色間のドットを排他的に配置により、平坦な領域では粒状性の悪化を抑制することができる。 Here, quantization data shown in FIG. 10C is obtained by quantizing the gradation value of each pixel using the threshold value th′ after exclusion processing shown in FIG. 9D. As described above, due to the exclusion effect, i_max=255 is added to th' for quantization when the threshold th'<0. From FIGS. 9C and 10C, it can be seen that C dots are not formed in pixels where K dots are formed when the threshold th' after exclusion processing is used. That is, by changing the threshold in S508, dots of different colors are arranged mutually exclusive. By arranging such inter-color dots exclusively, deterioration of graininess can be suppressed in a flat area.

一方、コントラストの高い領域に対しては、異なる色のドット同士が互いに排他的に配置することが好ましくない場合がある。たとえば、図9(a)および図10(a)に示す階調データでは、左から2列目の階調値が他の列の階調値に比べて大きく、K+Cのラインが形成されている。しかしながら、図10(c)に示すCインクの量子化データに基づいて記録装置200が記録媒体にインクを吐出すると、KとCとが重複した高濃度のラインが形成されるはずの領域にもかかわらず、KインクとCインクが重なったドットが存在しない。その結果、KドットとCドットが分散して配置されているため部分領域としては平坦な濃度になってしまう。その結果、記録媒体においてK+Cのラインが知覚されにくい。 On the other hand, in high-contrast areas, it may not be desirable to arrange dots of different colors in a mutually exclusive manner. For example, in the gradation data shown in FIGS. 9A and 10A, the gradation value in the second column from the left is larger than the gradation values in the other columns, forming a line of K+C. . However, when the printing apparatus 200 ejects ink onto the printing medium based on the quantized data of C ink shown in FIG. Regardless, there is no dot in which the K ink and the C ink overlap. As a result, since the K dots and C dots are dispersedly arranged, the partial area has a flat density. As a result, the K+C line is difficult to perceive on the recording medium.

そこで本実施形態においては、S511においてコントラストに基づいて画素ごとに色間ドットの排他の度合いを制御する処理をおこなう。排他制御後の閾値群は、図9(f)に示す排他制御後の閾値マトリクスにより得られるCインクの量子化データを図10(d)に示す。図9(c)および図10(d)より、コントラストの高いK+Cライン付近ではドットが重なることでK+Cラインが再現される一方で、右側の均一領域ではCドットとKドットとが互いに排他されていることがわかる。 Therefore, in the present embodiment, in S511, processing is performed to control the degree of exclusion of dots between colors for each pixel based on the contrast. As for the threshold group after exclusive control, the quantized data of C ink obtained from the threshold matrix after exclusive control shown in FIG. 9(f) is shown in FIG. 10(d). 9(c) and 10(d), the K+C lines are reproduced by overlapping dots in the vicinity of the high-contrast K+C lines, while the C dots and K dots are mutually exclusive in the uniform area on the right side. I know there is.

このように本実施形態では、色間排他処理および排他処理による強度を制御している。高コントラストの領域では異なる色のドットが重なりやすいように制御し、低コントラストの領域では異なる色のドットが重なりにくいように制御している。これにより、記録媒体において適切に異なる色のドットが重ねて記録した際に高画質な画像を実現することができる。 In this way, in this embodiment, the inter-color exclusion process and the intensity of the exclusion process are controlled. In high-contrast areas, dots of different colors are controlled so that they tend to overlap, and in low-contrast areas, dots of different colors are controlled so that they are less likely to overlap. As a result, a high-quality image can be realized when dots of different colors are appropriately overlapped and printed on the printing medium.

なお、コントラスト値cntの算出する処理領域は3画素×3画素に限らない。また、注目画素が中心でなくてもよく、注目画素を左上とする4×4領域でコントラストcntを算出してもよい。あるいは、連続領域ではなくて千鳥格子や奇数もしくは偶数列の画素のみを算出する処理領域としてもよい。また、コントラスト値cntを算出する方法として、式(2)による算出方法以外を適用することもできる。たとえば、累積階調データSのヒストグラムに基づいてコントラスト値cntを算出してもよい。具体的には、注目画素を中心とする所定領域内のヒストグラムから算出される尖度を算出し、尖度が小さいほどコントラストcntが高くなるように定めてもよい。 Note that the processing area for calculating the contrast value cnt is not limited to 3 pixels×3 pixels. Further, the pixel of interest may not be the center, and the contrast cnt may be calculated in a 4×4 area with the pixel of interest at the upper left. Alternatively, instead of a continuous area, a houndstooth check or a processing area in which only pixels in odd or even columns are calculated may be used. Moreover, as a method of calculating the contrast value cnt, a method other than the calculation method by the expression (2) can be applied. For example, the contrast value cnt may be calculated based on the histogram of the accumulated tone data S. Specifically, the kurtosis may be calculated from a histogram in a predetermined area centered on the pixel of interest, and the contrast cnt may be determined to be higher as the kurtosis is smaller.

<第2の実施形態>
第1の実施形態では、同一の閾値マトリクスを各色の階調データに用いる方法において、色間のドットの排他の度合いを制御する方法について説明した。本実施形態では、所定領域内の平均値を用いてドット数を算出した後、該ドット数の配置を決定することで、異なる閾値マトリクスを用いても異なる色間での排他の度合いを制御する方法について説明とする。第1の実施形態と同様の構成については、同じ名称を用いて説明し、詳細な説明を省略する。
<Second embodiment>
In the first embodiment, the method of controlling the degree of exclusion of dots between colors in the method of using the same threshold matrix for the gradation data of each color has been described. In this embodiment, after calculating the number of dots using the average value in a predetermined area, the arrangement of the number of dots is determined, thereby controlling the degree of exclusion between different colors even if different threshold matrices are used. The method will be explained. Configurations similar to those of the first embodiment will be described using the same names, and detailed descriptions thereof will be omitted.

図11は、本実施形態の量子化処理における機能構成を説明するためのブロック図である。領域選択部1101は、複数の画素で構成される階調データを複数の単位領域に分割し、その中から1つの単位領域を処理対象領域として設定する。このとき領域選択部401は、各色の階調データについて、同じ位置の複数の単位領域により分割する。 FIG. 11 is a block diagram for explaining the functional configuration in the quantization processing of this embodiment. A region selection unit 1101 divides the gradation data composed of a plurality of pixels into a plurality of unit regions, and sets one unit region among them as a processing target region. At this time, the area selection unit 401 divides the gradation data of each color into a plurality of unit areas at the same position.

インク色選択部1102は、領域ごとに処理の対象とするインク色を決定する。 The ink color selection unit 1102 determines an ink color to be processed for each region.

メモリには、インク色毎の閾値マトリクス1110が保存されている。またドット履歴情報1111には、単位領域における各色の画素の出力値が保存される。つまりドット履歴情報111は、処理対象領域における各画素について、先行して決定されたインク色毎のドットの有無を示す。なお本実施形態では4色のインク色があるため、ドット履歴情報1111は3色分の単位領域の出力値を保存可能なように構成されている。 The memory stores a threshold matrix 1110 for each ink color. The dot history information 1111 stores output values of pixels of each color in the unit area. In other words, the dot history information 111 indicates the presence/absence of dots for each ink color determined in advance for each pixel in the processing target area. Since there are four ink colors in this embodiment, the dot history information 1111 is configured to be able to store output values of unit areas for three colors.

目標ドット数設定部1103は、処理対象領域に配置するべき目標ドット数Dを色ごとに設定する。目標ドット数とは、処理対象領域においてドットを配置すべき数である。ここでは量子化処理により、各画素をドットの記録(1)又は非記録(0)を画素ごとに指定する2値に変換する。すなわち目標ドット数とは、処理対象領域に含まれる画素のうち、量子化により記録を示す値(ここでは、1)にすべき画素の数とも言い換えることができる。 The target dot number setting unit 1103 sets the target dot number D to be arranged in the processing target area for each color. The target number of dots is the number of dots to be arranged in the processing target area. Here, each pixel is converted by quantization processing into a binary value that designates dot printing (1) or non-printing (0) for each pixel. That is, the target number of dots can be rephrased as the number of pixels to be set to a value (here, 1) indicating printing by quantization among the pixels included in the processing target area.

評価値設定部405は、処理対象領域の階調データ、処理対象領域に対応する閾値群およびドット履歴情報に基づいて、処理対象色の処理対象領域に含まれる画素のそれぞれに対し評価値Hを設定する。詳細な算出方法は後述する。ドット配置部1107は、目標ドット数と各画素の評価値に基づいて、処理対象領域におけるドット配置を決定する。量子化データ作成部407は、画像の量子化データを作成し、出力する。 The evaluation value setting unit 405 sets an evaluation value H for each pixel included in the processing target area of the processing target color based on the gradation data of the processing target area, the threshold value group corresponding to the processing target area, and the dot history information. set. A detailed calculation method will be described later. A dot arrangement unit 1107 determines the dot arrangement in the processing target area based on the target number of dots and the evaluation value of each pixel. A quantized data creation unit 407 creates and outputs quantized data of an image.

図12は、CPU201が、S303の量子化処理において、図11に示す各ブロックを用いながら実行する処理工程を説明するためのフローチャートである。 FIG. 12 is a flowchart for explaining processing steps executed by the CPU 201 using each block shown in FIG. 11 in the quantization processing of S303.

まずS1200において領域選択部1101は、印刷対象となる画像領域の中から1つの単位領域を処理対象領域として設定する。図13は、処理対象領域の設定方法を説明するための概念図である。領域選択部1101は、印刷対象となる画像1300を、同型の複数の単位領域に分割し、その中から1つの単位領域を処理対象領域として設定する。本実施形態では印刷対象となる画像領域を4画素×4画素の単位で区画し、それぞれの4画素×4画素領域を単位領域として扱う。そして、これら複数の単位領域を順番に処理対象領域に設定して所定の量子化処理を行う。処理対象領域を設定する順番は特に限定されるものではないが、本実施形態では図の左上から+x方向に順番に設定し、最端部の処理が修了すると+y方向に隣接する段に移る順番とする。 First, in S1200, the area selection unit 1101 sets one unit area from among the image areas to be printed as a processing target area. FIG. 13 is a conceptual diagram for explaining a method of setting the processing target area. The region selection unit 1101 divides the image 1300 to be printed into a plurality of unit regions of the same type, and sets one unit region among them as a processing target region. In this embodiment, the image area to be printed is divided into units of 4 pixels×4 pixels, and each 4 pixels×4 pixel area is treated as a unit area. Then, the plurality of unit areas are sequentially set as processing target areas, and predetermined quantization processing is performed. The order in which the processing target areas are set is not particularly limited, but in this embodiment, they are set in order from the upper left of the figure in the +x direction, and when the processing of the farthest end is completed, the order is shifted to the adjacent stage in the +y direction. and

S500で処理対象領域が設定されると、S1201においてインク色選択部1102は、量子化順情報1108に基づいてブラック(第1色)、シアン(第2色)、マゼンタ(第3色)、イエロー(第4色)の中から処理対象色を設定する。 After the processing target area is set in S500, the ink color selection unit 1102 selects black (first color), cyan (second color), magenta (third color), and yellow based on the quantization order information 1108 in S1201. Set the color to be processed from (fourth color).

次にS1202においてドット数決定部1103は、インク色分解処理(図3のS302)により得られた階調データのうち、処理対象領域の処理対象色の階調データをメモリに展開する。図14(a)は、S1202で展開される階調データの一例を示す。処理対象領域1301に含まれる4×4の画素のそれぞれに0~255の階調値Iが対応づけられている。S1203において目標ドット数決定部1103は、処理対象色の閾値マトリクス1110から処理対象領域に含まれる16画素のそれぞれに対応する閾値th(x,y)を取得する。図14(b)は、処理対象色の閾値マトリクスの一部を示す図である。目標ドット数決定部1103は、閾値マトリクスから処理対象領域に対応する位置にある16の閾値をメモリから読み出す。 Next, in S1202, the dot number determination unit 1103 develops the gradation data of the processing target color of the processing target region in the memory among the gradation data obtained by the ink color separation processing (S302 in FIG. 3). FIG. 14A shows an example of gradation data developed in S1202. A gradation value I of 0 to 255 is associated with each of the 4×4 pixels included in the processing target area 1301 . In S1203, the target dot number determination unit 1103 acquires the threshold th(x, y) corresponding to each of the 16 pixels included in the processing target area from the threshold matrix 1110 of the processing target color. FIG. 14B is a diagram showing part of the threshold matrix of the color to be processed. The target dot number determination unit 1103 reads from the memory 16 thresholds at positions corresponding to the processing target area from the threshold matrix.

次にS1204において目標ドット数決定部1103は、S1202において取得された階調データとS1203において取得された閾値th(x,y)とに基づいて、処理対象領域に配置すべきドット数を決定する。具体的には、処理領域内の階調データの総和SUMを画素数16で除算した平均値と、処理対象領域の各閾値との大小の比較をおこない、平均値>閾値となる画素数をドット数とする。なお、本実施形態においては処理対象色ごとに異なる閾値マトリクスから閾値thを取得する。例えば図14(a)に示す処理対象領域の場合、目標ドット数決定部1103はまず、処理対象領域の階調値の平均値109.75(=1756/16)を算出する。次に平均値と各閾値とをそれぞれ比較することで、平均値>閾値となる画素数=7が処理対象領域のドット数として算出される。 Next, in S1204, the target dot number determination unit 1103 determines the number of dots to be arranged in the processing target area based on the tone data acquired in S1202 and the threshold value th(x, y) acquired in S1203. . Specifically, the average value obtained by dividing the sum SUM of the gradation data in the processing area by the number of pixels 16 is compared with each threshold value of the processing target area, and the number of pixels where the average value > the threshold value is determined as a dot. number. Note that in this embodiment, the threshold th is obtained from a different threshold matrix for each color to be processed. For example, in the case of the processing target area shown in FIG. 14A, the target dot number determining unit 1103 first calculates an average value of 109.75 (=1756/16) of the gradation values of the processing target area. Next, by comparing the average value with each threshold value, the number of pixels where the average value>the threshold value=7 is calculated as the number of dots in the processing target area.

次にS1205において配置評価部1104は、処理対象領域における16画素のそれぞれについて、ドットを配置する優先順位を評価するための評価値Eを算出する。評価値Eは、値が大きいほど、ドットが優先して配置されることを示す実数である。具体的には、配置評価部1104は、以下の式(4)に基づいて各画素の評価値Eを算出する。
E=I/I_max - th/th_max (4)
Next, in S1205, the placement evaluation unit 1104 calculates an evaluation value E for evaluating the order of priority of dot placement for each of the 16 pixels in the processing target area. The evaluation value E is a real number indicating that the larger the value, the more preferentially the dots are arranged. Specifically, the layout evaluation unit 1104 calculates the evaluation value E of each pixel based on the following equation (4).
E = I/I_max - th/th_max (4)

ただし、Iは注目画素の階調値であり、I_maxは階調データの上限値である。たとえば、階調データが8bitの場合にはI_max=255、16bitの場合には、I_max=65535である。すなわち、I/I_maxは0~1までの実数であり、値が大きいほどドットが配置されやすいことを示す。また、thは注目画素に対応する閾値であり、th_maxは閾値の上限値である。たとえば閾値が0~254であれば、th_max=254とすればよい。このとき、th/th_maxは0~1までの実数であり、値が大きいほどドットが配置されにくいことを示す。 However, I is the gradation value of the target pixel, and I_max is the upper limit value of the gradation data. For example, I_max=255 when the gradation data is 8 bits, and I_max=65535 when the gradation data is 16 bits. That is, I/I_max is a real number from 0 to 1, and the larger the value, the easier it is for dots to be arranged. Also, th is a threshold corresponding to the pixel of interest, and th_max is the upper limit of the threshold. For example, if the threshold is 0 to 254, th_max=254. At this time, th/th_max is a real number from 0 to 1, and the larger the value, the harder it is to place dots.

つづいて、S1206において排他処理部1105は、処理対象領域における16画素のそれぞれについて、メモリ内に格納されたドット履歴情報1111から各画素におけるドットの累積値を取得する。 Subsequently, in S1206, the exclusion processing unit 1105 acquires the cumulative value of dots in each pixel from the dot history information 1111 stored in the memory for each of the 16 pixels in the processing target area.

たとえば、処理対象色がCであるとき、ドット履歴情報1111には処理済みであるKインクの出力値が保存されている。同様に、処理対象色がMであるときは、ドット履歴情報1111にはKインクの出力値とCインクの出力値の合計が、処理対象色がYであるときはK、C、Mインクそれぞれの出力値の合計が保存されている。なお、処理対象色がKインクである場合には、処理済みのインク色が存在しないため、排他処理部1105はドット履歴情報1111から何も取得しない。 For example, when the color to be processed is C, the dot history information 1111 stores the output value of the processed K ink. Similarly, when the color to be processed is M, the dot history information 1111 contains the sum of the output value of K ink and the output value of C ink. The sum of the output values of is stored. Note that when the color to be processed is the K ink, there is no processed ink color, so the exclusion processing unit 1105 acquires nothing from the dot history information 1111 .

次にS1207において排他処理部1105は、ドット履歴情報1111に基づいて各画素の評価値Eを補正する。具体的には排他処理部1105は、式(5)、(6)により、排他処理後の評価値E´を算出する。
E´=E - H/H_max (5)
ただし、H=Σ(wi×Di) (6)
Next, in S<b>1207 , the exclusion processing unit 1105 corrects the evaluation value E of each pixel based on the dot history information 1111 . Specifically, the exclusion processing unit 1105 calculates the evaluation value E′ after the exclusion processing by using formulas (5) and (6).
E'=E-H/H_max (5)
However, H = Σ (wi × Di) (6)

式(5)におけるHは履歴情報から算出される排他制御値であり、値が大きいほどドットが配置されにくいことを示す実数である。本実施形態においては、より濃度の高いドットがより多く配置されている画素ほど、排他制御値Hがより大きな値となる。 H in Expression (5) is an exclusive control value calculated from history information, and is a real number indicating that the larger the value, the more difficult it is to place dots. In the present embodiment, the exclusive control value H is larger for pixels in which more dots of higher density are arranged.

また、上記の式(6)においてiは処理対象色の処理順を示す番号である。たとえば本実施形態では処理順がK→C→M→Yであるので、処理対象色がKの場合にはi=1、Cの場合にはi=2である。また、wiは、予め設定されたi番目のインク色に対する重みである。本実施形態では濃度の高いインク色ほど重みを大きくする。具体的には各インク色の重みをK:C:M:Y=4:2:2:1とする。つまり、w1=4、w2=2、w3=2、w4=1となる。このように重みを定めることで、より濃度の高いドットが配置されているほど、排他制御値Hがより大きな値として算出される。 Also, in the above equation (6), i is a number indicating the processing order of the color to be processed. For example, in this embodiment, the order of processing is K→C→M→Y, so if the color to be processed is K, i=1, and if it is C, i=2. Also, wi is a preset weight for the i-th ink color. In this embodiment, the higher the density of the ink color, the greater the weight. Specifically, the weight of each ink color is set to K:C:M:Y=4:2:2:1. That is, w1=4, w2=2, w3=2, and w4=1. By determining the weight in this way, the exclusive control value H is calculated as a larger value as the dots with higher density are arranged.

またDiはi番目のインク色のドット数を示している。たとえば、注目画素にKインクのドットが1個配置されている場合は、D1=1である。また、Σはi-1番目までの総和を示す。ただし、i=1の場合にはH=0とする。以上のように算出された排他制御値Hは、既に配置されたドットの数および配置されたドットの濃度の高さに応じて算出される。ドットの数が多い、また配置されているドットの濃度が高い場合ほど、大きな値とある。 Di indicates the number of dots of the i-th ink color. For example, when one dot of K ink is placed in the pixel of interest, D1=1. Also, Σ indicates the sum up to the (i−1)th. However, when i=1, H=0. The exclusive control value H calculated as described above is calculated according to the number of dots already arranged and the density of the arranged dots. The larger the number of dots and the higher the density of the arranged dots, the larger the value.

また、H_maxは処理領域内の排他制御値Hの最大値を示している。排他制御値HをH_maxで除算することで、処理領域内の排他制御値Hが0~1に正規化される。なお、式(5)において、H_max=0である場合には、E´=Eとする。つまり処理対象色が第1色目である場合には、まだドットが配置されていないので、評価値Eは補正されない。 H_max indicates the maximum exclusive control value H within the processing area. By dividing the exclusive control value H by H_max, the exclusive control value H within the processing area is normalized to 0-1. In addition, in Formula (5), when it is H_max=0, let E'=E. In other words, when the color to be processed is the first color, the evaluation value E is not corrected because no dots have been placed yet.

次にS1208において排他制御部1106は各画素における累積階調データSに基づいて、ステップS1207における評価値の補正効果を打ち消すように評価値E´を再度補正する。具体的には、排他制御部1106は、以下の式(7)により、各画素の排他制御後の評価値E´´を算出する。
E´´=E´+S/S_max (7)
ただし、S=Σ(wi×Ii) (8)
Next, in S1208, the exclusion control unit 1106 again corrects the evaluation value E' based on the cumulative grayscale data S for each pixel so as to cancel the correction effect of the evaluation value in step S1207. Specifically, the exclusive control unit 1106 calculates an evaluation value E″ after exclusive control of each pixel using the following equation (7).
E″=E′+S/S_max (7)
However, S = Σ (wi × Ii) (8)

ここで、累積の階調データSは、すでに処理済みのインク色の階調値Iの重みづけ和である。たとえば、処理対象色がKであれば、各画素の累積階調データSは0である。また、処理対象色がCインクであれば画素毎にKインクの階調値IkとKインクに対する重みw1との積を累積階調データSとして取得する。同様に、処理対象色がMインクであれば画素毎にIk×w1+Ic×w2を取得する。 Here, the cumulative gradation data S is a weighted sum of the gradation values I of the ink colors that have already been processed. For example, if the color to be processed is K, the accumulated tone data S of each pixel is zero. If the color to be processed is C ink, the product of the K ink gradation value Ik and the weight w1 for the K ink is obtained as cumulative gradation data S for each pixel. Similarly, if the color to be processed is M ink, Ik×w1+Ic×w2 is obtained for each pixel.

なお、式(7)のS_maxは、累積階調データSの理論的な上限値を示している。たとえば、w1=4、階調データが0~255の値をとりうる8bitのデータであれば、i=2におけるS_maxの値は1020(=255×4)となる。さらに、w2=2であれば、i=3におけるS_maxの値は1530(=255×4+255×2)となる。なお、S_max=0である場合には、E´´=E´とする。 Note that S_max in Equation (7) indicates a theoretical upper limit value of the cumulative grayscale data S. For example, if w1=4 and the gradation data is 8-bit data that can take values from 0 to 255, the value of S_max at i=2 is 1020 (=255×4). Furthermore, if w2=2, the value of S_max at i=3 is 1530 (=255×4+255×2). Note that when S_max=0, E″=E′.

なお本実施形態では式(6)および(8)の各インクの重みwiは共通としているが、同一のインクについて異なる重みをそれぞれの式で使用することも可能である。 In the present embodiment, the weight wi of each ink in equations (6) and (8) is common, but it is also possible to use different weights for the same ink in each equation.

次にS1209においてドット配置部1107は、処理対象領域における各画素の評価値E´´に基づいて、処理対象領域のドット配置を決定する。具体的は、評価値E´´の大きい画素から順に、ステップS1204で算出された目標ドット数だけ、ドットを領域内に配置する。なお、評価値E´´が同じ値である場合には、階調値Iがより大きい画素に優先して配置する。その結果、図14(c)に示すように処理単位領域に対してドット配置が決定されることになる。あるいは評価値が同じ値である画素からランダムに優先する画素を選択してもよいし、より左上の画素を優先して配置するようにすることもできる。ドット配置部1107は、処理対象領域においてドットを配置した画素の出力値を1とし、ドットを配置しない画素の出力値を0と決定する。図14(d)は、各画素の出力値を示す図である。 Next, in S1209, the dot arrangement unit 1107 determines the dot arrangement of the processing target area based on the evaluation value E'' of each pixel in the processing target area. Specifically, dots are arranged in the area by the target number of dots calculated in step S1204 in order from the pixel with the largest evaluation value E″. When the evaluation values E″ are the same value, pixels with higher gradation values I are preferentially arranged. As a result, the dot arrangement is determined for the processing unit area as shown in FIG. 14(c). Alternatively, a pixel with priority may be randomly selected from pixels having the same evaluation value, or the upper left pixel may be preferentially arranged. The dot placement unit 1107 sets the output value of pixels on which dots are placed in the processing target area to 1, and determines the output value of pixels on which dots are not placed to be 0. FIG. 14D is a diagram showing the output value of each pixel.

次にS1210においてドット配置部1107は、ドット履歴情報1111を更新する。具体的には、S1209にて決定された各画素の出力値インク色に対応付けてメモリ上に格納する。格納されたドット履歴情報は、以降のインク色のS1206において処理済みのインク色のドット履歴として取得される。 Next, in S<b>1210 , the dot placement unit 1107 updates the dot history information 1111 . Specifically, the output value of each pixel determined in S1209 is stored in the memory in association with the ink color. The stored dot history information is acquired as the dot history of the ink color processed in S1206 for the subsequent ink color.

次にS1211において量子化データ作成部は、S1209において決定した単位領域毎の出力値から画像の量子化データを作成し、RAM212に出力する。 Next, in S<b>1211 , the quantized data creation unit creates quantized data of the image from the output value for each unit area determined in S<b>1209 , and outputs it to the RAM 212 .

次にS1212においてインク色選択部1102は、量子化順に従って処理対象領域について全インク色の量子化データを作成済みであるか否かを判断する。全インク色の量子化データを作成済みと判断された場合、S1213へと進む。未作成のインクがある場合には、S1201へと進み、処理対象色を選択しなおして量子化処理を続行する。 Next, in S1212, the ink color selection unit 1102 determines whether or not quantized data for all ink colors has been created for the processing target area according to the order of quantization. If it is determined that quantized data for all ink colors have been created, the process advances to S1213. If there is uncreated ink, the process advances to S1201 to reselect the color to be processed and continue the quantization process.

S1213において領域選択部1101は、入力画像の全画素について量子化データの作成済みか否かを判定する。すなわち、図13に示す4画素×4画素で分割された全ブロックを処理対象領域として選択し、量子化データが作成済みか否かを判断する。たとえば、左上から順にブロックを選択している場合には、処理領域が最も右下のブロックであるか否かを判定すればよい。判定の結果、入力画像の全画素について量子化データを作成済みであれば、量子化処理を終了する。未作成の画素がある場合には、S1200へと進み、処理領域を選択して量子化処理を続行する。 In S1213, the region selection unit 1101 determines whether quantization data has been created for all pixels of the input image. That is, all blocks divided into 4×4 pixels shown in FIG. 13 are selected as processing target areas, and it is determined whether or not quantization data has been created. For example, when blocks are selected in order from the upper left, it is only necessary to determine whether the processing area is the lower rightmost block. If the result of determination is that quantization data has already been created for all pixels of the input image, the quantization process ends. If there is an uncreated pixel, the process proceeds to S1200, selects a processing area, and continues the quantization process.

以下、図15、図16を用いて、本実施形態における量子化処理を具体的に説明する。なお、まず図15を用いて、1色目のKインクにおける量子化処理を説明する。 The quantization processing in this embodiment will be specifically described below with reference to FIGS. 15 and 16. FIG. First, the quantization process for the first color K ink will be described with reference to FIG.

図15(a)は、処理対象領域におけるKインクの階調データIkである。図15(b)は、処理対象領域に対応する閾値群を示す。 FIG. 15A shows the K ink gradation data Ik in the processing target area. FIG. 15(b) shows a threshold group corresponding to the processing target area.

このときS1204において、図15(a)に示す階調データIkの平均値60と、図15(b)に示す各閾値との比較から、目標ドット数=4が算出される。 At this time, in S1204, the target number of dots=4 is calculated from the comparison between the average value 60 of the gradation data Ik shown in FIG. 15A and each threshold value shown in FIG. 15B.

さらに、S1205において式(3)を用いて算出される評価値Eを図15(c)に示す。図15(d)に、正規化前の排他制御値Hを示す。なお、Kインクは第1色(w=1)であるため、領域内の全画素にてH=0である。そのため、図15(e)に示す通り、S1207における排他処理後の評価値E´はE´=Eとなる。 Further, FIG. 15(c) shows the evaluation value E calculated using the formula (3) in S1205. FIG. 15(d) shows the exclusive control value H before normalization. Since the K ink is the first color (w=1), H=0 for all pixels in the region. Therefore, as shown in FIG. 15E, the evaluation value E' after the exclusion process in S1207 is E'=E.

同様に、図15(f)に示す累積の階調データSも領域内の全画素にてS=0であり、図15(g)に示す排他制御処理後の評価値E´´はE´´=Eとなる。このとき、図15(g)に示す評価値E´´の高い画素から順に、4つのドット(ドット数=4)を配置することで、図15(h)に示すKインクのドット配置が得られる。また、図15(i)に示す量子化データがドット履歴情報1111として、重みw1=4と対応付けてメモリ上に格納される。 Similarly, the accumulated gradation data S shown in FIG. 15(f) is also S=0 for all pixels in the area, and the evaluation value E″ after the exclusive control process shown in FIG. 15(g) is E′ '=E. At this time, by arranging four dots (number of dots=4) in descending order of the evaluation value E″ shown in FIG. 15(g), the K ink dot arrangement shown in FIG. 15(h) is obtained. be done. Also, the quantized data shown in FIG. 15(i) is stored in the memory as the dot history information 1111 in association with the weight w1=4.

次に、図16に2色目のCインクの量子化処理の過程を示す。まず、処理対象領域におけるCインクの階調データIcと、処理対象領域に対応する閾値群をそれぞれ図16(a)、図16(b)に示す。このとき、図16(c)に示す評価値Eとドット数=4とがそれぞれ算出される。 Next, FIG. 16 shows the process of quantization processing for the second color C ink. First, the gradation data Ic of the C ink in the processing target area and the threshold value group corresponding to the processing target area are shown in FIGS. 16(a) and 16(b), respectively. At this time, the evaluation value E and the number of dots=4 shown in FIG. 16(c) are calculated.

また、図15(i)に示すKインクの量子化データとKインクに対する重みw1=4とから、図16(d)に示す各画素の排他制御値Hが算出される。このとき、H_max=4である。 Also, the exclusive control value H for each pixel shown in FIG. 16(d) is calculated from the quantized data of K ink shown in FIG. 15(i) and the weight w1=4 for K ink. At this time, H_max=4.

さらに、図16(c)に示す評価値EとH_maxで正規化した排他制御値Hとから図16(e)に示す排他処理後の評価値E´が算出される。 Furthermore, the evaluation value E′ after the exclusion process shown in FIG. 16(e) is calculated from the evaluation value E shown in FIG. 16(c) and the exclusion control value H normalized by H_max.

同様に、図15(a)に示すKインクの階調データとKインクに対する重みw1=4とから、図16(f)に示す各画素の累積の階調データSが算出される。なお、w1=4より、S_max=1020となる。さらに、排他処理後の評価値E´とS_maxで正規化した累積階調データSとから、図16(g)に示す排他制御処理後の評価値E´´が算出される。 Similarly, from the K ink tone data shown in FIG. 15(a) and the weight w1=4 for the K ink, the cumulative tone data S of each pixel shown in FIG. 16(f) is calculated. Note that S_max=1020 from w1=4. Further, an evaluation value E″ after the exclusion control process shown in FIG. 16G is calculated from the evaluation value E′ after the exclusion process and the accumulated tone data S normalized by S_max.

このとき、図16(g)に示す評価値E´´の高い画素から順に、4つのドット(ドット数=4)を配置することで、図16(h)に示すCインクのドット配置が得られる。また、図16(i)に示す量子化データがドット履歴情報1111として、Cインクに対する重みw2=2と対応付けてメモリ上に格納される。 At this time, by arranging four dots (the number of dots=4) in descending order of the evaluation value E″ shown in FIG. 16(g), the C ink dot arrangement shown in FIG. be done. Also, the quantized data shown in FIG. 16(i) is stored in the memory as the dot history information 1111 in association with the weight w2=2 for the C ink.

同様に、図17に3色目のMインクの量子化処理の過程を示す。この例では、H_max=6、S_max=1530、ドット数=4となる。よって、図17(i)に示すMインクの量子化データが得られる。 Similarly, FIG. 17 shows the quantization process for the third color M ink. In this example, H_max=6, S_max=1530, and the number of dots=4. Therefore, the quantized data of M ink shown in FIG. 17(i) is obtained.

さらに、図18に4色目のYインクの量子化処理の過程を示す。ただし、Mインクに対する重みw3=2とする。この例では、H_max=8、S_max=2040、ドット数=4となる。よって、図18(i)に示すYインクの量子化データが得られる。以上の処理により、CMKY4色の量子化データを得ることができる。 Further, FIG. 18 shows the quantization process of the fourth color Y ink. However, weight w3=2 for M ink. In this example, H_max=8, S_max=2040, and the number of dots=4. Therefore, the quantized data of Y ink shown in FIG. 18(i) is obtained. Through the above processing, the quantized data of the four colors CMKY can be obtained.

ここで本実施形態における排他制御の効果について説明する。処理対象色が2色目以降であれば、排他制御値Hはすでに決定済みのドット配置に基づいた値となる。たとえば、処理対象色がCインクであれば、Kドットが配置済みの画素に対しては排他制御値Hが正の値となりドットが配置されにくくなる。具体的に、図16(c)に示す排他処理前の評価値Eに基づいてドット数=4を配置した場合のドット配置、を図19(a)に示す。同様に、図16(e)に示す排他処理後の評価値E´に基づいてドット数=4を配置した場合のドット配置を図19(b)に示す。図19(a)に示す通り、排他処理前の評価値Eに基づくドット配置では、Kインクが配置済みの画素にもドットが配置されており、色間で排他した配置とはならない。一方で、図19(b)に示す通り、排他処理後の評価値E´に基づくドット配置では、Kインクが配置された画素を避けてドットが配置されている。すなわち、異なる色間で排他した配置が得られている。このように、異なる色間で排他したドット配置とすることで、ドットの重なりや紙白の過剰な露出が低減される。特に平坦な階調データにおいては局所領域内でコントラストが上がってしまうの抑制し、重複したドットによる粒状性の悪化が抑制される。また異なるインク色のドットが重複することによる色の濁りが抑制され、特に暗部(高濃度部)において発色性が向上する。 Here, the effect of exclusive control in this embodiment will be described. If the color to be processed is the second color or later, the exclusive control value H becomes a value based on the already determined dot arrangement. For example, if the color to be processed is C ink, the exclusion control value H will be a positive value for pixels where K dots have already been placed, making it difficult for dots to be placed. Specifically, FIG. 19A shows the dot arrangement when the number of dots=4 is arranged based on the evaluation value E before the exclusion process shown in FIG. 16C. Similarly, FIG. 19(b) shows the dot arrangement when the number of dots=4 is arranged based on the evaluation value E′ after the exclusion process shown in FIG. 16(e). As shown in FIG. 19A, in the dot arrangement based on the evaluation value E before the exclusion process, dots are arranged even in the pixels where the K ink has already been arranged, and the colors are not arranged exclusively. On the other hand, as shown in FIG. 19B, in the dot arrangement based on the evaluation value E' after exclusion processing, the dots are arranged avoiding the pixels where the K ink is arranged. That is, an exclusive arrangement is obtained between different colors. By arranging dots exclusive among different colors in this way, overlapping of dots and excessive exposure of paper white are reduced. In particular, for flat gradation data, the increase in contrast in a local area is suppressed, and the deterioration of graininess due to overlapping dots is suppressed. In addition, color turbidity due to overlapping dots of different ink colors is suppressed, and color developability is improved particularly in dark areas (high-density areas).

しかしながら、処理対象領域において階調データが急峻に変化する場合など、異なる色のドット同士が互いに排他的に配置することが好ましくない場合もある。たとえば、図15(a)~18(a)に示す階調データ上では、左から2列目にCMYK4色混合のラインが形成されている。しかしながら、図19(b)に示す排他処理後の評価値E´を用いたドット配置では、KとCとが重ならず、排他された配置となっている。そのため、4色混合のラインが形成されるべき画素にドットが重複されず、混合色のラインとして知覚されない可能性がある。あるいは、混合色以外の色付きが局所的に発生する可能性がある。 However, in some cases, such as when the gradation data changes sharply in the processing target area, it is not preferable to arrange dots of different colors mutually exclusive. For example, on the gradation data shown in FIGS. 15(a) to 18(a), a CMYK four-color mixture line is formed in the second column from the left. However, in the dot arrangement using the evaluation value E' after the exclusion process shown in FIG. 19B, K and C do not overlap and are arranged to be excluded. Therefore, there is a possibility that dots will not be overlapped on pixels where a four-color mixed line is to be formed, and the line will not be perceived as a mixed-color line. Alternatively, coloring other than mixed colors may occur locally.

一方で、図16(h)に示す排他制御処理後の評価値E´´に基づくドット配置では、CインクとKインクとがCMYK混合ライン上で重複している。同様に図17(h)、図18(h)に示すMインクおよびYインクもCMYK混合ライン上にドットが配置されている。すなわち、排他制御処理後の評価値E´´にしたがってドットを配置することで、階調データが急峻に変化する領域では排他を抑制し、重複を容認したドット配置が得られている。またこのとき、階調データ上で右から1列目の均一な領域において、排他制御処理後の評価値E´´に基づくドット配置では、異なる色間で排他した配置が得られている。 On the other hand, in the dot arrangement based on the evaluation value E″ after the exclusive control process shown in FIG. 16(h), the C ink and the K ink overlap on the CMYK mixed line. Similarly, the M ink and Y ink shown in FIGS. 17(h) and 18(h) also have dots arranged on the CMYK mixed line. That is, by arranging the dots according to the evaluation value E″ after the exclusion control process, the exclusion is suppressed in the area where the gradation data changes sharply, and the dot arrangement that allows the overlap is obtained. Also, at this time, in the uniform area in the first row from the right on the gradation data, in the dot arrangement based on the evaluation value E'' after the exclusive control process, the arrangement exclusive between the different colors is obtained.

しかしながら、図16(c)に示す排他処理前の評価値Eに基づくドット配置では、KインクとCインクとが重複し、異なる色間で排他した配置となっていない。本実施形態では、階調データIが平坦であれば、累積の階調データSも平坦となる。このとき、評価値E´とE´´とでは、絶対値は変化するが、相対的な大小関係は変わらない。つまり、平坦な階調データ領域では、ドットが配置される順序は評価値E´とE´´とでは変わらない。したがって、累積階調データSを用いた排他制御処理をおこなっても、平坦な階調データの領域に対しては、異なる色のドットが排他したドット配置を得ることができる。 However, in the dot arrangement based on the evaluation value E before the exclusion process shown in FIG. 16C, the K ink and the C ink overlap, and the arrangement is not exclusive between different colors. In this embodiment, if the gradation data I is flat, the cumulative gradation data S is also flat. At this time, although the absolute values of the evaluation values E′ and E″ change, the relative magnitude relationship does not change. That is, in a flat gradation data area, the order in which dots are arranged does not change between the evaluation values E′ and E″. Therefore, even if exclusive control processing is performed using the accumulated gradation data S, it is possible to obtain a dot arrangement in which dots of different colors are exclusive for areas of flat gradation data.

換言すると、本実施形態においては、ドットの履歴情報を参照し、まずはドットが配置されている画素にドットが配置されにくくなるように評価値を補正している。そのうえで、階調データのコントラストに基づいてその補正を抑制するようにドット配置評価値をさらに補正している。このように処理することで、コントラストの低い領域では、閾値マトリクスの大小に基づいて色間を含めた排他対象ドットを分散して配置し、粒状性を向上させることができる。一方、コントラストの高い領域では、階調データの大小に基づいてドット排他を抑制して、画像データ上の形状を再現性向上させることができる。 In other words, in the present embodiment, the dot history information is referenced, and the evaluation value is first corrected so that dots are less likely to be placed in pixels where dots are already placed. In addition, the dot arrangement evaluation value is further corrected based on the contrast of the gradation data so as to suppress the correction. By performing such processing, it is possible to disperse and arrange exclusion target dots including between colors based on the magnitude of the threshold matrix in low-contrast regions, thereby improving graininess. On the other hand, in high-contrast regions, dot exclusion is suppressed based on the magnitude of the gradation data, and the reproducibility of the shape on the image data can be improved.

(変形例)
なお、上記の実施形態においては、価値Eを実数として説明したが、8bitの整数としても算出することも可能である。
(Modification)
In the above embodiment, the value E is explained as a real number, but it can also be calculated as an 8-bit integer.

また、排他制御値Hと累積階調データSに0~1の係数をかけることで平坦な領域における排他の度合いを調整することも可能である。このとき、係数に1を使用すると、上述の実施例と同じ結果を得ることができる。一方で係数が小さいほど平坦な領域における排他処理が抑制され、色間で重複するドットが増加し、係数に0を使用すると均一領域に対しても排他処理がおこなわれないこととなる。たとえば、プリンタで想定される色間のレジずれ(相対的な位置ずれ)に応じて、排他値Hおよび階調データSに対する係数を決定するとよい。具体的には、色間の相対的な位置ずれが大きく色ムラが目立つ領域の係数を小さくする等の調整を行うことで色間のレジずれに対するロバスト性が向上する。 It is also possible to adjust the degree of exclusion in a flat area by multiplying the exclusion control value H and the accumulated grayscale data S by a coefficient of 0 to 1. FIG. At this time, using a coefficient of 1 can obtain the same result as the above example. On the other hand, the smaller the coefficient, the more suppressed the exclusion process in flat areas, and the more dots overlap between colors. For example, it is preferable to determine the coefficients for the exclusion value H and the gradation data S according to misregistration (relative misregistration) between colors assumed in the printer. Specifically, the robustness against color misregistration is improved by performing adjustments such as reducing coefficients in areas where relative positional misalignment between colors is large and color unevenness is conspicuous.

また、ドットが少ないハイライト部においては、上記レジずれはほとんど検知されないので、入力画像の明度に応じて上記係数を制御するようにしても良い。 Further, since the misregistration is hardly detected in a highlight portion with few dots, the coefficient may be controlled according to the lightness of the input image.

また、排他対象色を限定しても良い。即ち、排他対象色に対してのみ、上記処理を行い、排他非対象色は通常のディザ処理を行えばよい(もしくは、排他非対象色では上記係数を0に設定する)。 Also, the colors to be excluded may be limited. That is, the above processing is performed only for the colors to be excluded, and the normal dither processing is performed for the colors not to be excluded (or the coefficients are set to 0 for the colors not to be excluded).

また上述の実施形態では、4画素×4画素の単位領域において、目標ドット数は16以下であった。しかしながら、複数のノズル列を保持する場合や同一領域を複数回スキャンすることで、各画素に同一のインクを重ねて吐出できる場合には、16を超えるドット数が領域内に配置される場合がある。たとえば、各画素に2回までインクを吐出できる場合には、階調データをI/I_maxを0~2に正規化するように、階調データ、I_maxを定めればよい。そして、th/th_maxを0~1に正規化し、正規化した階調データと閾値とで領域内に配置するドット数を算出すればよい。即ち、まず、I/I_maxが1以上の画素にドットを1つずつ配置し、次に、ドットを配置した画素のI/I_maxから1を減算して、残りのドットを配置すればよい。このとき、履歴情報1111には、配置されたドット数0~2を画素ごとに保持すればよい。 Further, in the above-described embodiment, the target number of dots is 16 or less in a unit area of 4 pixels×4 pixels. However, when a plurality of nozzle rows are held, or when the same area can be scanned multiple times so that the same ink can be ejected onto each pixel, the number of dots exceeding 16 may be arranged in the area. be. For example, if ink can be ejected to each pixel up to twice, the gradation data I_max may be determined so that the gradation data I/I_max is normalized to 0-2. Then, th/th_max is normalized to 0 to 1, and the number of dots to be arranged in the area is calculated using the normalized gradation data and the threshold value. That is, first, one dot is placed in each pixel whose I/I_max is 1 or more, then 1 is subtracted from the I/I_max of the pixel where the dot is placed, and the remaining dots are placed. At this time, the history information 1111 may hold the number of arranged dots 0 to 2 for each pixel.

また、記録ヘッドが吐出量を変えてドットを形成できる場合がある。たとえば、大中小の3段階のドットを形成できる場合にも、同様に処理できる。たとえば、ドットが1個配置された画素は小ドット、2個配置されたところは中ドット、3個配置されたところは大ドットとすればよい。 Also, there are cases where the print head can form dots by changing the ejection amount. For example, even when dots of three stages of large, medium and small can be formed, the same process can be performed. For example, a pixel in which one dot is arranged is a small dot, a pixel in which two dots are arranged is a medium dot, and a pixel in which three dots are arranged is a large dot.

また上述の実施形態では、各インク色に対して異なる閾値マトリクスを、ドット数の算出およびドット配置順の取得に用いた。しかしながら、すべてのインク色もしくは複数のインク色に対して同一の閾値マトリクスを用いることも可能である。とくに平坦な領域においては、全インク色の累積ドットパターンが単一の閾値マトリクスにより生成したパターンとなるため、ドットの分散性が向上する。また、色間のドットに重み付して排他処理することで、ドットの重なりを含めたドットの明度順にドットを配置できる。これにより、ドット間のコントラストを下げ、さらなる粒状性の改善が可能となる。 Further, in the above-described embodiment, different threshold matrices are used for calculating the number of dots and obtaining the dot arrangement order for each ink color. However, it is also possible to use the same threshold matrix for all or multiple ink colors. Especially in a flat area, the cumulative dot pattern of all ink colors is a pattern generated by a single threshold matrix, so the dot dispersibility is improved. Also, by weighting dots between colors and performing exclusive processing, dots can be arranged in order of dot brightness including dot overlap. As a result, the contrast between dots can be lowered, and graininess can be further improved.

また上述の実施形態では、処理対象色より前に処理した色のドット配置を全て参照して排他制御値Hおよび累積階調データSを算出している。しかしながら、一部の色間のみ排他制御する構成としても良い。この場合、参照色を指定する手段によって、指定された色のみのドットパターンから排他制御値Hおよび累積階調データSを生成するようにすればよい。また、注目色の累積階調データSを算出する際に注目色の階調データを加算して算出してもよい。 In the above-described embodiment, the exclusive control value H and accumulated gradation data S are calculated by referring to all the dot arrangements of colors processed before the color to be processed. However, it is also possible to adopt a configuration in which exclusive control is performed only between some colors. In this case, the exclusive control value H and the accumulated gradation data S may be generated from the dot pattern of only the designated color by means for designating the reference color. Also, when calculating the cumulative gradation data S of the target color, the gradation data of the target color may be added.

本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。 The present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in the computer of the system or apparatus reads and executes the program. It can also be realized by processing to It can also be implemented by a circuit (for example, ASIC) that implements one or more functions.

403 閾値処理部
404 排他処理部
405 コントラスト算出部
406 排他制御部
407 量子化データ作成部
403 threshold processing unit 404 exclusion processing unit 405 contrast calculation unit 406 exclusion control unit 407 quantized data creation unit

Claims (11)

複数の色材それぞれに対応する画像に基づいて、閾値マトリクスを用いて前記複数種類の色材それぞれについてのドットの配置を決定するための画像処理装置であって、
前記複数種類の色材のうちドットの配置が決定された第1色に対応する注目画素の出力値を取得する取得手段と、
前記第1色に対応する前記注目画素の出力値と、前記第1色における前記注目画素の画素値に基づいて、前記複数種類の色材のうちドットの配置が決定されていない第2色について、前記注目画素におけるドットの排他の度合いを制御するための排他制御値を算出する算出手段と、
前記第2色における前記注目画素の画素値と前記排他制御値と前記閾値マトリクスに基づいて、前記注目画素の前記第2色に対応する出力値を決定する決定手段を有することを特徴とする画像処理装置。
An image processing device for determining dot arrangement for each of the plurality of types of colorants using a threshold matrix based on images corresponding to the plurality of colorants,
acquisition means for acquiring an output value of a pixel of interest corresponding to a first color for which dot arrangement has been determined among the plurality of types of color materials;
For a second color, among the plurality of types of color materials, for which dot arrangement has not been determined, based on the output value of the pixel of interest corresponding to the first color and the pixel value of the pixel of interest in the first color , calculating means for calculating an exclusion control value for controlling the degree of exclusion of dots in the pixel of interest;
An image characterized by comprising determining means for determining an output value corresponding to the second color of the pixel of interest based on the pixel value of the pixel of interest in the second color, the exclusive control value, and the threshold matrix. processing equipment.
前記算出手段は、前記第1色に対応する前記注目画素の出力値が、前記注目画素にドットが配置されたことを示し、かつ前記注目画素の近傍においてコントラストが高い場合には、前記第2色に対する排他の度合いが、前記注目画素にドットが配置されたことを示し、かつ前記注目画素の近傍においてコントラストが低い場合に比べて小さくなるように前記排他制御値を算出することを特徴とする請求項1に記載の画像処理装置。 If the output value of the pixel of interest corresponding to the first color indicates that a dot has been placed in the pixel of interest and the contrast is high in the vicinity of the pixel of interest, then the second The exclusion control value is calculated so that the degree of exclusion for a color indicates that a dot has been placed in the pixel of interest and is smaller than when the contrast is low in the vicinity of the pixel of interest. The image processing apparatus according to claim 1. 前記算出手段は、前記第1色に対応する前記注目画素の出力値が、前記注目画素にドットが配置されないことを示す場合は、前記第2色に対応する前記注目画素に対してドットを排他しないことを特徴とする請求項1または2に記載の画像処理装置。 When the output value of the pixel of interest corresponding to the first color indicates that no dot is arranged in the pixel of interest, the calculation means excludes dots from the pixel of interest corresponding to the second color. 3. The image processing apparatus according to claim 1, wherein the image processing apparatus does not 前記算出手段は、さらに、前記第1色に対応する前記注目画素の出力値に基づいて、前記注目画素に対応する閾値を補正する第1の補正手段と、
前記第1色における前記注目画素の画素値と、前記第1色における前記注目画素の近傍の画素の画素値とに応じた前記排他制御値を用いて、前記第1の補正手段により補正された閾値をさらに補正する第2の補正手段を有し、
前記決定手段は、前記第2の補正手段により補正された閾値を用いて、前記第2色に対応する前記注目画素の画素値を量子化することを特徴とする請求項1乃至3の何れか一項に記載の画像処理装置。
The calculating means further includes first correcting means for correcting the threshold value corresponding to the pixel of interest based on the output value of the pixel of interest corresponding to the first color;
corrected by the first correcting means using the exclusive control value corresponding to the pixel value of the target pixel in the first color and the pixel values of pixels in the vicinity of the target pixel in the first color Having a second correction means for further correcting the threshold,
4. The determining means uses the threshold corrected by the second correcting means to quantize the pixel value of the pixel of interest corresponding to the second color. 1. The image processing device according to item 1.
前記第1の補正手段は、前記第1色に対応する前記注目画素の出力値が、前記注目画素にドットが配置されないことを示す場合は、前記閾値を補正しないことを特徴とする請求項4に記載の画像処理装置。 5. The first correcting means does not correct the threshold when the output value of the target pixel corresponding to the first color indicates that no dot is placed in the target pixel. The image processing device according to . 前記第1の補正手段は、前記注目画素に対応する閾値から前記第1色における前記注目画素の画素値を減算することにより、前記注目画素に対応する閾値を補正することを特徴とする請求項4または5に記載の画像処理装置。 3. The first correction means corrects the threshold corresponding to the target pixel by subtracting the pixel value of the target pixel in the first color from the threshold corresponding to the target pixel. 6. The image processing device according to 4 or 5. さらに、前記第1色における前記注目画素の画素値と、前記第1色における前記注目画素の近傍の画素の画素値とに基づいて前記注目画素の近傍におけるコントラストを示すコントラスト値を算出するコントラスト算出手段を有し、
前記第2の補正手段は、前記コントラスト値に応じて前記排他制御値を算出することを特徴とする請求項4に記載の画像処理装置。
Further, contrast calculation for calculating a contrast value indicating a contrast in the vicinity of the target pixel based on the pixel value of the target pixel in the first color and the pixel value of the pixel in the vicinity of the target pixel in the first color. have the means
5. The image processing apparatus according to claim 4, wherein said second correction means calculates said exclusive control value according to said contrast value.
さらに、
前記第2色における所定の領域に対する目標ドット数を算出する目標ドット数決定手段と、
前記第2色における所定の領域に含まれる各画素の画素値と、前記閾値マトリクスにおける前記所定の領域に対応する閾値群とに基づいて、前記第2色における所定の領域に含まれる各画素の評価値を評価値算出手段と、を有し、
前記決定手段は、前記目標ドット数と前記評価値に基づいて前記所定の領域における各画素の出力値を決定することを特徴とする請求項1乃至3の何れか一項に記載の画像処理装置。
moreover,
a target dot number determining means for calculating a target dot number for a predetermined area in the second color;
Based on the pixel value of each pixel included in the predetermined region of the second color and the threshold value group corresponding to the predetermined region in the threshold matrix, each pixel included in the predetermined region of the second color and evaluation value calculation means for calculating the evaluation value,
4. The image processing apparatus according to claim 1, wherein said determining means determines the output value of each pixel in said predetermined area based on said target number of dots and said evaluation value. .
前記算出手段は、前記評価値算出手段により算出された各画素の評価値を前記排他制御値に基づいて補正することを特徴とする請求項8に記載の画像処理装置。 9. The image processing apparatus according to claim 8, wherein said calculation means corrects the evaluation value of each pixel calculated by said evaluation value calculation means based on said exclusive control value. コンピュータを請求項1乃至9のいずれか1項に記載の画像処理装置として機能させるためのプログラム。 A program for causing a computer to function as the image processing apparatus according to any one of claims 1 to 9. 複数の色材それぞれに対応する画像に基づいて、閾値マトリクスを用いて前記複数種類の色材それぞれについてのドットの配置を決定するための画像処理方法であって、
前記複数種類の色材のうちドットの配置が決定された第1色に対応する注目画素の出力値を取得し、
前記第1色に対応する前記注目画素の出力値と、前記第1色における前記注目画素の画素値に基づいて、前記複数種類の色材のうちドットの配置が決定されていない第2色について、前記注目画素におけるドットの排他の度合いを制御するための排他制御値を算出し、
前記第2色における前記注目画素の画素値と前記排他制御値と前記閾値マトリクスに基づいて、前記注目画素の前記第2色に対応する出力値を決定することを特徴とする画像処理方法。
An image processing method for determining the arrangement of dots for each of the plurality of types of colorants using a threshold matrix based on an image corresponding to each of the plurality of colorants, comprising:
obtaining an output value of a pixel of interest corresponding to a first color for which dot arrangement has been determined among the plurality of types of color materials;
For a second color, among the plurality of types of color materials, for which dot arrangement has not been determined, based on the output value of the pixel of interest corresponding to the first color and the pixel value of the pixel of interest in the first color , calculating an exclusion control value for controlling the degree of exclusion of dots in the pixel of interest;
An image processing method, wherein an output value corresponding to the second color of the target pixel is determined based on the pixel value of the target pixel in the second color, the exclusive control value, and the threshold matrix.
JP2019013881A 2018-10-09 2019-01-30 Image processing device, image processing method, program Active JP7183057B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019013881A JP7183057B2 (en) 2019-01-30 2019-01-30 Image processing device, image processing method, program
US17/281,696 US20220024241A1 (en) 2018-10-09 2019-09-23 Portable type calendar and notebook
EP22178813.6A EP4099675A1 (en) 2018-12-07 2019-12-04 Image processing apparatus, image processing method, and program
EP19213476.5A EP3664429B1 (en) 2018-12-07 2019-12-04 Image processing apparatus, image processing method, and program
US16/704,257 US11321596B2 (en) 2018-12-07 2019-12-05 Image processing apparatus, image processing method, and storage medium for generating quantized data for forming an image on a print medium
US17/708,601 US11610087B2 (en) 2018-12-07 2022-03-30 Image processing apparatus, image processing method, and storage medium for determining dot arrangement for colorants for forming an image on a print medium
JP2022186774A JP7434502B2 (en) 2019-01-30 2022-11-22 Image processing device, image processing method, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013881A JP7183057B2 (en) 2019-01-30 2019-01-30 Image processing device, image processing method, program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022186774A Division JP7434502B2 (en) 2019-01-30 2022-11-22 Image processing device, image processing method, program

Publications (2)

Publication Number Publication Date
JP2020121443A JP2020121443A (en) 2020-08-13
JP7183057B2 true JP7183057B2 (en) 2022-12-05

Family

ID=71993400

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019013881A Active JP7183057B2 (en) 2018-10-09 2019-01-30 Image processing device, image processing method, program
JP2022186774A Active JP7434502B2 (en) 2019-01-30 2022-11-22 Image processing device, image processing method, program

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022186774A Active JP7434502B2 (en) 2019-01-30 2022-11-22 Image processing device, image processing method, program

Country Status (1)

Country Link
JP (2) JP7183057B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287089A (en) 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Image binarizing method
WO2002005545A1 (en) 2000-07-07 2002-01-17 Imation Corp. Halftone dot placement for multi-color images
JP2005286999A (en) 2004-03-05 2005-10-13 Fuji Photo Film Co Ltd Allocation method of threshold matrix
US20070268525A1 (en) 2006-05-16 2007-11-22 Scott Michael Heydinger Simultaneous Individual and Coupled Error Diffusion
JP2014000739A (en) 2012-06-19 2014-01-09 Dainippon Screen Mfg Co Ltd Image data generation method, image recording method, image data generation device and image recording device
JP2016021735A (en) 2014-06-18 2016-02-04 キヤノン株式会社 Image processing device, image processing method and program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205220A (en) * 1992-12-28 1994-07-22 Seiko Epson Corp Picture processor and printer
JPH07327135A (en) * 1994-05-31 1995-12-12 Canon Inc Image processor and its method
JPH11112824A (en) * 1997-10-08 1999-04-23 Fujitsu Ltd Device for reading picture, its method and computer readable recording medium for recording program
JP2004296548A (en) 2003-03-25 2004-10-21 Nippon Sanso Corp Surface treatment equipment
JP2005072748A (en) 2003-08-21 2005-03-17 Seiko Epson Corp Edge processing for printing
JP2016127479A (en) 2015-01-06 2016-07-11 キヤノン株式会社 Image processor, image forming apparatus, image processing method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287089A (en) 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Image binarizing method
WO2002005545A1 (en) 2000-07-07 2002-01-17 Imation Corp. Halftone dot placement for multi-color images
JP2005286999A (en) 2004-03-05 2005-10-13 Fuji Photo Film Co Ltd Allocation method of threshold matrix
US20070268525A1 (en) 2006-05-16 2007-11-22 Scott Michael Heydinger Simultaneous Individual and Coupled Error Diffusion
JP2014000739A (en) 2012-06-19 2014-01-09 Dainippon Screen Mfg Co Ltd Image data generation method, image recording method, image data generation device and image recording device
JP2016021735A (en) 2014-06-18 2016-02-04 キヤノン株式会社 Image processing device, image processing method and program

Also Published As

Publication number Publication date
JP7434502B2 (en) 2024-02-20
JP2020121443A (en) 2020-08-13
JP2023010907A (en) 2023-01-20

Similar Documents

Publication Publication Date Title
US11610087B2 (en) Image processing apparatus, image processing method, and storage medium for determining dot arrangement for colorants for forming an image on a print medium
JP6587552B2 (en) Image processing apparatus and image processing method
US9106863B2 (en) Image processing apparatus and control method thereof
JP2023052888A (en) Image processing device, image processing method, and program
US11588956B2 (en) Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
JP6252003B2 (en) Printing apparatus, printing method, image processing apparatus, and program
US20120113448A1 (en) Image forming apparatus and image forming method
US11407231B2 (en) Image processing method
US7710603B2 (en) Image forming apparatus and image forming method
JP2023052886A (en) Image processing device, image processing method, and program
JP7183057B2 (en) Image processing device, image processing method, program
US9789684B2 (en) Control device for controlling printer having print head
US8941880B2 (en) Image processing apparatus, image processing method, and program
JP6318954B2 (en) Image processing apparatus and computer program
JP7191665B2 (en) Image processing device, image processing method and program
JP7277231B2 (en) Image processing device, image processing method and program
JP2013059938A (en) Apparatus, method and program for processing image
JP6971804B2 (en) Inkjet recording device and inkjet recording method
JP6552241B2 (en) Image processing apparatus and recording ratio determination method
JP2022091000A (en) Image processing device and control method of the same
JP2016088043A (en) Image processing device, image formation device, and image processing method and program
JP2022168998A (en) Image processing device
JP2020192783A (en) Image processing device, printing method and printing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R151 Written notification of patent or utility model registration

Ref document number: 7183057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151