JP7182245B2 - Radio wave sensor and radio wave detection method - Google Patents

Radio wave sensor and radio wave detection method Download PDF

Info

Publication number
JP7182245B2
JP7182245B2 JP2018119624A JP2018119624A JP7182245B2 JP 7182245 B2 JP7182245 B2 JP 7182245B2 JP 2018119624 A JP2018119624 A JP 2018119624A JP 2018119624 A JP2018119624 A JP 2018119624A JP 7182245 B2 JP7182245 B2 JP 7182245B2
Authority
JP
Japan
Prior art keywords
wave
signal
detection range
moving object
doppler signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018119624A
Other languages
Japanese (ja)
Other versions
JP2020003217A (en
Inventor
健 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018119624A priority Critical patent/JP7182245B2/en
Publication of JP2020003217A publication Critical patent/JP2020003217A/en
Application granted granted Critical
Publication of JP7182245B2 publication Critical patent/JP7182245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本開示は、電波センサ及び電波検出方法に係り、特に、移動体に対し電波を送信し、送信した電波の反射波を受信して移動体の有無を検出する電波センサ及び電波検出方法に関する。 TECHNICAL FIELD The present disclosure relates to a radio wave sensor and a radio wave detection method, and more particularly to a radio wave sensor and a radio wave detection method that transmit radio waves to a mobile body and receive reflected waves of the transmitted radio waves to detect the presence or absence of the mobile body.

従来から人感センサと照明とを併設し、人感センサによって一定範囲内の人体の存否を検知して検知があった場合に照明を一定時間点灯させる照明制御システムが知られている。例えば、特許文献1では、検知エリア内で人の動きによる温度変化を検知して検出信号を出力するパッシブセンサが知られているが、温度変化の影響を受けることと、検知距離に制限があることを指摘する。そこで、自らが信号を送受信し送信信号と受信信号とに基づいて物体の有無を検出するアクティブセンサを用いることで、温度変化の影響を受けず、長距離で物体の有無の検出が可能となると述べている。かかるアクティブセンサとしては、例えば、反射波に生じたドップラーシフトに基づいて移動体の有無を検出する電波センサが知られている。 2. Description of the Related Art Conventionally, there has been known a lighting control system in which a human sensor and lighting are provided together, the presence or absence of a human body within a certain range is detected by the human sensor, and the lighting is turned on for a certain period of time when a human body is detected. For example, Patent Literature 1 discloses a passive sensor that detects a temperature change due to human movement within a detection area and outputs a detection signal. point out. Therefore, by using an active sensor that itself transmits and receives signals and detects the presence or absence of an object based on the transmitted signal and the received signal, it is possible to detect the presence or absence of an object over a long distance without being affected by temperature changes. Says. As such an active sensor, for example, a radio wave sensor that detects the presence or absence of a moving object based on a Doppler shift occurring in reflected waves is known.

特許文献2では、2つのアンテナを用いて同一のタイミングで電波を放射し、反射波をそれぞれのアンテナで受信する場合に一方から放射される放射波が他方から放射される放射波の干渉波となることを指摘する。そこで、1つのアンテナに2つの異なる方式の給電点を設け、互いに直交する偏波を同時に送受信する構成で、互いに干渉波となることを防止することが述べられている。 In Patent Document 2, when radio waves are radiated at the same timing using two antennas and the reflected waves are received by the respective antennas, the radiated waves radiated from one of the antennas interfere with the radiated waves radiated from the other. point out that Therefore, it is described that one antenna is provided with two feeding points of different methods, and mutually orthogonally polarized waves are transmitted and received at the same time, thereby preventing mutual interference waves.

特開2011-23307号公報Japanese Unexamined Patent Application Publication No. 2011-23307 特開2011-89864号公報JP 2011-89864 A

電波センサを用いることで、長距離で物体の有無が検出可能になるが、電波は、建物の壁を透過し、壁の向こうの物体の有無まで検出する可能性がある。例えば、非常階段の照明を電波センサによる人体の検出に基づいて点灯するシステムの場合、人体の検出範囲である非常階段の領域を仕切る壁の向こうの人体の有無まで検出し、不要な点灯を行う可能性がある。そこで、所定の検出範囲における移動体の有無を正しく判定できる電波センサ及び電波検出方法が要望される。 By using a radio wave sensor, it is possible to detect the presence or absence of an object over a long distance. However, radio waves may penetrate the walls of a building and detect the presence or absence of an object beyond the wall. For example, in the case of a system that turns on emergency staircase lighting based on the detection of a human body by a radio wave sensor, it detects the presence or absence of a human body beyond the wall that separates the area of the emergency staircase, which is the detection range of the human body, and turns on unnecessary lighting. there is a possibility. Therefore, there is a demand for a radio wave sensor and a radio wave detection method that can correctly determine the presence or absence of a moving object within a predetermined detection range.

本開示に係る電波センサは、所定の検出範囲に対して電波を送信し、送信した電波が移動体で反射された電波を受信して、検出範囲における移動体の有無を検出する電波センサであって、互いに偏波が異なる第1偏波と第2偏波とを送受信するアンテナ部と、第1偏波の送受信と第2偏波の送受信とを切り替える偏波切替部と、偏波切替部に対し予め定めた偏波切替周期で第1偏波と第2偏波の切り替えを指示する偏波切替信号を出力する切替信号出力部と、アンテナ部の送受信信号に関する処理を行う高周波回路と、高周波回路に接続され、第1偏波の受信信号及び第2偏波の受信信号を検出した場合に、第1偏波の受信信号レベルと第2偏波の受信信号レベルとの差である信号レベル差について、電波センサが設置される環境に応じて設定された判定基準を用いて、信号レベル差が判定基準未満の場合に、検出範囲の内に移動体があると判定し、第1偏波の受信信号及び第2偏波の受信信号を検出しない場合、及び、信号レベル差が判定基準以上の場合は、検出範囲の内には移動体がいないと判定する判定部と、を含む。 A radio wave sensor according to the present disclosure is a radio wave sensor that transmits radio waves to a predetermined detection range, receives radio waves that are reflected by a moving body in the transmitted radio waves, and detects the presence or absence of a moving body within the detection range. an antenna unit that transmits and receives a first polarized wave and a second polarized wave that are different in polarization from each other; a polarization switching unit that switches between transmission and reception of the first polarized wave and transmission and reception of the second polarized wave; and a polarization switching unit. A switching signal output unit that outputs a polarization switching signal that instructs switching between the first polarized wave and the second polarized wave at a predetermined polarization switching cycle, a high frequency circuit that performs processing related to the transmission and reception signals of the antenna unit, A signal that is the difference between the received signal level of the first polarized wave and the received signal level of the second polarized wave when the received signal of the first polarized wave and the received signal of the second polarized wave are detected by being connected to a high-frequency circuit. Regarding the level difference, using a criterion set according to the environment in which the radio wave sensor is installed, if the signal level difference is less than the criterion, it is determined that there is a moving object within the detection range, and the first deviation is detected. a determination unit that determines that there is no moving object within the detection range when neither the received signal of the second polarized wave nor the received signal of the second polarized wave is detected and when the signal level difference is equal to or greater than a determination criterion.

本開示に係る電波検出方法は、所定の検出範囲に対して電波を送信し、送信した電波が移動体で反射された電波を受信して、検出範囲における移動体の有無を検出する電波検出方法であって、互いに偏波が異なる第1偏波と第2偏波とを予め定めた偏波切替周期で第1偏波と第2偏波を切り替えて送信し、第1偏波の受信信号及び第2偏波の受信信号を検出した場合に、第1偏波の受信信号レベルと第2偏波の受信信号レベルとの差である信号レベル差について、電波センサが設置される環境に応じて設定された判定基準を用いて、信号レベル差が判定基準未満の場合に、検出範囲の内に移動体があると判定し、第1偏波の受信信号及び第2偏波の受信信号を検出しない場合、及び、信号レベル差が判定基準以上の場合は、検出範囲の内には移動体がいないと判定する。 A radio wave detection method according to the present disclosure transmits radio waves to a predetermined detection range, receives radio waves reflected by a moving object from the transmitted radio waves, and detects the presence or absence of a moving object within the detection range. wherein a first polarized wave and a second polarized wave having different polarizations are transmitted by switching between the first polarized wave and the second polarized wave at a predetermined polarization switching cycle, and a received signal of the first polarized wave is transmitted. And when the received signal of the second polarized wave is detected, the signal level difference, which is the difference between the received signal level of the first polarized wave and the received signal level of the second polarized wave, depending on the environment in which the radio wave sensor is installed If the signal level difference is less than the criterion, it is determined that there is a moving object within the detection range, and the received signal of the first polarized wave and the received signal of the second polarized wave are If not detected, or if the signal level difference is equal to or greater than the criterion, it is determined that there is no moving object within the detection range.

上記構成の電波センサ及び電波検出方法によれば、所定の検出範囲における移動体の有無を正しく判定することができる。 According to the radio wave sensor and the radio wave detection method configured as described above, it is possible to correctly determine the presence or absence of a moving object within a predetermined detection range.

実施の形態に係る電波センサが設置される非常階段における移動体の検出状態を示す図である。It is a figure which shows the detection state of the moving body in the emergency staircase in which the radio wave sensor which concerns on embodiment is installed. 実施の形態に係る電波センサの構成を示すブロック図である。1 is a block diagram showing the configuration of a radio wave sensor according to an embodiment; FIG. 電波の第1偏波をTE波とし、第2偏波をTM波とした場合について、TE波とTM波がそれぞれ空気中から壁に入射して壁を透過する例を示す図である。FIG. 10 is a diagram showing an example in which the TE wave and the TM wave respectively enter the wall from the air and pass through the wall when the first polarized wave of the radio wave is the TE wave and the second polarized wave is the TM wave. 電波のTE波とTM波が空気中から物体に入射した場合の入射角度と透過係数の関係の一例を示す図である。FIG. 3 is a diagram showing an example of the relationship between the incident angle and the transmission coefficient when TE waves and TM waves of radio waves are incident on an object from the air. 実施の形態に係る電波センサにおいて、移動体の有無の判定の一例を示す図である。FIG. 10 is a diagram showing an example of determination of presence/absence of a moving object in the radio wave sensor according to the embodiment; 実施の形態に係る電波検出方法の手順を示すフローチャートである。4 is a flow chart showing the procedure of the radio wave detection method according to the embodiment;

以下に図面を用いて、本開示の実施の形態を詳細に説明する。以下で述べる周波数等は、説明のための例示であって、電波センサの仕様等に応じて適宜変更が可能である。以下では、全ての図面において対応する要素には同一の符号を付し、重複する説明を省略する。 Embodiments of the present disclosure will be described in detail below with reference to the drawings. The frequencies and the like described below are examples for explanation, and can be changed as appropriate according to the specifications of the radio wave sensor. In the following, corresponding elements in all the drawings are given the same reference numerals, and overlapping descriptions are omitted.

図1は、電波センサ20を用いる照明制御システム10を示す図である。照明制御システム10は、非常階段12の各階において非常階段12に面した壁面14と踊り場15の突き当りの壁面16の適当な場所に設けられる非常灯18の点灯、消灯に関する制御を行うシステムである。非常灯18は、点灯、消灯、あるいは省電力状態である薄暗い点灯状態に制御する照明回路を有する。非常階段12は、通常時には使用しない階段であるので、非常灯18は消灯状態または省電力状態であるが、緊急事態等で人8が非常階段12を利用するときは、非常灯18を明るく点灯する。照明制御システム10は、非常灯18を点灯するか否かについて、電波センサ20を用いて、非常階段12における人8の有無を判定する。人8がいないと判定されるときは非常灯18を消灯状態または省電力状態とし、人8がいると判定されるときは非常灯18を明るく点灯する。 FIG. 1 is a diagram showing a lighting control system 10 using radio wave sensors 20. As shown in FIG. The lighting control system 10 is a system for controlling the lighting and extinguishing of emergency lights 18 provided at appropriate locations on the wall surface 14 facing the emergency stairs 12 and the wall surface 16 at the end of the landing 15 on each floor of the emergency stairs 12. The emergency light 18 has a lighting circuit that controls it to turn on, off, or to a dim lighting state that is a power saving state. Since the emergency staircase 12 is a staircase that is not normally used, the emergency light 18 is turned off or is in a power-saving state. do. The lighting control system 10 uses the radio wave sensor 20 to determine whether or not the emergency light 18 is turned on. When it is determined that there is no person 8, the emergency light 18 is turned off or in a power saving state, and when it is determined that the person 8 is present, the emergency light 18 is brightly lit.

非常階段12は、建物の壁面14と壁面16との間の空間に設けられている。壁面14と壁面16との間の空間は、電波センサ20が配置される非常階段12の領域空間であり、電波センサ20が非常灯18の点灯及び消灯に関して、人8の有無を検出するものとして設定された範囲であるので、これを所定の検出範囲30と呼ぶ。例えば、壁面16を有する壁17の向こう側に人9がいても、非常灯18を点灯する必要が無いので、壁17の向こう側は、所定の検出範囲30の内でなく、検出範囲外32である。 The emergency staircase 12 is provided in a space between a wall surface 14 and a wall surface 16 of the building. The space between the wall surface 14 and the wall surface 16 is the area space of the emergency stairs 12 in which the radio wave sensor 20 is arranged, and the radio wave sensor 20 detects the presence or absence of the person 8 with respect to turning on and off the emergency light 18. Since it is the set range, it is called a predetermined detection range 30 . For example, even if there is a person 9 on the other side of the wall 17 having the wall surface 16, there is no need to turn on the emergency light 18. is.

電波センサ20は、所定の検出範囲30に対して電波22を送信し、送信した電波22が移動体である人8で反射された電波24を受信して、検出範囲30における移動体である人8の有無を検出するアクティブセンサである。非常階段12を利用する人8は、緊急事態の事情等で非常階段12を注意しながら上り下りするので、電波センサ20は、ドップラ法を利用して、人8が移動することを検出するドップラ型センサである。 The radio wave sensor 20 transmits radio waves 22 within a predetermined detection range 30, receives radio waves 24 that are reflected by a person 8 who is a moving object, and detects a person 8 who is a moving object within the detection range 30. It is an active sensor that detects the presence or absence of 8. A person 8 using the emergency staircase 12 must be cautious when going up and down the emergency staircase 12 due to an emergency situation or the like. type sensor.

ドップラ法は、移動体に対し送信した電波22の周波数と、移動体から反射した電波24の周波数との差である周波数差に基づいて、移動体の移動速度を求める方法である。周波数差の信号をドップラ信号と呼ぶと、移動体がないときは、ドップラ信号の振幅はバックグランドのノイズレベルで、移動体があるときは、移動体の速度に関連する周波数差のドップラ信号が現れ、その振幅はノイズレベル以上になる。したがって、電波センサ20は、送信した電波22と受信した電波24とからドップラ信号を算出し、その振幅を所定の判定基準で判定することで、非常階段12における移動体である人8の有無を検出できる。 The Doppler method is a method of determining the moving speed of a moving object based on the frequency difference between the frequency of the radio wave 22 transmitted to the moving object and the frequency of the radio wave 24 reflected from the moving object. If the frequency difference signal is called the Doppler signal, when there is no moving object, the amplitude of the Doppler signal is the background noise level, and when there is a moving object, the frequency difference Doppler signal related to the speed of the moving object is appears and its amplitude is above the noise level. Therefore, the radio wave sensor 20 calculates a Doppler signal from the transmitted radio wave 22 and the received radio wave 24, and determines the amplitude of the Doppler signal based on a predetermined criterion, thereby detecting the presence or absence of the person 8 who is a moving object on the emergency stairs 12. detectable.

ところで、検出範囲30の内と、検出範囲30の内でない検出範囲外32との間を仕切る壁17を電波センサ20から送信した電波23が透過することが生じ得る。この場合、壁17を透過した電波23は、検出範囲外32にいる移動体である人9で反射し、反射された電波25を電波センサ20が受信すると、移動体である人9がいる、と誤検出して非常灯18を点灯することが生じ得る。電波センサ20は、かかる誤検出を防ぐために、図2に示す構成を有する。 By the way, the radio wave 23 transmitted from the radio wave sensor 20 may pass through the wall 17 that separates the inside of the detection range 30 and the outside of the detection range 32 that is not inside the detection range 30 . In this case, the radio wave 23 transmitted through the wall 17 is reflected by the person 9 who is a moving object outside the detection range 32, and when the radio wave sensor 20 receives the reflected radio wave 25, the person 9 who is a moving object is present. , the emergency light 18 may be turned on due to an erroneous detection. The radio wave sensor 20 has the configuration shown in FIG. 2 in order to prevent such erroneous detection.

図2は、電波センサ20の構成を示すブロック図である。電波センサ20は、アンテナ部40、高周波回路50、制御回路60、及び、偏波切替部70を含む。図2において、太線は、高周波信号が通る高周波線路82,84,86であり、細線は、一般的な信号線90,92,94である。高周波信号は、導体を通ることで損失が生じるので、高周波線路82,84,86は、出来るだけ短いことが好ましい。 FIG. 2 is a block diagram showing the configuration of the radio wave sensor 20. As shown in FIG. The radio wave sensor 20 includes an antenna section 40 , a high frequency circuit 50 , a control circuit 60 and a polarization switching section 70 . In FIG. 2, thick lines are high-frequency lines 82, 84, 86 through which high-frequency signals pass, and thin lines are general signal lines 90, 92, 94. In FIG. Since high-frequency signals pass through conductors and cause loss, it is preferable that the high-frequency lines 82, 84, 86 be as short as possible.

アンテナ部40は、互いに偏波が異なる第1偏波と第2偏波とを独立して送受信できるアンテナである。第1偏波と第2偏波とは、互いに偏波方向が異なっていればよく、直交偏波関係でなくてもよい。かかるアンテナ部40としては、水平偏波アンテナと垂直偏波アンテナとを互いの送受信方向を平行方向でない角度関係で配置する一組のアンテナで構成することができる。 The antenna unit 40 is an antenna capable of independently transmitting and receiving a first polarized wave and a second polarized wave, which are polarized waves different from each other. The first polarized wave and the second polarized wave need only have different polarization directions, and may not have an orthogonal polarization relationship. Such an antenna unit 40 can be composed of a set of antennas in which a horizontally polarized wave antenna and a vertically polarized wave antenna are arranged in an angular relationship in which the mutual transmission and reception directions are not parallel.

互いの送受信方向を直交させる場合は、1つのマイクロストリップアンテナで構成することができる。例えば、誘電体基板と、その両面に印刷配線された放射素子と地導体板と、放射素子に接続され互いに直交する配置関係を有する2つの給電線を含む平面アンテナのマイクロストリップアンテナを用いることができる。2つの給電線は、水平偏波用の水平給電線と、垂直偏波用の垂直給電線である。水平給電線と垂直給電線は、平面アンテナの正方形の放射素子の4つの辺の内の互いに直交する辺において、各辺の中心を通ってその辺に直交する方向に沿った位置に設けられる。水平給電線と垂直給電線は、正方形の放射素子の中心点よりも辺の縁側に偏った位置に設けられる。 If the transmitting and receiving directions are orthogonal to each other, it can be configured with one microstrip antenna. For example, it is possible to use a microstrip antenna which is a planar antenna including a dielectric substrate, a radiating element and a ground conductor plate printed and wired on both sides of the substrate, and two feeding lines connected to the radiating element and having a mutually orthogonal arrangement relationship. can. The two feed lines are a horizontal feed line for horizontal polarization and a vertical feed line for vertical polarization. The horizontal feed line and the vertical feed line are provided along a direction orthogonal to each side through the center of each of the four sides of the square radiating element of the planar antenna that are orthogonal to each other. The horizontal feed line and the vertical feed line are provided at positions deviated from the center point of the square radiating element toward the edge side of the side.

電波は電磁波であるが、電磁波は互いに直交する方向に振動する電界と磁界とで構成される。電磁波において、電界や磁界の振動の方向が一定している場合を直線偏波と言い、 電界の振動の向きと電磁波の伝搬方向とを含む面を偏波面と言う。偏波面が大地に対して水平の場合が水平偏波であり、垂直の場合が垂直偏波である。水平偏波は、電界の振動方向が水平なので、TE(Transverse Electric)波と呼ばれ、垂直偏波は、磁界の振動方向が水平なので、TM(Transverse Magnetic)波と呼ばれる。したがって、水平給電線は、TE波の送受信用の給電線として用いられ、垂直給電線は、TM波の送受信用の給電線として用いられる。以下では、1つのマイクロストリップアンテナで構成されるアンテナ部40について述べる。 A radio wave is an electromagnetic wave, and an electromagnetic wave is composed of an electric field and a magnetic field that oscillate in mutually orthogonal directions. In an electromagnetic wave, when the direction of oscillation of the electric field or magnetic field is constant, it is called a linearly polarized wave, and the plane containing the direction of oscillation of the electric field and the propagation direction of the electromagnetic wave is called the plane of polarization. When the polarization plane is horizontal with respect to the ground, it is horizontal polarization, and when it is vertical, it is vertical polarization. The horizontally polarized wave is called a TE (Transverse Electric) wave because the electric field oscillates horizontally, and the vertically polarized wave is called a TM (Transverse Magnetic) wave because the magnetic field oscillates horizontally. Therefore, the horizontal feed line is used as a feed line for transmitting and receiving TE waves, and the vertical feed line is used as a feed line for transmitting and receiving TM waves. The antenna section 40 composed of one microstrip antenna will be described below.

図2のアンテナ部40は、2つの給電線を含む平面アンテナのマイクロストリップアンテナである。図2において、平面アンテナを正方形の放射素子にモデル化し、互いに直交する辺のそれぞれの辺縁側に設けられる水平給電線42と垂直給電線44を示す。垂直給電線44によって送受信されるTM波を実線で示し、水平給電線42によって送受信されるTE波を破線で示す。以下では、第1偏波を水平偏波、すなわちTE波とし、第2偏波を垂直偏波、すなわちTM波とする。 The antenna section 40 in FIG. 2 is a planar microstrip antenna including two feeder lines. In FIG. 2, a planar antenna is modeled as a square radiating element, and a horizontal feed line 42 and a vertical feed line 44 are shown, which are provided on respective side edges of mutually orthogonal sides. TM waves transmitted and received by the vertical feed line 44 are indicated by solid lines, and TE waves transmitted and received by the horizontal feed line 42 are indicated by dashed lines. In the following, the first polarized wave is horizontal polarized wave, ie TE wave, and the second polarized wave is vertical polarized wave, ie TM wave.

高周波回路50は、送受信信号に関する処理を行う回路である。高周波回路50は、所定の周波数の送信電波を出力する送信部52、受信電波を受信する受信部54、受信電波の電力レベルである受信電力レベルを測定する検波回路56、及びドップラ処理部58を含む。 The high-frequency circuit 50 is a circuit that performs processing related to transmission/reception signals. The high-frequency circuit 50 includes a transmission section 52 that outputs transmission radio waves of a predetermined frequency, a reception section 54 that receives reception radio waves, a detection circuit 56 that measures the reception power level, which is the power level of the reception radio waves, and a Doppler processing section 58 . include.

送信部52が出力する送信電波の所定の周波数は、約24GHzである。受信部54は、TE波、TM波を受信して受信波の信号処理を行う回路である。検波回路56は、受信したTE波、TM波の電力レベルを測定し、信号線90を介して測定データを制御回路60に伝送する回路である。 The predetermined frequency of the transmission radio wave output by the transmission section 52 is approximately 24 GHz. The receiver 54 is a circuit that receives TE waves and TM waves and performs signal processing on the received waves. The detection circuit 56 is a circuit that measures the power level of the received TE wave and TM wave and transmits the measured data to the control circuit 60 via the signal line 90 .

ドップラ処理部58は、水平給電線42から送信されるTE波の送信周波数と、水平給電線42で受信したTE波の受信周波数との差である周波数差の信号を、TE波のドップラ信号として求める。求められたTE波のドップラ信号の振幅は、信号線90を介して制御回路60に伝送される。同様に、垂直給電線44から送信されるTM波の送信周波数と、垂直給電線44で受信したTM波の受信周波数との差である周波数差の信号を、TM波のドップラ信号として求める。求められたTM波のドップラ信号の振幅は、信号線90を介して制御回路60に伝送される。 The Doppler processing unit 58 converts the frequency difference signal, which is the difference between the transmission frequency of the TE wave transmitted from the horizontal feeder 42 and the reception frequency of the TE wave received by the horizontal feeder 42, into a TE wave Doppler signal. Ask. The obtained amplitude of the TE wave Doppler signal is transmitted to the control circuit 60 via the signal line 90 . Similarly, a frequency difference signal, which is the difference between the transmission frequency of the TM wave transmitted from the vertical feeder 44 and the reception frequency of the TM wave received by the vertical feeder 44, is obtained as the Doppler signal of the TM wave. The obtained amplitude of the TM wave Doppler signal is transmitted to the control circuit 60 via the signal line 90 .

制御回路60は、偏波切替部70に対し、予め定めた偏波切替周期で第1偏波と第2偏波の切り替えを指示する偏波切替信号を出力する切替信号出力部62を含む。偏波切替信号は、アンテナ部40において、TE波の送受信とTM波の送受信を偏波切替周期で繰り返し常時切り替えるために偏波切替部70に出力される。偏波切替周期は、同一の移動体である人8に第1偏波と第2偏波とを送受信可能な時間幅以内の周期に設定される。偏波切替周期が長すぎる場合には、TE波を人8に送受信したが、TM波は誰もいない場所に送受信する等の場合のように、移動体である人8の有無について誤検出の可能性が生じる。非常階段12における人8の移動速度に対応する周波数は、状況によるが、数10Hzであるので、偏波切替周期が10ms以下でないと、移動する人8について同じ状態におけるTE波とTM波の双方での検出ができない。好ましくは、偏波切替周期は、1ms未満に設定することがよい。 The control circuit 60 includes a switching signal output section 62 that outputs a polarization switching signal that instructs the polarization switching section 70 to switch between the first polarization and the second polarization at a predetermined polarization switching cycle. The polarization switching signal is output to the polarization switching section 70 so that the antenna section 40 constantly switches between transmission and reception of the TE wave and transmission and reception of the TM wave repeatedly at the polarization switching cycle. The polarization switching cycle is set to a cycle within the time width in which the first polarized wave and the second polarized wave can be transmitted and received by the person 8 who is the same moving object. If the polarization switching period is too long, the TE wave is transmitted to and received from the person 8, but the TM wave is transmitted and received to and from a place where no one is present. A possibility arises. The frequency corresponding to the moving speed of the person 8 on the emergency stairs 12 is several tens of Hz, although it depends on the situation. cannot be detected. Preferably, the polarization switching period is set to less than 1 ms.

制御回路60は、さらに、判定部64を含む。判定部64は、検出範囲30の内における移動体である人8の有無を判定する。判定は、2段階に分けて行われる。 Control circuit 60 further includes determination unit 64 . The determination unit 64 determines whether or not there is a person 8 who is a mobile object within the detection range 30 . Judgment is performed in two steps.

第1段階は、TE波の受信信号及びTM波の受信信号の有無に関する判定である。TE波の受信信号及びTM波の受信信号が無い場合は、電波を送信しても反射波が返ってこない状態であるので、検出範囲30の内に移動体である人8はいないと判定する。TE波の受信信号及びTM波の受信信号の有無は、壁面16からの反射波の影響を避けるために、TE波のドップラ信号、及び、TM波のドップラ信号の有無に基づいて行われる。以下では、第1偏波であるTE波のドップラ信号を第1ドップラ信号と呼び、第2偏波であるTM波のドップラ信号を第2ドップラ信号と呼ぶ。第1ドップラ信号及び第2ドップラ信号は、高周波回路50のドップラ処理部58において求められる。ドップラ信号の有無に対する判定基準は、予め定めたドップラ信号におけるノイズレベルに基づいて定めることができる。第1ドップラ信号の振幅レベル、及び、第2ドップラ信号の振幅レベルが、ドップラ信号におけるノイズレベル未満の場合には、TE波の受信信号及びTM波の受信信号が無いと判定される。 The first step is to determine whether or not there is a TE wave received signal and a TM wave received signal. If there is no TE wave reception signal or TM wave reception signal, no reflected wave is returned even if the radio wave is transmitted. . The presence or absence of the received TE wave signal and the received TM wave signal is determined based on the presence or absence of the Doppler signal of the TE wave and the Doppler signal of the TM wave in order to avoid the influence of the reflected wave from the wall surface 16 . Hereinafter, the Doppler signal of the TE wave, which is the first polarized wave, will be referred to as the first Doppler signal, and the Doppler signal of the TM wave, which is the second polarized wave, will be referred to as the second Doppler signal. The first Doppler signal and the second Doppler signal are obtained in the Doppler processing section 58 of the high frequency circuit 50 . A criterion for determining the presence or absence of a Doppler signal can be determined based on a predetermined noise level in the Doppler signal. If the amplitude level of the first Doppler signal and the amplitude level of the second Doppler signal are less than the noise level in the Doppler signal, it is determined that there is no TE wave received signal and no TM wave received signal.

TE波の受信信号及びTM波の受信信号がある場合には、第2段階に進む。第2段階では、同一偏波切替周期内におけるTE波の受信信号レベルとTM波の受信信号レベルとの差である信号レベル差を用いる。信号レベル差としては、ドップラ処理部58によって求められた第1ドップラ信号の振幅レベルと、第2ドップラ信号の振幅レベルの差である振幅レベル差が用いられる。ドップラ信号の振幅は、電波の電力レベルが高いほど大きな振幅になるので、ドップラ信号の振幅レベル差に代えて、検波回路56によって測定されたTE波の受信電力レベルとTM波の受信電力レベルとの差である電力レベル差を用いてもよい。 If there is a TE wave received signal and a TM wave received signal, the process proceeds to the second step. In the second step, a signal level difference, which is the difference between the received signal level of the TE wave and the received signal level of the TM wave within the same polarization switching cycle, is used. As the signal level difference, an amplitude level difference, which is the difference between the amplitude level of the first Doppler signal obtained by the Doppler processing unit 58 and the amplitude level of the second Doppler signal, is used. Since the amplitude of the Doppler signal increases as the power level of the radio wave increases, instead of the amplitude level difference of the Doppler signal, the received power level of the TE wave and the received power level of the TM wave measured by the detector circuit 56 are used. A power level difference, which is the difference between .

同一偏波切替周期内における信号レベル差が予め定めた判定基準未満の場合に、判定部64は、検出範囲30の内に、移動体である人8がいると判定する。これに対し、同一偏波切替周期内における信号レベル差が予め定めた判定基準以上の場合には、検出範囲外32にいる移動体である人9を誤検出したとして、判定部64は、検出範囲30の内に、移動体である人8がいないと判定する。判定基準は、電波センサ20が設置される環境に応じて、予め設定される。 If the signal level difference within the same polarization switching cycle is less than a predetermined criterion, the determination unit 64 determines that the person 8 who is a moving object is present within the detection range 30 . On the other hand, if the signal level difference within the same polarization switching cycle is equal to or greater than the predetermined determination criterion, the determination unit 64 determines that the person 9, who is a moving object, located outside the detection range 32 has been erroneously detected. It is determined that there is no person 8 who is a mobile body within the range 30 . The criterion is set in advance according to the environment in which the radio wave sensor 20 is installed.

したがって、判定部64は、第1偏波の受信信号及び第2偏波の受信信号を検出した場合で、同一偏波切替周期内における信号レベル差が予め定めた判定基準未満の場合に、検出範囲30の内に、移動体である人8がいると判定する。また、判定部64は、第1偏波の受信信号及び第2偏波の受信信号を検出しない場合、及び、信号レベル差が予め定めた判定基準以上の場合には、検出範囲30の内には移動体がいないと判定する。移動体である人8,9の有無に関する判定の具体例については後述する。 Therefore, when the determination unit 64 detects the received signal of the first polarized wave and the received signal of the second polarized wave, and the signal level difference within the same polarization switching cycle is less than a predetermined determination criterion, the detection It is determined that there is a person 8 who is a mobile object within the range 30 . In addition, when the determination unit 64 does not detect the received signal of the first polarized wave and the received signal of the second polarized wave, and when the signal level difference is equal to or greater than a predetermined determination criterion, determines that there is no moving object. A specific example of determining the presence or absence of people 8 and 9, which are moving bodies, will be described later.

判定部64によって検出範囲30の内に移動体である人8がいると判定されると、信号線94を介して、非常灯18の照明回路に対し、明るく点灯する点灯指示信号が伝送される。判定部64によって検出範囲30の内に移動体である人8がいないと判定されるときは、非常灯18に対し、消灯または省電力状態の薄暗い点灯状態とする信号が出力される。 When the determination unit 64 determines that the person 8 who is a mobile body is present within the detection range 30, a lighting instruction signal for bright lighting is transmitted to the lighting circuit of the emergency light 18 via the signal line 94. . When the determination unit 64 determines that there is no person 8 who is a mobile body within the detection range 30, a signal is output to the emergency light 18 to turn it off or to turn it into a dim lighting state in a power-saving state.

かかる制御回路60としては、非常灯18と一体化されている電波センサ20への搭載に適したマイクロプロセッサが用いられる。 As the control circuit 60, a microprocessor suitable for mounting on the radio wave sensor 20 integrated with the emergency light 18 is used.

偏波切替部70は、偏波切替信号に基づいて、高周波回路50の接続先を、アンテナ部40の水平給電線42または垂直給電線44のいずれとするかを切り替える切替手段である。偏波切替部70は、水平給電線42用の水平偏波切替部72と、垂直給電線44用の垂直偏波切替部74と、高周波回路50用の回路接続部76とを含む。 The polarization switching unit 70 is switching means for switching the connection destination of the high-frequency circuit 50 to either the horizontal feed line 42 or the vertical feed line 44 of the antenna unit 40 based on the polarization switching signal. The polarization switching section 70 includes a horizontal polarization switching section 72 for the horizontal feed line 42 , a vertical polarization switching section 74 for the vertical feed line 44 , and a circuit connection section 76 for the high frequency circuit 50 .

高周波線路82は、水平給電線42と水平偏波切替部72との間を接続し、高周波線路84は、垂直給電線44と垂直偏波切替部74との間を接続し、高周波線路86は、高周波回路50と回路接続部76との間を接続する。 The high-frequency line 82 connects between the horizontal feed line 42 and the horizontal polarization switching section 72, the high-frequency line 84 connects between the vertical feed line 44 and the vertical polarization switching section 74, and the high-frequency line 86 connects , connect between the high-frequency circuit 50 and the circuit connection portion 76 .

上記構成の作用効果、特に制御回路60の機能について、図3から図5を用いてさらに詳細に説明する。 The effects of the above configuration, particularly the function of the control circuit 60, will be described in more detail with reference to FIGS. 3 to 5. FIG.

図3は、TE波とTM波がそれぞれ空気中から壁面16に入射して壁17を透過する例を示す図である。図3において、実線と破線とは、電波が検出範囲30の空気中を壁面16に向かって進み、壁17を透過して壁17の向こう側へ抜ける進行方向を示す。実線は、TM波の進行方向を示し、破線は、TE波の進行方向を示す。電波の進行方向が壁面16に入射する角度である入射角度θは、壁面16の法線と電波の進行方向とがなす角度である。壁17が地表に対し垂直に立設しているとして、水平偏波のTE波の電界のベクトル方向は地表に水平である。図3では、TE波の進行方向を示す破線に対し、丸印の中に黒丸を付すマークでそのことを示す。垂直偏波のTM波の電界のベクトル方向は地表に垂直であるが、電波の進行方向が大地に対し入射角度θで傾いているので、地表からは入射角度θの分だけ傾く。図3では、TM波の進行方向を示す実線に対し垂直方向の矢印マークでそのことを示す。 FIG. 3 is a diagram showing an example in which the TE wave and the TM wave respectively enter the wall surface 16 from the air and pass through the wall 17. As shown in FIG. In FIG. 3 , the solid line and broken line indicate the traveling direction in which the radio wave travels through the air in the detection range 30 toward the wall surface 16 , passes through the wall 17 , and exits to the other side of the wall 17 . A solid line indicates the traveling direction of the TM wave, and a dashed line indicates the traveling direction of the TE wave. An incident angle θ, which is the angle at which the traveling direction of the radio wave is incident on the wall surface 16, is the angle between the normal line of the wall surface 16 and the traveling direction of the radio wave. Assuming that the wall 17 is erected vertically to the ground surface, the vector direction of the electric field of the horizontally polarized TE wave is horizontal to the ground surface. In FIG. 3, the dashed line indicating the traveling direction of the TE wave is indicated by a mark with a black circle inside a circle. The vector direction of the electric field of the vertically polarized TM wave is perpendicular to the ground surface, but since the traveling direction of the radio wave is tilted at the incident angle θ with respect to the ground, it is tilted by the incident angle θ from the ground surface. In FIG. 3, this is indicated by an arrow mark perpendicular to the solid line indicating the traveling direction of the TM wave.

TE波とTM波が検出範囲30の空気中を進行して、空気の誘電率よりも大きな誘電率を有する壁17の壁面16に入射し、壁17を透過する特性は、周知のスネルの法則を用いて計算できる。図4は、計算結果の一例を示す図である。横軸は入射角度θであり、縦軸は透過係数である。計算に際しては、壁17がガラス壁として、ガラスの誘電率を用いた。入射角度θ=0度においては、TE波もTM波も壁面16に対し垂直に入射するので、偏波面の差が現れず、同じ透過係数になるが、入射角度θが大きくなるにつれて、TE波の透過係数とTM波の透過係数との間に差異が生じる。図4の例では、入射角度θが約15度以上において、{TM波の透過係数}>{TE波の透過係数}となる。 The characteristics of the TE wave and TM wave traveling through the air in the detection range 30, entering the wall surface 16 of the wall 17 having a dielectric constant greater than that of the air, and passing through the wall 17 are defined by the well-known Snell's law. can be calculated using FIG. 4 is a diagram showing an example of calculation results. The horizontal axis is the incident angle θ, and the vertical axis is the transmission coefficient. In the calculation, the dielectric constant of glass was used assuming that the wall 17 was a glass wall. When the incident angle θ is 0 degrees, both the TE wave and the TM wave are incident perpendicularly to the wall surface 16, so there is no difference in the plane of polarization and the transmission coefficients are the same. There is a difference between the transmission coefficient of the .TM. In the example of FIG. 4, {TM wave transmission coefficient}>{TE wave transmission coefficient} when the incident angle θ is about 15 degrees or more.

図1に示す移動体である人9に対する電波の反射を考えると、電波は、電波センサ20から検出範囲30の空気中を進行して、壁17を透過し、検出範囲外32の空気中に出て、移動体である人9から反射する。移動体である人9から反射した電波は、入射方向と逆方向に、検出範囲外32の空気中を進行して壁17を透過し、検出範囲30の空気中に出て、電波センサ20に戻る。したがって、電波は、壁17を2回透過する。電波としてTM波とTE波とを使い分ける場合は、入射角度θが約15度以上において、{TM波の透過係数}>{TE波の透過係数}であるので、電波センサ20が受信する反射波としてのTE波の信号レベルはTM波の信号レベルよりも低くなる。 Considering the reflection of radio waves from a person 9 who is a moving object shown in FIG. It exits and is reflected from a person 9 who is a moving body. Radio waves reflected from a person 9 who is a moving object travel in the direction opposite to the direction of incidence in the air outside the detection range 32, pass through the wall 17, go out into the air within the detection range 30, and reach the radio wave sensor 20. return. Therefore, the radio wave penetrates the wall 17 twice. When TM waves and TE waves are separately used as radio waves, {transmission coefficient of TM waves}>{transmission coefficient of TE waves} when the incident angle θ is about 15 degrees or more. The signal level of the TE wave as is lower than the signal level of the TM wave.

これに対し、検出範囲30の内の非常階段12における移動体である人8からの送信波及び反射波は、いずれも空気中のみを通るので、電波センサ20が受信する反射波としてのTE波の信号レベルは、TM波の信号レベルと同じである。 On the other hand, the transmitted wave and the reflected wave from the person 8, who is a moving object on the emergency stairs 12 within the detection range 30, both pass only through the air. is the same as the signal level of the TM wave.

電波センサ20の制御回路60の判定部64は、第1段階として、TE波の受信信号及びTM波の受信信号の有無に関する判定を行う。第1段階において、TE波の受信信号及びTM波の受信信号があると判定されると、第2段階に進む。第2段階では、TE波の受信信号レベルとTM波の受信信号レベルとの差である信号レベル差を用いる。上記のように、検出範囲30の内の非常階段12における移動体である人8については、TE波の受信信号レベルとTM波の受信信号レベルは同じであるので、信号レベル差はゼロである。これに対し、検出範囲外32における移動体である人9については、TE波の受信信号レベルは、TM波の受信信号レベルよりも小さいので、信号レベル差はゼロにはならない。これを用いて、検出範囲30の内の非常階段12における移動体である人8と、検出範囲外32における移動体である人9との区別が行える。 As a first step, the determination unit 64 of the control circuit 60 of the radio wave sensor 20 determines the presence or absence of the received signal of the TE wave and the received signal of the TM wave. In the first stage, if it is determined that there is a TE wave received signal and a TM wave received signal, the process proceeds to the second stage. In the second step, the signal level difference, which is the difference between the received signal level of the TE wave and the received signal level of the TM wave, is used. As described above, for the person 8 who is a mobile object on the emergency stairs 12 within the detection range 30, the received signal level of the TE wave and the received signal level of the TM wave are the same, so the signal level difference is zero. . On the other hand, for the person 9 who is a moving object outside the detection range 32, the received signal level of the TE wave is lower than the received signal level of the TM wave, so the signal level difference does not become zero. By using this, it is possible to distinguish between the person 8 who is a moving object on the emergency stairs 12 within the detection range 30 and the person 9 who is a moving object outside the detection range 32 .

図5は、検出範囲30の内と、検出範囲外32のそれぞれについて移動体である人8,9の有無に関する判定部64の判定の例を示す図である。図5において、CASE1,CASE2,CASE3,CASE4は、検出範囲30と検出範囲外32、移動体である人8と人9に関する4つの組み合わせを示す。各CASEにおける(a)は、移動体である人8,9がどこにいるかを示す図である。 FIG. 5 is a diagram showing an example of determination by the determining unit 64 regarding presence/absence of persons 8 and 9 who are moving objects within the detection range 30 and outside the detection range 32, respectively. In FIG. 5, CASE 1, CASE 2, CASE 3, and CASE 4 indicate four combinations of detection range 30, detection range 32, and people 8 and 9, which are moving bodies. (a) in each CASE is a diagram showing where people 8 and 9 who are moving bodies are.

(b)は、判定部64における第1段階の判定に用いられるTE波の受信信号レベルとTM波の受信信号レベルをそれぞれ破線と実線で示す図である。横軸は時間、縦軸は第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMである。縦軸のAは受信信号の有無に関する判定基準であるドップラ振幅に関する所定のノイズレベルである。 (b) is a diagram showing the received signal level of the TE wave and the received signal level of the TM wave, which are used for the first-stage determination in the determining section 64, respectively, with a dashed line and a solid line. The horizontal axis is time, and the vertical axis is the amplitude ATE of the first Doppler signal and the amplitude ATM of the second Doppler signal. A0 on the vertical axis is a predetermined noise level related to Doppler amplitude, which is a criterion for determining the presence or absence of a received signal.

(c)は、判定部64における第2段階の判定に用いられるTE波の受信信号レベルとTM波の受信信号レベルの差である信号レベル差を太い実線で示す図である。横軸は時間、縦軸は、第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMの差である信号レベル差ΔA=(ATM-ATE)である。縦軸の(ΔA)は、ドップラ信号レベル差に関する所定の判定基準である。 (c) is a diagram showing a signal level difference, which is the difference between the received signal level of the TE wave and the received signal level of the TM wave, which is used for the second stage determination in the determination section 64, with a thick solid line. The horizontal axis is time, and the vertical axis is the signal level difference ΔA=(A TM −A TE ) , which is the difference between the amplitude A TE of the first Doppler signal and the amplitude ATM of the second Doppler signal. (ΔA) 0 on the vertical axis is a predetermined criterion for the Doppler signal level difference.

(d)は、(a)の内容を示す欄で、(e)は、判定部64の判定結果に基づく非常灯18の状態を示す欄である。 (d) is a column showing the content of (a), and (e) is a column showing the state of the emergency light 18 based on the judgment result of the judging section 64 .

図6は、所定の検出範囲30に対して電波を送信し、送信した電波が移動体で反射された電波を受信して、検出範囲30における移動体である人8の有無を検出する電波検出方法の手順を示すフローチャートである。電波センサ20は、互いに偏波が異なる第1偏波と第2偏波とを予め定めた偏波切替周期で第1偏波と第2偏波を切り替えて送信する(S10)。この工程は次の手順で進められる。すなわち、電波センサ20における制御回路60の切替信号出力部62から偏波切替信号が偏波切替部70に出力される。偏波切替部70は、偏波切替信号に基づいて、高周波回路50の接続先を、アンテナ部40の水平給電線42または垂直給電線44のいずれとするかを切り替える。切替は、例えば、1msの偏波切替周期で行われる。高周波回路50の送信部52は、約24GHzの送信周期の送信電波を出力する。偏波切替部70において、高周波回路50用の回路接続部76が水平給電線42に接続される期間は、アンテナ部40から第1偏波としてのTE波が送信される。高周波回路50用の回路接続部76が垂直給電線44に接続される期間は、アンテナ部40から第2偏波としてのTM波が送信される。 FIG. 6 shows radio wave detection for detecting the presence or absence of a person 8 who is a moving object within the detection range 30 by transmitting radio waves to a predetermined detection range 30 and receiving the radio waves reflected by the moving object. 4 is a flow chart showing the steps of the method; The radio wave sensor 20 switches between the first polarized wave and the second polarized wave having different polarized waves at a predetermined polarization switching period and transmits the polarized waves (S10). This process proceeds as follows. That is, the polarization switching signal is output to the polarization switching section 70 from the switching signal output section 62 of the control circuit 60 in the radio wave sensor 20 . Based on the polarization switching signal, the polarization switching section 70 switches the connection destination of the high-frequency circuit 50 to either the horizontal feeder line 42 or the vertical feeder line 44 of the antenna section 40 . Switching is performed at a polarization switching cycle of 1 ms, for example. The transmission section 52 of the high frequency circuit 50 outputs transmission radio waves with a transmission cycle of approximately 24 GHz. In the polarization switching section 70 , the TE wave as the first polarized wave is transmitted from the antenna section 40 while the circuit connection section 76 for the high frequency circuit 50 is connected to the horizontal feeder 42 . While the circuit connection portion 76 for the high frequency circuit 50 is connected to the vertical feeder 44, the antenna portion 40 transmits the TM wave as the second polarized wave.

次に、検出範囲30の内における移動体である人8の有無の判定が行われる。この判定は、2段階に分けて行われる。第1段階は、TE波の受信信号及びTM波の受信信号の有無に関する判定である。TE波の受信信号及びTM波の受信信号の有無は、TE波のドップラ信号である第1ドップラ信号の振幅レベルATE及びTM波のドップラ信号である第2ドップラ信号の振幅レベルATMと、ドップラ信号の有無に対する所定の判定基準Aとの比較で行われる。判定基準Aは、ドップラ振幅に関する所定のノイズレベルである。 Next, it is determined whether or not there is a person 8 who is a mobile object within the detection range 30 . This determination is performed in two steps. The first step is to determine whether or not there is a TE wave received signal and a TM wave received signal. The presence or absence of the received signal of the TE wave and the received signal of the TM wave is determined by the amplitude level ATE of the first Doppler signal that is the Doppler signal of the TE wave and the amplitude level ATM of the second Doppler signal that is the Doppler signal of the TM wave , The presence or absence of the Doppler signal is compared with a predetermined criterion A0 . Criterion A 0 is a predetermined noise level in terms of Doppler amplitude.

すなわち、第1段階では、{(ATE,ATM)≧Aか否かが判定される(S12)。第1ドップラ信号の振幅レベルATE及び第2ドップラ信号の振幅レベルATMは、高周波回路50の受信部54で受信した受信信号をドップラ処理部58で信号処理して制御回路60の判定部64に出力される。S12の手順は、判定部64によって実行される。S12の判定が肯定される場合は、第2段階の判定としてS14に進む。S12の判定が否定される場合は、電波を送信しても反射波が返ってこない状態であるので、検出範囲30の内に移動体である人8はいないとしてS16に進む。 That is, in the first step, it is determined whether or not {(A TE , ATM )≧A 0 (S12). The amplitude level ATE of the first Doppler signal and the amplitude level ATM of the second Doppler signal are obtained by signal processing of the received signal received by the receiving section 54 of the high frequency circuit 50 by the Doppler processing section 58 and the determination section 64 of the control circuit 60. output to The procedure of S<b>12 is executed by the determination unit 64 . If the determination in S12 is affirmative, the process proceeds to S14 as a determination of the second stage. If the determination in S12 is negative, since there is no reflected wave even if the radio wave is transmitted, it is determined that there is no moving person 8 within the detection range 30, and the process proceeds to S16.

S12の判定が肯定され、TE波の受信信号及びTM波の受信信号がある場合には、第2段階の判定として、同一偏波切替周期内におけるTE波の受信信号レベルとTM波の受信信号レベルとの差である信号レベル差が予め定めた判定基準未満か否かが判定される。TE波の受信信号レベルとTM波の受信信号レベルとして、第1ドップラ信号の振幅レベルATE及び第2ドップラ信号の振幅レベルATMを用いることができる。この場合は、[{ΔA=(ATM-ATE)}≧(ΔA)]か否かが判定される(S14)。(ΔA)は、ドップラ信号レベル差に関する所定の判定基準である。S12の手順は、判定部64によって実行される。 If the determination in S12 is affirmative and there are the received signal of the TE wave and the received signal of the TM wave, the level of the received signal of the TE wave and the received signal of the TM wave within the same polarization switching period are determined as the second stage determination. It is determined whether or not the signal level difference, which is the difference from the level, is less than a predetermined criterion. As the received signal level of the TE wave and the received signal level of the TM wave, the amplitude level ATE of the first Doppler signal and the amplitude level ATM of the second Doppler signal can be used. In this case, it is determined whether or not [{ΔA=(A TM −A TE )}≧(ΔA) 0 ] (S14). (ΔA) 0 is the predetermined criterion for the Doppler signal level difference. The procedure of S<b>12 is executed by the determination unit 64 .

S14の判定が肯定される場合は、検出範囲外32にいる移動体である人9を誤検出した場合であるので、検出範囲30の内には移動体である人8がいないとして、S16に進む。S14の判定が否定される場合は、検出範囲30の内に、移動体である人8がいるとされて、S20に進む。 If the determination in S14 is affirmative, it means that the moving person 9 outside the detection range 32 has been erroneously detected. move on. If the determination in S14 is negative, it is determined that the person 8 who is a moving object is present within the detection range 30, and the process proceeds to S20.

このように、2段階の判定によって、第1偏波の受信信号及び第2偏波の受信信号を検出した場合で、同一偏波切替周期内における信号レベル差が予め定めた判定基準未満の場合に、検出範囲30の内に、移動体である人8がいると判定する(S20)。また、第1偏波の受信信号及び第2偏波の受信信号を検出しない場合、及び、信号レベル差が予め定めた判定基準以上の場合には、検出範囲30の内には移動体がいないと判定する(S16)。S20において、検出範囲30の内に移動体である人8がいると判定されると、信号線94を介して、非常灯18の照明回路に対し、明るく点灯する点灯指示信号が伝送される(S22)。S16において、検出範囲30の内に移動体である人8がいないと判定されるときは、非常灯18に対し、消灯または省電力状態の薄暗い点灯状態とする信号が出力される(S18)。 In this way, when the received signal of the first polarized wave and the received signal of the second polarized wave are detected by the two-stage determination, and the signal level difference within the same polarization switching cycle is less than the predetermined determination criterion Then, it is determined that there is a person 8 who is a mobile object within the detection range 30 (S20). When neither the received signal of the first polarized wave nor the received signal of the second polarized wave is detected, and when the signal level difference is equal to or greater than the predetermined criterion, there is no moving object within the detection range 30. (S16). In S20, when it is determined that the person 8 who is a moving object is within the detection range 30, a lighting instruction signal for bright lighting is transmitted to the lighting circuit of the emergency light 18 via the signal line 94 ( S22). When it is determined in S16 that there is no person 8 who is a moving body within the detection range 30, a signal is output to the emergency light 18 to turn it off or to turn it into a dim lighting state for power saving (S18).

図5に戻り、CASE1は、検出範囲30の内に移動体である人8がいない状態で、さらに検出範囲外32にも移動体である人9がいない場合である。この場合、(b)において、第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMはいずれもA未満となり、図6のフローチャートにおいては、S12の判定が否定される。そこで、判定部64は、「検出範囲30の内に移動体である人8がいない」と判定し、非常灯18を消灯または省電力状態にする。 Returning to FIG. 5, CASE 1 is a case where there is no person 8 who is a moving object within the detection range 30 and there is no person 9 who is a moving object outside the detection range 32 . In this case, in (b), both the amplitude A_TE of the first Doppler signal and the amplitude ATM of the second Doppler signal are less than A_0 , and the determination in S12 is negative in the flowchart of FIG. Therefore, the determination unit 64 determines that there is no person 8 who is a moving object within the detection range 30, and turns off the emergency light 18 or puts it into a power saving state.

CASE2は、検出範囲30の内に移動体である人8がいるが、検出範囲外32には移動体である人9がいない場合である。この場合、(b)において、第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMはいずれもA以上となるが、(c)においてΔA=(ATM-ATE)は、(ΔA)未満となる。図6のフローチャートにおいては、S12の判定が肯定され、S14の判定が否定される。そこで、判定部64は、「検出範囲30の内に移動体である人8がいる」と判定し、非常灯18を明るく点灯する。 CASE 2 is a case where a moving person 8 is present within the detection range 30 but there is no moving person 9 outside the detection range 32 . In this case, in (b), the amplitude A TE of the first Doppler signal and the amplitude ATM of the second Doppler signal are both A 0 or more, but in (c) ΔA=(A TM −A TE ) is (ΔA) becomes less than 0 . In the flowchart of FIG. 6, the determination of S12 is affirmative, and the determination of S14 is negative. Therefore, the determination unit 64 determines that "a person 8 who is a moving object is present within the detection range 30" and lights the emergency light 18 brightly.

CASE3は、検出範囲30の内に移動体である人8がいて、さらに検出範囲外32にも移動体である人9がいる場合で、図1に示す状態である。この場合、(b)において、第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMは、検出範囲30の内の移動体である人8からのドップラ信号と、検出範囲外32の移動体である人9からのドップラ信号が重畳した信号の振幅となる。検出範囲外32の移動体である人9からのドップラ信号は、壁17を2回透過してくるので、電波センサ20が配置されている領域である検出範囲30の内の移動体である人8からのドップラ信号に比べはるかに小さい。そこで、(b)における重畳した第1ドップラ信号の振幅ATEと重畳した第2ドップラ信号の振幅ATMは、実質的に、検出範囲30の内の移動体である人8からの第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMと考えてよい。したがって、(c)においてΔA=(ATM-ATE)は、CASE2とほぼ同じで、(ΔA)未満となる。図6のフローチャートにおいては、S12の判定が肯定され、S14の判定が否定される。そこで、判定部64は、「検出範囲30の内に移動体である人8がいる」と判定し、非常灯18を明るく点灯する。 CASE 3 is the state shown in FIG. 1 when there is a person 8 who is a mobile body within the detection range 30 and a person 9 who is a mobile body is also outside the detection range 32 . In this case, in (b), the amplitude A TE of the first Doppler signal and the amplitude ATM of the second Doppler signal are the Doppler signal from the moving object 8 within the detection range 30 and the Doppler signal from the moving object outside the detection range 32 . It becomes the amplitude of the signal on which the Doppler signal from the person 9 who is a moving body is superimposed. Since the Doppler signal from the person 9 who is a moving object outside the detection range 32 passes through the wall 17 twice, the person who is a moving object within the detection range 30 which is the area where the radio wave sensor 20 is arranged much smaller than the Doppler signal from 8. Therefore, the amplitude A TE of the superimposed first Doppler signal and the amplitude ATM of the superimposed second Doppler signal in (b) are substantially the first Doppler signal from the moving person 8 within the detection range 30 . One may consider the amplitude of the signal ATE and the amplitude ATM of the second Doppler signal. Therefore, ΔA=(A TM −A TE ) in (c) is almost the same as in CASE 2, and (ΔA) is less than 0 . In the flowchart of FIG. 6, the determination of S12 is affirmative, and the determination of S14 is negative. Therefore, the determination unit 64 determines that "a person 8 who is a moving object is present within the detection range 30" and lights the emergency light 18 brightly.

CASE4は、検出範囲30の内に移動体である人8がいないが、検出範囲外32には移動体である人9がいる場合である。この場合、(b)において、第1ドップラ信号の振幅ATEと第2ドップラ信号の振幅ATMはいずれもA以上となる。そして、壁17を透過する場合のTE波の透過係数とTM波の透過係数の差により、(c)においてΔA=(ATM-ATE)は、(ΔA)以上になる。図6のフローチャートにおいては、S12の判定が肯定され、S14の判定も肯定される。そこで、判定部64は、「検出範囲30の内に移動体である人8はいない」と判定し、非常灯18を消灯または省電力状態にする。 CASE 4 is a case where there is no moving person 8 within the detection range 30 but there is a moving person 9 outside the detection range 32 . In this case, in (b), the amplitude ATE of the first Doppler signal and the amplitude ATM of the second Doppler signal are both A0 or more. Then, ΔA=(A TM −A TE) in (c) becomes (ΔA) 0 or more due to the difference between the transmission coefficient of the TE wave and the transmission coefficient of the TM wave when passing through the wall 17 . In the flowchart of FIG. 6, the determination of S12 is affirmative, and the determination of S14 is also affirmative. Therefore, the determination unit 64 determines that there is no person 8 who is a mobile object within the detection range 30, and turns off the emergency light 18 or puts it into a power saving state.

上記構成の電波センサ20によれば、検出範囲外32に移動体である人9がいても、所定の検出範囲30における移動体である人8の有無を正しく判定することができる。これにより、非常灯18の照明状態について、消灯あるいは省電力状態、及び点灯を適切なものとし、誤検出による無駄な点灯をなくせる。 According to the radio wave sensor 20 configured as described above, even if the person 9 who is a mobile body exists outside the detection range 32 , the presence or absence of the person 8 who is a mobile body within the predetermined detection range 30 can be determined correctly. As a result, the lighting state of the emergency light 18 can be appropriately set to be off or in a power saving state, and to be turned on, thereby eliminating useless lighting due to erroneous detection.

8,9 (移動体である)人、10 照明制御システム、12 非常階段、14,16 壁面、15 踊場、17 壁、18 非常灯、20 電波センサ、22,23,24,25 電波、30 検出範囲、32 検出範囲外、40 アンテナ部、42 水平給電線、44 垂直給電線、50 高周波回路、52 送信部、54 受信部、56 検波回路、58 ドップラ処理部、60 制御回路、62 切替信号出力部、64 判定部、70 偏波切替部、72 水平偏波切替部、74 垂直偏波切替部、76 回路接続部、82,84,86 高周波線路、90,92,94 信号線。 8, 9 person (moving object), 10 lighting control system, 12 emergency stairs, 14, 16 wall, 15 landing, 17 wall, 18 emergency light, 20 radio wave sensor, 22, 23, 24, 25 radio wave, 30 detection Range 32 Out of detection range 40 Antenna section 42 Horizontal feeding line 44 Vertical feeding line 50 High frequency circuit 52 Transmitting section 54 Receiving section 56 Detection circuit 58 Doppler processing section 60 Control circuit 62 Switching signal output Section 64 Determining Section 70 Polarization Switching Section 72 Horizontal Polarization Switching Section 74 Vertical Polarization Switching Section 76 Circuit Connection Section 82, 84, 86 High Frequency Line 90, 92, 94 Signal Line.

Claims (3)

第1の壁面に設置され、前記第1の壁面に対向し、電波透過性の壁の第2の壁面との間の空間領域である所定の検出範囲に対して、前記第2の壁面に対する入射角度が15度以上の電波を送信し、送信した電波が移動体で反射された電波を受信して、前記検出範囲における前記移動体の有無を検出する電波センサであって、
互いに偏波が異なる第1偏波と第2偏波とを送受信するアンテナ部と、
前記第1偏波の送受信と前記第2偏波の送受信とを切り替える偏波切替部と、
前記偏波切替部に対し予め定めた偏波切替周期で前記第1偏波と前記第2偏波の切り替えを指示する偏波切替信号を出力する切替信号出力部と、
前記アンテナ部の送受信信号に関する処理を行う高周波回路と、
前記高周波回路に接続され、
前記電波センサが設置される環境に応じて設定された判定基準を用いて、前記第1偏波の送受信信号に基づく第1ドップラ信号及び前記第2偏波の送受信信号に基づく第2ドップラ信号の検出結果と、前記第1ドップラ信号の振幅レベルと前記第2ドップラ信号の振幅レベルとの差である信号レベル差に基づき、前記検出範囲における前記移動体の有無を判定する判定部と、
を含み、
前記偏波切替周期は、同一の前記移動体に前記第1偏波と前記第2偏波とを送受信可能な時間幅以内であり、
前記判定部は、
前記第1ドップラ信号及び前記第2ドップラ信号を検出しない場合、前記検出範囲の内には前記移動体がいないと判定し、
前記第1ドップラ信号及び前記第2ドップラ信号を検出した場合において、
前記信号レベル差が前記判定基準未満の場合に、前記検出範囲の内に前記移動体があると判定し、
前記信号レベル差が前記判定基準以上の場合には、前記検出範囲外に移動体があり、前記検出範囲の内には前記移動体がいないと判定する、
電波センサ。
Installed on a first wall surface, facing the first wall surface, incident on the second wall surface with respect to a predetermined detection range that is a spatial region between the second wall surface of the radio wave transparent wall A radio wave sensor that transmits radio waves with an angle of 15 degrees or more, receives radio waves that are reflected by a moving object, and detects the presence or absence of the moving object within the detection range,
an antenna unit that transmits and receives a first polarized wave and a second polarized wave that are polarized differently from each other;
a polarization switching unit that switches between transmission and reception of the first polarized wave and transmission and reception of the second polarized wave;
a switching signal output unit that outputs a polarization switching signal that instructs the polarization switching unit to switch between the first polarized wave and the second polarized wave at a predetermined polarization switching cycle;
a high-frequency circuit that performs processing related to transmission/reception signals of the antenna unit;
connected to the high-frequency circuit;
Using a criterion set according to the environment in which the radio wave sensor is installed, a first Doppler signal based on the transmitted and received signal of the first polarization and a second Doppler signal based on the transmitted and received signal of the second polarization a determination unit that determines the presence or absence of the moving object in the detection range based on the detection result and a signal level difference that is the difference between the amplitude level of the first Doppler signal and the amplitude level of the second Doppler signal;
including
the polarization switching cycle is within a time width in which the same mobile object can transmit and receive the first polarized wave and the second polarized wave;
The determination unit
If the first Doppler signal and the second Doppler signal are not detected, determining that the moving object is not within the detection range;
When detecting the first Doppler signal and the second Doppler signal,
determining that the moving object is within the detection range when the signal level difference is less than the determination criterion;
If the signal level difference is equal to or greater than the determination criterion, determining that there is a moving object outside the detection range and that the moving object is not within the detection range;
radio sensor.
前記第1偏波と前記第2偏波は、偏波方向が互いに直交する、請求項1に記載の電波センサ。 2. The radio wave sensor according to claim 1, wherein the polarization directions of the first polarized wave and the second polarized wave are orthogonal to each other. 第1の壁面に設置され、前記第1の壁面に対向し、電波透過性の壁の第2の壁面との間の空間領域である所定の検出範囲に対して、前記第2の壁面に対する入射角度が15度以上の電波を送信し、送信した電波が移動体で反射された電波を受信して、前記検出範囲における前記移動体の有無を検出する電波センサによる電波検出方法であって、
互いに偏波が異なる第1偏波と第2偏波とを予め定めた偏波切替周期で前記第1偏波と前記第2偏波を切り替えて送信し、
前記電波センサが設置される環境に応じて設定された判定基準を用いて、前記第1偏波の送受信信号に基づく第1ドップラ信号及び前記第2偏波の送受信信号に基づく第2ドップラ信号の検出結果と、前記第1ドップラ信号の振幅レベルと前記第2ドップラ信号の振幅レベルとの差である信号レベル差に基づき、
前記第1ドップラ信号及び前記第2ドップラ信号を検出しない場合、前記検出範囲の内には前記移動体がいないと判定し、
前記第1ドップラ信号及び前記第2ドップラ信号を検出した場合において、
前記信号レベル差が前記判定基準未満の場合に、前記検出範囲の内に前記移動体があると判定し、
前記信号レベル差が前記判定基準以上の場合には、前記検出範囲外に移動体があり、前記検出範囲の内には前記移動体がいないと判定する、
電波検出方法。
Installed on a first wall surface, facing the first wall surface, incident on the second wall surface with respect to a predetermined detection range that is a spatial region between the second wall surface of the radio wave transparent wall A radio wave detection method using a radio wave sensor that transmits radio waves with an angle of 15 degrees or more, receives radio waves that are reflected by a moving object, and detects the presence or absence of the moving object within the detection range,
transmitting a first polarized wave and a second polarized wave having different polarizations from each other by switching between the first polarized wave and the second polarized wave at a predetermined polarization switching cycle;
Using a criterion set according to the environment in which the radio wave sensor is installed, a first Doppler signal based on the transmitted and received signal of the first polarization and a second Doppler signal based on the transmitted and received signal of the second polarization Based on the detection result and the signal level difference, which is the difference between the amplitude level of the first Doppler signal and the amplitude level of the second Doppler signal,
If the first Doppler signal and the second Doppler signal are not detected, determining that the moving object is not within the detection range;
When detecting the first Doppler signal and the second Doppler signal,
determining that the moving object is within the detection range when the signal level difference is less than the determination criterion;
If the signal level difference is equal to or greater than the determination criterion, determining that there is a moving object outside the detection range and that the moving object is not within the detection range;
Radio wave detection method.
JP2018119624A 2018-06-25 2018-06-25 Radio wave sensor and radio wave detection method Active JP7182245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018119624A JP7182245B2 (en) 2018-06-25 2018-06-25 Radio wave sensor and radio wave detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018119624A JP7182245B2 (en) 2018-06-25 2018-06-25 Radio wave sensor and radio wave detection method

Publications (2)

Publication Number Publication Date
JP2020003217A JP2020003217A (en) 2020-01-09
JP7182245B2 true JP7182245B2 (en) 2022-12-02

Family

ID=69099838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018119624A Active JP7182245B2 (en) 2018-06-25 2018-06-25 Radio wave sensor and radio wave detection method

Country Status (1)

Country Link
JP (1) JP7182245B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028714A (en) 1998-07-10 2000-01-28 Toyota Motor Corp On-vehicle fm/cw radar device
JP2002311133A (en) 2001-04-17 2002-10-23 Koden Electronics Co Ltd Apparatus for detection in extension direction of tubular buried object
JP2007515628A (en) 2003-11-25 2007-06-14 ザ マカリース カンパニーズ,インク.デー.ビー.エイ.セイフ ゾーン システムズ Object detection method and apparatus
US20090058710A1 (en) 2006-05-09 2009-03-05 Levitan Arthur C Methods and apparatus for detecting threats using radar
US20120044105A1 (en) 2010-08-20 2012-02-23 Lockheed Martin Corporation High-resolution radar map for multi-function phased array radar
JP2015059822A (en) 2013-09-18 2015-03-30 トヨタ自動車株式会社 Radar device
WO2017056193A1 (en) 2015-09-29 2017-04-06 三菱電機株式会社 Dual-polarization radar device and radar signal processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357984A (en) * 1989-07-26 1991-03-13 Nissan Motor Co Ltd Vehicle identification device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028714A (en) 1998-07-10 2000-01-28 Toyota Motor Corp On-vehicle fm/cw radar device
JP2002311133A (en) 2001-04-17 2002-10-23 Koden Electronics Co Ltd Apparatus for detection in extension direction of tubular buried object
JP2007515628A (en) 2003-11-25 2007-06-14 ザ マカリース カンパニーズ,インク.デー.ビー.エイ.セイフ ゾーン システムズ Object detection method and apparatus
US20090058710A1 (en) 2006-05-09 2009-03-05 Levitan Arthur C Methods and apparatus for detecting threats using radar
US20120044105A1 (en) 2010-08-20 2012-02-23 Lockheed Martin Corporation High-resolution radar map for multi-function phased array radar
JP2015059822A (en) 2013-09-18 2015-03-30 トヨタ自動車株式会社 Radar device
WO2017056193A1 (en) 2015-09-29 2017-04-06 三菱電機株式会社 Dual-polarization radar device and radar signal processing method

Also Published As

Publication number Publication date
JP2020003217A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
US20070085728A1 (en) Automotive radar device
FI85427B (en) FOERFARANDE OCH ANORDNING FOER ETT OBJEKTS AZIMUT- OCH ELEVATIONSMAETNING.
CN102597810A (en) Object detection device and illumination system provided therewith
KR900011074A (en) Antenna device
JP2015118079A (en) Vehicle detection sensor
GB2405762A (en) Combined microwave and infrared sensor
US20060164240A1 (en) Human detection device
JP7182245B2 (en) Radio wave sensor and radio wave detection method
US20130241704A1 (en) Rfid tag and rfid tag system
US20130241703A1 (en) Rfid reader/writer and rfid tag system
JP2009204333A (en) Sensor system
JP6975946B2 (en) Radio sensor
JP2006275629A (en) Moving object detector
JP4479268B2 (en) Aircraft detection device
JP2000266861A (en) Device and method for detecting object
JP2000338212A (en) Azimuth and position detecting equipment
JP4561250B2 (en) Pedestrian information providing system, transmitter for pedestrian information providing system, and receiver for pedestrian information providing system
JPH02163685A (en) Airway monitoring device
JPS5828675A (en) Microwave angle sensor
WO2023190157A1 (en) High-frequency system
KR100200681B1 (en) Radar beacon arrangement device
JP3369501B2 (en) Radio-type road information detection device
JP2003114273A (en) Radio wave sensor
JP4829271B2 (en) Antenna and module for microwave detector and microwave detector
JP2009237856A (en) Touch panel device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7182245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151